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A B S T R A C T

Coordinating dynamic interceptive actions in sports like badminton requires skilled performance in getting the
racket into the right place at the right time. For this reason, the strategic movement and placement of one's feet, or
footwork, is an important part of competitive performance. Developing an automated, efficient, and economical
method to record individual movement characteristics of players is critical and can benefit athletes and motor
control specialists. Here, we propose new methods for recording data on the footwork of individual badminton
players, in which deep learning is used to obtain image coordinates (2D) of their shoes and binocular positioning
to reconstruct the 3D coordinates of the shoes. Results show that the final positioning accuracy is 74.7%. Using
the proposed methods, we revealed inter-individual adaptations in the footwork of several participants during
competitive performance. The data provided insights on how individual participants coordinated footwork to
intercept the projectile, by varying the distance traveled on court and jump height. Compared with visual ob-
servations by biomechanists and motor control specialists, the proposed methods can obtain quantitative data,
provide analysis and evaluation of each participant's performance, revealing personal characteristics that could be
targeted to shape the individualized training programs of players to refine their badminton footwork.
1. Introduction

Skilled performance in sports like badminton requires coordination of
dynamic interceptive actions to get the racket in the right place at the
right time to intercept the shuttlecock (projectile) and defend or attack
court space [1]. Competitive sport performance at recreational and elite
levels requires players to switch quickly between dynamic states of
movement organization in order to cover space on the court and intercept
the shuttlecock. To coordinate dynamic interceptive actions, a player's
footwork is an important part of performance preparation and athlete
development in badminton [2]. As in many other sports, current under-
standing of badminton footwork is largely based on models gained from
the long-term observations of athletes in competition and accumulated
experiential knowledge of badminton coaches. However, traditional,
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non-quantitative methods may suffer from subjective bias. Long-term
observations of athlete movement trajectories in competition are
time-consuming and laborious, potentially resulting in errors, omissions,
and misunderstandings. To improve data collection methods, some re-
searchers have installed force sensors in participant shoes to record data
during the lunge by badminton players, analyzing mechanical data on
their footwork. Through these mechanical analyses, investigations have
revealed the impact and potential damage to the lower limbs of players
during lunging movements. For example, Valldecabres et al. [3] found
that plantar pressure transferred to the medial side of the forelimb and
midfoot when players lunged with non-dominant limbs when fatigued in
a study of 13 class A badminton league players. Lam et al. [4] found that
repetitive movements (RM) when lunging produced a smaller load rate
on the knee than a single movement (SM) lunge. Hong et al. [5] found
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that a lunge to the left and front showed a higher vertical impact than
other lunge directions. Kuntze et al. [6] not only found that the lunge
accounted for 15% of all movements in badminton singles, but also
analyzed three badminton-specific lunge tasks (kick, step-in, and hop
lunge) using video analysis. Remote sensors can not only be used to
detect footwork, but also be placed in the badminton racket to analyze
players' stroke play. Wang et al. [7] proposed a specific adaptive feature
extraction block to improve the performance of a convolutional neural
network (CNN) in badminton motion recognition. Their accuracy in
motion recognition was as high as 98.65% for classification of ten strokes
based on sensor data. Ramasinghe et al. [8] used manual annotation to
extract athlete regions from the video and calculate their HOG (histo-
grams of oriented gradients) features [9] for machine learning and stroke
recognition. Their methods were able to classify performance of four
different strokes with 98.43% accuracy. Compared with long-term ob-
servations of athlete movement trajectories, these methods provide more
detailed data reference. Nevertheless, previous studies have not
attempted to measure spatial location attributes of athletes, which is of
critical importance for sports performance analyses. Development of
automated, technological methods for performance analysis to accurately
and economically record athlete on-court trajectories during perfor-
mance is critical for designing skill acquisition and strength and condi-
tioning programs in sports like badminton [10, 11].

To enhance skill, expertise, and development of badminton players it
is important to ensure that technological developments are based on
strong theoretical principles of motor learning [12]. In this study we used
an ecological framework to investigate how badminton players solve
specific movement problems by coordinating actions during performance
and exploiting movement pattern variability [10, 13, 14]. An ecological
rationale emphasizes a process-oriented approach to performance ana-
lytics and technological innovations in sports practice, rather than being
driven by data on performance outcomes alone [15]. A process-oriented
approach prioritizes an analytic focus on skill performance and move-
ment organization in practice and competition by individual athletes,
rather than frequency analyses measuring performance outcomes only.
Such an approach preferences an individualized analysis, as recently
adopted by Gim�enez-Egido and colleagues [16] in observations of per-
formance of children aged 10 yrs during junior tennis competitions. Their
evidence revealed the importance of ensuring that learners experience
significant amounts of variability in practice designs to enhance their
capacity to adapt their tennis skills to variations in competitive
performance.

Here, we developed and implemented an individualised, technolog-
ical approach to understanding coordination of footwork in another
racket sport, badminton, using motion analysis.

Device-based motion analysis is mainly based on wearable sensors
placed in shoes, exemplified by attempts to record angular acceleration of
a runner's calf during a race [17] and by adding a pressure gauge to shoes
to calculate heel and foot pressure [18]. However, these device-based
motion studies only addressed what an individual participant is doing,
but not their transitions in time and space during performance.

