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Abstract: Post-stroke cognitive impairment is common and can have major impact on life after stroke.
Peak-width of Skeletonized Mean Diffusivity (PSMD) is a diffusion imaging marker of white matter
microstructure and is also associated with cognition. Here, we examined associations between PSMD
and post-stroke global cognition in an ongoing study of mild ischemic stroke patients. We studied
cross-sectional associations between PSMD and cognition at both 3-months (N = 229) and 1-year
(N = 173) post-stroke, adjusted for premorbid IQ, sex, age, stroke severity and disability, as well as
the association between baseline PSMD and 1-year cognition. At baseline, (mean age = 65.9 years
(SD = 11.1); 34% female), lower Montreal Cognitive Assessment (MoCA) scores were associated with
older age, lower premorbid IQ and higher stroke severity, but not with PSMD (βstandardized = −0.116,
95% CI −0.241, 0.009; p = 0.069). At 1-year, premorbid IQ, older age, higher stroke severity and
higher PSMD (βstandardized = −0.301, 95% CI −0.434, −0.168; p < 0.001) were associated with lower
MoCA. Higher baseline PSMD was associated with lower 1-year MoCA (βstandardized = −0.182,
95% CI −0.308, −0.056; p = 0.005). PSMD becomes more associated with global cognition at 1-year
post-stroke, possibly once acute effects have settled. Additionally, PSMD in the subacute phase after
a mild stroke could help predict long-term cognitive impairment.

Keywords: ischemic stroke; small vessel disease; cognition; diffusion imaging; peak-width of skele-
tonized mean diffusivity

1. Introduction

Cognitive impairment after stroke is common [1–3]. This post-stroke cognitive impair-
ment is related to physical impairments and depression and is associated with disability [4].
Impaired cognitive functioning can restrict participation in life after stroke, whether that
is socially, at work or in the community [5], which in turn can have a negative impact on
the quality of life post-stroke [6]. While there are social and environmental factors that
can impact participation, stroke-related impairments are the strongest predictor of poor
post-stroke participation [5]. In the UK, 65% of stroke survivors report severe disability [7].
Stroke is also associated with gait [8] and motor impairments [9], and dementia [10,11].
Even after a non-disabling stroke that leaves mild residual physical deficits, cognition can
be affected. However, this might be overlooked as cognitive symptoms can be mild or even
incorrectly perceived as being normal.

Peak-width of skeletonized mean diffusivity (PSMD), derived from diffusion tensor
imaging (DTI), allows the quantification of microstructural white matter changes, before the
damage becomes visible on conventional brain magnetic resonance imaging (MRI), e.g., as
white matter hyperintensities (WMH). Additionally, PSMD seems to be more sensitive to
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microstructural changes than more conventional DTI metrics such as fractional anisotropy
(FA) and mean diffusivity (MD) [12]. While PSMD uses FA images and MD values, it
focusses on the MD values in the skeleton of the main white matter tracts. This is thought
to avoid possible contamination of cerebrospinal fluid [12]. By using histogram analysis
of the peak width of the MD values in the skeleton it avoids bias about parts of the brain
that may be affected and is sensitive to subtle and widespread pathology [12,13]. High
PSMD values are thought to resemble microstructural damage. PSMD is a relatively new
imaging marker associated with cerebral small vessel disease (SVD), which is one of the
commonest causes of stroke, and related to an increased risk of stroke and dementia [14].
SVD imaging features, including WMH, lacunes, perivascular spaces and microbleeds
are also each associated with increased risk of stroke and dementia [15] and cognitive
impairment [16]. PSMD can capture changes of SVD over time [12,17] and has been cross-
sectionally associated with clinical outcomes and symptoms such as functional outcome [18]
and cognition, particularly processing speed, in a range of groups including healthy older
people [12,19–21], in late life depression [22]; after acute stroke [18]; in sporadic and genetic
SVDs [12], and in mild cognitive impairment, or dementia [21,23,24]. Undamaged white
matter is important for good cognitive functioning and white matter damage, as measured
with PSMD, relates to disruption of cognitive functioning.

