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Abstract  33 

Structure-activity relationships (SARs) in toxicology have enabled the formation of structural rules 34 

which, when coded as structural alerts, are an essential tool in in silico toxicology. Whilst other in 35 

silico methods have approaches for their evaluation, there is no formal process to assess the 36 

confidence that may be associated with a structural alert. This investigation proposes twelve criteria 37 

to assess the uncertainty associated with structural alerts, allowing for an assessment of confidence. 38 

The criteria are based around the stated purpose, description of the chemistry, toxicology and 39 

mechanism, performance and coverage, as well as corroborating and supporting evidence of the 40 

alert. Alerts can be given a confidence assessment and score, enabling the identification of areas 41 

where more information may be beneficial. The scheme to evaluate structural alerts was placed in 42 

the context of various use cases for industrial and regulatory applications. The analysis of alerts, and 43 

consideration of the evaluation scheme, identifies the different characteristics an alert may have, 44 

such as being highly specific or generic. These characteristics may determine when an alert can be 45 

used for specific uses such as identification of analogues for read-across or hazard identification.  46 

 47 

 48 

Keywords 49 

Structural alert; structure-activity relationship; toxicity prediction; confidence; uncertainty; 50 

evaluation scheme; use case; computational toxicology 51 

 52 
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Highlights 54 

• Structural alerts are useful tools for predictive toxicology 55 

• 12 criteria to evaluate structural alerts have been identified 56 

• A strategy to determine confidence of structural alerts is presented 57 

• Different use cases require different characteristics of structural alerts 58 

 59 
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Abbreviations 61 

AChE, acetylcholinesterase; AOP, Adverse Outcome Pathway; EFSA, European Food Safety Authority; 62 

HPV, High Production Volume; KE, Key Event; MIE, Molecular Initiating Events; OECD, Organisation 63 

for Economic Cooperation and Development; QMRF, QSAR Model Reporting Format; QPRF, QSAR 64 

Prediction Report Format; QSAR, quantitative structure-activity relationship; RAAF, Read-Across 65 

Assessment Framework; SAR, structure-activity relationship  66 
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1. Introduction 68 

The concept of the structure-activity relationship (SAR) is fundamental to predictive toxicology (Cronin 69 

and Yoon, 2019). As such, SARs have found widespread use in toxicology, risk assessment and other 70 

regulatory applications with a particular resurgence of interest with the increasing desire to consider 71 

safety without the use of animals (Worth, 2020). Key to enabling SARs as usable in silico tools for these 72 

applications is the development of structural rules which can then be coded computationally so that 73 

they may be applied to identify potential hazard in new molecules (Madden et al., 2021; Cronin et al., 74 

2022). The term “structural alert” is assumed in this paper to represent a fragment or substructure 75 

within a molecule that is hypothesised to be responsible for a biological activity from a structural rule. 76 

Such a fragment is derived from SAR-based structural rules and may be associated with other 77 

structural information such as that relating to substitution patterns or parent structures.  78 

Structural alerts can represent the chemistry which is associated with, for instance, an interaction such 79 

as a molecular initiating event (MIE) or key event (KE) in an Adverse Outcome Pathway (AOP) (Allen 80 

et al., 2018), an adverse effect (i.e., toxicity that can be observed at an organism or population level) 81 

(Siramshetty  et al., 2018) or related to a regulatory endpoint (Valsecchi et al., 2019) or indicator of 82 

significant toxicity (e.g., as part of the Cramer et al (1978) Decision Tree). The understanding that 83 

chemical properties were responsible for toxicological events was well established at the turn of the 84 

twentieth century (e.g. Meyer, 1901; Overton, 1901) along with the concept that specific chemical 85 

structures could be associated with toxicity (Landsteiner and Jacobs, 1935). The first use of the term 86 

“structural alert” is accredited to Ashby (1985) with regard to defining the structural basis of 87 

carcinogenicity, a concept that went on to define a series of alerts for genotoxic carcinogenicity (Ashby 88 

and Tennant, 1988). Since that time, alerts have been developed in many areas of toxicology for 89 

human health and environmental endpoints. The history and use of alerts in toxicology has been well 90 

reviewed recently (Cronin and Yoon, 2019; Yang et al., 2020) and a large compilation of alerts is freely 91 

available through the OCHEM website (https://ochem.eu; Sushko et al., 2011; 2012). 92 
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There are a number of ways of developing the SAR which forms the basis of structural alerts and these 93 

are summarised in Table 1, along with their characteristics and strengths and weaknesses. No method 94 

is exclusive and, in terms of understanding their use better, no analysis has been performed to 95 

determine if or when a particular method may be appropriate. From the outset, it is acknowledged 96 

that “expert knowledge” is a subjective term with no clear criteria to define it. In terms of the use of 97 

the term “expert knowledge” in this study, it is assumed that the expert would have some training or 98 

appreciation of toxicology in the context of hazard identification and be familiar with relevant data for 99 

the chemical(s) and endpoint in question. 100 
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Table 1. Summary of approaches to derive structural-activity relationships, and ultimately structural alerts, for predictive toxicology 101 

Method to derive the 

structural alert 

Description   Characteristics in terms 

of data for the SAR, 

methodology and 

mechanistic 

understanding 

Strengths Weaknesses Illustrative example 

  

