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cost-effectiveness of South Africa’s seasonal influenza vaccination strategy, which involves vaccinating
vulnerable populations with trivalent inactivated influenza vaccine (TIV) during routine facility visits.
Vulnerable populations included in our analysis are persons aged > 65 years; pregnant women; persons
living with HIV/AIDS (PLWHA), persons of any age with underlying medical conditions (UMC) and chil-
dren aged 6-59 months.

Method: We employed the World Health Organisation’s (WHO) Cost Effectiveness Tool for Seasonal
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South Africa Influenza Vaccination (CETSIV), a decision tree model, to evaluate the 2018 seasonal influenza vaccina-
Cost Effectiveness Tool for Seasonal tion campaign from a public healthcare provider and societal perspective. CETSIV was populated with
Influenza Vaccination existing country-specific demographic, epidemiologic and coverage data to estimate incremental cost-

effectiveness ratios (ICERs) by comparing costs and benefits of the influenza vaccination programme to
no vaccination.
Results: The highest number of clinical events (influenza cases, outpatient visits, hospitalisation and
deaths) were averted in PLWHA and persons with other UMCs. Using a cost-effectiveness threshold of
US$ 3 400 per quality-adjusted life year (QALY), our findings suggest that the vaccination programme
is cost-effective for all vulnerable populations except for children aged 6-59 months. ICERs ranged
from ~US$ 1 750 /QALY in PLWHA to ~US$ 7 500/QALY in children. In probabilistic sensitivity analyses,
the vaccination programme was cost-effective in pregnant women, PLWHA, persons with UMCs and per-
sons aged >65 years in >80% of simulations. These findings were robust to changes in many model inputs
but were most sensitive to uncertainty in estimates of influenza-associated illness burden.
Conclusion: South Africa’s seasonal influenza vaccination strategy of opportunistically targeting vulnera-
ble populations during routine visits is cost-effective. A budget impact analysis will be useful for support-
ing future expansions of the programme.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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[1-3]. In South Africa, influenza accounts for over 11 000 deaths
and 56 000 hospitalisations annually [4-7], imposing a high eco-
nomic burden on both the health system and households [8]. The
health and economic burden of seasonal influenza is further exac-
erbated by the high prevalence of comorbidities in South Africa
including HIV and tuberculosis [9]. Influenza vaccination is an
effective strategy for reducing the burden of influenza-associated
illnesses, especially among individuals at risk of experiencing more
severe consequences of the disease [10-14].

Following the influenza A(H1N1)pdm09 pandemic in 2009, the
South African National Department of Health (NDOH) introduced
the first national influenza vaccination campaign in 2010 using
trivalent inactivated influenza vaccines (TIV) [15]. The campaign
currently targets high-risk sub-populations including persons
aged > 65 years, pregnant women, persons living with HIV/AIDS
(PLWHA), and persons of any age (>6 months') with underlying
medical conditions (UMC) [2,15]. However, since the introduction
of the seasonal influenza vaccination programme in South Africa,
coverage of high-risk population remains low. For example in
2018, only 5% (approximately 1 million doses) of the total number
of doses required to cover the prioritized high-risk groups were
available in the public health sector [16]. This large vaccination
gap potentially limits the realisation of the full benefits of the vacci-
nation programme in high-risk populations.

Studies from high-income settings suggest that seasonal influ-
enza vaccination is likely to be cost-effective [17,18], particularly
in high-risk groups - pregnant women [19-21], the elderly [22-
24], as well as individuals with UMCs [25-30]. However, there
remains a dearth of evidence on the cost-effectiveness of influenza
vaccination in LMICs. Given differences in the disease profile, unit
costs, and health system delivery platforms, cost-effectiveness
results from high-income countries are not always transferable
to LMIC settings [31]. Furthermore, differences in co-morbidities
may affect vaccine efficacy and consequently, the cost-
effectiveness of seasonal influenza vaccine in different contexts.
Country-specific estimates are useful for informing resource allo-
cation decisions. Two studies conducted in South Africa suggest
that seasonal vaccination may be cost-effective in some risk groups
[32,33]. However, these studies are limited in scope, focusing on a
limited number of risk groups. There remains a dearth of evidence
on the cost-effectiveness of the seasonal influenza vaccination pro-
gramme across the broad range of risk groups included in South
Africa’s influenza vaccination strategy. Given increasing budget
constraints within the public health system, the NDOH faces diffi-
cult choices on which risk groups to continue prioritising for vac-
cination. This study aimed to assess the cost-effectiveness of the
influenza vaccination programme in South Africa by comparing
the cost and benefits of vaccinating each risk group to a no vacci-
nation scenario. Although healthy children aged 6-59 months are
no longer considered for vaccination under the current South Afri-
can NDOH vaccination strategy, we analyse this subgroup, in line
with WHO recommendations [34].We conducted a cost-
effectiveness analysis from a public healthcare provider perspec-
tive and a societal perspective and expressed our results as
incremental cost per quality-adjusted life year (QALY). This study
could be useful for informing prioritisation of risk groups for vac-
cinations, thus ensuring optimal allocation of scarce resources.