While evidence of cross-sectional associations between PSMD and cognition is emerg-
ing, it has not been widely examined in patients following stroke or longitudinally. So far,
stroke research suggests that increased PSMD might mediate the effect of older age on
poorer functional outcomes after stroke, in addition to direct contribution to poor functional
outcomes [18]. In stroke- and dementia-free community-dwelling older adults, PSMD is
negatively associated with processing speed, and negatively associated with processing
speed and memory three years later [20].

Previously we found that in people with stroke, the associations between WMH
volume and global cognition are stronger at one year and three years after stroke, compared
to the associations soon after the stroke [25]. As PSMD seems to be associated with more
aspects of long-term cognition in older people [20], we hypothesize that PSMD might be
more strongly associated with global cognition at 1 year after stroke than in the subacute
phase. Therefore, we aim to examine the relationship between PSMD and global post-
stroke cognition and determine whether associations between PSMD and cognition vary at
different time-points after mild stroke.

2. Materials and Methods
2.1. Participants

As part of an ongoing prospective cohort study, the Mild Stroke Study 3 [26], we
recruited adult patients >18 years, who presented to Edinburgh and Lothian stroke ser-
vices with an acute minor (≤2 modified Rankin scale [mRS] [27]) lacunar or non-lacunar
ischemic stroke. The final stroke diagnosis is based on presenting symptoms and signs,
supplemented by diagnostic brain MRI or CT. We excluded participants with MRI con-
traindications, severe cardiac or respiratory disease, and major neurological conditions.
Participants had baseline assessments within three months post-stroke, including MRI,
clinical and cognitive assessments. Participants repeated MRI, clinical and cognitive as-
sessments one year after baseline. When participants were not able to attend the visit in
person, data were gathered via telephone interview. All participants provided written
informed consent. Patient recruitment commenced in August 2018 and ended in December
2021. As the follow-up visits are still ongoing, the smaller number of participants that
have attended their follow-up visits are unselected. They represent the study population
as a whole. The study was approved by Southeast Scotland Regional Ethics Committee,
reference 18/SS/0044.
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2.2. Clinical and Cognitive Assessments

We collected medical history provided by the participants. This is supplemented by
hospital medical records, general practitioner correspondence and a structured interview
at time of the first visit. As part of the clinical assessments, we recorded history of diabetes
mellitus, hypertension, hypercholesterolemia, and atrial fibrillation and smoking. We
assessed stroke severity (National Institutes of Health Stroke Scale [NIHSS]) [28] and
disability after stroke (mRS) at all visits. Scores on the NIHSS range from 0 to 42, higher
scores indicate greater stroke severity [28]. The mRS ranges from 0 (no symptoms) to
5 (severe disability) [27]. At baseline, the mRS for all participants was ≤2 due to inclusion
criteria.

As part of a neuropsychological test protocol, premorbid intelligence (IQ) was assessed
by the National Adult Reading Test (NART) [29] at baseline. The NART assesses the
pronunciation of 50 irregular English words which has proven to be related to general
intelligence [30] and it is associated with educational attainment [31]. We used the NART
to assess premorbid IQ because pronunciation of irregular words is well maintained in
people with mild to moderate dementia [32] and post-stroke [31]. When administered, the
number of errors is noted. More errors on the NART relate to lower premorbid IQ [31].
Subsequently, we subtracted the number of errors from the total number of words to get
the number of correct answers.

At both baseline and 1-year visit, global cognition was assessed with the Montreal
Cognitive Assessment (MoCA) [33]. The MoCA is a brief cognitive screening test to
assess mild cognitive impairment and it covers memory, visuospatial abilities, executive
functioning, attention, language and orientation in time and place. The scores range from 0
to 30 and a score of ≤25 might indicate cognitive impairment [33]. Alternative versions of
the MoCA were used at each study visit to minimize learning effects [34,35].

