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Abstract—Drone usages have been proliferating for various 
government initiatives, commercial benefits and civilian leisure 
purposes. Drone mismanagement especially civilian usage 
drones can easily expose threat and vulnerability of the 
Government Public Key Infrastructures (PKI) that hold crucial 
operations, affecting the survival and economic of the country. 
As such, detection and location identification of these drones are  
crucial immediately prior to their payload action. Existing drone 
detection solutions are bulky, expensive and hard to setup in real 
time. With the advent of 5G and Internet of Things (IoT), this 
paper proposes a cost effective bistatic radar solution that 
leverages on 5G cellular spectrum to detect the presence and 
localize the drone. Coupled with K-Nearest Neighbours (KNN) 
Machine Learning (ML) algorithm, the features of Non- Line of 
Sight (NLOS) transmissions by 5G radar and Received Signal 
Strength Indicator (RSSI) emitted by drone were used to predict 
the location of the drone. The proposed 5G radar solution can 
detect the presence of a drone in both outdoor and indoor 
environment with accuracy of 100%. Furthermore, it can 
localize the drone with an accuracy of up to 75%. These results 
have shown that a cost effective radar machine learning system, 
operating on the 5G cellular network spectrum can be developed 
to successfully identify and locate a drone in real-time. 

Keywords— Drone, 5G radar, line of sight, non-line of sight, 
machine learning 

I. INTRODUCTION 
Commercial Off-the-shelf (COTS) drones are widely avail- 

able to consumers for leisure, business and entertainment 
activities. Unintentional, mischievous threat causes disrupted 
operations in Public Key Infrastructures (PKI) such as national 
event activities or airport operations while intentional threats 
such as malicious drones can compromise the confidentiality, 
integrity and availability (CIA) of these national 
locations/assets through espionage or property damage. There 
has been an increase in the number of cases where the drones 
are flown into such restricted air spaces which disrupt the 
operations within the vicinity [1]. Apart from errant users, 
COTS drones are also used in terrorism to drop malicious 
payloads or perform surveillance on restricted areas. This is 
very disturbing as what is commonly used in leisure and 
entertainment has been converted to a weapon of destruction. 
These attacks are quick and unsuspecting to the people in the 
vicinity catching everyone off guard [2]. With the advent of 5G 
cellular network which proliferate a lot of exciting applications 
using drone as the vehicle, drone navigation vulnerability using 

Global Positioning system (GPS) and 5G cellular has been 
proven to be spoofed by masquerade attackers [3].  

The feasibility of detection and identification of drone has 
been demonstrated using neural network machine learning with 
COTS HackRF One Software Defined Radio (SDR) [4]. It was 
a passive detection in outdoor environment where the Wi-Fi 
Radio Frequency (RF) signals and its Service Set Identifier 
(SSID) were recorded before processing with neural network 
machine learning to classify the presence of a drone. There 
were many steps taken in identifying the presence of the drone 
where the drone could have flown off by the time the detection 
results came through. Furthermore, the solution is ineffective if 
the drone detection is performed in indoor environment where 
Wi-Fi signal strength from drone and other sources are similar. 
There are also other drone detection methods such as: 

• RF Detection [4], [5] - Detecting the presence of  a  
drone by capturing the RF emitted by the drone when 
communicating with the ground controller. In an open  
environment, it is possible to predict the location of a 
drone based on the difference in strength of the RF 
signals. 

• Audio Based [6] - Detecting the presence of a drone 
using the sound emitted from the spinning propellers of 
the drone. This method is not very effective in a noise  
polluted environment. 

• Locality Based [7]–[10] - Using localization techniques 
to identify the location of a drone. 

• Radar Based [11]–[14] - Different configurations of 
bistatic radars to identify and locate the drone which is 
costly and impractical unless for military purposes. 

