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Abstract  20 

This research compared thermal and perceptual adaptations, endurance capacity, and 21 

overreaching markers in men after 3, 6, and 12-days of post-exercise hot water immersion 22 

(HWI) or exercise heat acclimation (EHA) with a temperate exercise control (CON), and 23 

examined thyroid hormones as a mechanism for the reduction in resting and exercising core 24 

temperature (Tre) after HWI. HWI involved a treadmill run at 65% V̇O2peak in 19°C followed 25 

by a 40°C bath. EHA and CON involved a work-matched treadmill run at 65% V̇O2peak in 33°C 26 

or 19°C, respectively. Compared with CON, resting mean body temperature (Tb), resting and 27 

end-exercise Tre, Tre at sweating onset, thermal sensation and perceived exertion were lower 28 

and whole-body sweat rate (WBSR) was higher after 12-days of HWI (all P ≤ 0.049, resting 29 

Tb: CON −0.11 ± 0.15°C, HWI −0.41 ± 0.15°C). Moreover, resting Tb and Tre at sweating onset 30 

were lower after HWI than EHA (P ≤ 0.015, resting Tb: EHA −0.14 ± 0.14°C). No differences 31 

were identified between EHA and CON (P ≥ 0.157) except WBSR which was greater after 32 

EHA (P = 0.013). No differences were observed between interventions for endurance capacity 33 

or overreaching markers (mood, sleep, Stroop, P ≥ 0.190). Thermal adaptations observed after 34 

HWI were not related to changes in thyroid hormone concentrations (P ≥ 0.086). In conclusion, 35 

12-days of post-exercise hot water immersion conferred more complete heat acclimation than 36 

exercise heat acclimation without increasing overreaching risk, and changes in thyroid 37 

hormones are not related to thermal adaptations after post-exercise hot water immersion. 38 

 39 

Keywords 40 
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Introduction 42 

It is well established that exercise in hot and hot-humid environments is detrimental to 43 

endurance capacity (1, 2) and may expose individuals to the risk of exertional heat illness (3). 44 

To reduce these deleterious effects of heat stress, athletes, military personnel, and occupational 45 

workers should prepare by completing a period of heat acclimation (4, 5).  46 

 47 

Previous research in both recreationally active (6) and endurance-trained individuals (7) 48 

demonstrates that taking a hot bath for up to 40 min immediately after submaximal exercise in 49 

temperate conditions on six consecutive days reduces resting core body temperature. This 50 

reduction in resting core body temperature leads to a subsequent reduction in core body 51 

temperature during exercise-heat-stress, a hallmark heat acclimation adaptation. Post-exercise 52 

hot water immersion (HWI) also presents a more practical heat acclimation strategy than 53 

conventional exercise heat acclimation (EHA), as it eliminates the requirement for access to an 54 

environmental chamber and can be more easily incorporated into normal training and an 55 

athlete’s taper (8). Moreover, McIntyre et al. (9) recently demonstrated that despite a similar 56 

endogenous thermal stimulus for adaptation, 6 days of HWI elicited larger thermal adaptations 57 

than EHA. While the 6-day HWI intervention presents an effective, practical, and time-efficient 58 

short-term (< 7 days) heat acclimation strategy, previous literature suggests that medium- (7–59 

14 days) (10, 11) and long-term (> 14-day) (10) interventions provide a more complete state 60 

of heat acclimation. It is yet to be determined whether extending the 6-day HWI intervention 61 

provides additional thermal benefits. In addition, the true benefit of medium-term conventional 62 

exercise-based heat acclimation strategies beyond exercising in temperate conditions is 63 

unknown due to the lack of work-matched interventions within the literature and hence further 64 

research is warranted. In contrast to the beneficial adaptations of medium-term heat 65 

acclimation, the physical demands of prolonged interventions can disrupt training and may 66 
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trigger overreaching, which has detrimental effects on exercise performance and mood (4, 12). 67 

The effects of medium-term heat acclimation on overreaching are currently unknown and, 68 

given the applied implications, warrant investigation.  69 

 70 

The reduction in thermal strain after HWI heat acclimation can be largely attributed to a 71 

reduction in resting core temperature (6, 7, 9, 13, 14). The underlying mechanism for this 72 

reduction in resting core temperature is currently unknown but may involve a reduction in 73 

metabolic heat production via reduced circulating thyroid hormone concentrations (15), a 74 

decrease in the thermoregulatory balance point (16, 17), or hypothalamic neural network 75 

remodeling (18, 19). The release of thyroid-stimulating hormone by the anterior pituitary gland 76 

stimulates the release of two protein-iodine-bound hormones: triiodothyronine (T3) and 77 

thyroxine (T4). When unbound, free thyroid hormones are metabolically active and stimulate 78 

glucose uptake, gluconeogenesis, lipolysis, and thermogenesis (20). Reductions in thyroid 79 

hormones have been demonstrated after 3 weeks of heat exposure in rats (21, 22) and previous 80 

research also shows rats with lower circulating thyroid hormones have a lower core temperature 81 

at rest and during heat stress (23, 24). However, no study to date in humans has investigated 82 

the effect of heat acclimation on thyroid hormone concentrations or thyroid hormone influences 83 

on heat acclimation thermal adaptations. Specifically, it is unknown whether reductions in 84 

thyroid hormones are responsible for the pronounced reduction in resting core temperature 85 

observed after HWI heat acclimation (6, 7, 9).  86 

This research is presented in two parts. Part 1 compared heat acclimation thermal and 87 

endurance capacity adaptations, overreaching markers, and changes in plasma thyroid 88 

hormones concentrations after 3, 6, and 12 days of HWI and EHA with a work-matched 89 

temperate exercise control (CON) in 21 active males. Given larger thermal adaptations were 90 

observed after short-term HWI than short-term EHA (9), we hypothesized that extending the 91 
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HWI intervention to 12 days would augment thermal adaptations and that these would confer 92 

more complete heat acclimation than EHA. In addition, we expected that compared to CON 93 

the high physical demands of daily exercise and heat-stress during HWI and EHA would lead 94 

to increased markers of overreaching (i.e., low mood and physical/cognitive performance 95 

decrements). Part 2 examined, in a larger cohort of 48 active males, the effect of 6 days of HWI 96 

in comparison to CON on plasma thyroid hormone concentrations, and additionally examined 97 

the relationship of thyroid hormone changes with hallmark heat acclimation adaptations. We 98 

hypothesized that 6 days of HWI would elicit reductions in plasma thyroid hormone 99 

concentrations and that these reductions would be associated with heat acclimation thermal 100 

adaptations, in particular a reduction in resting and exercising core temperature.  101 
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Methods 102 

Experimental approaches 103 

In Part 1, a mixed-methods (between and within) repeated measures design was used to assess 104 

the effect of 12 days of HWI, EHA, and CON on thermal and perceptual adaptations, 105 

overreaching markers, and plasma thyroid hormone concentrations in 21 recreationally active 106 

males. This is a subset of participants of a larger cohort that completed six intervention days 107 

(9). Participants in Part 1 completed experimental trials before (PRE) and after 3 (POST3), 6 108 