Expert Knowledge 

Based on Toxicological 

Data 

Derived from the 

knowledge of 

toxicologists who have 

experience in assessing 

the data associated with 

toxicological properties 

of a series of chemicals 

Data: small number of 

toxicological data on 

which to base a 

hypothesis 

Methodology: Expert 

judgement and opinion 

Mechanistic: Presumed 

high, through precise 

Derived from a 

knowledge based on 

experimental data, 

supported by 

mechanistic 

information 

Slow to develop, no 

performance statistics; 

may be a 

misinterpretation from 

flawed data or a 

subjective 

interpretation of data 

Ashby and Tennant (1988) 

who compiled knowledge on 

genotoxic carcinogens 
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mechanistic definition 

may not be possible 

Expert Knowledge 

Based on Mechanistic 

Understanding 

Derived from expert 

knowledge following 

(non-statistical) analysis 

of a data set of chemicals 

using a mechanistic 

hypothesis 

Data: large number of 

mechanistic data  

Methodology: Expert 

judgement and opinion 

Mechanistic: Clear 

mechanistic hypothesis 

Based on expert 

knowledge (preferably 

from multiple sources) 

and potentially creating 

a broad set of alerts, 

supported by data or 

mechanistic 

understanding. Can be 

extended broadly 

without extensive 

toxicological data. 

Labour intensive to 

develop and requires 

expert knowledge 

across a complete 

mechanism of action or 

dataset 

Enoch and Cronin (2010) and 

Enoch et al. (2011) who 

derived alerts for DNA and 

protein binding respectively 

on the basis of electrophilic 

chemistry; Bauer et al (2018) 

who derived a decision tree 

on six classes of mechanisms 

of action, termed MechoA 

Data-Driven 

Approaches 

Use of statistical analyses 

to determine fragments 

Data: Large data sets 

required for analysis  

A rapid method, with 

readily available 

performance statistics. 

Requirement for large 

data sets to achieve 

significant results. 

Wedlake et al. (2020) used a 

Bayesian approach to 

develop alerts for in vitro 
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associated with a 

particular toxicity 

Methodology: data 

mining and machine 

learning of toxicological 

data 

Mechanistic: Not 

possible unless 

assigned after alert 

development 

The data on which the 

alerts are derived from 

are available 

Prone to limited 

validation (usually 

restricted to curation). 

Difficult to assign 

mechanistic 

knowledge or validity 

to the alerts derived as 

they may be in an 

uninterpretable “black 

box” form. Often the 

fragments are 

overlapping and 

require rationalisation 

data related to MIEs; 

Claesson and Minidis (2018) 

to develop alerts for reactive 

metabolite formation; Cui et 

al. (2019) alerts from 

fingerprints for drug-induced 

rhabdomyolysis 

Chemotype 

Enrichment 

Use of statistical analysis 

to determine which 

structural fragments may 

Data: Large data sets Rapid to apply. 

Provides a statistical 

outcome to 

Currently limited by 

the need for relatively 

large data sets and the 

Wang et al. (2019; 2021) 

investigated ToxCast 
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be significantly 

associated with a toxicity 

or effect 

Methodology: Data 

mining of high 

throughput data 

Mechanistic: Driven by 

the mechanistic 

hypothesis of the data 

demonstrate the 

strength of relationship 

between the activity 

and structure. Use of 

readily available alerts.  

fragments already 

available  

endpoints using ToxPrint 

Chemotypes 

Hybrid Approaches 

Combining Statistical 

Analysis and Expert 

Analysis 

 

For purpose here is to 

use statistical analysis 

(such as clustering 

approaches) to find 

groups within data to be 

used as leads for expert 

analysis. This will not 

produce a 

comprehensive set of 

alerts but may find SARs 

Data: Many 

toxicological data 

Methodology: 

Clustering of data 

following by expert 

judgement and opinion 

Mechanistic: No 

mechanistic 

understanding unless 

A rapid approach to 

derive knowledge / 

hypotheses. Supported 

by data and 

mechanistic 

understanding 

Evaluating the 

hypotheses from data 

mining can be slow and 

requires expert 

knowledge. 

Hewitt et al. (2013) who 

applied expert knowledge to 

the results of cluster analyses 

on a database of 

hepatotoxicity data to derive 

usable alerts for liver toxicity. 

Wang et al. (2019) used a 

ToxPrint chemotype 

enrichment analysis to 

identify >20 distinct chemical 
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(which can be optimised) 

that would not be 

obtained by expert 

knowledge alone.  

applied after alert 

development 

substructural features as 

significantly enriched for the 

sodium-iodide symporter 

inhibition. 

 102 
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As well as the description of methods to develop structural alerts in Table 1, other characteristics of 103 

alerts could be considered to improve their use including their definition, underlying data source(s), 104 

potential domain, mechanistic relevance, coverage and performance. Whilst these are likely to be 105 

crucial for the successful use of structural alerts, they are seldom defined, although several recent 106 

studies have demonstrated that careful development of alerts can improve performance and 107 

relevance (Amberg et al., 2019; Benigni, 2021; Kalgutkar, 2020; Kalgutkar and Driscoll, 2020). In 108 

addition, the different uses of structural alerts e.g., for hazard assessment, grouping and read-across, 109 

screening etc. have not been fully described. As such, a better understanding of the properties, 110 

specifically the strengths and weaknesses, of alerts should increase confidence in their application and 111 

hence improve opportunities for acceptance, especially for regulatory purposes.   112 

Despite the extensive development and use of structural alerts, their importance, and reliance on 113 

them in many use cases, no standardised agreed means of describing them and assessing their utility 114 

in terms of their reliability and robustness has been developed. This is in contrast with related 115 

approaches where assessment formats have been put in place, such as read-across (e.g., the Read-116 

Across Assessment Framework (RAAF) (ECHA, 2017)) and quantitative structure-activity relationships 117 

(QSARs) (e.g. the Organisation for Economic Cooperation and Development (OECD) Principles for the 118 

Validation of QSARs (OECD, 2007), QSAR Model Reporting Format (QMRF), QSAR Prediction Report 119 