There exists a need for cost effective active drone detection 
methods for either commercial or governmental purposes. In 
this paper, it explores the possibility of drone detection and its 
location identification using a bistatic radar [15] which operates 
on the 5G network cellular spectrum. The bistatic radar detects 
the presence of a drone by capturing the 5G Non-Line of Sight 
(NLOS) transmissions reflected off the body of the drone, and 
the Wi-Fi Received Signal Strength Indicator (RSSI) emission 
of the drone captured by a RF spectrum ground controller. 
Furthermore, we proposed a novel K-Nearest Neighbour 
(KNN) Machine Learning (ML) that leverages on these two 
signatures to perform real-time location prediction of the drone 



based on the instantaneous signature data captured. This paper 
aims to create a easily deployable 5G radar system that is 
effective yet efficient in alerting the users of the presence and 
location of the drone.  The proposed solution helps to minimize 
the CIA damages and intrusions by these drones on the property 
through early detection, in both the indoor and outdoor 
environments. Experimental campaign have shown that 100% 
detection accuracy achieved in both indoor and outdoor 
environment with localization accuracy of up to 75%. 
Furthermore, the proposed radar system can also be adapted to 
leverage on the local 5G network infrastructure to perform 
detection, which will further reduce the CAPEX and OPEX cost 
to setup and maintain the radar ML system. Section II outlines 
the design and implementation while Section III explains on the 
KNN machine learning algorithm processes. Section IV 
describes the experimental campaign and evaluation followed 
by conclusion in section V. 

II. SYSTEM DESIGN AND IMPLEMENTATION 
The deployment of the 5G radar and RSSI receiver system 

is shown in Figure 1. This setup  operates  on  3  HackRF  One 
SDRs. Two of the HackRF SDRs serves as 5G signal 
transmitter (Tx) and receiver (Rx) while the other HackRF SDR 
as Wi-Fi RSSI receiver to perform spectrum scanning to 
capture the Wi-Fi RSSI emission from the drone as depicts in 
Figure 2. These three SDRs work together to collect the Line of 
Sight (LOS), NLOS signal transmissions by the 5G radar 
system and RSSI signal emission by the drone within the square 
grid. These signature data will then be processed in the KNN 
ML for prediction. The Tx and Rx are implemented using GNU 
Radio Companion (GRC) that enables users to program 
operations on the HackRF One SDR. The Tx and Rx focus on 
capturing the 5G LOS/NLOS transmissions while the RSSI 
receiver uses the HackRF Sweep Spectrum Analyser (HSSA) 
to capture RSSI values of the drone and the environment. The 
range of the radar can be expanded by simply adding more 
HackRF One SDRs to create more grid boxes for detection and 
localization of the drone. 

The setup was deployed in both outdoor and indoor 
environment which is shown in Figure 3 to test the effectiveness 
in receiving the 5G LOS, NLOS transmissions, RSSI values of 
the flying drones and hence robustness of KNN ML prediction. 
In the indoor urban environment especially enclosed Wi-Fi 
crowded environment, it is expected to have more multi-path 
effects as there are more objects present that would result in 
multiple NLOS specular, non-specular reflection, diffraction 
and interference. 

A. 5G Transmitter 
To achieve consistent transmissions between the Tx and Rx 

at the distance of 2√2 m, the following equations were used to 
calculate the Free-Space Path Loss (FSPL). It is important to 
understand how the FSPL is affected by distance between the 
transmitter and receiver which can cause the strength of a 
transmitted signal to drop. This could affect how well the Rx 
receives the signals over different distances. The first equation 
determines how the electromagnetic energy is spread in free 
space. This equation is called the inverse square law and is as 
such, 

 S= Pt
4πR2

 (1) 

where S  is the power per unit area at distance, Pt  is the 
transmitted power in Watts (W) and R is the distance in metres 
(m) between the transmitter and receiver.  