2. Materials and Method
In this study, we used the WHO Cost-Effectiveness Tool for Sea-

sonal Influenza Vaccination (CETSIV), a Microsoft Excel-based tool
to assess the cost-effectiveness of seasonal influenza vaccine in dif-

1 Prior to 2017, the policy also targeted healthy children aged 6-59 months.
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ferent risk groups in South Africa. CETSIV is a new tool recently
developed by researchers at the University of Groningen with sup-
port from the WHO. The tool was developed to allow the
assessment of the cost-effectiveness of influenza vaccination pro-
grammes in different contexts using a decision tree model [35].
This study is the first to apply the CETSIV. The tool is flexible and
allows the input of a series of context-specific data available from
existing sources. Through inbuilt formulae, incremental costs and
incremental effects of the vaccination programme compared to a
no vaccination scenario can be estimated for a range of sub-
populations. Input parameters needed include the size of the eligi-
ble population, vaccination coverage, burden of seasonal influenza-
associated illness (number of influenza cases, number of influenza
cases requiring outpatient visits, number of hospitalisations and
number of influenza-associated deaths), health state utilities, costs
of influenza-associated illness, and cost of the vaccination pro-
gramme. These are described in more details below. Other inbuilt
general inputs which can be overwritten by the user includes dis-
count rates for costs and health effects, baseline health state utili-
ties and mortality rates, as well as baseline year of analysis and
currency exchange rates.

We adapted the CETSIV to align with the local context by re-
specifying the vulnerable groups defined in the tool to the South
African context, as well as by modifying the structure of the deci-
sion tree to reflect healthcare seeking behaviours in South Africa.
The general structure of the model adopted in our analysis is dis-
played in Supplemental Fig. 1.

For each risk group, we modelled the 2018 seasonal vaccination
campaign, which ran from approximately March to July 2018. Vac-
cination coverage for each risk group was estimated using country-
level demographic data on the size of the population eligible for
vaccination in each risk group and the number of doses adminis-
tered in 2018. Given that children aged 6-59 months were not tar-
geted in the 2018 programme, doses administered during the 2017
campaign were used to estimate vaccine coverage for this sub-
group [36]. For pregnant women, we accounted for the benefits
of the vaccine to unborn infants through maternal vaccination dur-
ing the influenza season [32].

Using CETSIV, we estimated incremental cost per QALY (incre-
mental cost-effectiveness ratios- ICERs) for each risk group. Costs
were estimated from a public healthcare provider perspective
(costs borne by the public health system) and societal perspective
(costs borne by the public health systems and by patients and their
caregivers). Given that influenza disease is an annual event, we
estimated costs and influenza-associated health outcomes occur-
ring within one season (i.e. one year). However, for influenza-
associated death, we estimated life time age-specific QALY loss
and productivity loss using discounted life expectancies obtained
from WHO life tables [37]- details of the estimation of these
parameter inputs are provided below. A 5% discount rate was
applied to all future life years, in line with best practice guidelines
for pharmacoeconomic analysis in South Africa [38].

2.1. Model inputs

The CETSIV permits inputs on burden of disease, seasonal influ-
enza vaccine efficacy, QALY losses associated with seasonal
influenza-related health states, vaccine programme costs, health-
care costs associated with influenza-associated illness, direct
non-medical, and indirect costs (productivity loss). We collated
model inputs from various sources (Table 1):

2.1.1. Burden of influenza disease

Key burden of disease inputs required for the CETSIV, include
the annual number (per 100000 population) of non-medically
attended influenza cases, medically attended mild cases (requiring



I. Edoka, C. Kohli-Lynch, H. Fraser et al.

A. Pregnant women

2,500,000 - -
-
1,500,000 -
=
£ 500,000 -
o
o
B
H]
£ -500,000 A
[
<
o
=
-1,500,000 4
-2,500,000 -
0 200 400 600 800 1,000
Incremental QALYs
0
=]
B. Persons living with HIV/AIDS (PLWHA)
6,000,000 -
4,000,000 -
- -
& 2,000,000 4 -
] -~
173 - -
S P
":! 0
c
o
£
¢ -2,000,000 4
9
5]
-4,000,000 -
-6,000,000 -
0 500 1,000 1,500 2,000
Incremental QALYs
[
E

Probability Cost-Effective

Probability Cost-Effective

Vaccine 39 (2021) 412-422

100%

90% -
80% -
70% 4
60%

50%

40%

30%

!

20%

10%

0%

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Cost-Effectiveness Threshold ($/QALY)

Public healthcare provider perspective

Societal perspective

100% 4
90% -

80% A
70% A
60% -
50% -
40% A
30%
20% A
10% A

0% T T T T T r T T T ]
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

Cost-Effectiveness Threshold ($/QALY)

Public healthcare provider perspective

Societal perspective

Fig. 1. Cost-Effectiveness Scatter Plots (left graphs) & Cost-Effectiveness Acceptability Curves (right graphs) of TIV vs No Vaccine.

only outpatient care), medically attended severe illness (requiring
hospitalisation), and deaths. In our base case analysis, we used pre-
viously published estimates of disease burden inputs [39,40] that
met the broad case definition for any influenza-associated illness
[8]. This includes all-respiratory, all-circulatory and all-medical,
non-respiratory, and non-circulatory influenza-associated illness.
However, in a sensitivity analysis, we employed a narrower case
definition for acute respiratory illness which met the WHO defini-
tions for severe acute respiratory infection (SARI) and influenza-
like illness (ILI), both of which are subsets of all-respiratory illness
[8,41]. These estimates were extracted from published studies
reporting laboratory-confirmed influenza cases in South Africa
and ecological analyses (non-laboratory confirmed cases) of hospi-
talization and outpatient diagnosis data [39,40].