(POST6), and 12 days (POST12) of their assigned intervention (Fig. 1). To enable work-109 

matching with EHA, CON participants completed the same external work ≥1 day after EHA 110 

participants. In Part 2, data from four previously published heat acclimation studies from our 111 

laboratory (6, 7, 9, 14) were amalgamated in a between-groups design to assess the effect of 6 112 

days of HWI and CON on thermal adaptations, thyroid hormone concentrations, and the 113 

relationship between plasma thyroid hormones and thermal adaptations. Thyroid hormones 114 

were not previously investigated in these studies. Amalgamating the four studies enabled the 115 

relationship between thyroid hormones and thermal adaptations to be examined more robustly 116 

in a larger sample. Testing was halted during summer months (June–August) to reduce the 117 

potential effect of seasonal heat acclimatization. All studies received ethical approval 118 

(829/MoDREC/17, PO5-17/18, S/PhD10-15/16, PhD19-13/14), were conducted in accordance 119 

with the Declaration of Helsinki (2013) but were not registered in a database. 120 

 121 

Participant recruitment and randomization 122 

Part 1 participant flow and attrition before protocol completion, and biochemical and statistical 123 

analyses are summarized in Fig. 2. Participants were matched for V̇O2peak in groups of three 124 

and randomly assigned to either HWI, EHA, or CON (randomizer.org). Participants were 125 

excluded from the final analysis if they failed to complete the 12-day study protocol. The 126 
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participant characteristics of the 21 male participants included in the final analysis are 127 

summarized in Table 1. A sample size of 21 (7 participants per group) was estimated (G*Power 128 

3.1.9) (25) as adequate to detect a significant difference in the change in end-exercise rectal 129 

core temperature (Tre) between heat acclimation and temperate exercise control interventions 130 

using a mixed-model analysis of covariance (ANCOVA), standard alpha (0.05) and power 131 

(0.80), and a Cohen’s F effect size of 0.88. This effect size was calculated from the average 132 

reduction in end-exercise Tre change after HWI (−0.36°C) (6) and exercise heat acclimation 133 

(−0.44°C (26) and −0.49°C (27)) compared to exercise in temperate conditions (0.00°C) (6) 134 

and a pooled SD of 0.21°C (control group) (6). Part 2 participants were 48 active males (age, 135 

22 ± 3 years; height, 178 ± 6 cm; body mass, 72 ± 7 kg; V̇O2peak, 58 ± 8 mL·kg−1·min−1). Data 136 

of fourteen participants (HWI, n = 7; CON, n = 7) were included in both Parts 1 and 2. All 137 

participants in Parts 1 and 2 provided written informed consent and were healthy, non-smokers, 138 

free from any known cardiovascular or metabolic diseases, were not taking any medication, 139 

and had not been regularly (> once a week) exposed to the heat (including sauna and hot bath 140 

use) in the 6 weeks before commencing testing.  141 

 142 

Preliminary measurements and familiarization 143 

Participants completed a fitness assessment within a week before their first experimental trial 144 

(PRE; Fig. 1). V̇O2peak was assessed using a continuous maximal incremental exercise test 145 

performed on a motorized treadmill (HP Cosmos Mercury 4.0, Nussdorf-Traunstein, Germany) 146 

in a temperate laboratory (19°C, 45% RH) to volitional exhaustion. V̇O2peak was determined as 147 

the highest oxygen uptake attained over a 30-s period. The average values of breath-by-breath 148 

V̇O2 and V̇CO2 during the final minute of each submaximal stage were used to calculate 149 

running economy, expressed as kilocalories per kilogram per min (28). A running speed that 150 

elicited 65% V̇O2peak in temperate conditions was subsequently determined by the interpolation 151 
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of the running speed–V̇O2 relationship and confirmed via Douglas bag method. All participants 152 

ran at a speed below their anaerobic threshold as determined by the onset of blood lactate 153 

accumulation (29). Participants were then familiarized with the treadmill running speed, Stroop 154 

test, venepuncture, and Profile of Mood States (POMS) questionnaire. 155 

 156 

Experimental trials 157 

Twenty-four hours before the first experimental trial, participants were instructed to refrain 158 

from exercise, alcohol, diuretics, and caffeine and to complete a diet diary. Twenty-four hours 159 

before all subsequent experimental trials, participants were instructed to replicate this food and 160 

fluid intake. To ensure a similar circadian pattern, participants were instructed to sleep between 161 

2200 h and 0700 h before experimental trials with their sleep duration and efficiency assessed 162 

by an Actigraph (Actigraph GT3X Version 4.4.0, Actigraph, Pensacola, USA). Sleep duration 163 

and efficiency were also assessed as overreaching markers (30). 164 

 165 

On the day of the experimental trials, participants arrived at the laboratory at 0730 h and were 166 

provided with a standardized breakfast (2091 kilojoules, 71 g carbohydrate, 18 g fat, 17 g 167 

protein) and a bolus of water (7 mL·kg−1 of nude body mass). At 0800 h, dressed in a t-shirt, 168 

shorts, socks and trainers, participants rested for 20 min in temperate conditions (19°C, 45% 169 

RH). Following the seated rest, participants completed the abbreviated POMS questionnaire 170 

(31) to determine total mood disturbance and energy index (vigor−fatigue) as markers of 171 

overreaching (30). A venous blood sample was then taken without stasis for the determination 172 

of plasma volume and plasma concentrations of free T3, free T4, total T3, and total T4. A urine 173 

sample was then analyzed to confirm urine specific gravity was <1.03 (32) and a flexible, 174 

sterile, single-use rectal thermistor (Henleys Medical Supplies Ltd., Herts, UK) was self-175 

inserted 10 cm beyond the anal sphincter to measure Tre. A pre-exercise nude body mass was 176 
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recorded using a digital platform scale (Model 703; Seca, Hamburg, Germany) and skin 177 

thermistors were attached on the right side of the body for the determination of mean skin 178 

temperature (Tsk), as previously described (33). Mean body temperature (Tb) was estimated 179 

using the formula: Tb = 0.64·Tre + 0.36·Tsk (34). Following instrumentation, participants rested 180 

for a further 30 min in temperate conditions (19°C, 45% RH) to establish baseline measures. 181 

Body surface area (AD) by the Du Bois equation (35), and V̇O2 and respiratory exchange ratio 182 

(RER) from a 60-s expired gas collection by Douglas bag method between 29–30 min of seated 183 

rest were used to estimate resting metabolic heat production (H) as follows (36): 184 

  185 

 H (W·m−2) = [0.23(RER) + 0.77] · [5.873(V̇O2)] · (60 / AD). 186 

 187 

At 0945 h, dressed in shorts, socks, and trainers, participants entered the environmental 188 

chamber (33°C, 40% RH, 0.2 m·s−1 wind velocity) to complete a 40-min treadmill run at 65% 189 

V̇O2peak. Tre, skin temperatures, and heart rate were monitored continuously. Local forearm 190 

sweat rate was measured by dew point hygrometry (DS2000; Alpha Moisture Systems, UK). 191 

Anhydrous compressed nitrogen at a flow rate of 1 L·min−1 was passed through a 5-cm2 192 

capsule, affixed to the ventral surface of the lower arm (halfway between the antecubital fossa 193 

and carpus). Local forearm sweat rate was calculated as the difference in water content between 194 

effluent and influent air, divided by the skin surface area under the capsule (expressed in 195 

milligrams per square centimeter per minute). Tre at sweating onset was determined by plotting 196 

the relationship between local forearm sweat rate and Tre (recorded at 20-s intervals) before 197 

using segmented linear regression to identify the breakpoint in the two line segments (37). 198 