 
Fig.  1. Deployment of Radar 

 

 

 
Fig.  2. NLOS Detection 

 
Fig.  3. Outdoor (left) and Indoor (right) Environment 

 

 

 



The second equation determines how well the Rx can 
receive the transmitted signal by the Tx. The equation is defined 
as such,  

 Pr=
!!⋅λ

2

4π
	 (2)	

where Pr	 is the received power (W), Sr is the non-directional 
received power density and 𝜆  is the transmitted wavelength 
(m). 

Lastly, the total FSPL loss can be determined by the 
following ratio, 

 FSPL= Pt
Pr

= &4πR
λ
'
2

= &4πRf
c
'
2
 (3) 

where f is the transmitted frequency and 𝑐 is the speed of light. 
By knowing the FSPL, the transmitting strength of the Tx 
antenna can be calculated and configured accordingly in GRC. 

The Tx transmits a file every six seconds via the HackRF 
One on the 5G frequency of 2.6 GHz. Before the file is 
transmitted, the contents of the file are set. The epoch 
timestamp of the transmission is appended to the back of the 
blank file. By appending the timestamp to the contents of the 
file, it acts as a marker for the receiver to know the current 
interval. Once the transmission is complete, the file is reverted 
back to its clean state so that the next timestamp can be 
appended to the file without increasing the file size as the 
program runs for more iterations. 

B. 5G Receiver 
The receiving phase listens for the packets that the Tx 

HackRF One broadcasts on the frequency of 2.6 GHz. Once the 
packets are received, the contents of the packets are logged. 
Whilst the log file continues to receive data, a python script 
analyzes the contents of the log file. This analysis is performed 
in real-time and can detect transmission errors. It detects new 
timestamps and timestamps that have arrived late or in the 
wrong order. New timestamps indicate that the transmitter has 
moved on to the next interval of transmissions and it is classified 
as a LOS transmission. Whereas for incomplete timestamps, 
they indicate a disruption to the flow of transmission between 
the Tx and Rx which is classified as a NLOS transmission. 

C. RSSI Receiver 
The Wi-Fi RSSI receiver utilizes the command 

“hackrf_sweep -f 2400:2490 -r fileoutput.csv" to listen and 
record the RSSI in the environment. The arguments for the 
commands are as follows: 

• hackrf_sweep is a command to perform sweeping of the 
specified frequency spectrum. 

• -f specifies the frequency range to scan on in MHz. The 
frequency of 2400MHz to 2490MHz was chosen as the 
DJI drone used in this paper operates within that 
frequency range. 

• -r specifies the file to output the data to. For this paper, 
the data was collected in a Comma Separated Value 
(CSV) file. 

By retrieving the RSSI, the data signature of RSSI for each 
location can be acquired. When there is no presence of a drone, 
the environment noise level can be observed to be on the 
average of -70 dBm across the frequency range of 2.4GHz to 

2.49GHz. However, when drone is present, there is a prominent 
spike in the received spectrum, and it is often located in the 
operating frequency range of the DJI drone. The drastic spike 
in RSSI values when the drone is present makes it viable for use 
as a feature signature. It can also be observed that when the 
drone is closer to the RSSI Receiver, the RSSI tends to be 
stronger and when it is further, the signal may be weaker but 
still stronger than the baseline environment noise, obeying the 
FSPL calculation. 

III. MACHINE LEARNING PROCESS 
The ML algorithm used in this paper is KNN algorithm that 

requires minimal training and can make quick real time 
predictions as compared to NN used in [4]. By identifying 
patterns and calculating the Euclidean Distance (ED) between 
clusters of training data points and test data points, KNN is able 
to classify the test data point to the closest cluster and provide a 
label for it. To calculate the distance between two groups of 
values, the equation below is used, 

 dist(a,b)k=wk+∑ ∑ -ai,k-bj,k.
2m

j=1
n
i=1 	 (4)	

where 𝑛 and 𝑚 are the number of training and test data points 
while ai,k and bj,k represent the feature k of training point i and 
test point j respectively. The features can be combined using 
weight wk if they are comparable where ∑wk=1.  