2.3. Image Acquisition

Full details of the brain imaging scanning protocol for the Mild Stroke Study 3 have
been published previously [26]. Briefly, participants underwent brain MRI within three
months post-stroke and they were invited to repeat MRI one year later, on the same 3T
scanner (Siemens Prisma, Erlangen, Germany). We monitor the MRI scanner with a quality
assurance program to check for any scanner performance issues and maintain consistent
function and image quality. Images were acquired using a 32-channel head coil (Siemens
Healthcare, Erlangen, Germany). MRI protocol included 3D T1-weighted, T2-weighted,
fluid attenuated inversion recovery-weighted (FLAIR), susceptibility weighted (SWI) and
multi-shell diffusion imaging. The acquisitions were repeated at one year follow-up, but
with a single-shell DTI acquisition (isotropic voxel size of 2 mm, 11 volumes at b = 0 and
64 volumes at b = 1000 s/mm2). The DTI protocol was designed so the baseline multi-shell
acquisition contained the follow-up single-shell acquisition, so an equivalent single-shell
could be processed at both time points.

2.4. Imaging Analysis

Diffusion data were processed using TractoR version 3.3.5 ‘dpreproc’ pipeline [36].
Briefly, DICOM data were converted to NIfTI-1 format using ‘divest’ [37], corrected for
susceptibility and eddy current induced distortions using topup and eddy from FSL version
6.0.1 [38–40], and the brain was masked using FSL’s brain extraction tool [41]. At baseline
we kept only the diffusion-weighted volumes equivalent to the follow-up single-shell
acquisition and a self-diffusion tensor model was fitted in each brain voxel. Parametric
maps of FA and MD were derived from its eigenvalues with TractoR’s ‘tensorfit’ using an
iterative weighted least-squares approach [42].

We calculated PSMD using a previously described protocol [12] and the publicly
available pipeline for fully processed DTI images (www.psmd-marker.com; accessed on
1 April 2022), which we adjusted to exclude acute stroke lesions. Briefly, the FA images
were normalized to standard space and projected into a white matter skeleton template

www.psmd-marker.com
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(Figure 1). The transformation was then applied to the MD maps and the projections used
to obtain the MD skeleton. After histogram analysis, the peak width of the MD values
within the skeleton was quantified. The peak width refers to the difference between the
5th and 95th percentile. Stroke areas were excluded from the skeleton to avoid effects
of the lesion in PSMD values. For this, we used stroke masks manually drawn on the
FLAIR volumes by an experienced rater, guided by the DWI data previously mapped in
the structural space. All cases were discussed with a neuroradiologist and masks adjusted
when required.
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Figure 1. Example of application of peak-width of skeletonized mean diffusivity skeleton template.
The fractional anisotropy (FA; left) images were normalized to a standard space and projected into
a white matter skeleton template. This transformation was applied to the mean diffusivity (MD)
images (middle) and MD skeleton was obtained (right).

2.5. Statistical Analysis

We ran three multivariable linear regressions. To assess cross-sectional relations, we
ran models one linear regression model with MoCA at baseline as outcome, this model was
adjusted for contemporaneous age, sex, premorbid IQ (NART), stroke severity (NIHSS),
disability (mRS), and PSMD. The second cross-sectional linear regression model had the
MoCA at 1 year as outcome. We adjusted the models for age, sex, NART, NIHSS, mRS and
PSMD. Apart from, sex and NART, all variables were measured at 1-year visit. To explore
associations between baseline PSMD and global cognition at 1 year, we ran a third linear
regression model with 1-year MoCA as outcome adjusted for age, sex, premorbid IQ, NIHSS,
mRS, MoCA, and PSMD. All the independent variables for the third linear regression were
as gathered at baseline. In these analyses, we used the number of correct answers for the
NART, thus higher NART scores relate to higher premorbid IQ. To avoid scaling problems,
we multiplied PSMD by 1000 and converted to units of ×10−4 mm2/s. The models are not
corrected for multiple comparisons in this explorative analysis. Model assumptions were
met for all models. For the results, we have chosen to report standardized betas instead
of the original units in order to be able to compare the influence of the variables, which
would not be possible if we used the original units. All analyses were performed using R
version 4.0.2 [43].