Rating of perceived exertion (RPE) (38), thermal sensation (TS) (39), V̇O2, and RER (40) were 199 

recorded every 10 min. On completion of the exercise, participants rested for 20 min in 200 

temperate conditions (19°C, 45% RH), during which they completed a modified Stroop test 201 
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(41) to assess cognitive function as a marker of overreaching (30), and provided a nude body 202 

mass to estimate whole-body sweat rate. 203 

Participants then re-entered the environmental chamber and completed a time to exhaustion 204 

(TTE) on a motorized treadmill at 65% V̇O2peak. Participants were instructed to “run for as long 205 

as possible”. TTE was terminated when participants stopped running owing to volitional 206 

exhaustion, thermal discomfort, or when Tre exceeded 39.5 °C. No fluids were consumed, no 207 

feedback was provided, and Tre and heart rate were monitored continuously. Following the 208 

cessation of exercise, capillary blood lactate concentration was assessed (Lactate Pro 2™, 209 

Arkray, Australia) as a marker of overreaching (42, 43). Participants were provided with a 210 

bolus of water and were free to leave the laboratory when Tre ≤ 38.5°C. 211 

Daily intervention 212 

All participants in Part 1 and Part 2 completed 12 and 6 days of their assigned intervention, 213 

respectively. During the intervention, participants were instructed to consume their normal diet 214 

and fluid intake, including caffeine and alcohol (≤ 3 units per day). Participants arrived at the 215 

laboratory each day between 0600 h and 1300 h. Before exercise, a nude body mass was taken, 216 

and a rectal thermistor and heart rate monitor were fitted. Following instrumentation, 217 

participants completed a 15-min seated rest in temperate conditions (19°C, 45% RH) to 218 

establish baseline measures, before commencing their assigned intervention protocol. A bolus 219 

of water (5 mL·kg-1 of nude body mass) was consumed during the first 20 min of exercise.  220 

Participants assigned to HWI completed a 40-min treadmill run dressed in shorts, socks, and 221 

trainers at a speed equivalent to their 65% V̇O2peak (9.1 ± 1.6 km·h−1) in temperate conditions 222 

(19°C, 45% RH, 0.2 m·s−1 wind velocity). Following exercise (2–3 min transition), dressed in 223 

shorts, participants began a semi-recumbent ≤ 40-min HWI (40°C) to the neck, as previously 224 

described (6). Participants assigned to EHA completed a ≤ 60-min treadmill run at a speed 225 
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equivalent to their 65% V̇O2peak (9.1 ± 1.1 km·h−1) in an environmental chamber (33°C, 40% 226 

RH, 0.2 m·s−1 wind velocity). Participants assigned to CON completed a daily submaximal 227 

treadmill run equivalent to 65% V̇O2peak and work-matched to EHA (8.8 ± 0.9 km·h−1) in 228 

temperate conditions (19°C, 45% RH, 0.2 m·s−1 wind velocity). Owing to the nature of these 229 

interventions, it was not possible to blind the participants. In Part 1, to maintain the endogenous 230 

thermal stimulus for adaptation after the first six intervention sessions (Days 1–3 and Days 6–231 

8, Fig. 1), maximum immersion (HWI) and exercise duration (EHA and CON) increased by 232 

25%, as of the seventh intervention session (Days 11–16, intervention sessions 7–12), to ≤ 50 233 

min and ≤ 75 min, respectively. All intervention sessions were terminated if the maximal 234 

immersion/exercise duration was reached, at the participant’s volition, or if Tre exceeded 235 

39.5°C. Upon removal from the hot water/environmental chamber, participants rested in a 236 

seated position for 5 min in a temperate laboratory, were provided with a bolus of water, and 237 

were free to leave the laboratory when Tre ≤ 38.5°C. 238 

Blood sample collection and analysis 239 

Venous blood samples were collected from an antecubital vein without stasis into two 6-mL 240 

EDTA vacutainers (BD, Oxford, UK). Aliquots of whole blood were used for the immediate 241 

determination of hemoglobin in duplicate (Hemocue, Sheffield, UK) and hematocrit in 242 

triplicate using a microcentrifuge and micro-hematocrit reader (Hawksley & Sons Limited, 243 

Lancing, UK). The change in plasma volume was estimated by correcting the initial plasma 244 

volume at PRE for the percentage change in plasma volume (%ΔPV) at POST3, POST6 and 245 

POST12, as previously described (44). The remaining whole blood was then centrifuged, and 246 

the plasma frozen at −80°C for later analysis.  247 

 248 

Plasma concentrations of free and total triiodothyronine (T3) and thyroxine (T4) were 249 

measured in duplicate by ELISA (free T3: Cat. No. RE55231, detection limit: 0.1 pmol·L−1; 250 
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free T4: Cat. No. RE55241, detection limit: 0.6 pmol·L−1; total T3: Cat. No. RE55251, 251 

detection limit: 0.2 nmol·L−1; total T4: Cat. No. RE55261, detection limit: 0.1 nmol·L−1; IBL 252 

International, Hamburg, Germany). The intra-assay coefficient of variation for duplicates were 253 

free T3, 5.1%; free T4, 2.6%; total T3, 5.6%; total T4, 5.9%. Thyroid hormone concentrations 254 

were adjusted for plasma volume changes using the following formula (45): 255 

 256 

Corrected value = Uncorrected value · ((100 + %ΔPV)/100). 257 

 258 

Statistical analysis 259 

Data were analyzed using SPSS version 27 (IBM Corporation, NY, USA) or GraphPad Prism 260 

Version 9.1 (GraphPad Software Inc. La Jolla, USA). All data were checked for normality and 261 

sphericity; plasma free T4 data was reciprocal transformed to address statistical assumptions 262 

of sphericity. Data are presented as untransformed mean and SD unless otherwise stated, and 263 

statistical significance was accepted at P < 0.05. In Part 1, the mean daily endogenous thermal 264 

stimulus and external work during HWI, EHA, and CON were compared using a two-way 265 

mixed model ANOVA. A two-way mixed model ANCOVA, with baseline (PRE) as the 266 

covariate, was used to detect differences in heat acclimation adaptations, endurance capacity, 267 

overreaching markers, and plasma thyroid hormone concentrations after 3, 6, and 12 days of 268 

HWI, EHA, or CON. Bonferroni-adjusted pairwise comparisons were used where appropriate 269 

to determine where differences occurred. The size of the between-intervention differences was 270 

calculated using Cohen’s d effect size with values greater than 0.2, 0.5, and 0.8 representing 271 

small, medium, and large effects, respectively (46). In Part 2, the mean daily endogenous 272 

thermal stimulus and external work during HWI and CON were compared using t-tests and a 273 

one-way ANCOVA was used to detect differences in heat acclimation adaptations and plasma 274 

thyroid hormone concentrations after 6 days of HWI or CON. Bonferroni-adjusted pairwise 275 
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comparisons were used where appropriate to determine where differences occurred. Pearson’s 276 

correlations determined the strength of the relationship between the endogenous thermal 277 

stimulus, changes in resting Tre and plasma thyroid hormone concentrations after 12 days of 278 

heat acclimation by HWI and EHA. Pearson correlation coefficients of 0.00–0.19 were 279 

regarded as very weak, 0.20–0.39 as weak, 0.40–0.59 as moderate, and 0.60–0.79 as strong 280 

relationships (47).  281 
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Results 282 