Vision-based motion analysis [19] has also been widely used to study
performance in many sports. For example, Nepal et al. [20] recognized
goal events from a video clip of a basketball game by using feature
extraction. Urtasun et al. [21] used monocular cameras to track the golf
swing mode used by participants. He et al. [22] extracted the
three-dimensional volleyball trajectory from a game video using color
tracking and 3D space matching. Host et al. [23] were able to distinguish
multiple players by their performance in handball games by using a
multi-target tracking algorithm. Guo et al. [24] designed a two-stage
cascade CNN model to judge the membership relationship of hockey
players by identifying the color of players' jerseys. Ren et al. [25]
invented an innovative algorithm to estimate the three-dimensional
trajectory of football using multiple fixed cameras. These studies
employed the traditional method of motion analysis—observing the
game video with naked eyes—which is inefficient and prone to bias and
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error. As computer vision technology is progressively improved, it has
started to replace human vision in various applications, and the number
of cameras involved in positioning has gradually increased. However,
current research on vision-based motion analysis typically focuses on
overall positioning of performers during competition. Computer vision
systems seem ideally placed for determining transitions in (re)organi-
zation of important parts of an athlete's body, such as the feet, during
competitive performance.

Currently, most of the research examines a two-dimensional (2D)
plane and lacks three-dimensional (3D) information, which is an
important element in the analysis of dynamic interceptive actions like
badminton. Rahmad et al. [26] introduced a badminton player recogni-
tion method based on Fast-RCNN (Fast Region-based Convolutional
Neural Network), whose recognition object was the whole badminton
player, with no calculations of the actual positioning of the badminton
player given. Shan et al. [27] used a wireless inertial sensor system to
study the dynamic data of upper limb movement including wrist, elbow,
and shoulder in the process of hitting the shuttlecock. His research did
pinpoint specific body parts of an athlete, but the sensors were unstable
compared to vision-based analysis. Currently, there has been no research
proposing a vision-based method to extract the 3D trajectory of body
parts of badminton players during competitive performance.

In order to calculate the 3D trajectory coordinates of badminton
players during performance, binocular vision is needed, which further
requires the image coordinates of the same object in two or more cameras
[28]. There exists much research analyzing badminton shuttlecock tra-
jectories on court, using 3D positioning methods. For example, Shishido
et al. [29] proposed a method using the coordinates of badminton
shuttlecock in multiple view planes to calculate the 3D position of
badminton shuttlecock using multiple-view videos. Lee [30] used similar
methods for 3D positioning of a badminton shuttlecock to automatically
analyze players’ tactics and predict game outcomes. Based on their work,
the University of Science and Technology Beijing robot team designed a
robot [31] which can automatically hit a badminton shuttlecock based on
3D positioning data obtained through the camera installed on the robot.
Furthermore, Chen et al. [31] proposed clock-synchronization, combined
with motion compensation methods, to improve localization error.
Although these methods only typically focused on the 3D trajectory and
location of a badminton shuttlecock, the idea of using multiple cameras
for obtaining 3D information of a spatial entity remains an inspiring
possibility for future research. The remaining problem is how to effi-
ciently extract the coordinates of an object from the frame of video clips
shot from different angles.

Perhaps the first study in the field that improved the detection ac-
curacy of objects, such as cars, animals, and person, was by Girshick et al.
[32], which used the Region-based Convolutional Neural Network
(R–CNN). However, the process of selecting~2,000 candidate frames did
not employ a shared convolutional network for calculation, resulting in a
slow detection speed. Later, He et al. [33] proposed the Spatial Pyramid
Pooling Net (SPP-Net) algorithm to increase the rate of generating
candidate frames by adding Spatial Pyramid Pooling (SPP) to both the
convolutional layer and the fully connected layer. Fast R–CNN [34] has
since been developed based on SPP-Net, replacing the SPP layer with the
ROI (Region Of Interest) Pooling layer and sharing the convolutional
layer in the entire network. Although this approach allows the fully
connected layer network to perform regression and classification tasks at
the same time, thus greatly reducing training and detection time, Fast
R–CNN still needs to generate a large number of candidate regions, which
demands much computation. Ren et al. [35] proposed the Faster R–CNN
algorithm to solve this problem. With the development of deep learning,
it allows for a framework where the pixel position of an object in the
images captured by two cameras can be obtained and matched for
binocular positioning. Monezi et al. [36], for example, reconstructed 3D
positions of basketball players (their heads, to be more precise) using
deep learning and binocular positioning. Their focus was simply to
extract discrete 3D positions of basketball player heads and they did not
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further their analyses by extracting players’ trajectory and analyzing
their performance.

Thus, the overall goal of this paper is to propose automated, efficient,
and economical methods to extract the 3D trajectory of individual
badminton players, during competitive performance, using deep learning
and binocular positioning methods. Here we sought to demonstrate the
specificities of movement trajectories of individual players, varying in
key characteristics such as sex differences, age, and skill level, to inves-
tigate the utility of the proposedmethod in sport motion analysis. For this
purpose, we examined how individual badminton players varied their
footwork, based on personal characteristics, when seeking to get the
racket into the right place, at the right time, to intercept a projectile
during competitive performance.

