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A B S T R A C T   

Glaucoma is a progressive optic neuropathy characterized by the neurodegeneration of the retinal ganglion cells 
(RGCs) resulting in irreversible visual impairment and eventual blindness. RGCs are extremely susceptible to 
mitochondrial compromise due to their marked bioenergetic requirements and morphology. There is increasing 
interest in therapies targeting mitochondrial health as a method of preventing visual loss in managing glaucoma. 
The bioenergetic profile of Tenon’s ocular fibroblasts from glaucoma patients and controls was investigated using 
the Seahorse XF24 analyser. Impaired mitochondrial cellular bioenergetics was detected in glaucomatous ocular 
fibroblasts including basal respiration, maximal respiration and spare capacity. Spare respiratory capacity levels 
reflect mitochondrial bio-energetic adaptability in response to pathophysiological stress. Basal oxidative stress 
was elevated in glaucomatous Tenon’s ocular fibroblasts and hydrogen peroxide (H2O2) induced reactive oxygen 
species (ROS) simulated the glaucomatous condition in normal Tenon’s ocular fibroblasts. This work supports the 
role of therapeutic interventions to target oxidative stress or provide mitochondrial energetic support in 
glaucoma.   

1. Introduction 

Glaucoma is a progressive optic neuropathy characterized by the 
neurodegeneration of the retinal ganglion cells (RGCs) resulting in 
irreversible visual impairment and eventual blindness [1]. In glaucoma, 
damage and degeneration of RGCs and their axons result in character
istic changes in the appearance of the optic nerve head and patterns of 
visual field loss [2]. Glaucoma is the leading cause of irreversible 
blindness worldwide and is estimated to affect over 60 million people 
globally of which approximately 10% are estimated to be blind from this 
disease [3]. Glaucoma is an umbrella term for a heterogenous group of 
optic neuropathies of which primary open angle glaucoma (POAG) is the 
most prevalent [4]. The pathogenesis of POAG is multifactorial and 
complex [5,6] but currently lowering intra-ocular pressure (IOP) 

medically or surgically is the only modifiable risk factor [7]. POAG can 
be clinically sub-divided into patients with normal IOP, termed 
normal-tension glaucoma, and those with raised IOP, termed 
high-tension glaucoma [2,4]. Given that POAG can develop with a 
normal IOP, and even when IOP is adequately treated and controlled 
POAG patients can still progress to blindness [8–10], supports the 
concept that other non-IOP mechanisms can drive glaucoma develop
ment and progression. 

Increased chronological age is an independent risk factor for glau
coma [11–14] and mitochondrial dysfunction is associated with 
age-related neurodegenerations [15]. RGCs are particularly susceptible 
to mitochondria dysfunction due to their high energy demands and 
unique morphology [16–18]. In the human glaucomatous retina, the 
RGC dendrites show early degeneration with remodelling and redistri
bution of the mitochondria, and a reduction in mitochondrial volume 
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[19]. This mirrors glaucomatous degeneration in animal models in 
which RGCs are under metabolic stress [20,21]. Inherited optic neu
ropathies like Leber’s Hereditary Optic Neuropathy (LHON) and Auto
somal Dominant Optic Atrophy (ADOA) result from mitochondrial 
mutations or nuclear gene mutations encoding mitochondrial proteins 
[22]. Vision is lost in both LHON and DOA due to RGC death secondary 
to mitochondrial dysfunction [22,23]. Due to the phenotypic similarities 
of these inherited optic neuropathies with glaucomatous optic neurop
athy there has been increasing investigation of mitochondrial involve
ment in the pathogenesis of glaucoma [16,24–28]. Our group and others 
have reported mitochondrial DNA mutations in peripheral blood leu
cocytes from POAG patients [29–31]. Furthermore, defects in complex I 
oxidative phosphorylation and subsequent decreased mitochondrial 
respiration and ATP production have been detected in blood lympho
cytes from POAG patients [23,32]. 