3. Results
3.1. Participants

An overview of the demographic, clinical, cognitive and PSMD data is shown in
Table 1. The total number of participants at baseline was 229 (33.6% female), 226 pro-
vided MRI data that we could use to compute PSMD. The mean age at baseline was
65.9 (SD = 11.1) years. Lacunar stroke was the final diagnosis for 57% of the participants.
69% had hypertension, 22% had diabetes, 75% had hypercholesterolemia and 17% were
current smokers or stopped smoking less than 1 year ago. Further, 9% had atrial fibrillation.
The median NIHSS score was 1 (IQR 0–2), median mRS was 1 (IQR 0–1) and the mean
MoCA score was 24.3 (SD = 3.6) at baseline visit.
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Table 1. Demographic characteristics of participants at baseline and 1-year follow-up.

N Baseline N 1 Year

Age, mean ± SD (range) 229 65.9 ± 11.1
(32.7–86.3) 173 67.5 ± 11.0

(33.7–87.4)

Sex, female (%) 229 77 (33.6) 173 55 (31.8)

Final diagnosis, lacunar stroke (%) * 229 130 (56.8) 173 94 (54.3)

Days between stroke and baseline visit,
median IQR (range) 229 61, 43–76 (11–105)

Hypertension, yes (%) * 229 157 (68.6) 173 116 (67.1)

Smoking, yes (%) * 229 173

Never 108 (47.2) 84 (48.6)

Ex, >1 year 82 (35.8) 62 (35.8)

Ex, <1 year 12 (5.2) 9 (5.2)

Current 27 (11.8) 18 (10.4)

Diabetes, yes (%) * 229 50 (21.8) 173 38 (22.0)

Hypercholesterolaemia, yes (%) * 229 171 (74.7) 173 124 (71.7)

Atrial fibrillation, yes (%) * 229 21 (9.2) 173 15 (8.7)

NIHSS, median, IQR (range) 229 1, 0–2 (0–7) 166 1, 0–2 (0–14)

mRS, median, IQR (range) 229 1, 0–1 (0–2) 173 1, 0–1 (0–5)

MoCA, mean ± SD (range) 229 24.3 ± 3.6 (11–30) 165 25.0 ± 3.8 (10–30)

NART correct, mean ± SD (range) * 225 32.7 ± 9.6 (6–50) 170 32.2 ± 9.7 (7–48)

PSMD, mean ± SD (range), mm2/s × 10−4 226 0.238 ± 0.066
(0.141–0.595) 162 0.254 ± 0.086

(0.137–0.766)

* as recorded at baseline. IQR: Interquartile Range; MoCA: Montreal Cognitive Assessment; mRS: modified
Rankin Scale; NART: National Adult Reading Test; NIHSS: National Institute of Health Stroke Scale; PSMD: Peak
width of Skeletonized Mean Diffusivity.

At the time of the current analysis, 173 (31.8% female) participants had attended their
1-year follow-up and are included in longitudinal analysis. Mean age at follow-up was
67.5 years (SD = 11.0). Out of the 184 participants who were eligible for the 1-year follow-up,
eight participants declined the visit, two were deceased and one participant had a terminal
illness and could not attend. For one other patient, who was hospitalized at the time of their
1-year visit and, therefore, could not attend, any available data were collected from hospital
medical records. See Figure 2 for an overview of collected and missing data. As the study
is still ongoing, the number of follow up scans is expected to increase for future analyses.