The paper is organized as follows. Section 1 describes the back-
ground, reviewing relevant literature in the scope of the paper. Section 2
details the data sources and models used in this study to extract data on
badminton players’ movement trajectories. Section 3 presents the model
performance by using a series of evaluation metrics, while section 4
applies the methods to study inter-individual adaptations in the footwork
of badminton players during competitive performance. Finally, section 5
concludes the paper.

2. Dataset and methods

We mounted two cameras in a badminton court (refer to section 2.2
for their locations in the court) to capture the video footage of the
badminton player using the proposed methods. The first camera (Camera
A) is a Canon EOS 6D Mark II and the second (camera B) is a Canon EOS
77D. Both cameras have a frame rate of 25 frames per second. World
coordinates of cameras A and B (their optical axis centers) are (3, �2.9,
1.4) and (12.3, 9.34, 1.5), respectively. In our study, we sampled two
video clips using each camera—one lasting 30 s (750 images) the other
71 s (1775 images). Specifically, of the first dataset (1,500 images in total
which is illustrated as Image Sequence of Camera A and Image Sequence of
Camera B in Figure 1), 90% of the visual information (1,350 images) was
Figure 1. Workflow of the
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used for model training. The remaining 10% (150 images) was used for
model validation. From the second dataset, 352 images (about one in
every five frames) were sampled for shoe localization and trajectory
extraction. Appendix C (a) and (b) shows the 90th frame in the second
dataset associated with cameras A and B, respectively. The study was
approved by the University Committee on Human Research Protection of
East China Normal University. Written informed consent was obtained
from all individual participants included in this study.

The process of the proposed methodology is composed of three major
steps. In step 1, we applied a deep learning model to identify coordinates
(2D) of a player's shoes (i.e., shoe localization) in images captured by
cameras. In step 2, we proposed methods to convert image coordinates of
shoes to world coordinates (3D), by: (1) defining the world coordinate
system based on which locations of any given point on the badminton
court can be defined, (2) deriving x-y world coordinates of shoes based
on corresponding image coordinates identified in step 1, and (3), esti-
mating z world coordinates of shoes from examining images captured by
multiple cameras using the binocular positioning method. Lastly, in Step
3, the footwork trajectory of the player was constructed by connecting
discrete shoe data coordinates. Based on the extracted footwork trajec-
tory, we then performed individualized analyses to examine the re-
lationships between players' footwork trajectory and their performance
and relevant sociodemographic characteristics. Figure 1 illustrates the
workflow of the proposed methodology.

2.1. Shoe localization in images using deep learning

We used the convolutional neural network Visual Geometry Group
Network 16 (VGG16) [37] to extract image feature maps. The VGG16 is a
pre-trained weight network based on the ImageNet [38] dataset. It
contains 13 convolutional layers (Conv) and 4 pooling layers. In order to
introduce nonlinear relationships into neurons in the network, each
convolutional layer has an activation function called Rectified Linear
Unit (ReLU) [39] that makes the training network converge quickly,
corresponding to the neuron (Figure 2). For each convolutional layer, the
proposed methodology.



Figure 2. The VGG16 network architecture (adapted from [37]).
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size of the convolution kernel is 3 � 3, and the step size is 1. To ensure
that there is no omitted information after image convolution, the image
boundary is filled with pixel value 0 (pad ¼ 1) in advance. The core size
used by the pooling layer is 2 � 2, and the step size is 1. After passing
through the pooling layer, the dimension (i.e., the number of convolution
kernels) of the feature map is doubled (except for the last pooling layer).
The dimension of the feature map grows from 64 to 512. The size of the
feature map is reduced to 1/4 of the original image. Since neither the
convolutional layer nor the ReLU activation function changes the size of
the feature map, for an RGB image with an input size of M�N, the size of
Figure 3. Camera setup and definition
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the feature map output by the network is (M/16) � (N/16) with the
dimension of 512.

The convolution workflow is as follows. First, the image is expanded
to the size of (Mþ 2)� (Nþ 2) (Figure 2). A 3� 3 sliding window is then
used to convolve the image, and a feature value is calculated using the
convolution on 9 pixels in the sliding window. The final feature value
calculated by the ReLU activation function is the feature value corre-
sponding to the location of the feature map at the center of the current
sliding window. The purpose of the ReLU activation function is to
introduce nonlinear relationships into neurons, which can also be called
of the world coordinate system.
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sparse activation, and this is an indispensable part of the convolutional
layer operation.

2.2. Converting image coordinates to world coordinates

The shoe location obtained from section 2.1 is essentially image co-
ordinates (2D). Here, several steps are developed to convert a shoe's
image coordinates to world coordinates (3D). For simplicity, we
demonstrate our methods only by looking at a single player in a half court
with two cameras installed—one on the left side of the court and the
other behind back court [40] (see Figure 3). For full-court recordings on
movements of two players in a specific competitive game, we can simply
introduce an additional camera C on the other side of the court and move
camera A to the middle of the court. In this way, camera A will obtain
coordinates of four shoes associated with two players. Cameras B and C
will capture the trajectory of player 2 and 1, respectively, from the back.