Cells derived from ocular tissues better represent the glaucomatous 
disease context and can be derived during ocular surgery [33,34] or 
from post-mortem studies [19,25]. Post-mortem studies are limited, 
expensive and challenging to obtain clinical data but have identified 
mitochondrial defects in the glaucomatous retina [19] and lamina cri
brosa cells [25]. Mitochondrial dysfunction and autophagy have also 
been studied in glaucoma using Tenon’s ocular fibroblasts [35]. Cataract 
surgery is an ocular procedure commonly performed in patients with 
and without glaucoma and allows the relatively simple harvesting of 
Tenon’s ocular fibroblasts [36]. 

Herein, we report impaired mitochondrial cellular bioenergetics in 
Tenon’s ocular fibroblasts derived from glaucoma (POAG) patients. 
Basal oxidative stress was elevated in glaucomatous Tenon’s ocular fi
broblasts and hydrogen peroxide (H2O2) induced reactive oxygen spe
cies (ROS) simulated the glaucomatous condition in normal Tenon’s 
ocular fibroblasts. This work supports the role of therapeutic in
terventions to target oxidative stress or provide mitochondrial energetic 
support in glaucoma. 

2. Methods 

2.1. Subjects and clinical assessment 

Participants with primary open angle glaucoma (POAG) and disease 
negative non-glaucomatous controls were recruited at the Royal Liver
pool University Hospital, Liverpool, U.K. This study adhered to the te
nets of Declaration of Helsinki and were approved by the relevant 
institutions, with all participants giving informed written consent. 

Ethical approval for the study was acquired from the NHS Research 
Ethics Committee (REC Ref 14/LO/1088). Clinical phenotyping 
included a detailed ocular and medical history, drug history, intra- 
ocular pressure (IOP) measurement by Goldmann tonometry, slit-lamp 
bio-microscopy with stereoscopic disc examination and gonioscopy, 
and visual field testing (Humprey Visual Field Analyzer, Zeiss; Swedish 
interactive algorithm standard 24-2 program). The diagnosis of POAG 
was based on open anterior chamber angles on gonioscopy, glaucoma
tous optic nerve damage on fundoscopy and a glaucomatous visual field 
defect. Glaucoma severity was graded by analysis of the visual field 
using the Glaucoma Staging System (GSS2) staging system [37]: mild 
(stage 0–1), moderate (stage 2–3), advanced (stage 4–5). Patients were 
excluded if below 18 years of age, if they had previous intraocular 
surgery or any findings on examination suggesting ocular hypertension 
or a secondary cause of glaucoma. Ethnically matched and age matched 
controls without glaucomatous optic neuropathy and a pressure less 
than 21 mmHg, were also recruited to the study. 

2.2. Isolation of human primary Tenon’s ocular fibroblasts 

Human primary Tenon’s ocular fibroblasts (TFs) were cultured from 
subjects with POAG (GTFs) or non-glaucomatous controls (NTFs) un
dergoing glaucoma or cataract surgery using the explant method as 
previously described [38]. A limbal incision was created as a part of 
glaucoma surgery (or at the site of sub-Tenon’s injection of local 
anaesthetic after administration of topical anaesthetic for cataract sur
gery) and a 5 mm × 5 mm square of Tenon’s tissue was excised from 
beneath the conjunctiva after separation by blunt dissection. Petri dishes 
were scored with blade with a middle ‘X’ and the Tenon’s tissue explant 
was mechanically applied into this central ‘X’. TFs were cultured in 
complete medium (Dulbecco’s Modified Eagle’s Medium/Nutrient Ham 
F12 (1:1) medium: DMEM/F12) supplemented with L-glutamine, 10% 
fetal calf serum, penicillin/streptomycin mix (1:1) and amphotericin (all 
from Sigma-Aldrich, UK). 5 ml of complete medium was applied and 
incubated at 37 ◦C with 5% CO2 and 95% humidity in an incubator 
(Sanyo CO2 Incubator MCO-17A, Sanyo, Japan) and cells were passaged 
until they reached passage 4. The cells were tested for mycoplasma using 
previously described techniques [39] and then used for further experi
ments or conserved at − 80ᵒC using 10% dimethyl sulfoxide (DMSO) 
(Sigma-Aldrich, UK) until further use. Vimentin (V9) mouse monoclonal 
antibody (MA5 11,883) (Thermofisher Scientific, USA) immunocyto
chemical staining (2 μg/ml in 1% BSA for 1 h at 37ᵒC) was performed to 
confirm that the cells were fibroblasts. 