Part 1 daily intervention thermal stimulus and external work 283 

Throughout the 12-day intervention the daily endogenous thermal stimulus for adaptation was 284 

similar between HWI and EHA (Table 2; all P ≥ 0.407), but lower in CON (P < 0.001); there 285 

were no main effects of time or interaction effects (P ≥ 0.252). The daily endogenous thermal 286 

stimulus was maintained throughout the 12 days by an increase in mean daily immersion on 287 

HWI (Days 1–3, 33 ± 4 min; Days 6–8, 35 ± 5 min; Days 11–16, 39 ± 5 min, P < 0.001) and 288 

an increase in exercise duration on EHA (Days 1–3, 51 ± 9 min; Days 6–8, 55 ± 8 min; Days 289 

11–16, 61 ± 11 min, P < 0.001). The similar daily thermal stimulus during HWI and EHA was 290 

achieved with a lower mean daily external work in HWI than EHA (Table 2; P = 0.006), and 291 

mean daily external work also tended to be lower in HWI than CON (P = 0.053). 292 

 293 

Part 1 experimental trials 294 

Prior experimental trial standardization ensured sleep duration (6 ± 1 h, P ≥ 0.184) and 295 

hydration status, as assessed by urine specific gravity (1.020 ± 0.007, P ≥ 0.268), were similar 296 

between the interventions, as evidenced by no main effects of group or time, and no interaction 297 

effects.  298 

 299 

Thermal responses at rest in temperate conditions 300 

Thermal responses at rest in temperate conditions were different between interventions after 301 

12 days. Resting Tb was lower after HWI than EHA (Fig. 3A, P = 0.009, d = 1.86) and CON 302 

(P = 0.005, d = 2.04). Resting Tb was not different between EHA and CON over the 12 days 303 

(P = 1.000, d = 0.20). The average reduction in resting Tb over the 12-days was −0.41 ± 0.15°C 304 

for HWI, −0.14 ± 0.14°C for EHA, and −0.11 ± 0.15°C for CON. Resting Tre was lower after 305 

HWI (Fig. 3B, −0.41 ± 0.15°C) than CON (−0.12 ± 0.15°C, P = 0.007, d = 1.93), but not EHA 306 
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(−0.20 ± 0.15°C, P = 0.061, d = 1.37). Resting Tre was not different between EHA and CON 307 

over the 12 days (P = 0.936, d = 0.56). Conversely, there were no differences between 308 

interventions for resting Tsk (Fig. 3C), resting Tre−Tsk gradient, resting H (Fig. 3D), or plasma 309 

volume (all P ≥ 0.096; Table 3). 310 

 311 

Thermal and perceptual responses to exercise in the heat 312 

Thermal and perceptual responses to submaximal exercise in the heat were different between 313 

the interventions after 12 days. End-exercise Tre following exercise-heat-stress was lower after 314 

HWI (Fig. 4B, −0.50 ± 0.19°C) than CON (−0.33 ± 0.13°C; P = 0.049, d = 1.13), but not EHA 315 

(−0.37 ± 0.13°C; P = 0.196, d = 0.88); no difference was observed between EHA and CON (P 316 

= 1.000, d = 0.30). Tre at sweating onset was lower after HWI (Fig. 4C, −0.43 ± 0.12°C) than 317 

EHA (−0.22 ± 0.12°C; P = 0.015, d = 1.75) and CON (−0.16 ± 0.12°C; P = 0.002, d = 2.27). 318 

Conversely, EHA did not reduce Tre at sweating onset compared to CON (P = 1.000, d = 0.52). 319 

Whole-body sweat rate was greater after HWI (Fig. 4D, +0.08 L·h−1; P = 0.003, d = 2.13) and 320 

EHA (+0.06 L·h−1; P = 0.013, d = 1.78) than CON (−0.06 L·h−1), but no difference was detected 321 

between HWI and EHA (P = 1.000, d = 0.35). In accordance with thermal adaptations, 322 

perceptual responses to exercise-heat-stress were lower after HWI (RPE Fig. 4E, −2 ± 1; TS 323 

Fig. 4F, −1 ± 1) than CON (RPE, 0 ± 1, P = 0.036, d = 1.57; TS, 0 ± 1, P = 0.047, d = 1.55) 324 

but not EHA (RPE, −1 ± 1, P = 0.951, d = 0.54; TS, −1 ± 1, P = 1.000, d = 0.55); no differences 325 

were observed between EHA and CON (P ≥ 0.157, d = 1.07). There were no differences 326 

between interventions for the change in Tre during the 40-min treadmill run in the heat, end-327 

exercise Tb (Fig. 4A), end-exercise Tsk, end-exercise Tre−Tsk gradient, end-exercise heart rate, 328 

exercising V̇O2, or exercising RER (Table 3; all P ≥ 0.059). The rate of thermal and perceptual 329 

adaptations was not different between HWI, EHA or CON from POST3 to POST12, as 330 
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indicated by no interaction effects (all P ≥ 0.087). There were also no main effects of time (all 331 

P ≥ 0.148). 332 

 333 

Overreaching markers and endurance capacity 334 

There was no evidence to suggest that 12 days of HWI or EHA induced overreaching to a 335 

greater extent than CON, with no interaction effects, main effects of group or time detected 336 

for total mood disturbance, energy index, Stroop reaction time, Stroop accuracy, sleep 337 

duration, or sleep efficiency (Table 4; all P ≥ 0.190). Five participants were removed from 338 

the TTE endurance capacity test analysis owing to: reaching the Tre ethical cut-off (HWI, n = 339 

2); going to the toilet (EHA, n = 1); exercise-induced bronchoconstriction (CON, n = 1); and 340 

an obvious lack of effort without markers of overreaching at rest (CON, n = 1). Analysis of 341 

the remaining 16 participants (HWI, n = 5; EHA, n = 6; CON, n = 5) who completed the TTE 342 

revealed no statistical differences between interventions or across time (Table 4; P ≥ 0.219). 343 

In addition, no differences were detected between interventions for end-TTE Tre, end-TTE 344 

heart rate, or end-TTE blood lactate concentration (Table 4; all P ≥ 0.198). 345 

 346 

Thyroid hormones 347 

Twelve days of HWI elicited a reduction in thyroid hormones, evidenced by an interaction 348 

effect for plasma concentrations of free T3 (P = 0.006). Follow-up analyses showed that free 349 

T3 was lower after 12 days of HWI (−23%) than EHA (+4%, P = 0.008) and CON (+1%, P = 350 

0.015; Fig. 5A). No differences were detected for free T3 between EHA and CON (P = 1.000). 351 

Conversely, there were no interaction effects or main effects of group or time detected for 352 

plasma concentrations of free T4 (P ≥ 0.148, Fig. 5B), total T3 (P ≥ 0.057, Fig. 5C), or total 353 

T4 (P ≥ 0.156, Fig. 5D). 354 

 355 



This article was accepted in its current form on 1st Sept 2022. This is a post-peer-review, pre-copyedit version of 

an article published in American Journal of Physiology-Regulatory Integrative and Comparative Physiology. 