Image formation in camera requires transformation of a point's
location from its world coordinates to image coordinates. Three step-
s—rigid body transformation, projection imaging, and pixel coordinate
transformation—are involved in this process to convert among three
coordinate systems—world coordinate system, camera coordinate sys-
tem, and image coordinate system. The world coordinate system is a 3D
coordinate system based on which locations of points (e.g., player shoes)
can be defined. Camera coordinate system is a 3D coordinate system
attached to the camera, whereas image coordinate system is a 2D coor-
dinate system specific to the image. Figure 3 illustrates the origin and Xw,
Yw, Zw axes of the world coordinate system defined in this research.
Based on the defined world coordinate system, spatial locations of the
optical axis of cameras A and B are given by (xwA, ywA, zwA) and (xwB, ywB,
zwB), respectively. The shoe location of a player in the world coordinate
system is given by (xwi, ywi, zwi), where i denotes one of the two shoes of a
player.

Rigid body transformation relates the world coordinate system and
camera coordinate system by a rotation and translation (see Appendix A
(a)). Translation transformation is the movement of the origin of the
coordinate system denoted by the direction vector T (3 � 1 matrix). The
rotation transformation can be regarded as the transformation of the
coordinate axis (x, y, z) denoted by the direction vector R (3 � 3 matrix).
The formula for rigid body transformation is shown in Eq. (1). Its ho-
mogeneous expression is shown in Eq. (2).2
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Once we obtain a point's 3D coordinates in the camera coordinate
system by applying a rotation and translation to the point's world co-
ordinates, we can attain the point's image coordinates (location of the
point in the image) by projecting the point on the image plane (see Ap-
pendix A (b)). Letm (xip, yip) denote the point location in the image plane.
According to the triangle similarity relationship, xip/xc¼ yip/yc¼ f/zc can
be obtained, where f is the focal length of the camera. Therefore, Eq. (3)
can be used to express the process of projection imaging.
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Since the image coordinates obtained at this stage can only represent
the relative position of a point object in the image without the
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consideration of physical units, we then establish a scaling relationship to
further calibrate the image coordinates. Let (xip, yip) and (u, v) denote the
image coordinates before and after the calibration, respectively. The
scaling relationship can be formulated in Eq. (4).
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Combining all steps together, we can obtain Eq. (5) to convert be-
tween a point's image coordinates and world coordinates.
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Solving Eq. (5) to get the world coordinates of a shoe requires
obtaining values for three variables—u, v, and zc. The values for u and v
can be attained from the deep learning model discussed in section 2.1,
but the value for zc is difficult to obtain. Alternatively, we first only
calculate the x-y coordinates (xw, yw) of a shoe in the x-yworld coordinate
system from the image shot by either camera. The two sets of world
coordinates (xw, yw) of a shoe associated with the two cameras are then
used to estimate zw using binocular positioning.

To only measure a shoe's coordinates (xw, yw), we can substitute

Z ¼ 0 into Eq. (5), which is then simplified as:
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where

2
4 h11 h12 h13
h21 h22 h23
h31 h32 h33

3
5 is the Homography matrix, and it includes 8

unknowns (except for h33 being a constant value of 1).
To solve the 8 unknowns, 8 nonlinear correlation equations need to

be constructed. Therefore, it is necessary to identify four groups of
homonymous points in the image and world coordinate systems as con-
trol points and substitute them into Eq. (7).

xw ¼ h11uþ h12vþ h13
h31uþ h32vþ h33

; yw ¼ h21uþ h22vþ h23
h31uþ h32vþ h33

(7)

Finally, 8 nonlinear correlations describing h11、 h21、 h12、 h22、
h31、 h32、 h13、 h23 and h33 are obtained and the Homography matrix can
be solved. Using the derived Homography matrix, we can measure world
coordinates (xw, yw) for any given image coordinates (u, v) (see Figure 1(a)).

Once coordinates (xw, yw) of a given shoe are measured from either
camera, binocular positioning can be applied to calculate zw. Suppose
that the (xw, yw) coordinates of shoe M based on camera A are MA (xmA,
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ymA) and the (xw, yw) coordinates based on camera B are MB(xmB, ymB). As
shown in Figure 1(b), the intersection point of line AMA and line BMB
would be the actual spatial location of the shoe.

However, the intersection point does not exist between two non-
coplanar lines as in this case. Alternatively, the midpoint of the short-
est segment between the two lines is regarded as the intersection point in
this research (see Appendix B). We have AMA whose direction vector is
u!¼ MA � A and BMB whose direction vector is v! ¼ MB � B. Suppose
that the distances between each of the two points and the origin are Ad
and Bd, respectively (where 0 � Ad;Bd � 1Þ, then:

sd!¼AþAd ⋅ u!

td
!¼BþBd ⋅ v!