2.3. Measurement of mitochondrial content 

Citrate synthase activity was used as a quantitative marker of mito
chondrial content in TFs. Intact mitochondria were isolated from TFs 
using a commercial Mitochondrial Isolation Kit (Thermoscientific, USA) 
from a Citrate Synthase Activity Assay (Sigma-Aldrich, USA). Citrate 
synthase activity is reported as nmole/min/mL = milliunit/mL. One unit 
of citrate synthase is the amount of enzyme that generates 1.0 mmol of 
CoA per minute at 25 ◦C and pH 7.2. Tenon’s ocular fibroblasts from 
subjects with POAG (GTFs; n = 5) or non-glaucomatous controls (NTFs; 
n = 5) were tested in duplicate and citrate synthase activity assay ana
lysed. Statistical significance was determined using unpaired t testing. 

2.4. Seahorse XF24 analyzer measurement of cellular bioenergetics 

Cellular bioenergetics of human primary Tenon’s ocular fibroblasts 
(TFs) was determined using the extracellular flux analyser (Seahorse 
XF24 Analyzer; Seahorse Bioscience, Agilent Technologies, UK). TFs (2 
× 104) were seeded in a 24 well Seahorse XF plate and incubated at 
37 ◦C with 5% CO2 and 95% humidity for 24 h. Prior to the experiment 
the medium was removed from the cells and incubated for 1 h with 
serum free medium with or without hydrogen peroxide (Sigma-Aldrich, 

Abbreviations 

RGCs Retinal ganglion cells 
POAG primary open angle glaucoma 
IOP intraocular pressure 
LHON Leber’s Hereditary Optic Neuropathy 
ADOA Autosomal Dominant Optic Atrophy 
H2O2 hydrogen peroxide, 
ROS reactive oxygen species 
GSS2 glaucoma staging system 2 
TFs Tenon’s fibroblasts 
GTFs Glaucomatous Tenon’s fibroblasts 
NTFs non-glaucomatous controls 
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SEM standard error of the mean 
OCR oxygen consumption rate 
DMSO Dimethyl sulfoxide, 
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UK) to a final concentration of 100 μM and 200 μM in 450 μl of serum 
free medium. Hydrogen peroxide (H2O2) was used to induce oxidative 
stress [40] and the concentration and duration of H2O2 treatments were 
determined through optimisation experiments and mirror previous 
studies in Tenon’s ocular fibroblasts [41]; a 1-h exposure of 50 μM H2O2 
is considered physiological and 100–200 μM H2O2 is deemed patho
logical [42,43]. Medium was then removed and the cells were washed 
twice with Seahorse medium (DMEM supplemented with 10 mM 
D-glucose (Sigma-Aldrich, UK), 2 mM L-glutamine (Sigma-Aldrich, UK) 
and 2 mM pyruvate (Sigma-Aldric, UK), pH 7.4) prior to applying 450 μl 
of seahorse medium as previously described [44]. The plates were then 
incubated at 37 ◦C with no CO2 for a further hour. XF Cell Mito Stress 
Test assays (Seahorse Bioscience, Agilent Technologies, UK) were per
formed to assess mitochondrial respiration through real-time, non-in
vasive measurement of oxygen consumption rate (OCR). The sequence 
of the Seahorse XF24 Mito Stress Test involves five measurements of the 
OCR at 7-min intervals, three measurements after addition of 1.26 μM 
oligomycin (Sigma-Aldrich, UK), three measurements after addition of 
1.0 μM of FCCP (Sigma-Aldrich, UK) and two final measurements after 
the addition of a combination of 1 μM antimycin A (Sigma-Aldrich, UK) 
and 1 μM rotenone (Sigma-Aldrich, UK). Within the assay empty wells 
were used as blanks and two wells had cells without the Mito Stress test 
reagents as a control. Six replicates were performed of each test condi
tion and enabled the mitochondrial respiration parameters to be calcu
lated, including basal respiration, ATP-linked respiration, proton leak 
respiration and spare capacity (see Supplement Fig. S1 and Table S1). 
The data was normalised by cell number using the CyQUANT Cell Pro
liferation Assay (Thermo Scientific, USA). For standardisation purposes, 
as the individual values per cell are small, these were then multiplied by 
1 × 106 and all the results from the Seahorse XF24 assay were presented 
in this manner [45]. 