There are four processes which the data undergoes before it 
is used for training or testing. This process is very important to 
enable the ML model to understand the data and identify the 
features to it so that it can be used to make prediction. 

A. Data Collection 
In this phase, the time of arrival (TOA) for 5G LOS/NLOS 

transmission, and the RSSI of the environment and the drone, 
were collected. To create a unique signature in each box, the data 
collection was run separately for each box. To identify the “No 
Drone" scenario, the data collection occurred when there was no 
drone flown within the grid. The deployment of the data 
collection is depicted in Figures 1 and 2. The data collection was 
performed in both indoor and outdoor environment to facilitate 
collection of more diverse environment channel patterns since 
the advent of 5G and IoT accelerate applications that leverage 
on usage of drone in both open and indoor urban environments. 
During the data collection, both 50 data points of 5G LOS 
transmission for the “No Drone" scenario and 50 data points of 
5G NLOS transmissions for the “Drone" scenario on each grid 
box were collected. The RSSI values measured at the RSSI 
receiver were also collected during the absence and presence of 
drone. 

B. Data Pre-Processing 
In this phase, the collected 5G LOS/NLOS transmissions 

data are matched with the respective highest RSSI value 
received at the point of transmission. This enables the ML model 
to know how a 5G LOS/NLOS transmission relates to the 
respective RSSI value. That is to say that the stronger RSSI 
values usually mean that there is an 5G NLOS transmission due 
to the drone being present, whereas for the 5G LOS transmission 
(no drone), the RSSI value is closer to the environmental RSSI 



level. The data is also labelled to identify the classification that 
the data point belongs to. This classification will be used to train 
the ML model to classify the data points and verify the test 
results.  

C. Feature Extraction 
In this phase, the features are placed into histograms in 

Figures 4 and 5 to discover the trend in the data and identify 
ways that the data can be fitted into the ML model for training 
as well as testing. There are five classes that a data can be 
classified to, "No Drone", "Box 1", "Box 2", "Box 3" and 
"Box4".  

In normal cases of KNN, depending on the n value, the test 
data point is compared against n number of training data points 
that are closest to it. The label with the highest count amongst 
the training data point is selected. However, for this application, 
since the individual RSSI values and 5G LOS/NLOS 
transmission times are not distinct enough to identify a box 
within the grid, the training points are grouped together to form 
a cluster of training points. As such when drone is present in 
each box in the grid and for the “No Drone" scenario, the 
training cluster has a group of 40 data points respectively. Thus 
in this paper, the n value is set as 40. This enables the ML model 
to better identify the patterns over each box in the grid based on 
the 5G LOS/NLOS transmission times and RSSI values. After 
identifying the patterns in different environments in terms of 5G 
LOS/NLOS timings and the RSSI values as shown in Figure 4 
and 5, the following are the objectives that ML model will be 
trained to perform: 

• Identifying if a drone is present, based on 5G LOS/NLOS 
transmissions. 

• Identifying which Box is the drone in, based on 5G 
NLOS transmissions. 

• Identifying which Box is the drone in, based on 5G RSSI 
values. 

D. Training ML Model 
Once the features have been extracted, it can be used to train 

the ML model. The ML model will be trained to identify the ED 
between the trained data points and the test data point. The label 
with the minimal ED from the test data point will be awarded as 
the classification of that data point. The model will be trained to 
perform the classification in two phases as shown in Figure 6. 
By breaking down the classification process into two phases, the 
ML’s performance can be evaluated individually in the different 
phases.  

In reference to Figure 6, there are two processes namely 
detection and localization phases as shown by highlighted green 
box and orange box respectively. In the detection phase, the 
input data is the 5G LOS/NLOS transmission timings and the 
RSSI values which will be used to evaluate distinguish between 
a 5G LOS or NLOS transmission. If it is a LOS transmission, it 
indicates the absence of drone else it is deemed as a NLOS 
transmission. The ML will proceed in the localization phase to 
classify among the 4 boxes using the NLOS and the RSSI 
training data disjointedly to determine the box with the lowest 
ED from the test data point. We will choose the box localization 
solution that has the lowest ED as the estimated location of the 
identified drone. 