(8)

So wd
�! ¼ sd!� td

! ¼ A� Bþ Ad ⋅ u! � Bd ⋅ v! ¼ w!þ Ad⋅ u! �
Bd ⋅ v!. If line AMA and line BMB are not parallel or coincident, there are
only two points A0 and B0 that make the line segment A0B0 the nearest
two points between AMA and BMB. The line segment A0B0 is also the only
line segment perpendicular to the two lines at the same time. So:

wd
�! ⋅ u!¼ 0; wd

�! ⋅ v!¼ 0; wd
�! ¼ w!þ Ad ⋅ u!� Bd ⋅ v! (9)

Then a group of binary linear equations is obtained:

u! ⋅ u!Ad � u! ⋅ v!Bd ¼ � u! ⋅ wd
�!; v! ⋅ u!Ad � v! ⋅ v!Bd ¼ � v! ⋅ wd

�! (10)

We substitute the variables in Eq. (8) and Eq. (9) into Eq. (10) and get
Ad and Bd which are shown in Eq. (11):

Ad ¼ be� cd
ac� b2

; Bd ¼ ae� bd
ac� b2

(11)

where a ¼ u! ⋅ u!; b ¼ u! ⋅ v!; c ¼ v! ⋅ v!;d ¼ u! ⋅ wd
�!; e ¼ v!⋅ wd

�!.

Finally, we get the coordinates of the intersection I ¼ ðsd! þ td
!Þ = 2.

2.3. Integration of discrete shoe locations to form trajectory

Using the methods in 2.1 and 2.2, the world coordinates of each shoe
can be obtained by analyzing corresponding images from camera A and
camera B at each time frame. We can then connect the world coordinates
of each shoe at each time frame to derive the player's complete move-
ment trajectory. But the methods discussed previously do not have a
mechanism to match shoes across images from different cameras or
different time frames. In other words, it is unknown which of the two
identified shoes in image 1 corresponds to which of the two identified
shoes in image 2. A nearest neighbor matching method is thus proposed
to match shoes across images.

To match shoes across images from different cameras using the
nearest neighbor matching method, we used s (xs, ys) and t (xt, yt) to
denote the (xw, yw) coordinates of the pair of shoes in camera A and p (xp,
yp) and q (xq, yq) to denote the (xw, yw) coordinates of the pair of shoes in
camera B. We then calculated the Euclidean distances dsp, dsq, dtp, and dtq
between each shoe in the camera A image and each shoe in the camera B
image and defined the nearest neighbor distance as D ¼min (dsp, dsq, dtp,
dtq). The shoe pair between the two images with the minimum distance D
is regarded as the same shoe, and the remaining two shoes are the other
same shoe. Note that the same process is also applied to match shoes
between adjacent images in time associated with the same camera.

3. Results

In the experiment, we used the TensorFlow-gpu 1.10.0 as the deep
learning framework. All the analyses were performed in a Windows 10
environment of Intel(R) Core(TM) i7-8700K CPU @ 3.70 GHz and 32G
RAM and a GPU of NVIDIA GeForce GTX 1080 Ti, 11G memory. As pre-
viously mentioned, the first dataset that includes 1500 images was used
for model training. The iteration (rounds of training), batch size (number
of training pictures per iteration), and total epochs of training were set to
6

150000, 4, and 25, respectively. The model training was optimized by
using the rmsprop (Root Mean Square Propagation) algorithm [41]. In
addition, we extracted the feature map of the image through the
pre-trained model weights (VGG 16) and only trained the classification
and regression layers of Faster R–CNN to speed up the training process.

3.1. Results of shoe localization

For each of the 1,500 images in the training/validation dataset, we
used the labelImg package (https://github.com/tzutalin/labelImg) to
manually draw the bounding box for marking the shoes in images
(termed the target box). These images labeled with bounding boxes were
then compared with the shoe locations identified by the deep learning
model (termed the GT box) to evaluate model performance. Specifically,
we calculated the overlapping rate of the target box and the GT box,
which is formulated in Eq. (12):

IoU¼ SC
SA þ SB � SC

(12)

where IoU means the overlapping rate of the target box and GT box, SA
represents the area of GT box, SB represents the area of target box, and SC
represents the area of the intersection of the target and the GT box.

When the IoU is >0.5, the shoe is deemed successfully detected. Four
types of detection results are defined: (1) true positive (TP), the number
of positive samples detected as positive samples; (2) false positive (FP),
the number of positive samples detected as negative samples; (3) false
negative (FN), the number of negative samples detected as positive
samples; and (4) true negative (TN), the number of negative samples
detected as negative samples. With these four values as parameters, we
can define the average accuracy (AP) and the mean of average accuracy
(mAP) of model detection results (see Eqs. (13), (14), and (15)).

Precision¼ TP
TPþ FP

(13)

AP¼
P

nPrecision
n

(14)

mAP¼
P

mAP
m

(15)

During shoe localization, we input the feature map and the target box
that was randomly generated into the ROI pooling layer (third layer of
Faster R–CNN [35]) and transferred them into the full connection layer.
Then, the feature graph of the target box was classified and regressed to
obtain the exact position of the final target box.

The average computational time cost of the VGG16 network for
single-frame image detection was 0.2185 s and the mAP was 0.982,
indicating a remarkably high accuracy and good efficiency. To help
justify our choice of using the VGG16 network, we also did the same test
using another popular convolutional neural network—the ZF network
[42] (Zeiler & Fergus Net, which is an improvement on AlexNet by
tweaking the architecture hyperparameters, in particular, by expanding
the size of the intermediate convolution layer). In terms of the ZF
network, the average time cost for single-frame image detection was
0.1911 s and the mAP was 0.953. Given the higher detection accuracy of
the VGG16 network (and relatively closer computational time) compared
to the ZF network, it makes more sense to use the VGG16 network as the
convolutional neural network in the Faster R–CNN deep learning model.
Appendix C (c) and Appendix C (d) show the detection results of the 90th
frame of cameras A and B, respectively.