3.2. Cross-Sectional Associations between PSMD and Global Cognition at Baseline and 1-Year Visit

At baseline, we did not find associations between PSMD and the MoCA. Lower MoCA
scores were associated with older age (standardized β = −0.309, 95% confidence interval
[CI] −0.433 to −0.185) and higher NIHSS score (standardized β = −0.201, 95% CI −0.321 to
−0.082) (Table 2). Higher MoCA scores were associated with higher NART correct scores
(standardized β = 0.417, 95% CI 0.310 to 0.525). We did not find associations between sex,
or mRS with the MoCA.
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Figure 2. A flow diagram for data collection at baseline and 1-year follow-up. Note: At baseline
N = 229 of which N = 226 had (useable) scans. At 1-year follow-up, N = 173 of which N = 162
had (useable scans). MoCA: Montreal Cognitive Assessment; NART: National Adult Reading Test;
NIHSS: National Institute of Health Stroke Scale; PSMD: Peak width of Skeletonized Mean Diffusivity.

Table 2. Associations with MoCA in cross-sectional linear regression at baseline.

Standardized β
Standardized

95% CI p Value

Age −0.309 −0.433, −0.185 <0.001

Sex, male 0.031 −0.197, 0.259 0.790

NIHSS −0.201 −0.321, −0.082 0.001

NART 0.417 0.310, 0.525 <0.001

mRS −0.037 −0.152, 0.078 0.526

PSMD −0.116 −0.241, 0.009 0.069
CI: Confidence Interval; mRS: modified Rankin Scale; NART: National Adult Reading Test; NIHSS: National
Institute of Health Stroke Scale; PSMD: Peak width of Skeletonized Mean Diffusivity.

At the time of the 1-year visit, there was an association between MoCA and PSMD
(Table 3). Lower MoCA scores were associated with higher PSMD (standardized β = −0.301,
95% CI −0.434 to −0.168), higher NIHSS scores (standardized β = −0.220, 95% CI −0.357
to −0.084), and older age (standardized β = −0.218, 95% CI −0.350 to −0.085). Higher
MoCA scores were still associated with higher NART scores (standardized β = 0.406,
95% CI 0.286 to 0.562).
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Table 3. Associations with MoCA in cross-sectional linear regression at 1-year follow up.

Standardized β
Standardized

95% CI p Value

Age −0.218 −0.350, −0.085 0.001

Sex, male * 0.211 −0.054, 0.477 0.117

NIHSS −0.220 −0.357, −0.084 0.002

NART * 0.406 0.286, 0.526 <0.001

mRS −0.004 −0.142, 0.135 0.958

PSMD −0.301 −0.434, −0.168 <0.001
* measured/reported at baseline. CI: Confidence Interval; mRS: modified Rankin Scale; NART: National Adult
Reading Test; NIHSS: National Institute of Health Stroke Scale; PSMD: Peak width of Skeletonized Mean Diffusivity.

3.3. Longitudinal Analysis of Baseline PSMD and 1-Year Global Cognition

Baseline predictors of 1-year MoCA scores were the baseline MoCA score
(standardized β = 0.502, 95% CI 0.360 to 0.644), NART (standardized β = 0.144,
95% CI 0.017 to 0.271) and PSMD (standardized β = −0.182, 95% CI −0.308 to −0.056).
Age, sex, baseline mRS and NIHSS scores were not associated with MoCA at 1-year
visit, Table 4.

Table 4. Longitudinal linear regression baseline PSMD and 1-year MoCA.

Standardized β
Standardized

95% CI p Value

Age −0.111 −0.242, 0.020 0.095

Sex, male 0.008 −0.232, 0.248 0.945

NIHSS −0.058 −0.189, 0.072 0.379

Baseline MoCA 0.502 0.360, 0.644 <0.001

NART 0.144 0.017, 0.271 0.026

mRS −0.064 −0.187, 0.059 0.304

PSMD −0.182 −0.308, −0.056 0.005
All predictors are as measured/reported at baseline. CI: Confidence Interval; MoCA: Montreal Cognitive
Assessment; mRS: modified Rankin Scale; NART: National Adult Reading Test; NIHSS: National Institute of
Health Stroke Scale; PSMD: Peak width of Skeletonized Mean Diffusivity.