We used the broad case definition for the base case analysis
because the WHO SARI and ILI case definitions substantially under-
estimates the disease burden associated with influenza virus infec-
tion. In a study conducted in South Africa with systematic
laboratory confirmation of influenza among patients hospitalised
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with respiratory illness, the WHO SARI case definition underesti-
mated the disease burden by 19% in children aged < 5 years and
34% among individuals aged > 5 years [42]. In addition, another
study conducted in South Africa reported a substantial number of
influenza-associated hospitalisation and deaths among individuals
with non-respiratory clinical presentation [40] and several other
studies have reported atypical (i.e., non-respiratory) clinical pre-
sentation of influenza infection such as acute myocardial infarction
or exacerbation of diabetes mellitus and chronic liver and kidney
diseases [43-53].

2.1.2. Vaccine efficacy

Efficacy of TIV in high-risk groups were obtained from pub-
lished studies (Table 1). Due to annual variations of circulating
influenza, vaccine efficacy is likely to vary annually depending on
the extent of mismatch between the vaccine and circulating influ-
enza strains [54-56]. Therefore, we extracted vaccine efficacy
inputs from meta-analyses that included several studies from mul-
tiple years [10,12,14,54,57]. This includes vaccine efficacy against
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Fig. 1 (continued)

laboratory-confirmed, symptomatic influenza-like-illness, hospi-
talisation and death, inputted into CETSIV as the relative risk
reduction of influenza-associated illnesses and deaths. Estimates
of vaccine efficacy were available for children aged 6-59 months
[14,58,59], persons aged > 65 years [12], pregnant women [54],
and healthy adults [54]. However, due to paucity of meta-
analyses on PLWHA and persons with other UMCs, vaccine efficacy
in these risk groups were inferred using previously published data.
For PLWHA, vaccine efficacy was estimated by applying the rela-
tive vaccine efficacy between healthy pregnant and pregnant
women living with HIV/AIDS? [57] to vaccine efficacy in healthy
adults [54,57]. For persons with UMCs, we assumed comparable vac-
cine efficacy to persons aged > 65 years [14,60].

2 This was done using vaccine seroconversion rates reported for pregnant women
with and without HIV infection. We estimated that vaccine efficacy in HIV pregnant
women was 74% the vaccine efficacy in non-HIV pregnant women. Vaccine efficacy in
HIV individuals was then estimated by applying this proportion to estimates of
vaccine efficacy in healthy adults obtained from existing meta-analyses.
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2.1.3. QALY loss

In the absence of South Africa-specific studies on QALY loss due
to influenza illness, we obtained data on QALY loss from a study
conducted in Spain which estimated QALY loss associated with
severe (hospitalised) and mild (non-hospitalised) cases of influ-
enza A(HIN1)pdmO9 [61]. To estimate QALY loss associated with
influenza-associated deaths, we weighted age-specific life
expectancies obtained from CETSIV inbuilt WHO life table [62] to
baseline age-specific health related quality of life (HRQOL) for
the general population [33,63]. We assumed that life expectancy
in PLWHA was 80% the life expectancy of the general population
[64].

2.1.4. Vaccination programme cost

During each vaccination campaign, primary healthcare facility
nurses administer influenza vaccines opportunistically to eligible
individuals visiting primary health care facilities for other routine
or acute health services. All risk groups receive one dose of TIV
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Fig. 1 (continued)

with the exception of children aged 6-59 months who, we assume,
will receive two doses, administered at an approximately one-
month interval [59]. Planning for the seasonal influenza campaign
commences every October preceding the influenza season and
involves a wide range of stakeholder from all levels of the public
health system (national, provincial, district and health facilities)
as well as pharmaceutical companies contracted by the NDOH to
supply the influenza vaccine to regional pharmacies. Each actor
is involved in a range of activities involving microplanning, pro-
curement, distribution, training, communication, social mobilisa-
tion, supervision, and monitoring and vaccine service delivery/
administration. A detailed description of these activities, including
quantity of resources used and unit costs are provided in Fraser
et al. [65]. We obtained estimates of economic cost per person vac-
cinated from Fraser et al. [65], inputted into CETSIV as vaccine
price and other programme costs per person vaccinated. Given
similar delivery platforms (health facility-based), cost per person
vaccinated was constant across all risk groups.

2.1.5. Cost of influenza-associated illness

In South Africa, healthcare services are provided free of charge
at the point of care to the majority of individuals utilising the pub-
lic health system. From a public healthcare providers’ perspective,
we included all costs borne by the public healthcare system. These
include direct medical cost associated with outpatient visits and
hospitalisation. We obtained healthcare providers costs from a
study estimating the economic burden of seasonal influenza in
South Africa by risk groups. Tempia et al. [66] estimated direct
medical cost per illness episode by multiplying quantities of
resources used (e.g. length of hospitalisation, admissions to inten-
sive care units and the duration, chest X-rays, oxygen therapy,
medications, and laboratory tests) to unit costs of each item. Tem-
pia et al. [66] obtained resource quantity estimates associated with
outpatient consultation (for mild illness) and hospitalisation (for
severe illness) from influenza-positive patients presenting with
ILI or hospitalised with SARI in routine surveillance sites across
South Africa [8,42,67]. Variations in direct medical costs between
risk groups was largely driven by differences in the severity of
the disease in each risk group which in turn affected the quantity
of resources used and consequently, direct medical cost [66].