3.2. Results of the transformation from image coordinates to world
coordinates

As discussed in Section 2.2, four control points are needed for the
coordinate transformation. A rule-of-thumb for the selection of quality

https://github.com/tzutalin/labelImg
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control points is that they should be at the intersection of edges and be
dispersed as much as possible. See Figure 3 for more detail about the four
selected control points (marked in black).

Ten water bottles were randomly placed around the court to evaluate
the accuracy of the binocular positioning method. As discussed in Section
2.2, world coordinates of the ten water bottles (bottle caps, to be precise)
after binocular positioning were derived (see Appendix D). The error of
binocular positioning is defined as the Euclidean distance between the
actual world coordinates of the bottle caps and the estimated world co-
ordinates using binocular positioning. The average error was 0.129 m,
which, compared to the size of the badminton court (6.7 m � 6.1 m),
indicated high accuracy of the proposed methods.

Then our methods were applied to the second dataset for shoe
localization and trajectory extraction. As shown in Figure 4 (dots of
different colors represent different shoes of a player), the shoe identifi-
cation results can be divided into three types: (1) both the shoe location
Figure 4. Shoe identification results: (a) both the shoe location and category are a
neither the location nor category of the shoe is accurately identified.

7

and category (left or right) are accurately identified; (2) only the shoe
location is accurately identified but shoe category is reversed; and (3)
neither the location nor category of the shoe is accurately identified.

Results showed that both the shoe location and category are accu-
rately identified in 74.7% (263 of 352 images) of the second dataset. In
about 22.4% (79 of 352 images) of the dataset, only the shoe location is
accurately identified. Only in about 2.8% (10 of 352) of the dataset was
the shoe location not correctly identified. If we do not consider the shoe
classification error, the overall identification accuracy of the proposed
methods is as high as 97.2%, indicating the efficacy of using deep
learning and binocular positioning to identify a player's foot locations
and derive their footwork trajectory during competitive performance.
The extracted footwork trajectory (based on results where both the shoe
location and category are correctly identified) of a player is presented in
Figure 5, where the lines represent a pair of shoes with blue dots denoting
the left foot and red dots denoting the right foot. Note that the
ccurately identified; (b) only the shoe location is accurately identified; and (c)



Figure 5. Footwork trajectory of a player.
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participant's foot trajectory was mostly on the left side of the court due to
their opponent being left-handed.

Our methods show unique advantages when compared with other
methods. The methods by Shishido [29] and Lee [30] were able to
achieve the 3D positioning accuracy of a badminton shuttlecock at 0.48
m, while the accuracy of our methods for shoe localization is as high as
0.129 m. Huang et al. [43] designed a neural network regressor and
combined it with human joint information detection to reconstruct the
3D movement of athletes’ limbs, in order to realize the auxiliary training
of badminton singles athletes. However, their method did not work in
real time, while the data obtained by our method were obtained in
real-time analyses.

4. Discussion

In this study, we used an ecological dynamics framework to observe
competitive performance in six participants, at the sub-elite level, playing
10 badminton games which lasted for 2 min each (see Appendix E for
information about these participants). The data from our computer-
vision based performance analytics system showed how sport scien-
tists, biomechanists, and motor control specialists could adopt a more
individualized, process-orientation to understanding movement coordi-
nation (exemplified by footwork) in sports like in badminton. Several
metrics were employed to measure the movement performance of the
participants. They included: (1) total distance moved: the sum of the
Euclidean distances of all adjacent track points of a single shoe; (2)
average bounce height: the average z value of all track points of a single
shoe; (3) maximum bounce height: the maximum z value of all track
points of a single shoe; (4) average moving speed: the moving speed is
the Euclidean distance between adjacent track points of a single shoe
divided by 0.2 s (25 frames/second in the video), and thus the average
value of the moving speed of a single shoe across the whole time period is
the average moving speed; and (5), maximum moving speed: the
maximum value of the moving speed of a single shoe at each moment.
Our analyses were individualized, focusing on inter-individual perfor-
mance variations, predicated on relevant factors including differences in
sex differences, age, exercise frequency, weight, and height, as well as the
score between opponents, and number of strokes and number of mistakes
made.
8

4.1. Analysis of individual footwork performance varying by factors

As predicted by an ecological dynamics perspective on performance
processes, Figure 6 shows how the computer-vision methodology was
able to record key variations in footwork by individuals. These data
exemplified how personal and task constraints interacted to adapt values
of distance moved and maximum bounce height of both shoes for each
participant during all 10 games. Each participant has four bars. The red
bar represents the average distance moved in all competitions, while the
blue bar represents the average jumping height. The bar on the left
represents shoe 1 and the bar on the right represents shoe 2. Overall,
among the six participants, distance moved was observed to vary by sex
differences, with men's values being significantly higher than women's,
except for Participant 3. The age of Participant 3 (46 yrs) varied from
other participants who are young adults. Participant 4 is a female,
recording a high total distance moved and average bounce height due to
her high frequency of exercise. We observed that Participant 1 moved 60
m more than Player 2 in just 2 min, which greatly increases the covering
court space and possibility of returning stroke. This individual perfor-
mance characteristic between participants, discriminated by the meth-
odology, may be in part explained by the data showing that Participant 1
exercises five times a week, while Participant 4 exercises only once a
week. The methodology was able to pick up data indicating a positive
relationship between exercise frequency and movement distance values
achieved during performance between individuals.