The statistical analysis of the data was performed using GraphPad 
Prism 6.0 software (La Jolla, CA, USA). Additionally, linear mixed effect 
model was run in R [46]. This method of analysis was preferred as the 
analysis was performed on all data (120 data points from 20 subjects), 
while adjusting for correlation on measurements from same subjects, 
which was achieved by introducing a random intercept parameter for 
data that came from the same subject. This method of analysis pulls 
information from all variables into one model and hence has higher 
effective sample size to estimate the variability due to subject differ
ences [47]. 

2.5. Measurement of oxidative stress 

Tenons fibroblasts were tested for mitochondrial function changes 
using two probes: Mitosox Red (Thermo Fisher Scientific, USA) and CM- 
H2DCFDA (Thermo Fisher Scientific, USA). In order to perform these 
test the cells were prepared in a similar manner. 8 × 104 cells Tenon’s 
ocular fibroblasts were incubated with serum free medium at 37 ◦C with 
5% CO2 and 95% humidity in an incubator for 24 h prior to testing. 

MitoSOX™ Red (Thermo Fisher Scientific, USA) was used for 
detection of mitochondrial superoxide production. On the day of testing 
the medium was removed and washed twice with Hanks’ Balanced Salt 
Solution (HBSS) (Gibco, Thermo Fisher Scientific, UK). Thereafter 5 μM 
MitoSOX™ in HBSS was applied and incubated in the dark for 30 min. 
The cells were washed twice with HBSS, trypsinised and centrifuged at 
1500RPM for 5 min. The pellet was washed with HBSS and centrifuged 
at 1500RPM for 5 min and resuspended in 500 μl of HBSS and flow 
cytometry was performed. 

CM-H2DCFDA (Thermo Fisher Scientific, USA) was used to measure 
intracellular reactive oxygen species (ROS). 5 μM CM-H2DCFDA in 
phenol free and serum free DMEM/F12, (HEPES no phenol red) (Gibco, 
Thermo Fisher Scientific, UK) was applied and incubated in the dark for 
30 min. The cells were washed twice with 1x phosphate-buffered-saline 
(PBS) (Gibco, Thermo Fisher Scientific, UK), trypsinised and centrifuged 
at 1500RPM for 5 min. The pellet was washed with PBS and centrifuged 

at 1500RPM for 5 min and resuspended in 500 μl of phenol free and 
serum free DMEM/F12, (HEPES no phenol red) and flow cytometry was 
performed. 

Flow cytometry data was collected on the BD Accuri™ C6 Flow cy
tometer (BD Biosciences, USA) by collecting 5000 events and by setting 
an FSC-H threshold of 1,000,000. All experiments were performed in 
triplicate and statistical analysis of the data was performed using 
GraphPad Prism 6.0 software (La Jolla, CA, USA). Mann-Whitney U test 
was performed for each parameter. 

3. Results 

Primary Tenon’s ocular fibroblasts (TFs) were cultured from POAG 
patients (GTFs; n = 10) and disease negative non-glaucomatous controls 
(NTFs; n = 10). All subjects were Caucasian and the POAG group were 
70.03 (SD ± 11.90) years of age (mean ages (± standard deviation/SD) 
(n = 5 female) and the control group were 78.30 (SD ± 7.59) years of 
age (n = 6 female). The phenotypic data for each individual donor is 
given in Supplement Table S2. (n = 6 had advanced glaucoma and n = 4 
had moderate glaucoma). There were no significant differences in the 
mitochondrial content of Tenon’s ocular fibroblasts from disease nega
tive non-glaucomatous and glaucomatous subjects as measured by cit
rate synthase activity (Fig. 1). This confirmed that the differences in 
subsequent experiments was not observed due to variations in mito
chondrial content. 