Format (QPRF) (Worth, 2010)). The lack of an agreed approach has potentially reduced confidence in 120 

the application of SARs. As such a means of evaluating structural alerts would enable confidence to 121 

be assigned to them, ensure their optimal usage and enhance their acceptability.  122 

One means of understanding confidence in computational toxicology tools has been through the 123 

characterisation and definition of uncertainty. For example, Schultz et al. (2019) have defined the 124 

uncertainties associated with read-across and Cronin et al. (2019) have detailed areas of uncertainty, 125 

variability and bias of QSARs for toxicity prediction. The purpose of these analyses was not to conclude 126 

that a particular approach should, or should not, be used, but to assist in the validation process, 127 

identify aspects of a model that may be associated with significant levels of uncertainty and determine 128 
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the overall confidence that may be assigned to a model. This approach to understanding uncertainty 129 

provides the opportunity to determine the type and level of confidence required for a predictive 130 

toxicology approach to be “fit-for-purpose” (Belfield et al. 2021).  131 

One of the most recognised set of criteria in health sciences and toxicology to define confidence that 132 

may be associated with evidence to support a conclusion, i.e., causation, are the Bradford Hill criteria 133 

(Hill, 1965). These were adapted by Meek et al. (2014), amongst others, to assist in a weight of 134 

evidence framework for mode of toxicological action which are closely aligned to the issue of 135 

evaluating structural alerts. The revised criteria included assessment of biological concordance, 136 

essentiality of KEs, concordance of empirical observations among KEs, consistency and analogy. Whilst 137 

these adapted Bradford Hill criteria cannot be mapped directly for the assessment of structural alerts, 138 

they provide a starting point e.g., assessment of mechanisms, underlying evidence and definition. 139 

Likewise, there is as yet no agreement of the level of quantification of uncertainty that can, or should, 140 

be applied. Schultz et al. (2019) reviewed this topic as regards to read-across and concluded at the 141 

current time a simple “high, moderate, low” scheme was the most practical. It is also noted that, with 142 

regard to AOPs, more quantitative schemes have been proposed with six (Collier et al. 2016) and seven 143 

levels of “evidence” respectively (Patlewicz et al. 2013; Becker et al. 2017). Indeed, a “scientific 144 

confidence framework” has been developed by Patlewicz et al. (2015) to support the use of AOPs for 145 

regulatory purposes. This formalises a number of criteria (seven in total) that were developed by 146 

Patlewicz et al. (2013) based on analogous assessment schemes for biomarkers and QSAR. These, and 147 

other, studies demonstrate that confidence in the use of strategies for using non-animal data can be 148 

assessed in a meaningful manner to support their use. The acceptable level of uncertainty for a 149 

particular purpose, e.g. a regulatory decision, remains difficult to ascertain and is likely to be context 150 

dependent.  151 

Given the lack of a defined set of criteria to assess structural alerts for toxicity, the aim of this 152 

investigation was to develop a scheme for their critical evaluation. Specifically, we aimed to determine 153 

how criteria for describing the confidence in structural alerts for the prediction of toxicity could be 154 
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developed based on the assessment of the uncertainties of the alerts. Reference was made to adapted 155 

Bradford Hill criteria (i.e., to assess the likelihood of causation) and other schemes for computational 156 

toxicology, with the objective of assessing and numerically scoring the overall confidence that may be 157 

placed in an alert. Further, use cases for structural alerts were reviewed with the objective of 158 

determining the characteristics of alerts that may be required for certain applications in predictive 159 

toxicology.  160 

 161 

2. Methods 162 

2.1 Development of Criteria to Define the Uncertainty Associated with Structural Alerts for Toxicity 163 

Prediction 164 

A set of criteria was created to define the properties of, and uncertainty associated with, structural 165 

alerts for toxicity prediction. This task was performed by the authors using expert analysis to address 166 

particular aspects of structural alerts, in part with reference to the adapted Bradford Hill criteria, 167 

which can be summarised as follows: 168 

- Description and definition of the domain of the structural alert 169 

- Evidence of causality e.g., mechanisms of action 170 

- Concordance and consistency of biology e.g., supporting data 171 

- Performance of the structural alert 172 

In order to make the criteria usable for the evaluation of structural alerts, the broad themes stated 173 

above were defined by a larger number of definable criteria deemed practical for the description of 174 

the uncertainties of a structural alert.  175 

 176 

Provisional Scheme for Assigning a Confidence Score to a Structural Alert 177 
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Following definition of the criteria for the uncertainty associated with a structural alert, each was 178 

categorised with definitions for low, moderate and high uncertainty to make it into a practical and 179 

workable scheme. Should any particular criterion be irrelevant to the alert, then this would be defined 180 

“not applicable”.  181 

In order to provide the possibility of creating an overall score, individual criteria were ranked according 182 

to their potential importance when using a structural alert. The ranking was performed semi-183 

quantitatively and undertaken using expert opinion and interpretation.      184 

 185 

2.2 Assessment of Use Cases for Structural Alerts 186 

The use cases for structural alerts to predict toxicity were scoped, representing in particular both 187 

regulatory use and application within industry. Specifically, use cases were sought for different 188 

applications of structural alerts with the overall aim of predicting toxicity. For each use case the 189 

desirable characteristics of an alert were defined. The desirable characteristics were based around the 190 

criteria for definition of uncertainties and were defined as low, moderate or high. The aim of this 191 

exercise was to define and identify the types of structural alerts that are most suited for a particular 192 

use case, such that these properties could be defined by the developer / user as a means to 193 

demonstrate the applicability of an alert, group of alerts or in silico profiler.  194 