From a societal perspective, in addition to direct medical cost
incurred by the public healthcare provider, we included direct
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non-medical and indirect costs incurred by patients and their care-
givers when seeking health care for influenza-associated illness.
These include transportation costs, other out-of-pocket payment
costs for non-medically attended cases and productivity losses
due to absenteeism and death. Estimates of transportation costs
per illness episode, out-of-pocket payment cost per illness episode
and productivity losses due to absenteeism were obtained from
Tempia et al. [66]. To estimate indirect costs due to influenza-
associated deaths, CETSIV inbuilt life table based on baseline mor-
tality rate for South Africa was used to estimate the number of pro-
ductive days lost at time of death. This was multiplied by median
daily wage rates and adjusted for unemployment rate in South
Africa [8,66].

2.1.6. Vaccine adverse event costs

Influenza vaccination is associated with both mild and severe
adverse events. Mild adverse events include local injection site
pain and systemic reactions such as fever and muscle pain. These
occur at a rate of approximately 5-64 per 100 persons vaccinated
[68]. Reported severe events include anaphylaxis and Guillain-
Barre Syndrome which occur at a rate of approximately 0.7-2 per
million vaccinations [68]. We assumed that 10% of patients with
a mild adverse event would visit an outpatient facility and be
attended by a nurse while all patients with a severe adverse event
would require hospitalisation

To estimate the cost of severe adverse event, inpatient care
daily costs (general ward facility fee and specialist fee) was multi-
plied by length of hospital stay (53 days [69]) and the incidence of
Guillain-Barre Syndrome following influenza vaccination. Unit cost
for mild adverse events was based on outpatient facility fee and
nurse professional fee. Facility and healthcare professional fees
were obtained from the South Africa Uniform Patient Fee Schedule
(UPFS) [70].

All costs inputs used in the CETSIV were expressed in 2018 ZAR
and converted to US$ using average 2018 exchange rate (US$
1 =7ZAR 13.25) [71].

2.2. Cost-effectiveness threshold

To assess the cost-effectiveness of the influenza vaccination
programme, ICERs were compared to a cost-effectiveness thresh-
old. The one-to three times GDP (gross domestic product) per cap-
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Table 1
Model Input Parameters.
Model Inputs Pregnant women New-borns PLWHA Persons with Persons Children aged 6- Source
other UMC aged > 65 years 59 months

Population size 323 889° - 6429 938 8995 290 3014 877 5203 824 [39,66]

Vaccine coverage 48.90%" - 5.51% 3.14% 3.11% 2.4% [16,32,36,39]

Burden of disease (per 100,000 population)

Non-medically attended 11 378 (8 306- 18 280 (12 430- 15470(11602- 15226 (11267- 2488 (1018-4 18,978 (13 664-24  [39]
illness 14 450) 24129) 19 337) 19 185) 042) 292)

Influenza-associated Out- 4676 (3 414-5 8 585 (5838-11 5290 (3 967-6 5290 (3 914-6 653 (270-1 036) 5279 (3 801-6 [39]
patient visits 939) 332) 612) 665) 757)

Influenza-associated 425 (310-540) 539 (366-711) 296 (222-370) 112 (83-142) 329 (144-570) 234 (168-299) [39]
Hospitalisations

Influenza-associated Deaths 16 (12-21) 61 (41-80) 81 (60-101) 28 (21-36) 138 (57-248) 17 (12-21) [39]

Vaccine-associated mild 12 000 (6 000- 12 000 (6 000- 12 000 (6 000- 12 000 (6 000- 12 000 (6 000- 12 000 (6 000- [68]
adverse events 18 000) 18 000) 18 000) 18 000) 18 000) 18 000)

Vaccine-associated severe 0.15 (0.075- 0.15 (0.075- 0.15 (0.075- 0.15 (0.075- 0.15 (0.075- 0.15 (0.075-0.225)  [68]
adverse events 0.225) 0.225) 0.225) 0.225) 0.225)

Vaccine efficacy 33%* (9%-47%) 17%* (4%-24%) 44% (39%-47%) 58% (34%-73%) 58% (34%-73%) 36%™* (27%-44%) [10,12-

14,57,59,60]

Direct medical costs (2018 USS)

Vaccine price 3.04 (1.26-5.01)  0.00 (0.00-0.00) 3.04 (1.26-5.01) 3.04 (1.26-5.01)  3.04 (1.26-5.01)  6.07 (2.53-10.02) [65]

Vaccine programme delivery ~ 5.42 (2.71-8.13)  0.00 (0.00-0.00)  5.42 (2.71-8.13) 5.42 (2.71-8.13) 5.42(2.71-8.13) 8.11 (4.06-12.17) [65]
costs

Out-patient visits 24 (10-38) 25 (13-36) 25 (15-35) 25 (15-35) 25 (15-34) 25 (16-33) [66]

Hospitalisations 945 (305-1855) 649 (258-1192) 888 (406-1543) 835 (401-1420) 865 (402-1274) 604 (294-1019) [66]

Mild adverse events t 1.16 (0.58-1.74) 1.16 (0.58-1.74)  1.16 (0.58-1.74) 1.16 (0.58-1.74) 1.16 (0.58-1.74)  1.16 (0.58-1.74) [70]

Severe adverse events 11 4981 (1974-12 4981 (1974-12 4981 (1974-12 4981 (1974-12 4981 (1974-12 4981 (1974-12 [69,70]

688) 688) 688) 688) 688) 688)

Direct non-medical costs (2018 USS)

Non-medically attended 5 (4-6) 5 (4-6) 5 (4-5) 5 (4-6) 5 (4-6) 5 (4-5) [66]
illness