We will evaluate how the features affect the performance of 
either using 5G NLOS transmission or RSSI box classification 
individually. When testing the ML’s performance, the test data 
points are clustered similar to the training data points where one 
test data cluster consists of 10 data points with the same 
classification. 

E. Evaluating ML Model 
To evaluate the ML model, confusion matrix was used. This 

allowed the ML’s accuracy, precision, recall and F1-score to be 
obtained. Since there are multiple ways to classify the 
predictions, the flow of the ML was broken down. By breaking 
down the predictions to different stages, the ML’s performance 
can be better evaluated. In this paper, the True Positive (TP), 

 
Fig. 6. ML Classification Process 

 

 

 
Fig. 4. Histogram of the Outdoor 5G LOS/NLOS Transmission Timings 

 

 

 

 

 
Fig. 5. Histogram of Outdoor RSSI Values 

 

 



False Positive (FP), True Negative (TN) and False Negative 
(FN) are defined as such: 

• TP - When a drone is present, the prediction accurately 
returns that a drone is present. 

• FP - When a drone is not present, the prediction says that 
the drone is present. 

• TN - When a drone is not present, the prediction 
accurately returns that a drone is not present. 

• FN - When a drone is present, the prediction says that 
the drone is not present. 

By using the confusion matrix, the Accuracy, Precision and 
Recall of the ML model can be evaluated at each stage of the 
classification process. There are several scenarios that can be 
expected when evaluating the performance of the 
classifications. 

• High FNs - When there are more FNs predicted that is 
not acceptable because it indicates that the ML cannot 
detect the presence of a drone. This can be a danger to 
the users as the drone will be present without them 
knowing. 

• High FPs - When there are more FPs, it means that the 
drone’s presence is detected but the location cannot be 
deduced. This is still acceptable as the ML is able to 
detect the presence of a drone. 

• High TPs and TNs - Large number of TP and TN 
indicates that the ML is able to perform predictions with 
a very high accuracy. This indicates that the ML is well 
trained. 

IV. EVALUATION 

A. Detection of Drone Presence using LOS and NLOS 
The ML successfully classified between 5G LOS/NLOS 

transmissions successfully, achieving 100% accuracy 
indicating the absence and presence of drone as shown in Table 
1. This shows that the 5G radar employed with ML can detect 
a drone’s presence as LOS/NLOS features are very distinct 
from one another. This demonstrates the feasibility of detection 
of those stealth drones that have its own controlled RF channel 
which is operating at non Wi-Fi band. 

TABLE I. PERFORMANCE METRICS FOR LOS/NLOS CLASSIFICATION 
(INDOOR & OUTDOOR) 

LOS & NLOS Classification 

Label Precision Recall f1-score Support 

LOS 1.00 1.00 1.00 2 

NLOS 1.00 1.00 1.00 8 

 

B. Identifying Drone Location with NLOS Transmissions 
The ML has an accuracy of 25% in predicting the location 

of the drone using 5G NLOS transmissions. This is due to the 
similarities in 5G NLOS transmission values across all boxes. 
This makes it hard for the ML to differentiate between boxes 
and the ED will be closest to the box with the best spread of 
data points. Therefore, relying on 5G NLOS transmissions 
alone as a feature for the ML is not the best option. It also  

TABLE II. PERFORMANCE MATRIX FOR NLOS BOX CLASSIFICATION 

 Indoor 
Label Precision Recall f1-score Support 

1 0.00 0.00 0.00 1 

2 0.00 0.00 0.00 1 
3 0.00 0.00 0.00 1 
4 0.25 1.00 0.40 1 

 Outdoor 
Label Precision Recall f1-score Support 

1 0.00 0.00 0.00 1 
2 0.00 0.00 0.00 1 

3 0.00 0.00 0.00 1 
4 0.25 1.00 0.40 1 

 
provide an indicator that the ML performance will improve if 
area of coverage is larger since propagation path delay will be 
longer, which leads to more distinct 5G NLOS timings in 
different coverage region. 