 195 

3. Results and Discussion  196 

This study aimed to develop a scheme to evaluate the uncertainty associated with structural alerts for 197 

the prediction of toxicity such that confidence in their use could be assigned. In order to develop such 198 

a scheme, cognisance was taken of a number of approaches starting with the definition of uncertainty 199 

as provided by European Food Safety Authority (EFSA) which defined uncertainty with regard to 200 

toxicological assessment as “all types of limitations in available knowledge that affect the range and 201 
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probability of possible answers to an assessment question” (EFSA, 2018). The EFSA Guidance is based 202 

around identifying, assessing, describing and, in some cases, quantifying uncertainty and it is this 203 

definition that was applied by Cronin et al. (2019) to defining the uncertainty and other properties of 204 

QSAR models.  205 

 206 

3.1 Uncertainty Assessment Criteria for Structural Alerts 207 

The assessment of criteria relating to uncertainty was performed with the intention of providing a 208 

scheme that would assist in the evaluation of structural alerts and to determine the types of 209 

uncertainty that may be acceptable for defined scenarios. The development of criteria focused on the 210 

definition and domain(s) (in terms of the biology/toxicology predicted, chemical structure and 211 

properties, requirement for metabolic activation etc,) of an alert, its mechanistic relevance, 212 

performance and the level of evidence supporting the alert. In total, twelve assessable criteria were 213 

identified that covered the main aspects of uncertainty of a structural alert, these are described in 214 

detail and with their relevance to uncertainty in Table 2.  215 

The first criterion (as stated in Table 2) for the assessment of structural alerts relates to its “Purpose” 216 

which will ensure that a proper use case scenario has been assigned. The following five criteria 217 

(Structural Description, Property Domain, Toxicity or Relationship to Adversity, Species Specificity, 218 

Metabolic Domain) attempt to define uncertainty associated with the definition of the alert and its 219 

applicability. It is essential that a structural alert must be adequately defined in terms of chemical 220 

structure or toxicophore, otherwise it will be difficult or impossible to use. Its description should be 221 

explicit and ideally comprise any confounding or influencing factors e.g., that may promote a change, 222 

increase or decrease in activity. It is important to note that slight differences in structure may be 223 

associated with large changes in activity and toxic effects, this is often termed an “activity cliff” 224 

(Maggiora, 2006). Such minor differences in structure may affect reactivity, and hence endpoints such 225 

as skin sensitisation (Pestana et al., 2022) or receptor binding, notable for reproductive effects (Mori 226 
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et al., 2018). To be accurate, structural alerts must encode this information, to avoid over-prediction. 227 

The definition of the domain of alerts is assisted by consideration of all data, for instance in chemico 228 

data have been utilised to define the domains of a number of reactive mechanisms associated with 229 

skin sensitisation (Richarz et al., 2014; Rodriguez-Sanchez et al.,(2013); Nelms et al., (2013)). 230 

The definition of domain associated with physico-chemical properties will allow for cut-offs e.g., for 231 

solubility or volatility to be incorporated which will account, in part at least, for elements of 232 

toxicokinetics. At the current time, this aspect of the domain is seldom characterised. However, a 233 

broad (or no) physico-chemical property domain will extend the coverage of an alert, and strict cut-234 

offs will restrict coverage, i.e., general or highly specific respectively. The definition of domain in terms 235 

of physico-chemical properties must implicitly be derived from training set data and hence is likely to 236 

forge a link with species specificity. In most cases, physico-chemical properties are likely to be related 237 

to the toxicokinetics of a compound, i.e. an alert may indicate the toxicodynamic possibility of 238 

initiating toxicity, but this may be tempered by adverse toxicokinetic properties. The incorporation of 239 

a physico-chemical property and / or descriptor domain may ultimately allow for some form of 240 

quantification, as demonstrated recently with regard to determining groupings of potency for 241 

repeated dose toxicity (Yang et al., 2021), increasing reactivity or bioavailability that may be associated 242 

with skin sensitisation (Natsch et al., 2015) or the Cramer Classes for systemic toxicity (Cramer et al., 243 

1978).). Alternatively, structural alerts without physico-chemical properties can be used in 244 

combination with QSAR models, where the structural alert guides the user to select the appropriate 245 

QSAR model that relates to the mechanism predicted by the structural alert (e.g. a QSAR model for 246 

non-polar narcosis), while the QSAR itself incorporates the physico-chemical properties allowing for 247 

quantitative prediction. The toxicity, endpoint or adverse effect predicted should be defined, along 248 

with the species to which it is relevant. With regard to definition of species, this will be dependent on 249 

the training set and endpoint. There are also examples, e.g., alerts for the inhibition of 250 

acetylcholinesterase where the alert will be very broadly applicable, and even a statement such as 251 

“any species with acetylcholinesterase” may be seen as appropriate. The species applicability of some 252 
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alerts may also be defined by extrapolation, using for instance protein orthology databases (LaLone 253 

et al., 2016), which is of course leading to higher uncertainty, but at the same time greatly enhancing 254 

the species applicability domain of the alert. In terms of metabolism, it is acknowledged that some 255 

alerts implicitly imply metabolism and this is captured in the description of the alert. An example being 256 

for the DNA reactivity of an aromatic amine, which implicitly includes a metabolic step to the 257 

nitrenium ion or nitroso derivative (Bauer et al., 2018; Enoch and Cronin, 2010). However, not all 258 

metabolic transformations are captured implicitly in alerts, with some requiring knowledge of 259 

metabolism or use of a metabolic simulator and the alert is only found in the metabolite e.g. some 260 

phenols can be oxidised to the corresponding quinone which may be a skin sensitiser, whilst the alert 261 