The average lines in Figure 6 showed that movement distance and
maximum bounce height for males were higher than for females.
Participant 1 who won 3 scores per game performed well above the
sample average in both movement distance and maximum bounce
height. Participant 2 whose movement distance was above average,
while maximum bounce height below average, only won 1.5 scores per
game, as half as many as Participant 1. The female Participant 4's
movement distance and maximum bounce height reached the male
average. She won 2.3 points per game, ranking the second out of six
participants. The remaining three participants displayed slightly below-
average values for movement distance and maximum bounce height,
which may be related to their low-ranking competitive performance. In
addition, the methodology discriminated that Participant 1 and Partici-
pant 2 were able to jump with one foot, compared to other participants



Figure 7. The relationship between distance moved for each shot and winning points.

Figure 6. Results of movement distance and maximum bounce height among participants (line a: Average movement distance of males, 137.24 m; line b: Average
maximum bounce height of males, 0.237 m; line c: Average movement distance of females, 133.73 m; line d: Average maximum bounce height of females, 0.21 m).
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who could not. This may be the reason why Participant 1 and Participant
2 had a successful ‘kill shot’ in the game, while the other four players did
not. This observation demonstrated the importance of our methods of
examining individual shoes.
Table 1. Statistics of the games and participants.

Participants movement distance
of shoe 1 (m)

movement distance
of shoe 2 (m)

Game1 Participant 1 150.1 148.0

Participant 2 175.8 169.9

Game2 Participant 1 151.3 142.0

Participant 3 124.8 132.7

Game3 Participant 4 143.4 138.8

Participant 3 131.8 130.0

Game4 Participant 5 136.9 139.9

Participant 3 100.4 100.5

Game5 Participant 6 145.7 139.2

Participant 3 121.9 113.3

Game6 Participant 2 135.0 139.7

Participant 3 119.3 118.3

Game7 Participant 1 165.8 153.3

Participant 5 158.6 164.0

Game8 Participant 4 119.6 118.9

Participant 5 118.2 129.2

Game9 Participant 4 111.3 125.9

Participant 6 96.2 96.9

Game10 Participant 1 161.4 162.5

Participant 6 159.8 167.6
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To highlight the importance of footwork in scoring, we also calcu-
lated the average winning score of each individual participant. Figure 7
shows that distance moved for each shot is proportional to the average
winning score. The longer the distance moved of each stroke, the easier it
Maximum bounce height
of shoe 1 (m)

Maximum bounce
height of shoe 2 (m)

Score Swing times

0.195 0.184 4 24

0.281 0.257 9 19

0.354 0.393 5 30

0.228 0.417 5 27

0.086 0.185 4 31

0.113 0.245 6 30

0.240 0.252 5 31

0.193 0.178 7 29

0.181 0.248 5 42

0.186 0.343 3 40

0.113 0.141 4 28

0.406 0.209 6 28

0.324 0.283 7 19

0.243 0.270 6 21

0.172 0.221 3 28

0.223 0.243 10 26

0.144 0.244 4 30

0.073 0.116 7 32

0.302 0.291 5 24

0.278 0.356 7 25



J. Luo et al. Heliyon 8 (2022) e10089
is to adjust the appropriate stroke to make a winning hit, which results in
a higher winning score. Refer to Table 1 for more detail on competitive
performance and individual characteristics of participants. From an
ecological perspective, Table 1 captures the process-oriented interactions
of personal constraints of each participant and adaptations to task per-
formance as a consequence [44].

For example, the reason why Participant 1 could demonstrate such
strong performance in all games was that Participant 1 exercises 1-2
times a week and maintains muscle training. In addition, Participant 1
had attended a badminton course for one semester and studied
badminton footwork professionally. Combined with Figures 6 and 7, it
could be found that the values for average winning score, movement
distance, and maximum bounce height of Participant 1 were the highest.
As a female player, Participant 4 had the second highest values for
average winning score, movement distance, and maximum bounce
height, which were equal to the values of male participants. This finding
was perhaps because of her high exercise frequency and being a member
of the school volleyball team. Participant 2, whose height and weight
were not very outstanding, was able to use his agile posture to obtain a
very high movement distance, so he could hit many winning shots with a
lower bounce height. The exercise frequency of Participant 3 and
Participant 4 was very low, and Participant 3 with below-average dis-
tance moved was older, so they did not perform well in the competition.
It was worth mentioning that the maximum bounce height of Participant
3 was quite high due to his incorrect use of footwork, thus providing data
to support an observing motor control specialist's assumptions.