3.1. Impaired mitochondrial cellular bioenergetics in glaucomatous 
Tenon’s ocular fibroblasts 

The Mito Stress Test from the Seahorse XF24 Analyzer was used to 
investigate mitochondrial cellular bioenergetics in glaucomatous 
Tenon’s ocular fibroblasts (GTFs) compared to non-glaucomatous 
Tenon’s ocular fibroblasts (NTFs). An oxygen consumption rate (OCR) 
curve was generated from NTFs and GTFs obtained from POAG (n = 10) 
and disease negative controls (n = 10) and run in six replicates per 
subject (Fig. 2A) from which mitochondrial respiration parameters were 
calculated (Fig. 2B). Basal respiration is a measure of ATP synthase (ATP 
production) and proton leak. There was a significant reduction in basal 
respiration (basal OCR) between NTFs (3933 ± 536 pmol/min/106 

cells) compared to GTFs (2803 ± 231 pmol/min/106 cells). Maximal 
respiration which is a measure of the maximum rate of respiration that 
the cell can achieve and was significantly reduced in GTFs (5617 ± 463 
pmol/min/106 cells) compared to NTFs (9163 ± 1798 pmol/min/106 

Fig. 1. The mitochondrial content measured by citrate synthase activity of 
glaucomatous Tenon’s ocular fibroblasts (GTFs) and disease negative non- 
glaucomatous Tenon’s ocular fibroblasts (NTFs). Citrate synthase is an exclu
sive marker of the mitochondrial matrix. There was no statistically significant 
difference (p = 0.3845) in the citrate synthase activity assay between the GTFs 
and NTFs (n = 5). 
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cells). The spare capacity was also significantly reduced in GTFs (2813 
± 354 pmol/min/106 cells) compared to NTFs (5230 ± 1288 pmol/min/ 
106 cells). The spare capacity describes the amount of additional ATP 
than can be generated by oxidative phosphorylation in the event of a 
sudden increase in energy demand or cell stress. The extracellular 
acidification rate was measured throughout the Mito Stress Test to 
calculate the baseline ECAR and ECAR oligomycin which reflects the 
glycolytic capacity. There was no significant difference in the ECAR in 
control fibroblasts compared to glaucoma. Overall, the reductions in 
basal and maximal respiration coupled with spare capacity defects 
highlights significant defects in mitochondrial bioenergetics in GTFs. 

3.2. Oxidative stress and mitochondrial cellular bioenergetics in Tenon’s 
ocular fibroblasts 

Oxidative stress was induced by pre-treatment of H2O2 at two con
centrations (100 μM and 200 μM) for 1 h prior to the Mito Stress Test 
using the Seahorse XF24 Analyzer in NTFs and GTFs (Fig. 3 and Table 1). 
In both GTF and NTF, the basal respiration increased with exposure to 
100 μM H202 but not 200 μM H202. Mitochondrial basal respiration 

responded to lower levels of oxidative stress but at higher levels of 
oxidative stress resulted in mitochondrial bioenergetic compromise. 
Proton leak increased at both 100 μM and 200 μM H202 indicating 
mitochondrial damage due to increased uncoupling protein activity, 
damage to the inner mitochondrial membrane and/or electron transport 
chain complexes. In NTFs increasing concentrations of H202 reduced the 
OCR curve with significant reductions in maximal respiration and spare 
capacity mirroring the findings in the GTFs without H2O2 treatment 
(Fig. 3 and Table 1). These findings demonstrate increasing mitochon
drial dysfunction in response to oxidative stress in NTFs with reduced 
cellular bioenergetics. This reflected the pre-treatment state of GTFs and 
the induction of further oxidative stress only impacted spare capacity in 
GTFs. Pre-treatment with 200 μm H2O2 significantly reduced spare ca
pacity (1262 ± 446 pmol/min/106 cells vs. from 2813 ± 354 pmol/ 
min/106 cells) in GTFs (Fig. 3G.). H2O2 induced oxidative stress further 
compromises spare capacity in GTFs hindering the cells already 
compromised ability to respond to cell stress. Given that mitochondrial 
cellular bioenergetics were already compromised in GTFs and the in
duction of oxidative stress resulted in similar OCR profiles in the NTFs 
while further impacting spare capacity in the GTFs we sought to 