is often associated with the quinone alone (Bajot et al., 2011). There are also many direct acting, non-262 

metabolically activated, alerts for toxicity. The purpose of this criterion is that the requirement (or 263 

not) for metabolism should be stated, or if this knowledge is not known it should be acknowledged as 264 

an uncertainty. The uncertainty is not in the requirement for metabolism, but whether it is known and 265 

stated unambiguously.  266 

The evidence of causality of an alert i.e., that it is plausible, is captured partially by mechanistic 267 

relevance with two criteria (Mechanistic Interpretation and Mechanistic Causality) and related to the 268 

criteria describing the availability of corroborating or supporting evidence. Mechanistic relevance is 269 

important to provide evidence of causality, i.e., that it is toxicologically meaningful, and hence 270 

transparency of an alert. In this case Mechanistic Interpretation ascertains the confidence in there 271 

being a recognisable mechanism of action that can be associated to the SAR and, ultimately, structural 272 

alert. Mechanistic Causality is whether the description of the structural alert, in terms of chemistry or 273 

properties, is related to the mechanism of action. Reference to AOPs is highly useful in this context 274 

(OECD, 2017), particularly with regard to MIEs which may drive structural alerts (Cronin and Richarz, 275 

2017). The two criteria are not independent and assessing Mechanistic Causality is not possible 276 

without knowledge of Mechanistic Interpretation, or at very least knowledge of a potential 277 

mechanism and / or MIE. This is important to demonstrate the veracity of an alert, although it is 278 
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acknowledged that full mechanistic interpretation may not be possible for all alerts i.e., when the 279 

mechanisms are unknown or debated. Supporting evidence is addressed with two criteria. 280 

Corroborating Evidence relates to relevant biological data, e.g., in vivo assays, or in vitro data relating 281 

and confirming a mechanism or adverse outcome directly, that support the structural alert. 282 

Corroborating Evidence can also relate to high-throughput or high content data, for instance to 283 

explore alerts associated with MIEs and KEs (Wang et al. 2019; 2021). Supporting Evidence is other 284 

evidence or data streams, which may have lower levels of biological complexity, e.g., other in vitro 285 

data, high content screening, omics outputs etc., that support weight of evidence to provide the 286 

mechanistic relevance of the structural alert. Supporting Evidence can, however, also include other 287 

information such as data from related endpoints, non-standard data etc., for instance the use of 288 

mutagenicity data to support the assessment of skin sensitisation (Mekenyan et al., 2010). 289 

The final two criteria to consider (Coverage, Performance) are objective and will assist in 290 

understanding how an alert can be used. Coverage can be defined as the number of hits the alert has 291 

in a chemically diverse database featuring the alert; this is, of course, reliant on the nature of a 292 

database and is relative only to that and for a specific alert. It will give general information on whether 293 

an alert is general in nature i.e., high coverage, or specific, i.e. low coverage. Performance can be 294 

assessed with a number of statistical criteria, e.g. Cooper statistics (Cooper et al., 1979), Fisher’s exact 295 

test (as exemplified in Wang et al., 2019); it is noted that there are few alerts associated with the 296 

absence of a given mechanism of toxicity – although they could, for instance, be derived from machine 297 

learning – and the “negatives" in Cooper statistics should only be considered when there is a negative 298 

alert, but should not be considered for positive alerts with the absence of an alert analogous to a 299 

negative outcome, hence prediction of “negatives”, i.e. non-toxic molecules, should be ignored in this 300 

situation. Dependent on the use of the alert, some scenarios, e.g., low false negative rate, may be 301 

preferred. With particular reference to data-driven methods of determining structural alerts, there 302 

may be a need to consider the use of test and training sets to assess the performance and significance 303 

of an alert if there is no underlying expert knowledge at the outset, similar to the development of 304 
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other types of in silico models. It is obvious that such statistics are dependent on the quality and extent 305 

of any underlying data set as well as how strictly the alert is defined both in terms of chemical structure 306 

and physico-chemical properties. As such, these criteria should not be considered to exclude alerts, 307 

but will provide an estimate of the confidence provided by associated data i.e. if there are few data to 308 

support and alert, it may indicate that further data should be sought.  309 
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Table 2. Definitions and relevance to uncertainty of the properties relating to structural alerts  310 

Criteria Definition and Relevance to Uncertainty 

  

Purpose The purpose, or potential use, of the structure alert with regard to regulatory assessment, product 

development etc. and will usually be stated by the user. For low uncertainty the stated use should be clear 

and unambiguous e.g., for hazard identification relating to toxicity prediction or to facilitate grouping and 

read-across. The characteristics of the alert should be appropriate for use.  

Structural Description  The functional group, or other chemical substructure, that is defined as the structural alert is unambiguously 

described including any modulating factors and the local molecular environment e.g., substitution patterns 

on a ring, branching or unsaturation on an alkyl chain etc. Clear and unambiguous definition will enable 

transparency and documentation. 

Property Domain  The domain of the alert defined in terms of relevant physico-chemical properties (e.g., solubility, volatility), 

molecular descriptors (e.g. 2D, 3D properties such as dimensions), molecular properties (e.g. toxicokinetics 

(e.g. clearance) and any other relevant property. It is assumed that the domain of the alert will be defined 

on the training set, if available. 
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Toxicity or Relationship 

to Adversity 

The definition of the toxicological effect that is elicited, or the adverse effect that may be related to a MIE 

or KE in an AOP that is associated with the structural alert. This will provide clear indication of the use of the 

structural alert. 

Species Specificity The structural alert is associated with effects to a particular species, taxa or group of organisms and, if 

required, life stage.  

Metabolic Domain Consideration of whether the alert requires, or does not require, metabolic activation.  