17 
 

Part 2 daily intervention thermal stimulus and external work 356 

All 48 participants completed 6 days of their assigned intervention. The HWI intervention 357 

caused a greater daily endogenous thermal stimulus than CON as indicated by greater daily 358 

duration Tre > 38.5°C (HWI, 41 ± 13 min; CON, 7 ± 8; P < 0.001), AUC for Tre > 38.5°C (HWI, 359 

23 ± 10 °C·min−1; CON, 1 ± 2 °C·min−1; P < 0.001), and end-intervention Tre (HWI, 39.3 ± 360 

0.2°C; CON, 38.3 ± 0.4°C; P < 0.001). Daily external work was similar between HWI and 361 

CON (HWI, 7.0 ± 1.1 km; CON 7.3 ± 1.3 km; P = 0.065). 362 

 363 

Part 2 experimental trials 364 

Thermal responses at rest in temperate conditions  365 

Resting Tb was lower after 6 days of HWI than CON (HWI, −0.31 ± 0.32°C; CON, −0.04 ± 366 

0.32°C; P = 0.009). In accordance with resting Tb, resting Tre was also lower after 6 days of 367 

HWI than CON (HWI, −0.33 ± 0.20°C; CON, −0.09 ± 0.21°C; P = 0.001, Fig. 6A). Conversely, 368 

no differences were detected for resting Tsk (P = 0.083), resting Tre−Tsk gradient (P = 0.509), 369 

resting H (P = 0.711, Fig. 6B), or plasma volume (P = 0.387).  370 

 371 

Thermal and perceptual responses to exercise in the heat 372 

Compared to CON, 6 days of HWI also resulted in a lower end-exercise Tb (HWI, −0.54 ± 373 

0.24°C; CON, −0.18 ± 0.24°C; P < 0.001), end-exercise Tre (HWI, −0.42 ± 0.24°C; CON, 374 

−0.13 ± 0.24°C; P < 0.001), Tre at sweating onset (HWI, −0.31 ± 0.20°C; CON, −0.08 ± 0.19°C; 375 

P = 0.01), end-exercise Tsk (HWI, −0.74 ± 0.54°C; CON, −0.30 ± 0.54°C; P < 0.001), end-376 

exercise RPE (HWI, −1 ± 1; CON, 0 ± 1; P = 0.010), and end-exercise TS (HWI, −1 ± 1; CON, 377 

0 ± 1; P = 0.003). No differences were detected for whole-body sweat rate (P = 0.228).  378 
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Thyroid hormones 379 

Despite 6-days of HWI causing pronounced heat acclimation adaptations, including reductions 380 

in Tb and Tre at rest and during exercise in the heat, no differences between HWI and CON were 381 

detected in resting plasma thyroid hormone concentrations; free T3 (HWI, 0 ± 12%; CON, −1 382 

± 12%; P = 0.802; Fig. 6C), free T4 (HWI, −8 ± 10%; CON, −3 ± 10%; P = 0.108; Fig. 6D), 383 

total T3 (HWI, −3 ± 10%; CON, −2 ± 17%; P = 0.873; Fig. 6E), or total T4 (HWI, −4 ± 8%; 384 

CON, −1 ± 8%; P = 0.180; Fig. 6F). Moreover, after 6-days of HWI, only weak non-significant 385 

relationships were observed between the reduction in resting Tb, resting Tre (Fig. 7), resting Tsk, 386 

resting Tre−Tsk gradient, end-exercise Tb, end-exercise Tre, Tre at sweating onset, end-exercise 387 

Tsk or end-exercise TS and changes in free T3 (r ≤ 0.21, P ≥ 0.269), free T4 (r ≤ 0.20, P ≥ 388 

0.274), total T3 (r ≤ 0.31, P ≥ 0.086), and total T4 (r ≤ 0.24, P ≥ 0.193).   389 
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Discussion 390 

This research is the first to compare hallmark heat acclimation adaptations, endurance capacity, 391 

and overreaching markers after 12 days of HWI and EHA with work-matched CON. This study 392 

is also the first in humans to examine the potential role of plasma thyroid hormone changes as 393 

a mechanism for the thermal adaptations after heat acclimation, specifically HWI heat 394 

acclimation. The three primary findings of this research conducted in recreationally active men 395 

are: 1. In line with our hypothesis, HWI elicited larger and a greater number of thermal 396 

adaptations, and reductions in perceived strain during exercise-heat-stress compared to CON 397 

and EHA over the 12-day interventions. Conventional EHA provided only modest further heat 398 

acclimation benefits to work-matched CON. 2. Contrary to our hypothesis, and previous 399 

literature examining short-term heat acclimation (12), there was no evidence to suggest that 400 

HWI or EHA induced overreaching risk more than with exercise in temperate conditions. 3. 401 

Also contrary to our hypothesis, changes in plasma thyroid hormone concentrations were not 402 

significantly associated with changes in thermal adaptations over the 12 days of HWI, 403 

indicating that a reduction in thyroid hormones is unlikely the cause of the pronounced 404 

reduction in resting and end-exercise core temperature observed consistently after HWI heat 405 

acclimation. Instead, we provide evidence that the reduction in core temperature elicited by 406 

post-exercise HWI intervention represents the establishment of a new lower thermal balance 407 

point (17).  408 

 409 

Previous research has demonstrated that short-term (< 7 days) HWI provides beneficial heat 410 

acclimation adaptations in comparison with CON and conventional EHA in recreationally 411 

active males (6, 9, 13, 14). The current study furthers this work by showing that 12 days of 412 

HWI heat acclimation led to more pronounced resting and exercising thermal adaptations than 413 

EHA and CON (Fig. 3 and 4). Resting Tb and Tre at sweating onset were lower over the 12-day 414 
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HWI intervention than the 12-day EHA intervention. Compared to CON, HWI led to a greater 415 

number of thermal adaptations than EHA, i.e., HWI reduced resting Tb, resting Tre, end-exercise 416 

Tre, Tre at sweating onset, end-exercise RPE, end-exercise TS, and increased whole-body sweat 417 

rate whereas EHA increased whole-body sweat rate only. The data also suggests that 418 

improvements in endurance capacity in the heat may be more readily observed after HWI than 419 

EHA, which has practical implications for applied practitioners and coaches. However, due to 420 

dropout, future studies are required to confirm (or reject) this preliminary finding. In 421 

combination, these findings indicate that HWI leads to larger and more complete heat 422 

acclimation than conventional EHA, even when the endogenous thermal stimulus for 423 

adaptation is similar. Heat acclimation adaptations developed throughout the 12 days, with the 424 

largest proportion of the adaptations occurring within the first 3 days, for example, ~58% of 425 

the 12-day reduction in end-exercise Tre was observed on day 3 (Fig. 4B). Nevertheless, we 426 

observed no further statistically significant thermal benefits or improvements in endurance 427 

capacity by extending the 6-day heat acclimation interventions to 12 days. These findings align 428 

with the majority of previous studies that show no further thermal adaptations in males after 429 

medium- compared to short-term interventions (10, 26, 48, 49), even when a progressive heat 430 

acclimation method was employed (27). Far less studied is the influence of additional heat 431 

acclimation days on exercise performance. In contrast with our findings, previous research 432 

showed additional improvements in exercise performance in the heat when extending exercise 433 

heat acclimatization from 6 to 14 days (50). The disparity with our findings may be explained 434 

by the small sample size for the TTE outcome in the current study and/or by differences in 435 

intervention methods and/or participants’ training status (recreationally active vs competitive) 436 

(51). 437 

 438 



This article was accepted in its current form on 1st Sept 2022. This is a post-peer-review, pre-copyedit version of 

an article published in American Journal of Physiology-Regulatory Integrative and Comparative Physiology. 