Fig. 2. The Seahorse XF Analyzer Mito Stress Test 
detected altered mitochondrial cellular bio
energetics in glaucomatous Tenon’s ocular fibro
blasts. (A) The oxygen consumption rate (OCR) 
curve of the Mito Stress Test in disease negative non- 
glaucomatous Tenon’s ocular fibroblasts (NTFs) (n 
= 10) and glaucomatous Tenon’s ocular fibroblasts 
(GTFs)) (n = 10) after sequential addition of Oligo 
(oligomycin), FCCP and Rot/Ant A (rotenone/anti
mycin A) (mean of six replicates); (B) Calculation of 
the mitochondrial respiration parameters demon
strated a significant reduction of the basal respira
tion (p = 0.0449), maximal respiration (p = 0.0113) 
and spare capacity (p = 0.0481). Data on the graph 
represents the mean ± SEM (* = p < 0.05, ** = p <
0.01).   
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determine the basal oxidative stress in both GTFs and NTFs. The level of 
intracellular ROS was measured using a CM-H2DCFDA assay and a 
MitoSOX Red assay and in GTFs compared to NTFs there was a signifi
cant increase in general ROS in the cell, but no changes were observed in 
mitochondrial derived superoxide (Fig. 4). GTFs are already under 
oxidative stress prior to H2O2 treatment which exacerbates already 
compromised mitochondrial bioenergetics. 

4. Discussion 

The role of mitochondria in glaucoma pathogenesis has gained 
increasing interest as they are considered potential targets for thera
peutic intervention [48–51]. In this study we have demonstrated 
impaired mitochondrial cellular bioenergetics in Tenon’s ocular fibro
blasts derived from glaucoma (POAG) patients. Furthermore, we have 

shown elevated basal oxidative stress in GTFs compared to NTFs. H2O2 
induced ROS simulated the glaucomatous condition in NTFs and further 
compromised mitochondrial function in GTFs. 

Using the Seahorse XF Mito Stress Test our study demonstrated that 
the mitochondrial respiration profile was globally impaired in GTFs 
compared to NTFs. Specifically, there were significant reductions in 
basal respiration, maximal respiration and the spare capacity in GTFs. A 
significant reduction in basal respiration has also been demonstrated in 
glaucoma lamina cribrosa cells [52]. The maximal respiration shows the 
maximum activity of electron transport chain and substrate oxidation 
that the cell can achieve. In GTFs the reduction in maximal respiration 
indicates a global defect in the electron transport chain and is a strong 
indicator of potential mitochondrial dysfunction [53]. Maximal respi
ration was reduced in blood lymphoblasts from POAG subjects [54] and 
complex I enzyme specific activity was significantly reduced by 18% in 

Fig. 3. Effect of hydrogen peroxide (H2O2) induced oxidative stress on mitochondrial cellular bioenergetics in Tenon’s ocular fibroblasts. (A) The oxygen con
sumption rate (OCR) curve of the Mito Stress Test in disease negative non-glaucomatous Tenon’s ocular fibroblasts (NTFs) (n = 10) and glaucomatous Tenon’s ocular 
fibroblasts (GTFs)) (n = 10) after sequential addition of Oligo (oligomycin), FCCP and Rot/Ant A (rotenone/antimycin A) (mean of six replicates). These graphs 
compare pre incubation with 0 μm H2O2, 100 μm H2O2 and 200 μm H2O2 in A) control group B) glaucoma group. The mitochondrial respiration parameters were 
then calculated, and two-way ANOVA testing was performed to compare the differences. The respiration parameters include C) basal respiration, D) ATP production, 
E) proton leak, F) maximal respiration, G) spare capacity, H) non-mitochondrial respiration. The data shown is the mean ± SEM. (* = p < 0.05 * = p < 0.05, ** = p 
< 0.01, *** = p < 0.005, **** = p < 0.0001). 
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POAG lymphoblasts [55]. A significant reduction of maximal respiration 
has also been observed in other ocular age-related conditions (age 
related macular degeneration in RPE cells) using the Seahorse XF ana
lyser [56]. 