Mechanistic 

Interpretation 

The structural alert is associated with a recognisable and / or understandable mechanism of toxic action, in 

addition to, where possible, an AOP. 

Mechanistic Causality The definition of the structural alert in terms of structural chemistry, physico-chemical properties etc., is 

related to the MIE or KE of the mechanism / AOP in a comprehensible/plausible fashion. If possible, the 

structural alert should relate to the mechanism of action in terms of the chemistry that underpins the 

interaction with physiological / biochemical processes. E.g. a structural alert for covalent DNA binding should 

be related to an organic chemistry reactive mechanism. It is noted that an alert may be mechanistically 

interpretable, but lacks mechanistic causality. 
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Coverage The coverage is the relative proportion of hits a structural alert would have within a defined chemical 

inventory.  

Performance The performance of a structural alert can be defined in terms of its predictivity, or ability to match 

compounds known to be associated with that effect. Ideally structural alerts will have a good prediction rate 

for positives, and low false positive prediction rate. However, this is dependent in part at least on the 

purpose of the structural alert i.e., toxicity prediction versus grouping or screening. 

Corroborating Evidence The availability of source toxicological, effect or other data that support, or were used to create, the 

structural alert, e.g., that it may be directly relevant to a toxicological endpoint, adverse effect, MIE etc.   

Supporting Evidence  The availability of additional information that may support a weight of evidence approach e.g. data from 

omics or in vitro assays, or data from other endpoints or non-standard tests, that support the structural alert 

and provide evidence for the mechanism of action or related to an AOP, but which may not have been 

considered in the development of the alert. Direct mechanistic relevance may be difficult for many 

endpoints.   

 311 

 312 
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3.2 Scheme to Assign a Confidence Score to a Structural Alert 313 

A key component of the scheme to define uncertainty was the possibility of investigating the (semi-) 314 

quantitative assignment of confidence to an alert. To achieve this, the twelve assessable criteria were 315 

defined in terms of low, moderate or high confidence, as reported in Table 3. From the outset, it is 316 

important to state that low confidence in one or more criteria may be acceptable under certain 317 

circumstances. The purpose, in line with the ethos applied by EFSA (2018) with regard to uncertainty, 318 

is to highlight areas where improvement in confidence may be achievable to improve the acceptability 319 

of a prediction involving a structural alert for a specific purpose. The scheme will also allow for the 320 

comparison of the reliability of alerts within, for instance, weight of evidence approaches. Whilst the 321 

current scheme assigns confidence into one of three classes i.e., low, moderate and high, it is 322 

acknowledged that more classifications could be assigned and an analysis of the advantages and 323 

disadvantages of including more classifications is provided by Cronin et al. (2019) with regard to the 324 

assessment of the uncertainty of QSARs.  325 

The criteria for assessment of structural alerts have different levels of relevance for a given purpose. 326 

Table 4 provides a putative evaluation and ranking of the criteria with regard to their use, for instance, 327 

for hazard assessment where a point of departure may, or may not, be required. Some criteria, e.g., 328 

the definition of the alert, are essential to the use of an alert. Others could have lower confidence, 329 

especially with regard to evidence for causality i.e., mechanistic and metabolic understanding. Whilst 330 

mechanistic understanding is desirable, the absence of complete mechanistic understanding should 331 

not preclude the use of an established and plausible structural alert. A similar argument can be made 332 

of metabolic understanding – i.e., in many cases this may be obvious or can be implied, but lack of 333 

complete knowledge of how metabolism may affect an alert should not preclude its use. In addition, 334 

metabolic competency may be species dependent and may activate or inactivate a MIE. A further set 335 

of criteria, mainly related to the properties and supporting information of the alert, are considered 336 

less critical for the evaluation of confidence.  337 
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The application of the criteria and relative assessment of confidence is provided for three different 338 

types of alerts in the Supplementary Information Tables S1 – S3 respectively. The structural alerts 339 

considered are for aliphatic alcohols with reference to acute toxicity across multiple environmental 340 

species (taken from Sapounidou et al. 2021 and analogous to that from Verhaar et al. 1992), the ability 341 

of aromatic amines to bind to DNA (Enoch and Cronin, 2010) and the inhibition of acetylcholinesterase 342 

(AChE) by 1-indanone (Figure 2 in Wedlake et al. (2020)). There are significant differences between 343 

these alerts in that those for the aliphatic alcohol and aromatic amine moieties are based on 344 

considerable expert knowledge and are well-supported by experimental data. The alert for AChE 345 

inhibition is data-driven being derived from data from in vitro assays. The differences are reflected in 346 

the scores. For instance, Tables S1 and S2 indicate both the alcohol and amine alerts are well defined 347 

with a strong mechanistic background. However, low confidence was apparent in the lack of 348 

information on coverage and performance. As both alerts are intended for grouping, rather than direct 349 

toxicity prediction, this may be deemed acceptable if used appropriately. Table S3 indicates the alert 350 

for AChE inhibition has less direct toxicological relevance but is well characterised in terms of coverage 351 

and performance.  352 

The relative confidence that can be associated with the three structural alerts is demonstrated 353 

graphically as “radar plots” in Fig 1. The two alerts based on expert knowledge (from Sapounidou et 354 

al. (2021) and Enoch et al. (2011)) have the same “confidence profile” as defined by the criteria with 355 

low confidence associated with the lack of documented coverage and performance of these alerts. 356 

The data-driven alert from Wedlake et al. has a different confidence profile, with lower confidence 357 

associated with the lack of primary data anchored to the alert.  358 

 359 
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 360 

 361 

Figure 1. Radar plot representing the “confidence profile” associated with knowledge driven alerts 362 