Out-patient visits 2 (1-2) 2 (1-2) 2 (1-3) 2 (1-3) 2(1-2) 3(2-3) [66]

Hospitalisations 14 (9-20) 14 (9-20) 13 (8-18) 13 (8-18) 13 (8-18) 14 (8-19) [66]

Indirect costs (2018 USS)

Non-medically attended 6 (3-16) 11 (4-24) 10 (3-25) 9(2-22) 3(1-18) 11 (4-22) [66]
illness

Out-patient visits 8 (4-17) 13 (5-31) 10 (4-26) 10 (4-26) 4 (1-08) 12 (5-28) [66]

Hospitalisations 31 (11-66) 17 (6-35) 54 (20-113) 54 (20-113) 6 (2-09) 13 (5-29) [66]

Deaths 19 624 (11 039- 42 610 (23 968- 32361 (18 203- 38 816 (21 834- 0 (0-0) 42 001 (23 626-52  [66]

24 530) 53 263) 40 451) 48 519) 502)

QALY loss

Influenza-associated mild 0.009 (0.007- 0.009 (0.007- 0.009 (0.007- 0.009 (0.007- 0.009 (0.007- 0.009 (0.007- [61]
illness 0.011) 0.011) 0.011) 0.011) 0.011) 0.011)

Influenza-associated severe 0.031 (0.025- 0.031 (0.025- 0.031 (0.025- 0.031 (0.025- 0.031 (0.025- 0.031 (0.025- [61]
illness 0.037) 0.037) 0.037) 0.037) 0.037) 0.037)

Influenza-associated 8.79 17.45 9.16 11.45 3.72 17.35 [33,37,63]
mortality

Vaccine-associated mild 0.009 (0.007- 0.009 (0.007- 0.009 (0.007- 0.009 (0.007- 0.009 (0.007- 0.009 (0.007- Assumption
adverse event 0.011) 0.011) 0.011) 0.011) 0.011) 0.011)

Vaccine-associated severe 0.090 (0.050- 0.107 (0.060- 0.090 (0.051- 0.090 (0.051- 0.066 (0.037- 0.107 (0.060- [33,63,69,87]
adverse event 0.067) 0.080) 0.068) 0.068) 0.050) 0.080)

Ave. life expectancy 30.3 63.3 274 1 34.2 7.7 62.6 [62,64]

*Vaccine efficacy for pregnant women and new-borns weighted by probability of still being pregnant or born, respectively during the influenza season and at risk
“Two-dose vaccine efficacy for children. We assume that all children received two doses of trivalent inactivated influenza vaccine
+ Cost of vaccine mild adverse event assumed to be the same as costs associated with an out-patient visit for a mild influenza case. In the model we assumed that 10% of

individuals with mild adverse event will seek outpatient care

11 Cost of severe adverse event assumed to be same as cost of hospitalisation for a severe acute respiratory infection
1 In absence of QALY estimate in the literature, assumed to be similar to mild influenza illness event, due to similarity of presentation (pain and fever)

ttAssumed to be 80% of the rest of the population [51]
PLWHA: Persons living with HIV/AIDS
UMC: Underlying Medical Conditions

*Population of women pregnant during the 2018 influenza season. Total population of pregnant women in 2018 ~925,000

ita thresholds has been the most widely used threshold for deter-
mining cost-effectiveness of interventions, particularly in LMICs
[72,73]. However following widespread criticism of its use as a
decision rule for informing resource allocation decisions, the
WHO in 2016, revised its recommendations on the use of the one
to three time GDP per capita [73-76]. A growing body of evidence
has now emerged on empirically estimated thresholds [77-82]. In
this study, we use a cost-effectiveness threshold recently esti-
mated for South Africa that reflects the health opportunity cost
of health spending [82]. This threshold, although estimated as a
cost per DALY averted threshold (US$ 3400 in 2018 prices) is a
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close approximation of a cost per QALY threshold [81]. Therefore,
in this study, cost-effectiveness of the influenza vaccination pro-
gramme in each risk group was determined by comparing incre-
mental cost per QALYs to a threshold of US$ 3400 per QALY gained.

2.3. Sensitivity analyses

We conducted a series of deterministic and probabilistic sensi-
tivity analyses to assess the robustness of our results to uncer-
tainty in our model inputs. For the deterministic sensitivity
analysis (DSA), we conducted a series of one-way sensitivity anal-
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yses, sequentially varying each model input over a given range
(Table 1). Model inputs tested include vaccination programme
costs; costs associated with outpatient visits and hospitalisations;
burden of influenza-associated outpatient visits, hospitalisations
and deaths; QALY loss associated with influenza disease; and vac-
cine efficacy. All parameters (except vaccination programme cost)
were varied over a 95% confidence interval reported in previous
studies (Table 1). In the absence of confidence intervals, we varied
vaccine programme costs by +/-50% the mean value.

Given potential mismatch between TIV and circulating influ-
enza virus [30,54], vaccine efficacy is likely to vary annually, con-
sequently affecting the cost-effectiveness of the influenza
vaccination programmes. Therefore, we conducted a sensitivity
analysis to assess the robustness of our findings to potential mis-
match of TIV. In addition, a sensitivity analysis was conducted to
assess the robustness of our findings to the narrower case definition
for acute respiratory illness meeting the WHO definitions for SARI
and ILL

Finally, a probabilistic sensitivity analysis (PSA) was conducted
to assess the robustness of our findings to uncertainty in all param-
eters simultaneously. The PSA is a Bayesian approach that involves
specifying probability distributions for each model parameter and
running a series of Monte Carlo simulations that drew parametric
inputs randomly from these distributions [83,84]. We run 1 000
Monte Carlo simulations specifying a beta distribution for burden
of disease inputs, vaccine efficacy, population baseline utilities
and QALY loss from non-fatal events, and a gamma distribution
for all cost inputs.