21 
 

The change in Tre during the 40-min submaximal treadmill run in the heat was similar on all 439 

interventions; hence, the lower end-exercise Tre (i.e., lower thermal strain) after HWI can be 440 

attributed to larger reductions in resting Tre than observed after CON. The induction of large 441 

reductions in resting Tre after HWI are likely due to exposure to a large dual thermal stimulus 442 

(i.e., maintained elevation in both core and skin temperature), as it is purported to induce a 443 

more complete state of heat acclimation (52). We anticipated the larger thermal adaptations 444 

from HWI would be associated with larger reductions in thyroid hormone concentrations in 445 

accordance with previous literature, which demonstrate a lower core temperature in 446 

hypothyroid compared to control rats (23, 24). However, despite large reductions in resting and 447 

end-exercise Tre after 3, 6 and 12 days of HWI, a concomitant reduction in plasma thyroid 448 

hormone concentrations (free T3) was only observed after 12 days (Fig. 5A). The temporal 449 

disconnect and the absence of significant relationships between changes in thyroid hormones 450 

and thermal adaptations indicate that circulating thyroid hormone changes are unlikely the 451 

cause of short- and medium-term heat acclimation adaptations. Indeed, the change in free T3 452 

observed after 12 days appears a consequence of HWI heat acclimation. We can further refute 453 

the notion that HWI heat acclimation reduces core temperature via alterations in thyroid 454 

hormones and metabolism as we did not observe differences between interventions or a 455 

reduction in resting H after HWI (Fig. 3D and 6B). The lower resting core temperature after 456 

HWI is also unlikely explained by increased heat loss mechanisms as skin temperature, an 457 

index of skin blood flow, was not higher after HWI. In fact, a trend (P <0.1) was observed for 458 

lower skin temperature after HWI in both Part 1 and 2 (Fig. 3C). The large reduction in resting 459 

core temperature observed after HWI heat acclimation may alternatively be explained by the 460 

establishment of a new lower thermal balance point (17). In this study, the new lower thermal 461 

balance point is indicated by a lower resting whole-body temperature with no change in resting 462 

core to skin temperature gradient (Fig. 3A).  463 
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 464 

A combined stimulus of exercise and heat stress is generally considered the “gold standard” 465 

method for inducing heat acclimation adaptations (53). As expected, we found that 466 

conventional EHA caused thermal adaptations in comparison to baseline (end-exercise: Tre 467 

−0.37 ± 0.13°C, Table 3). However, there is a dearth of medium-term heat acclimation studies 468 

with an appropriate control intervention; hence, the true effect of conventional exercise heat 469 

acclimation is poorly understood. In the current study, the inclusion of a work-matched 470 

temperate exercise intervention allowed the independent effectiveness of the exercise and heat 471 

stress stimuli to be determined. We found that, aside from an increase in whole-body sweat 472 

rate, which was greater after EHA, no additional heat acclimation adaptations existed between 473 

EHA and CON. Our findings align with studies that demonstrate aerobic training in temperate 474 

conditions initiates adaptations commonly associated with heat acclimation in recreationally 475 

active individuals (54-57). These studies suggest it is principally the endogenous heat 476 

production incurred during exercise rather than the external environmental temperature that is 477 

important for initiating heat acclimation adaptations. When considered together with these 478 

investigations, the benefits of conventional exercise-based heat acclimation beyond work-479 

matched exercise in temperate conditions are modest.  480 

 481 

Previous research has shown that intensified training during exercise heat acclimation can 482 

trigger markers of overreaching including increased perceived fatigue and decreased 483 

performance (12). In contrast we observed no evidence of overreaching after EHA or HWI; a 484 

discrepancy that might be explained by the lower exercise intensity and the inclusion of three 485 

rest days in our study compared with previous research. More participants did however 486 

withdraw with lower limb discomfort (i.e., knee/ankle pain, etc.) in EHA (25%) and CON 487 

(25%) than in HWI (7%; Fig. 2); a finding that might be explained by the ~35% greater external 488 
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work during EHA and CON interventions than HWI. This finding provides insight into the 489 

practical feasibility of these interventions but is difficult to compare with previous research as 490 

heat acclimation studies do not often report participant flow and attrition. Based on our 491 

findings, athletes and coaches may be more inclined to choose HWI in the knowledge it carries 492 

less injury risk than EHA. Although this is a reasonable hypothesis, future studies with 493 

adequate sample sizes are required to specifically evaluate the injury and illness risks of heat 494 

acclimation.  495 

 496 

Athletes and coaches should consider HWI rather than EHA before traveling to hot climates as 497 

it leads to a more complete state of heat acclimation, can be incorporated into the post-exercise 498 

washing routine, and eliminates the requirement for an increased training load or access to an 499 

environmental chamber. These benefits reduce the disruption to normal training compared with 500 

conventional exercise-based strategies, which is especially important during tapering in the 501 

lead-up to sporting events. Whilst adverse events after HWI, including syncope, have not been 502 

observed by us (6, 7, 13, 14), or reported by others (58, 59), practitioners should follow protocol 503 

guidelines carefully. In particular, hot water immersions should be terminated at the 504 

participant’s volition or if Tre exceeds 39.5°C rather than attempting to complete 40 min. In our 505 

study this led to a gradual daily increase in hot water immersion duration up to a maximum of 506 

40 min for the first six (Days 1–3, 33 ± 4 min; Days 6–8, 35 ± 5 min), and then 50 min for the 507 

seventh to twelfth immersions (Days 11–16, 39 ± 5 min). The current and previous studies 508 

demonstrate the effectiveness of HWI to prepare young, healthy, active males (6, 7, 9, 13, 14) 509 

and elderly males and females for heat stress (59). Further research is required to confirm that 510 

HWI is effective to cause beneficial thermal, perceptual and performance adaptations in 511 

pediatric, female, and older athletic populations. We hypothesize that HWI will be an effective 512 

strategy in these populations as Mee et al. (60) demonstrated that combining both active and 513 
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passive heat acclimation strategies can accelerate thermal adaptations in females. The large 514 

dual thermal stimulus from 6 days of HWI should be sufficient to initiate heat acclimation 515 

adaptations in these populations as they typically have smaller body masses than adult males 516 

and consequently gain heat more quickly (61). Due to the smaller body masses these future 517 

investigations might require shorter maximum HWI durations to cause the beneficial thermal 518 

adaptations. 519 

 520 

Perspectives and Significance 521 

Our findings show that medium-term post-exercise HWI confers more complete heat 522 

acclimation than conventional exercise heat acclimation, without increasing the risk of 523 

overreaching. Compared to conventional exercise heat acclimation, post-exercise HWI caused 524 

a greater reduction in resting whole-body temperature (core and periphery), which highlights 525 

the importance of a large dual (endogenous and exogenous) thermal stimulus for optimizing 526 

adaptation to the heat. The consistently reported large reduction in resting core temperature 527 

after HWI is most likely explained by the establishment of a new lower thermal balance point 528 

and not initiated by thyroid hormone alterations, changes in heat production, or heat loss 529 

mechanisms. In addition to lowering resting whole-body temperature, post-exercise HWI also 530 

caused more pronounced beneficial exercising thermal and perceptual adaptations than 531 

conventional exercise heat acclimation. Future research should assess whether the reduction in 532 

thermal strain after post-exercise HWI translates to ‘real-world’ performance improvements 533 

and reduces the incidence of exertional heat illness.   534 
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   714 