5. Conclusions

Here, we demonstrated a methodology using deep learning and
binocular positioning for undertaking an individualized analysis of
footwork in badminton, advocated in an ecological dynamics rationale,
revealing key variations in task performance, based on individual
participant characteristics. We showed how adopting the use of such a
vision-based performance analysis system could support biomechanists
and motor control specialists to examine the continuous (re)organization
of movement system degrees of freedom (specific body components like
the feet) of performers during competition. Such findings may help
biomechanists and motor control specialists better support performance
preparation and athlete development [3]. At present, the main problem
with research on badminton footwork is that it tends to over-rely on
subjective observations of motor control specialists and could benefit
from amore quantitative analysis of specific bodymovements. Long-term
understanding of how to enrich each athlete's foundational movement
skills repertoire, focusing on relevant capacities like balance, agility,
footwork, and dynamic movement, could be further enhanced by data
from the implementation of such a vision-based, process-oriented ana-
lytics system [45]. We presented an automated methodology using deep
learning and binocular positioning that can more accurately, efficiently,
and economically record the footwork trajectory of individual athletes
during competitive performance.

At present, we have integrated this research into a mature intelligent
analysis system and applied it to the analysis of badminton players’
performance. A cooperation with Shanghai Institute of Physical Educa-
tion was established to promote the use of the system. The analysis sys-
tem includes hardware for video capturing and software for trajectory
extraction. For implementation, we will first set up two cameras at the
designated positions of the stadium to carry out video acquisition and
transmission. Using the captured video clips, we will then train the shoe
localizationmodel, which is expected to take 2 h. Finally, wewill conduct
trajectory extraction and analyze the results. The duration of this process
depends on the length of the video included in the analysis. For our
experiment, it took only 10 min.

Some limitations of the methods merit discussion, including posi-
tioning error and matching failure. Multiple factors can contribute to
these issues. First, the situation on the real badminton court is ever-
10
changing, and there may be a scenario in which an athlete hits the
shuttlecock and causes the opponent's shoes to exit the camera's field of
view. Follow-up research should take measures to address this problem
by increasing the camera's field of view or classify and deal with the
events of shoes beyond the camera's field of view. Second, when the
athlete moves too fast and the camera shutter speed is not fast enough,
the contours of the shoes will be blurred, which will affect image
recognition. Therefore, it is necessary to test with improved camera
equipment with higher frame rates to reduce the occurrence of this sit-
uation. Third, when two shoes overlap and one shoe covers the other, it is
assumed that the coordinate positions of the two shoes are equal, and this
will lead to errors in shoe recognition and subsequent trajectory detec-
tion and analyses. Fourth, the result of deep learning recognition of the
shoes is a bndbox (x1, y1, x2, y2), which is a rectangular recognition
result. Replacing the shoe coordinates with the midpoint of the bottom
edge in the view of both cameras will cause errors in binocular posi-
tioning, Therefore, finding a more universal and accurate method of
approximating points is the key to improving the recognition accuracy.
Fifth, the problem of shoe matching failure will directly lead to the error
of the final positioning result. Failure to match shoes in the binocular
positioning will cause shoe positioning errors, and failure to match shoes
in the frame-by-frame matching procedure will lead to shoes classified
into the wrong category. Finding a more reliable way to distinguish
different shoes is the key to solving shoe matching errors. Sixth, since the
current positioning method is only suitable to no more than two shoes in
a half court, it can only be used to track the footwork trajectory of a single
athlete in either of the half courts. How to adapt our methods to two
athletes in the same half court (such as in a doubles game) is the focus of
future research. Finally, it would be interesting to apply our methods, in
future research, to further identify and study different types of footwork
needed in performance on a badminton court, such as the movement
footwork performed from deep court to the net or the opposite, as well as
from forehand to backhand and vice-versa.
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Appendix A. Illustration of (a) rigid body transformation and (b) projection imaging.

Appendix B. Solving the intersection point of two lines.

Appendix C. Sample images captured by cameras A (a) and B (b) at the same time frame and corresponding shoe localization results in (c)
and (d).
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Appendix D. Accuracy measurement of the binocular positioning method.
Actual world coordinates Estimated world coordinates using binocular positioning Error (m)
12
(2.0,2.0,0.225)
 (1.973,1.912,0.203)
 0.0946
(3.0,2.0,0.225)
 (2.859,2.054,0.212)
 0.1515
(4.0,2.0,0.225)
 (3.887,1.916,0.251)
 0.1432
(5.0,3.0,0.225)
 (5.101,3.128,0.206)
 0.1642
(5.0,4.0,0.225)
 (4.989,4.114,0.189)
 0.1201
(5.0,5.0,0.225)
 (4.868,4.918,0.212)
 0.1559
(5.0,6.0,0.225)
 (5.161,5.934,0.221)
 0.1740
(4.0,6.0,0.225)
 (3.971,5.879,0.251)
 0.1271
(3.0,5.0,0.225)
 (2.941,4.912,0.219)
 0.1061
(3.0,4.0,0.225)
 (2.933,4.012,0.244)
 0.0707
(3.0,3.0,0.225)
 (2.891,2.958,0.253)
 0.1201
Appendix E. Characteristics of the study participants
Sex Age Height(m) Weight (kg) Exercise frequency
Participant 1
 male
 22
 178
 80
 1 year
Participant 2
 male
 28
 170
 56
 3 months
Participant 3
 male
 46
 171
 68
 1 year
Participant 4
 female
 21
 163
 53
 3 years
Participant 5
 female
 22
 169
 54
 1 month
Participant 6
 male
 23
 175
 67.5
 2-3 weeks
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