3. Results

Vaccination coverage was relatively low for all risk groups
except for pregnant women (Table 1). The population size for preg-
nant woman was weighted to reflect the fact that only 35% of all
pregnant women in a given year are pregnant during the influenza
campaign and therefore receive the vaccine [32].

Table 2 displays clinical events averted by the influenza vacci-
nation programme at 2018 coverage levels, disaggregated by risk
group. The highest number of influenza-associated clinical events
were averted in PLWHA and persons with underlying medical con-
ditions compared to other risk groups.

Table 3 shows the incremental costs incurred by the public
healthcare provider, patients and their caregivers. Substantial cost
savings were observed across all risk groups. From a public health-
care provider's perspective, substantial reductions in influenza
treatment costs were observed although these were largely offset
by vaccination programme costs (Table 3). From the perspective
of patients and their caregivers, we observed reductions in out-
of-pocket expenditure and productivity losses across all
influenza-associated clinical events except in the elderly popula-
tion. We assumed no productivity losses due to influenza-
associated deaths in persons aged > 65 years given the retirement
age of 60 years in South Africa. However, we estimated productiv-
ity losses due to non-medically attended and medically attended
(outpatient and hospitalisation) illness in this age group due to
productivity losses experienced by their caregivers. As a result,
the impact of the vaccination programme on productivity loss is

3 Each year, TIV includes three stains of influenza virus - two stains of influenza A
virus (HIN1 and H3N2) and one influenza B virus (Victoria or Yamagata lineages).
Based on WHO recommendations, one lineage of the B virus is chosen for inclusion
into TIV. However, in some years, a mismatch may occur when the circulating
influenza B lineage during a season differs from the influenza B lineage contained in
TIV or when both influenza B lineages are in circulation. de Boer et al 2018 estimated
a probability of mismatch of ~50% over an 11-year time period [33].
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lowest in persons aged > 65 years compared to the other risk
groups (Table 3).

Table 4 shows ICERs disaggregated by risk group from both the
healthcare provider and societal perspective. These are also pre-
sented diagrammatically on a cost-effectiveness plane in Supple-
mental Figure 2. ICERs estimated from a public healthcare
provider’s perspective ranged from ~ US$ 1 700/QALY for PLWHA
to ~ US$ 7 500/QALY for children aged 6-59 months. Using a
cost-effectiveness threshold of US$ 3 400/QALY [82], the influenza
vaccination programme was cost-effective for all risk groups
except in children. When out-of-pocket costs and productivity
losses were considered in a societal perspective, the influenza vac-
cination programme was observed to be cost saving in pregnant
women as well as in PLWHA and persons with other UMCs. Overall,
from a societal perspective, the vaccination programme was cost-
effective for all risk groups, except in children aged 6-59 months
where the ICER remained above the cost-effectiveness threshold
(Table 4; Supplemental Figure 2).

3.1. Deterministic sensitivity analysis (DSA)

The results of the one-way sensitivity analyses are presented in
tornado diagrams for each risk group (Supplemental Figures 3A-E).
The figures show changes in the ICERs associated with increasing
and decreasing model inputs over the ranges specified in Table 1.
For persons aged > 65 years, persons living with UMC and children
aged 6-59 months, uncertainty in estimates of vaccine delivery
costs, vaccine price, vaccine efficacy against influenza mortality,
and the incidence of influenza- associated mortality had the high-
est impact on the ICER. For pregnant women, variations in vaccine
efficacy against influenza-associated mortality, vaccine delivery
costs, vaccine efficacy against hospitalisation and vaccine price
had the highest impact on the ICER while vaccine delivery costs,
vaccine price and incidence of influenza-associated mortality had
the largest impact of the ICER for PLWHA.

To assess the impact of potential variations in vaccine efficacy
due to mismatch of TIV with circulating influenza virus strains,
vaccine efficacy was varied multiplicatively around the base case
input for each risk group. Supplemental Figure 4 shows how the
ICERs varied as a function of vaccine efficacy. We observed that
cost-effectiveness of the vaccination programme increased with
vaccine efficacy. The results suggest that in years with a high mis-
match between the vaccine and circulating influenza virus strains
(for example at vaccine efficacy multiplier = 0.5), the vaccine will
not be cost-effective for any risk group. For children aged 6-
59 months, even with large increases in vaccine efficacy relative
to the base case input, the vaccination programme is not likely to
be cost-effective.

Finally, the scenario analysis assessing the robustness of our
findings to variations in the case definition of influenza-
associated illness suggest that the ICERs are sensitive to the burden
of disease estimates (Table 5). When a narrower case definition of
SARI and ILI were applied, the ICERs for all risk group increased
dramatically and the influenza vaccination programme was no
longer cost-effective from both the public healthcare provider
and societal perspectives (Table 5).