C. Identifying Drone Location with RSSI Values 
The ML is able to achieve 75% accuracy in identifying the 

location of the drone in the boxes for the indoor setting but with 
an accuracy of 25% for the outdoor setting. The RSSI values 
for the outdoor may be similar since the strength of RSSI 
depends on the location of the RSSI receiver, thus in an outdoor 
space, the freedom of height makes it viable for a box that is 
closer to the receiver to receive a weaker RSSI value when the 
drone is at a higher height. Whereas in the indoor environment, 
the drone has limited heights, therefore the drone’s RSSI 
strength is more consistent and distinct as the drone will have 
to fly within the limited space thus being closer to the receiver. 

However, in the indoor context, there are multi-path effects 
as well that could create confusion between boxes such as Box 
3 and 4 in Table III.  

TABLE III. PERFORMANCE METRICS FOR RSSI BOX CLASSIFICATION 

 Indoor 

Label Precision Recall f1-score Support 
1 1.00 1.00 1.00 1 
2 1.00 1.00 1.00 1 

3 0.00 0.00 0.00 1 

4 0.50 1.00 0.67 1 

 Outdoor 
Label Precision Recall f1-score Support 

1 0.00 0.00 0.00 1 
2 0.00 0.00 0.00 1 

3 0.00 0.00 0.00 1 
4 0.33 1.00 0.50 1 

 

D. Overall ML Performance 
The overall performance in both environments differs 

substantially in both indoor and outdoor environment. In the 
outdoor environment, the predictions were consistent across 



both 5G NLOS and RSSI data with 25% accuracy. Whereas for 
the indoor environment, the RSSI tends to perform better than 
the 5G NLOS radar as indoor environment has richer feature 
representation in RSSI data than outdoor environment due to 
the abundance of clutters achieving 75% accuracy. 

Since predictions can be made in both environments, the 
ML model is suitable to be deployed. It is noteworthy that the 
KNN ML did not make any FN predictions which is very 
important to ensure no drone is go undetected and non 
localized. The high FP results can be countered with more data 
collection in different environments so that the ML model can 
have more groups of data points to train with and test against. 
Therefore, the 5G radar is suitable to be deployed with ML in 
both environments. 

V. CONCLUSION 
This project proposes a novel cost-effective drone detection 

method using a bistatic radar operating on the 5G mid-band 
spectrum. This radar detects the presence of a drone through the 
disruption of 5G LOS transmissions. These disruptions are 
known as 5G NLOS transmissions reflected off the body of a 
drone. The system also captures the RSSI values of the 
environment which are used to identify the drone signal 
strengths at different locations. The bistatic radar system has 
shown to provide a way to locate the drone within a 2x2 grid of 
1m in length. To bring in an additional novelty, a supervised ML 
algorithm, KNN, was adopted to perform predictions whether a 
drone is present and where the drone may be located in the grid 
using the 5G NLOS and RSSI features. Experiments were 
conducted in both indoor and outdoor environments, and the 
ML’s performance was evaluated. In both environments, the ML 
model successfully identified the presence of a drone using 5G 
LOS/NLOS transmissions achieving an accuracy of 100%. The 
predictions based on the individual features of 5G NLOS 
transmissions and RSSI values, has an accuracy of 25% and 
25%-75% respectively. Despite the fluctuations in accuracy, the 
ML has achieved a zero FN results which is important as it 
shows that it can detect the presence of a drone. 

This proposed system is both novel and cost-effective. It has 
proved that a cost-effective system like this, can perform real 
time detection of the drones with zero FN results. This system 
can be deployed in the indoors and outdoors to detect and 
identify the location of a drone. In future, the size of 
environments can be expanded to further test the proposed 
method while multiple drones identification and localization is 
another noteworthy research area to look into. 
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