(from Sapounidou and Enoch) in blue as compared to the data-driven alert (from Wedlake) in orange 363 

(dashed line). The confidence criteria are ordered according to the relative importance as stated in 364 

Table 4, with the essential criteria at the top of the radar plot in blue boxes (double line), moderately 365 

importantly in green boxes (single line) at the centre of the plot and lower importance at the base of 366 

the plot in red boxes (dashed line). The criteria have been scored from 3 (low uncertainty / high 367 

confidence) to 1 (high uncertainty / low confidence).  368 

Given the possibility of ranking the relative criteria for the assessment of the confidence for structural 369 

alerts according to their relevance and importance as shown in Table 4, it may also be possible to 370 

allocate some type of weighting to create a score for a particular alert that takes account of the 371 

particular levels of confidence. This can be converted to give a “confidence score” for a particular alert. 372 
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A proposed scheme to add a weighting to each of the criteria is given in Supplementary Information 373 

Tables S1 – S3 and has been applied to the three alerts. For clarity, the weightings in Tables S1-S3 374 

correspond to Table 4, i.e. essential criteria are given a weighting of 10, desirable criteria a weighting 375 

of 5 and optional criteria a weighting of 2. At this time the weightings are arbitrary and any uptake of 376 

such weighting will require consideration with regard to their use and purpose. For instance, it is 377 

anticipated that alerts could be aligned with different characteristics for hazard identification (where 378 

a highly specific, data rich alert may be required) as opposed to prioritisation and screening (where a 379 

broader alert, not necessarily mechanistically-based, may be acceptable). As such, not only different 380 

weightings, but different (semi-quantitative) weights could be applied. Where a rapid screening tool 381 

is required, for instance for the evaluation of a chemical inventory, then the most relevant 382 

characteristics of alerts will be coverage and an understanding of the false prediction rate (particularly 383 

the possibility of not identifying particular effects). To assign compounds to a particular QSAR, as in 384 

the Sapounidou et al., (2021) scheme, then much greater emphasis will be placed on the mechanistic 385 

understanding, or the relevance to the known molecular initiating events.  386 

The weightings in the scheme are on a scale up to 10 with the higher weighting being associated with 387 

those criteria deemed more essential in Table 4. Such an analysis has the effect of emphasising the 388 

important uncertainties associated with an alert. The weighting has had the effect of emphasising the 389 

relatively low confidence (or high uncertainty) that is associated with the alert from Wedlake with 390 

regard to its structural description and the lack of primary (in vivo) supporting evidence. This, of 391 

course, does not preclude the use of this alert, but demonstrates where further information and / or 392 

knowledge could be provided to increase confidence in its use. In addition, there may be possibilities 393 

for using alerts not supported by in vivo data for specific purposes, such as to confirm an MIE. The 394 

essentiality of some criteria will depend on the use case, as noted above and it is unlikely that a single 395 

list covering all use cases can be developed.  396 

The Mean Confidence Score and a “Weighted Confidence Score” are also provided for the three alerts 397 

in Tables S1-S3. The Weighted Confidence Score is calculated as: 398 
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Weighted Confidence Score =  
∑ weighted confidence scores for each criterion

∑ weightings for each criterion
  (1) 399 

The resulting scores are on a scale from 3 (greatest confidence) to 1 (lowest confidence). Having a 400 

single number for a Confidence Score is in some ways appealing i.e., a number can provide information 401 

on confidence, but runs a very high risk of being misleading if misinterpreted. It is not intended that a 402 

higher score implies any alert to be “better” than any other alert, but that it may be better defined in 403 

certain characteristics which could make it more amenable for various use cases. The Confidence 404 

Scores for the knowledge-based alerts (Sapounidou and Enoch) are higher than for the data-driven 405 

alert, however this does not take account of other factors such as speed of development. It should 406 

also be emphasised that a single score for confidence may mask an unacceptable uncertainty in one, 407 

or a small number, of areas. Thus, close examination of radar plots, such as Figure 1, is helpful and 408 

inevitably leads to the question of what the desirable characteristics of an alert for a specific purpose 409 

are, which is considered in the next section. Since weightings in any scheme are defined by the user, 410 

they can be adjusted to emphasise any particular aspect of the evaluation.  411 

 412 

 413 
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Table 3. Definitions of the properties relating to structural alerts and their relevance to confidence 415 

Criterion Confidence Relevance to the Structural Alert in Terms of Possible Uncertainty Affecting Confidence 

   

Purpose  High The purpose of the structural alert is clearly and unambiguously stated, e.g., toxicity prediction or grouping. 

Moderate The purpose of the structural alert is broad or ambiguous. 

Low The purpose of the structural alert is not stated. 

Structural 

Description 

High Unambiguous description of the functional group and / or molecular fragment including modulating factors.  

Moderate Structural alert is loosely defined with regard to its chemical structure with little or no information regarding 

modulating factors. 

Low Poor, or no, description of the structural alert with regard to its chemical structure or modulating factors.  

Property Domain High A well-defined domain in terms of the complete molecular environment and ranges of physico-chemical and / or 

structural properties. 

Moderate Some, but incomplete, definition of the domain for the complete molecular environment. No, or incomplete, 

definition of the ranges of physico-chemical and / or structural properties. 
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Low No, or very ambiguous, definition of the domain for the complete molecular environment and the ranges of 

physico-chemical and / or structural properties. 

Toxicity or 

Relationship to 

Adversity 

High The endpoint, toxicity or adverse effect(s) is clearly and unambiguously stated. 

Moderate The endpoint, toxicity or adverse effect(s) is general and lacks specificity e.g. in terms of organ or species. 

Low The endpoint, toxicity or adverse effect(s) is not known or stated. 