3.2. Probabilistic sensitivity analysis (PSA)

The results from the PSA are presented for each risk group in
cost-effectiveness scatter plots and cost-effectiveness acceptability
curves (Fig. 1A-E). The cost-effectiveness acceptability curves
shows the probability of the vaccination programme being cost-
effective over a wide range of potential cost-effectiveness thresh-
olds. From a public healthcare provider’s perspective, over 90% of
the simulations fall below the cost-effectiveness threshold of US$
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Table 2
Vaccines Administered and Clinical Events Averted by Influenza Vaccination in South Africa, 2017-2018.

Vaccine 39 (2021) 412-422

Influenza cases averted
(% reduction)

Target Group Vaccines administered Outpatient visits averted

(% reduction) (% reduction)

Hospitalizations averted

Deaths averted
(% reduction)

Pregnant women 158 521 15692 (11.1) 4701 (10.9) 364 (11.7)
PLWHA 354 290 32 496 (2.40) 8 180 (2.40) 458 (2.40)
Persons with UMC 282 452 33763 (1.82) 8 666 (1.82) 183 (1.82)
Persons aged > 65 years 93 763 1888 (1.80) 355 (1.80) 179 (1.80)
Children 6-59 months* 124 892 10 966 (0.86) 2 373 (0.86) 105 (0.86)

24 (9.79)
125 (2.40)
46 (1.82)
75 (1.80)
8 (0.86)

*2017 estimates of vaccine administered in children aged 6-59 months. 2018 estimates for all other target groups
PLWHA: Persons living with HIV/AIDS
UMC: Underlying Medical Conditions

Table 3
Incremental* Costs (2018 US$), by Risk Groups in South Africa.

Cost Categories Pregnant women PLWHA Persons with UMC Persons aged > 65 years Children 6-59 months
Vaccine Programme Costs

Vaccine cost 481 372 1075 853 857 708 284 724 758 505
Vaccine delivery 859 121 1920114 1530782 508 158 1012923
Vaccine adverse events 46 598 52 073 41 514 13 781 18 356
Influenza Treatment Costs Averted

Outpatient visits 115 028 204 333 214 792 8 805 58 449
Hospitalisations 302 074 406 373 153 227 154 786 63 511
Deaths 8233 46 678 16 417 28 228 2171
Out-of-Pocket Expenditure Averted

Non-medically attended illness 53 264 118 494 123 557 6 702 148 041
Outpatient visit 9314 16 208 17 171 704 7 054
Hospitalisation 5047 5 895 2 363 2304 1459
Productivity Loss Averted

Non-medically attended illness 90 481 236 964 219 635 4289 92 969
Outpatient visit 47 203 81030 85 847 1407 27 850
Hospitalisation 9 409 24 685 9 896 993 1411
Death 846 637 4 020 483 1784 246 0 321 387

* Estimated as the difference between costs of TIV vaccination programme and no vaccination programme
PLWHA: Persons living with HIV/AIDS

UMC: Underlying Medical Conditions

TIV: Trivalent inactivated influenza Vaccine

Table 4
Incremental Cost-Effectiveness Ratio (TIV vaccination programme vs No vaccination programme) by Risk Groups in South Africa.

Pregnant women PLWHA Persons with UMC Persons aged > 65 years Children 6-59 months
Public healthcare provider perspective
Incremental Cost (2018 US$) 961 756 2 390 656 2 045 569 614 844 1 665 653
Incremental QALY 478 1367 781 294 222
ICER 2 010 1749 2618 2 090 7 490
Societal perspective
Incremental Cost (2018 US$) —99 666 -2 113 316 —197 255 598 388 1171228
Incremental QALY 478 1367 781 294 222
ICER Dominant Dominant Dominant 2034 5267

ICER: Incremental Cost-Effectiveness Ratio
PLWHA: Persons living with HIV/AIDS
UMC: Underlying Medical Conditions

TIV: Trivalent inactivated influenza Vaccine
QALY: Quality-Adjusted Life Year

PSA: Probabilistic sensitivity analysis
Negative values imply cost savings

3 400/QALY for pregnant women and PLWHA (Fig. 1A and B). For
persons aged > 65 years and persons with UMCs, the vaccination
programme was cost-effective in >80% of the simulations (Fig. 1C
and D). However, for children aged 6-59 months, the vaccination
programme had a very low probability of being cost-effective from
both study perspectives (Fig. 1E).

4. Discussion

419

Seasonal influenza imposes a significant health [40] and eco-
nomic burden [8] in South Africa, particularly in populations vul-
nerable to severe consequences of the virus [6,7]. We assessed
the cost-effectiveness of South Africa’s seasonal influenza vaccina-
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Table 5

Vaccine 39 (2021) 412-422

Scenario analysis showing the impact of disease burden on the ICER from a Public Healthcare Provider and Societal Perspective in South Africa.

Public Healthcare Provider Perspective ICER (2018 US$)

Societal Perspective ICER (2018 US$)

Base case analysis

Scenario analysis* Base case analysis Scenario analysis*

Pregnant women 2010
PLWHA 1749
Persons with UMC 2618
Persons aged > 65 years 2090
Children 6-59 months 7 490

11 015 Dominant 8 362
11 361 Dominant 8 012
11 541 Dominant 8 621
15 888 2034 15 801
23 620 5267 21 161

PLWHA: Persons living with HIV/AIDS
UMC: Underlying Medical Conditions

Base case analysis: Incremental Cost-Effectiveness Ratio (ICER) estimated using the broad case definition of influenza-associated illness which includes all respiratory, all

circulatory, non-respiratory/non-circulatory influenza-associated illness

Scenario analysis: ICER estimated using the narrower case definition of influenza-associated illness which includes only ILI and SARI, a subset of all respiratory influenza-

associated illness

*Supplementary Figure 5 presents the results of the probabilistic sensitivity analyses for the narrower case definition scenario

tion strategy to inform the prioritisation of risk groups for vaccina-
tion. We modelled the 2018 vaccination campaign using a cost-
effectiveness tool, the CETSIV, populated with country-specific
demographic, epidemiologic and coverage data to estimate incre-
mental costs and incremental effects associated with the vaccina-
tion programme. The highest clinical benefits of the vaccination
programme were observed in PLWHA and persons with other
UMCs.