Figure 1. Schematic of the study design (Part 1). HWI; post-exercise hot water immersion, EHA; exercise heat acclimation and CON; temperate 715 

exercise control. 716 

 717 
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 718 

Figure 2. Flow diagram indicating the numbers of participants assessed for eligibility, commenced testing, and withdrew, were excluded, or 719 

completed the study protocol (Part 1). HWI; post-exercise hot water immersion, EHA; exercise heat acclimation and CON; temperate exercise 720 

control.721 
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 722 
 723 

Figure 3. Influence of 3 (POST3), 6 (POST6), and 12 days (POST12) of a temperate exercise 724 

control (CON, n = 7), exercise heat acclimation (EHA, n = 7), or post-exercise hot water 725 

immersion (HWI, n = 7) on resting mean body temperature (Tb, A), rectal core temperature 726 

(Tre, B), mean skin temperature (Tsk, C), and metabolic heat production (H, D) in temperate 727 

conditions (19°C, 45% RH). Bars represent baseline-adjusted means; circles represent 728 

individual participant responses. †denotes HWI lower than CON, P < 0.05; ††denotes HWI 729 

lower than CON, P < 0.01; ‡denotes HWI lower than EHA, P < 0.05. 730 

  731 
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 732 
 733 

Figure 4. Influence of 3 (POST3), 6 (POST6), and 12 days (POST12) of a temperate exercise 734 

control (CON, n = 7), exercise heat acclimation (EHA, n = 7), or post-exercise hot water 735 

immersion (HWI, n = 7) on end-exercise mean body temperature (Tb, A), end-exercise rectal 736 

core temperature (Tre, B), Tre at sweating onset (C), whole-body sweat rate (D), end-exercise 737 

rating of perceived exertion (RPE, E), and end-exercise thermal sensation (TS, F) in the heat 738 

(33°C, 40% RH). Bars represent baseline-adjusted means; circles represent individual 739 
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participant responses. circles represent individual participant responses. †denotes group 740 

difference to CON, P < 0.05; ††denotes group difference to CON, P < 0.01; ‡denotes HWI 741 

lower than EHA, P < 0.05. 742 

 743 

 744 
 745 

Figure 5. Influence of 3 (POST3), 6 (POST6), and 12 days (POST12) of a temperate exercise 746 

control (CON, n = 7), exercise heat acclimation (EHA, n = 7), or post-exercise hot water 747 

immersion (HWI, n = 7) on plasma concentrations of free triiodothyronine (T3; A), free 748 

thyroxine (T4; B), total T3 (C), and total T4 (D). Bars represent baseline-adjusted means; 749 

circles represent individual participant responses. †denotes HWI lower than CON, P < 0.05; 750 

‡denotes HWI lower than EHA, P < 0.05.  751 
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 752 
 753 

Figure 6. Influence of 6 days of a temperate exercise control (CON, n = 16) or post-exercise 754 

hot water immersion (HWI, n = 32) on resting rectal core temperature (Tre; A), resting 755 

metabolic heat production (H, B), and resting plasma concentrations of free triiodothyronine 756 

(T3; C), free thyroxine (T4; D), total T3 (E), and total T4 (F). Bars represent baseline-adjusted 757 

means; circles represent individual participant responses. ††denotes HWI lower than CON, P < 758 

0.01.  759 
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 760 
 761 

Figure 7. The relationships between the changes in resting core temperature (Tre) and plasma 762 

concentrations of thyroid hormones free triiodothyronine (T3; A), free thyroxine (T4; B), total 763 

T3 (C), and total T4 (D) after 6 days of post-exercise hot water immersion (n = 32).  764 
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Table 1. Part 1 participant characteristics of post-exercise hot water immersion (HWI), 

exercise heat acclimation (EHA), and temperate exercise control (CON). 

 HWI EHA CON 

Age (years) 22 ± 3 21 ± 2 22 ± 2 

Height (cm) 176 ± 4 183 ± 5 177 ± 6 

Body mass (kg) 70 ± 6 75 ± 6 70 ± 7 

V̇O2peak (mL·kg−1·min−1) 53 ± 7 54 ± 3 53 ± 4 

Running economy (Kcal·kg−1·min−1) 3.3 ± 0.1 3.6 ± 0.4 3.5 ± 0.3 

Data are displayed as mean ± SD; n = 7, each group. 

765 
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Table 2. The daily endogenous thermal stimulus and external work during temperate exercise control (CON), exercise heat acclimation (EHA), and 

post-exercise hot water immersion (HWI) interventions. 

  Days 1–3   Days 6–8 

 

Days 11–16 

  CON EHA HWI  CON EHA HWI 
 

CON EHA HWI 

Duration Tre ≥38.5°C 

(min) 
7 ± 12 35 ± 14 †† 36 ± 5 †† 

 

8 ± 12 38 ± 11 †† 38 ± 6 †† 
 

7 ± 10 38 ± 13 †† 39 ± 8 †† 

AUC (°C·min−1) 1 ± 3 17 ± 10 †† 17 ± 5 †† 2 ± 4 16 ± 8 †† 18 ± 4 †† 
 

1 ± 1 12 ± 6 †† 20 ± 6 †† 

End-intervention Tre (°C) 38.24 ± 0.34 39.17 ± 0.28 †† 39.24 ± 0.16 †† 38.22 ± 0.46 39.11 ± 0.22 †† 39.27 ± 0.14 †† 
 

38.23 ± 0.22 38.99 ± 0.25 †† 39.31 ± 0.18 †† 

External work (km) 7.4 ± 1.1 7.7 ± 1.6 6.1 ± 1.1 ‡ 7.6 ± 1.7 8.1 ± 1.7 6.1 ± 1.1 ‡ 
 

8.7 ± 1.7 9.0 ± 1.5 6.1 ± 1.1 ‡ 

Tre; rectal core temperature, AUC; area under the curve for Tre >38.5°C. Data are displayed as mean ± SD of Days 1–3, Days 6–8 and Days 11–16. ††denotes a group 

difference to CON, P < 0.01; ‡denotes a group difference to EHA, P < 0.05. n = 21 (Part 1). 
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Table 3. Change (mean ± SD) from baseline in heat acclimation adaptations at rest (19°C, 45% RH) and during 40-min submaximal exercise in the heat (33°C, 40% RH) 

after 3 (POST3), 6 (POST6), and 12 days (POST12) of a temperate exercise control (CON), exercise heat acclimation (EHA), or post-exercise hot water immersion (HWI).  