4. Discussion

We investigated associations between PSMD and post-stroke global cognition and
examined whether these associations varied at different time-points. In the subacute phase,
approximately two months after stroke, older age, lower premorbid IQ and worse stroke
severity predicted worse global cognition, but we found no clear association between PSMD
and MoCA. At one year after stroke, we did find a cross-sectional association between
higher PSMD and worse global cognition. Our cross-sectional analysis at 1-year after stroke
showed that PSMD is more strongly associated with global cognition than age and stroke
severity. This is in line with our hypothesis. Interestingly, PSMD in the subacute phase is a
possible predictor of global cognition at 1 year after stroke, as are baseline global cognition
and premorbid IQ.

Older age and (premorbid) IQ are well known predictors for post-stroke cognition
and cognitive impairment. In general, older age and fewer years of education are related
to lower scores on cognitive screening tests such as the MoCA [33]. Other studies that
examined cognition after ischemic stroke or transient ischemic attack have also found that
older age is a predictor of worse cognition and post-stroke cognitive impairment within
months of stroke [25,44,45] and 1 year to 3 years post-stroke [2,4,25]. A similar study of
participants with mild stroke [4] found that cognition at one year predicted cognition
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at 3 years after stroke, which is in line with our finding that cognition at three months
predicted cognition one year after stroke. Premorbid IQ, and the NART as assessment
of premorbid IQ, are predictors of post-stroke cognition [31,44,46,47]. However, age at
baseline was not associated with 1-year cognition in our study, which is a novel finding.
The effect of age might be confounded by pre-morbid intelligence, white matter structure
as measured with DTI or stroke severity. Variables that reflect this, the NART, PSMD and
NIHSS, are stronger predictors at 1-year after stroke. This is also supported by studies that
show that low pre-morbid intelligence is related to worse post-stroke cognition [29], lower
childhood IQ is related to higher SVD burden [48] and increased stroke risk [49], and that
microstructure of white matter, as measured with DTI, supports general intelligence [50].

In line with previous studies, we also found an inverse association between post-stroke
cognition and stroke severity, as measured with the NIHSS [1,2,51,52]. However, unlike
previous studies, baseline stroke severity does not seem to predict cognition at one year
after stroke in our data.

We did not find any associations between sex and post-stroke cognition, which is
consistent with a large meta-analysis of predictors of post-stroke dementia [53]. Some
studies report that female sex is a risk factor for post-stroke cognitive impairment [2,10,54].
Any association between female sex and post-stroke cognition or stroke severity might be
related to pre-stroke factors such as dementia, older age at time of stroke and pre-stroke
dependency [53,55]. We recruited patients with lacunar ischemic stroke or similarly mild
cortical ischemic stroke, and, therefore, are not able to assess the effect of the full range of
stroke severities on post-stroke cognitive impairment. According to a population-based
meta-analysis [55], women tend to have more severe ischemic strokes, NIHSS > 7, than men.
We might have included fewer women due to our inclusion criterion of mRS ≤ 2 (slight
disability) which might not reflect more severe strokes. However, a systematic review and
meta-analysis assessing sex differences in SVD and people with ischemic stroke, which
is similar to our mild stroke population, found that more men than women with SVD
presented to hospital with ischemic stroke [56]. The inclusion criterion of mRS≤ 2 impeded
a large range of mRS scores to be included in these analyses, and this might also be an
explanation for not finding any associations between mRS and post-stroke cognition at any
of the time-points, while other studies do find associations between mRS and cognition [51].
However, a previous study in a similar population of mild stroke also did not find an
association between mRS and global cognition at baseline and at 1-year follow-up [25], but
they found an association between mRS and global cognition at three years.