There was a significant reduction in spare capacity in ocular Tenon’s 
fibroblasts from glaucoma patients. The spare capacity is a measure of 
the mitochondrial capacity to meet additional cellular energy re
quirements in response to cellular stress to avoid an ATP crisis [57]. In 
effect, spare capacity indicates how close a cell is to operating at its 
bioenergetic limit [53]. In this respect spare capacity is a measure of 
mitochondrial fitness, and low spare capacity reflects mitochondrial 
dysfunction which might not be apparent under basal conditions and has 
been reported in cardiovascular and chronic neurological diseases [58]. 
A significant reduction in spare capacity has also been demonstrated in 
human glaucoma lamina cribrosa cells from the optic nerve head [52]. 
Ocular Tenon’s fibroblasts therefore mirror mitochondrial dysfunction 
in the optic nerve head and are therefore also likely to reflect altered 
mitochondrial bioenergetics in the optic nerve and RGCs in glaucoma. 
Patient derived cells, and specifically ocular cells, provide an excellent 
platform to assess mitochondrial dysfunction in glaucoma [19,25,28,34, 
35]. Tenon’s ocular fibroblasts provide an accessible cell type to provide 

enough material and case numbers for study and evaluate future 
metabolic and mitochondrial therapies in glaucoma. 

Spare capacity depends on the functional integrity of the electron 
transport chain and the inner mitochondrial potential, the availability of 
energetic substrates for oxidation and the maintenance of mitochondrial 
homeostasis via biogenesis and mitophagy [57]. Oxidative stress has a 
significant impact on mitochondrial spare capacity [59,60]. Under 
conditions of oxidative stress, the spare capacity of cells is further 
depleted, and if the basal respiratory threshold is breached, cell death 
occurs [59–62]. Spare respiratory capacity levels correlate with the 
degree of mitochondrial plasticity, allowing bio-energetic adaptability 
in response to pathophysiological stress, and hence inadequate levels are 
associated with pathological conditions [57]. In GTFs there was elevated 
basal oxidative stress compared to NTFs which could represent one 
mechanism resulting in a reduced spare capacity. Oxidative stress and 
ageing can induce mitochondrial DNA (mtDNA) mutations impacting 
mitochondrial bioenergetics including spare capacity, in addition, to 
contributing to further ROS production [63]. Previous work by our 
group has demonstrated pathogenic variants in mtDNA extracted from 
peripheral blood leucocytes and Tenon’s ocular fibroblasts from glau
coma patients [30,64]. The results demonstrate that the source of ROS in 

Table 1 
Post hoc Tukey’s Multiple Comparison Testing to analyse the findings from the significant two-way ANOVA test of the mitochondrial respiration parameters after 
Seahorse XF Analyzer Mito Stress testing with or without hydrogen peroxide (H2O2) in glaucomatous Tenon’s ocular fibroblasts (GTFs) and disease negative non- 
glaucomatous Tenon’s ocular fibroblasts (NTFs). Testing performed with 0 μm H2O2, 100 μm H2O2, and 200 μm H2O2 in 10 GTFs and 10 NTFs. This demon
strates that control fibroblasts exhibit a more significant response to H2O2 than glaucoma fibroblasts (as shown by the response of the spare capacity and maximal 
respiration after pre incubation with H2O2. * = p < 0.05, ** = p < 0.01, *** = p < 0.005, **** = p < 0.0001.  