  CON       EHA   HWI  

  POST3 POST6 POST12   POST3 POST6 POST12   POST3 POST6 POST12 

Rest                       

Resting Tb (°C) −0.12 ± 0.20 −0.11 ± 0.22 −0.09 ± 0.20   −0.19 ± 0.20 −0.18 ± 0.21 −0.03 ± 0.20   −0.26 ± 0.20 ††, ‡‡ −0.48 ± 0.22 ††, ‡‡ −0.48 ± 0.20 ††, ‡‡ 

Resting Tre (°C) −0.10 ± 0.19 −0.13 ± 0.18 −0.13 ± 0.19   −0.19 ± 0.19 −0.24 ± 0.18 −0.17 ± 0.19   −0.35 ± 0.19 †† −0.41 ± 0.18 †† −0.46 ± 0.19 †† 

Resting Tsk (°C) −0.17 ± 0.63 −0.09 ± 0.36 −0.05 ± 0.42   −0.19 ± 0.62 −0.07 ± 0.36 −0.23 ± 0.41   −0.10 ± 0.63 −0.60 ± 0.36 −0.50 ± 0.42 

Resting H (W·m−2) 7 ± 20 −9 ± 15 4 ± 17   2 ± 20 4 ± 15 9 ± 17   3 ± 21 0 ± 15 3 ± 17 

Plasma volume (%) 3 ± 7 3 ± 5 2 ± 7   3 ± 7 6 ± 5 5 ± 7   1 ± 7 4 ± 5 3 ± 7 

Submaximal exercise                       

End-exercise Tb (°C) −0.27 ± 0.24 −0.36 ± 0.24 −0.52 ± 0.25   −0.33 ± 0.25 −0.44 ± 0.25 −0.62 ± 0.26   −0.39 ± 0.25 −0.58 ± 0.25 −0.83 ± 0.26 

End-exercise Tre (°C) −0.21 ± 0.23 −0.36 ± 0.21 −0.41 ± 0.20   −0.32 ± 0.24 −0.33 ± 0.21 −0.44 ± 0.21   −0.32 ± 0.23 † −0.56 ± 0.21 † −0.64 ± 0.20 † 

Δ Tre during exercise (°C) −0.10 ± 0.26 −0.22 ± 0.29 −0.28 ± 0.29   −0.16 ± 0.28 −0.09 ± 0.30 −0.29 ± 0.30   −0.06 ± 0.27 −0.15 ± 0.30 −0.18 ± 0.30 

Tre at sweating onset (°C) −0.15 ± 0.16 −0.15 ± 0.19 −0.18 ± 0.15   −0.19 ± 0.17 −0.29 ± 0.19 −0.19 ± 0.15   −0.30 ± 0.17 ††, ‡ −0.47 ± 0.19 ††, ‡ −0.50 ± 0.15 ††, ‡ 

Whole-body sweat rate (L·h−1) −0.05 ± 0.09 −0.05 ± 0.06 0.07 ± 0.11   0.06 ± 0.09 † 0.04 ± 0.06 † 0.09 ± 0.10 †   0.08 ± 0.09 †† 0.08 ± 0.06 †† 0.10 ± 0.10 †† 

End-exercise Tsk (°C) −0.38 ± 0.49 −0.38 ± 0.46 −0.73 ± 0.54   −0.39 ± 0.50 −0.66 ± 0.47 −0.95 ± 0.55   −0.50 ± 0.52 −0.60 ± 0.48 −1.15 ± 0.57 

End-exercise heart rate 

(beats·min−1) 
−8 ± 5 −12 ± 7 −14 ± 8   −12 ± 5 −15 ± 7 −20 ± 8   −11 ± 5 −17 ± 7 −20 ± 8 

Mean V̇O2 (L·min−1) −0.10 ± 0.13 −0.10 ± 0.15 −0.16 ± 0.13   −0.01 ± 0.13 0.00 ± 0.15 −0.06 ± 0.13   −0.04 ± 0.13 −0.04 ± 0.14 −0.06 ± 0.12 

Mean RER −0.01 ± 0.04 −0.02 ± 0.03 −0.03 ± 0.04   −0.02 ± 0.04 −0.02 ± 0.03 −0.01 ± 0.04   −0.02 ± 0.04 −0.02 ± 0.03 −0.02 ± 0.04 

End-exercise RPE (6–20 scale) 0 ± 2 0 ± 1 0 ± 2   −1 ± 2 −1 ± 1 −1 ± 2   −2 ± 2 † −2 ± 1 † −2 ± 2 † 

End-exercise TS (1–13 scale) 0 ± 1 0 ± 1 0 ± 1   0 ± 1 −1 ± 1 −1 ± 1   −1 ± 1 † −1 ± 1 † −1 ± 1 † 

Tb, mean body temperature; Tre, rectal core temperature; Tsk, mean skin temperature; H, metabolic heat production; RER, respiratory exchange ratio; RPE, rating of perceived exertion; TS, thermal sensation. 

Data are baseline-adjusted mean change ± SD change at POST3, POST6, and POST12. †denotes a group difference to CON, P < 0.05; ††denotes a group difference to CON, P < 0.01; ‡denotes a group 

difference to EHA, P < 0.05. n = 21 (Part 1). 
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Table 4. Change (mean ± SD) from baseline in markers of overreaching and endurance capacity in the heat (33°C, 40% RH) after 3 (POST3), 6 (POST6), 

and 12 days (POST12) of a temperate exercise control (CON), exercise heat acclimation (EHA), or post-exercise hot water immersion (HWI).  

  CON  EHA  HWI 

  POST3 POST6 POST12   POST3 POST6 POST12   POST3 POST6 POST12 

Markers of overreaching            

Total mood disturbance 5 ± 10 2 ± 12 2 ± 10   5 ± 10 7 ± 12 2 ± 10   4 ± 10 4 ± 12 2 ± 10 

Energy index −3 ± 4 −2 ± 6 −3 ± 5   −3 ± 4 −5 ± 6 −3 ± 5   −2 ± 4 −4 ± 6 −3 ± 5 

Stroop reaction time (ms) −29 ± 58 −25 ± 40 −11 ± 64   −13 ± 58 −32 ± 40 −15 ± 63   −16 ± 62 −18 ± 43 −28 ± 68 

Stroop accuracy (%) 0 ± 2 −1 ± 3 1 ± 4   −1 ± 3 −1 ± 3 −2 ± 4   2 ± 3 1 ± 3 0 ± 4 

Sleep duration (h) 6 ± 1 6 ± 1 6 ± 1   6 ± 1 6 ± 1 6 ± 1   6 ± 1 6 ± 1 6 ± 1 

Sleep efficiency (%) 0 ± 9 −2 ± 7 −1 ± 8   −6 ± 9 −5 ± 7 1 ± 8   −2 ± 9 2 ± 7 −2 ± 8 

Endurance capacity            

TTE (s) −27 ± 676 75 ± 808 212 ± 991   101 ± 627 539 ± 749 323 ± 919   321 ± 743 686 ± 888 1030 ± 1089 

End TTE Tre (°C) −0.14 ± 0.30 −0.24 ± 0.34 −0.32 ± 0.47   −0.20 ± 0.31 −0.06 ± 0.34 −0.29 ± 0.47   −0.20 ± 0.31 −0.03 ± 0.34 −0.25 ± 0.47 

End-TTE heart rate (beats·min−1) −8 ± 8 −10 ± 7 −16 ± 10   −10 ± 8 −12 ± 7 −20 ± 10   −8 ± 8 −10 ± 7 −14 ± 10 

End-TTE blood lactate (beats·min−1) 0.2 ± 1.4 −0.1 ± 0.7 0.2 ± 0.6   0.5 ± 1.3 −0.2 ± 0.7 −0.9 ± 0.6   −0.2 ± 1.3 −0.1 ± 0.7 0.2 ± 0.6 

Tre, rectal core temperature; TTE, time to exhaustion. Data are baseline-adjusted mean change ± SD change at POST3, POST6, and POST12. n = 21, except n = 16 for TTE (Part 1). 
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