Our findings suggest that it is cost-effective to vaccinate all risk
groups except children aged 6-59 months. Limited efficacy of the
vaccine in children and the higher number of vaccine doses (2
doses) required to achieve viral protection in children aged 6-
59 months may explain the higher ICER observed in this age group.

Resource allocation decisions in South Africa’s public health
system are currently limited to the perspective of the healthcare
provider, excluding costs borne by individuals and their caregivers
[38]. However, in our study, we adopted a broader (societal) per-
spective that incorporates such costs, in part, to allow for compar-
isons with other recent studies conducted in South Africa that had
adopted a societal perspective [32,33]. As expected, from a societal
perspective, the ICER reduced substantially in all risk groups
except in persons aged > 65 years due to the lower productivity
losses experienced in this age group. From a societal perspective,
the vaccination programme became the dominant strategy com-
pared to no vaccination programme for pregnant women, PLWHA
and persons with other UMCs due to averting influenza-
associated clinical events and associated productivity losses and
out-of-pocket expenditure incurred by patients and their care-
givers. Although cost savings were observed in children aged 6-
59 months, particularly from averting productivity losses due to
deaths, cost savings were not sufficient to completely offset the
cost of the vaccination programme in children.

Our base case results from a societal perspective appear more
favourable compared to two other studies conducted in South
Africa [32,33]. Differences in our model structures and input
parameters may explain differences between prior studies and
ours. Notably, in our study, we used a broader case definition of
influenza-associated illness, which includes all respiratory, circula-
tory, non-respiratory, and non-circulatory cases [39,40]. As a
result, our estimate of the proportion of infected individuals (med-
ically or non-medically attended), symptomatic attack rate as well
as case hospitalisation and fatality ratios were considerably higher
than estimates reported in previous studies. However, when we
applied the narrower case definition of ILI and SARI, our results
became comparable to previous studies. For example, Biggerstaff
et al. [32] using a static model, estimated an ICER for pregnant
women of ~ US$ 5 900/QALY which similar to our findings with

the narrower case definition is not cost-effective for pregnant
women.

More broadly, our base case ICERs also compares favourably
with estimates of the cost-effectiveness of other vaccination pro-
grammes currently provided in South Africa. For example, an ICER
of US$1078 and US$1460 per QALY gained (from a societal and
health systems perspective, respectively) was estimated for a
human papilloma virus vaccination programme targeting girls
aged 12 years old in South Africa [85].

Overall, our findings should be interpreted taking into consider-
ation some limitations of our study. The CETSIV is a static tool and
therefore models only the direct benefits of the vaccination pro-
gramme to vaccinated individuals. However, given the dynamic
nature of the influenza disease, the vaccine may have an indirect
‘herd-immunity’ effect through a reduction in the risk of infection
in unvaccinated individuals. Therefore the CETSIV may have under-
estimated the impact of the vaccine and as a result, underestimated
the cost-effectiveness of the seasonal influenza vaccination pro-
gramme [86]. This may explain the difference between our finding
and de Boer et al. [33], who adopted a dynamic approach in mod-
elling the effect of the influenza vaccination programme. Therefore,
our ICERs should be interpreted as conservative estimates. Never-
theless, our findings show that for all study risk groups considered
except for children aged 6-59 months, the vaccine represents good
value for money. Although we found that the direct benefits of vac-
cinating young children do not offset the associated cost in a static
approach, given high transmission rates seen in young children, a
vaccination programme that targets only school age children may
have wider benefits to the general population. This would poten-
tially include vulnerable groups at risk of more severe conse-
quences of influenza. Furthermore, TIV efficacy has been shown to
be higher in school-age children compared to children aged 6-
59 months, which may increase the benefits of vaccinating this
sub-population [13]. A reassessment of the cost-effectiveness of
the influenza vaccination programme may be warranted to identify
subgroups, including school-age children, who are likely to have the
highest direct and indirect benefits, as well as to identify maximum
coverage levels required to achieve herd protection. A dynamic
transmission model will be required to answer these questions
and should be considered for future studies.

5. Conclusion
The WHO Cost Effectiveness Tool for Seasonal Influenza Vacci-

nation (CETSIV) proved to be useful for assessing the cost-
effectiveness of seasonal influenza vaccination strategies in South
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Africa. CETSIV can potentially be adapted to reflect other country-
specific decisions. The tool helped to demonstrate that South Afri-
ca’s seasonal influenza vaccination strategy of opportunistically
targeting vulnerable populations during visits to health facilities
for routine care is cost-effective in most target groups. Scaling up
the programme have to be weighed against potential costs associ-
ated with a comprehensive vaccination programme and the budget
implications of achieving higher coverage levels. Whilst the protec-
tion of health should remain the primary argument for decision
makers to prioritize risk groups, in settings of scarce health
resources, the results of this study may complement national pol-
icy considerations, with arguments from an economic perspective.
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