High values of PSMD, as an imaging marker of SVD, are thought to reflect worse
white matter structure. The use of skeletonized MD maps for its calculation minimizes
the effects of CSF contamination in MD measurements and PSMD has been shown to be
more sensitive to changes in processing speed [12,19] and global cognition [21] than other
diffusion-derived parameters. In our study, there is a hint in the direction of an association
between PSMD and cognition at baseline, whereas at one year after stroke, the relationship
is more defined. At one year, the standardized beta suggests that the effect of PSMD on
cognition is larger than the effect of age and stroke severity, however, the effect is smaller
than the effect of premorbid IQ as assessed by the NART. The results suggest that the
relation between PSMD and global cognition at 1 year is stronger than within the subacute
phase after stroke, and PSMD in the subacute phase also is of smaller predictive value to
1-year cognition than in the cross-sectional analysis at 1-year. It is not entirely clear why
the relation between PSMD and cognition changes. For the longitudinal analysis, it might
be explained by a smaller number of participants at 1-year, and, therefore, less power. It
might reflect that the acute effects of stroke are ‘settling down’ after the subacute phase and
that PSMD is a sensitive marker in predicting long-term outcomes. However, this needs
further investigating, potentially in relation to changes in white matter.

One of the strengths of our study is the large sample of longitudinal PSMD and
cognitive data. Our study also includes valuable clinical data, and we correct for premorbid
IQ in our analyses. To our knowledge, only two studies have longitudinal PSMD data
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available [20] or examined any longitudinal associations [18], in community-dwelling
elderly and ischemic stroke patients respectively. Even fewer studies examined this PSMD
data in relation to clinical outcomes, such as cognition [20]. Our additional strength is that
our population consists of mild ischemic stroke patients, rather than community-dwelling
elderly without diagnosed stroke. This gives us more insight in the relation between
damage to the microstructure of white matter and cognition and the influence of acute
clinical events. It is also important to study cognitive outcomes in a mild stroke population,
since physical disabilities are less prominent than in severe populations and any cognitive
problems might be overlooked.

One of the limiting factors is the use of data from an ongoing study. While we were
able to use all available baseline data, the 1-year follow-ups are still ongoing. This led to one
year less data available than baseline data, with approximately 20% of the participants still
to have their 1-year follow-up visit. This additional number of participants could possibly
affect the cross-sectional 1-year and longitudinal analyses, but not the cross-sectional
baseline analysis, and, therefore, we should be cautious with the interpretation of these
preliminary results. Second, the inclusion of mild stroke patients means that the ranges of
scores of the NIHSS and mRS are limited. We also used the mRS as a continuous variable
in our analyses to avoid overfitting the models, while it might be more appropriately
designated as an ordinal variable. The data were not amenable to analyses with an ordinal
variable. Six participants only had phone visits at their 1-year follow-up visit. This was
mainly due to the COVID-19 pandemic resulting in some participants being unable to
attend in person due to restrictions, personal concerns regarding COVID-19, e.g., travel,
attend visit in hospital, or they were deemed to have a high risk of complications from
possible infection. Although efforts were made to gather as much information as possible
via telephone interviews in these instances, some data, such as some aspects of cognitive
assessments, the NIHSS and MRI could not be collected. It might be possible that people
with complete follow-up data might be healthier than those who do not. However, since
this is an ongoing study, we are not able to compare those groups as not all participants
were yet eligible for their 1-year visits.

Future studies will benefit from larger, longitudinal datasets in stroke populations.
This will make it possible to include more predictors in analyses. Potential predictors of
interest would be vascular risk factors, imaging features of SVD and their change over time.
It would also allow analyses to examine whether PSMD is an earlier and perhaps more
useful predictor of cognition versus more overtly visible SVD features such as WMH. As
outcomes, it would be interesting to look at more specific cognitive domains instead of
global screening tests. Investigation of relations between PSMD and functional outcomes
or disability require further longitudinal attention. A future research area might be whether
different timeframes, e.g., acute phase versus subacute phase, show differences in PSMD.
However, this would require frequent longitudinal imaging in the early stages after stroke
or larger sample sizes to include participants with a larger range of time between stroke
onset and baseline visit.

5. Conclusions

PSMD, a marker of SVD, sensitive to microstructural white matter changes, becomes
more strongly associated with global cognition at 1 year after minor ischemic stroke,
possibly once acute effects have settled. PSMD in the subacute phase after stroke might
be able to predict long-term global cognition. Further studies are needed to examine
underlying mechanisms of the differences of the influence of PSMD over time and potential
relations to other clinical outcomes.
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