All 
results 
per 1 ×
106 cells 

Basal Respiration ATP Production Proton Leak Maximal Respiration Spare Capacity Non Mitochondrial 
Respiration 

Significant Adjusted 
p Value 

Significant Adjusted 
p Value 

Significant Adjusted 
p Value 

Significant Adjusted 
p Value 

Significant Adjusted 
p Value 

Significant Adjusted 
p Value 

Control 
0 μm 

H202 

vs. 
100 
μm 
H202 

Yes** 0.0015 Yes**** <0.0001 Yes**** <0.0001 No 0.9576 Yes** 0.0031 Yes** 0.0067 

0 μm 
H202 

vs. 
200 
μm 
H202 

No 0.2940 Yes**** <0.0001 Yes**** <0.0001 Yes** 0.0061 Yes**** <0.0001 No 0.9676 

100 μm 
H202 

vs. 
200 
μm 
H202 

No 0.0710 No 0.2373 No 0.3052 Yes** 0.0029 Yes** 0.0085 Yes** 0.0034  

Glaucoma 
0 μm 

H202 

vs. 
100 
μm 
H202 

Yes* 0.0136 Yes**** <0.0001 Yes**** <0.0001 No 0.8342 No 0.0795 Yes* 0.0193 

0 μm 
H202 

vs. 
200 
μm 
H202 

No 0.3843 Yes**** <0.0001 Yes*** 0.0001 No 0.2627 Yes** 0.0012 No 0.7626 

100 μm 
H202 

vs. 
200 
μm 
H202 

No 0.2379 No 0.6141 No 0.4621 No 0.0910 No 0.2419 No 0.0951  
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glaucomatous TFs is not mitochondrial in origin. In this paper we 
demonstrate elevated ROS and impaired mitochondrial bioenergetics in 
glaucoma, but the underlying mechanism of ROS induced mitochondrial 
dysfunction requires further investigation. The mechanistic basis is 
important to identify therapeutic strategies to reduce ROS, and mitigate 
impaired mitochondrial bioenergetics, to prevent or reduce RGC loss 
and protect vision in glaucoma. Several antioxidant-based therapies 
have been evaluated in experimental glaucoma models and clinical trials 
[65,66]. Coenzyme Q10 (ubiquinone) is a molecule that shuttles elec
trons from complex I and I to complex III which maintains the mito
chondrial membrane potential, supporting ATP synthesis and inhibiting 
reactive oxygen species generation [67]. Improvements in retinal gan
glion cell health following the topical administration of coenzyme Q10 
have been demonstrated in rodent glaucoma models [67–70]. 

Neural tissue has significant energy demands and neurons can utilise 
80% of their spare capacity to maintain ionic gradients and thus 
neuronal excitability [71,72]. This places neuronal function and sur
vival vulnerable to mitochondrial dysfunction [73]. RGCs are extremely 
susceptible to mitochondrial compromise due to their marked bio
energetic requirements and morphology [16,17,51]. In the DBA/2J 
mouse model of glaucoma mitochondrial dysfunction is an early feature 
in the RGCs [74] and nicotinamide adenine dinucleotide (NAD) shows 
an age-dependent decline contributing to mitochondrial dysfunction 
and vulnerability to glaucoma in this model [51,74,75]. The prevention 
of NAD decline by dietary supplementation with nicotinamide (NAM; 
the amide form of vitamin B3) protected against mitochondrial and 
metabolic dysfunction and so RGC neurodegeneration in the DBA/2J 
glaucoma mouse model [51,76]. Recent human studies with oral nico
tinamide supplementation with or without pyruvate have shown short 
term beneficial effects [77,78]. 

5. Conclusions 

Bioenergetic based therapies in glaucoma face several challenges 
including the chronic nature of glaucoma, the clinical variability in 
disease progression and determining robust primary endpoints [51,79]. 
We have used Tenon’s ocular fibroblasts derived from glaucoma (POAG) 
patients to detect elevated basal ROS levels and altered mitochondrial 
bioenergetics. This approach provides important insight into the path
ogenesis of glaucoma but also could be employed as a strategy to risk 

profile patients for future bioenergetic based neuroprotection trials in 
glaucoma. 
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