Species Specificity High The species, taxa or groups of organisms, in addition to relevant life stage if important, to which the structural 

alert is relevant are identified and clearly stated. 

Moderate There is some evidence and documentation that the structural alert is associated with the species to which it 

pertains. 

Low No evidence is presented for a species-specific response to the structural alert. 

Metabolic Domain High The metabolic domain is clearly and unambiguously stated e.g., the alert defines whether a chemical does or does 

not require metabolic activation. 

Moderate The metabolic domain is ambiguous or poorly defined. 

Low The metabolic domain is not known or stated. 
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Mechanistic 

Interpretation 

High The structural alert is strongly associated with a well-recognised and documented mechanism of action, e.g., a 

well-developed or OECD endorsed AOP. 

Moderate The structural alert is possibly associated with a mechanism of action. 

Low There is no mechanism of action or no documentation associated with the structural alert. 

Mechanistic 

Causality 

High The chemistry captured by the structural alert is strongly associated with the MIE and / or a KE of the mechanism 

of action. 

Moderate There is possible, but unsubstantiated, evidence that the chemistry of the structure may be associated with the 

mechanism of action, for instance evidence of correlation but not causality.  

Low The chemistry captured by the structure alert has no documented association with the mechanism of action. 

Coverage High The structural alert has relatively low coverage of alert-specific chemical space which could imply a limited and 

well-defined domain. 

Moderate The structural alert has general coverage of alert-specific chemical space with a moderately broad domain. 

Low The structural alert has high, or undefined, coverage of alert-specific chemical space indicating a broad, unspecific 

alert.  
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Performance High A statement relating to the predictive performance of the structural alert to assist in understanding the purpose 

of the alert, i.e., good performance measured by few false positives / negatives for hazard identification, or biased 

to ensure few false negatives for screening in a tiered approach.  

Moderate The structural alert has modest (i.e. greater than random but is not 100% accurate) predictive performance. 

Low The structural alert is not able to distinguish between active and inactive chemicals.  

Corroborating 

Evidence  

High Multiple and confirmatory toxicological data to support the structural alert. 

Moderate Few toxicological data exist to support the structural alert. 

Low No toxicological data are available to support the structural alert e.g. for a statistical approach or one derived on 

hypothetic mechanisms. 

Supporting Evidence High Multiple and confirmatory evidence from mechanistic information to confirm the mechanistic hypothesis. 

Moderate Few data exist to support the mechanistic interpretation of the structural alert. 

Low No mechanistic information is available to support the structural alert. 

   

 416 
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Table 4. Proposed relative importance of the confidence criteria in the scheme for the assessment of 418 

structural alerts relating to acceptable levels of confidence. In this case, the attributes are for hazard 419 

identification supporting risk assessment. 420 

Criteria Comment 

 
 

Essential Attributes of a Structural Alert – Must be Associated with High Confidence (where possible) 

  

Structural Description 

The alert must be explicitly defined in terms of its chemical 

structure, structural domain and which species it is relevant to. 

Property Domain 

Toxicity or Relationship to Adversity 

Species Specificity 

Corroborating Evidence  

  

Desirable Attributes of a Structural Alert – Preferably Associated with High Confidence (where possible) 

  

Metabolic Domain 

The mechanistic and metabolic relevance of an alert increases its 

transparency and potential acceptance.  
Mechanistic Interpretation 

Mechanistic Causality 

  

Optional Attributes of a Structural Alerts – Where Possible Associated with High / Moderate Confidence 
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Purpose 

Statistical analysis and source data increase the credibility, or 

otherwise, of a structural alert.  

Coverage 

Performance 

Supporting Evidence  

  

 421 

 422 

3.3 Use Cases and the Desired Properties for Structural Alerts  423 

Five use case scenarios for structural alerts are described below, with attributes noted in Table 5. 424 

These do not encompass all uses, but are representative of the types of applications for which 425 

structural alerts may be used. These include those for regulatory use and industry specific uses, 426 

namely: 427 

• Hazard identification through direct prediction of toxicity to support risk assessment, e.g., 428 

giving weight to a particular adverse outcome. 429 

• Mechanism-based analogue identification, e.g., to select similar compounds or analogues as 430 

part of a read-across to enable mechanistic justification, assignment of a particular chemical 431 

to a QSAR, such as a reactive or specific mechanism. 432 

• Category identification e.g., assigning a compound as a chemical class-based analogue for High 433 

Production Volume (HPV) chemicals. 434 

• Predictions of effects, or identification of hazard, leading to classification and labelling in a 435 

regulatory context. 436 

• Screening and/ or prioritisation e.g., to identify or highlight potentially hazardous compounds 437 

in a regulatory context or as part of product development. 438 

 439 
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Table 5 provides an estimate of the ideal minimum levels of confidence that might be required for 440 

each of the twelve uncertainty criteria. From the outset, it is clear that different levels of confidence 441 

are acceptable for different use case scenarios. Those associated with providing input into hazard 442 

identification i.e., direct prediction of toxicity and read-across ideally have higher confidence. Lower 443 

confidence may be acceptable for screening and prioritisation.  444 

Some characteristics of structural alerts should be definitive regardless of use case and hence be 445 

associated with high confidence. Examples of these include the structural description of the fragment, 446 

the endpoints to which it relates and the species relevance. In addition, the definition and 447 

understanding of confidence in structural alerts suggests that different use case scenarios could 448 

potentially utilise different characteristics of structural alerts. The identification of analogues, for 449 

instance as a primary categorisation tool for read-across, requires highly defined structural alerts with 450 

good mechanistic understanding. The purpose here is to identify very closely related chemicals as 451 

defined by their structural alerts that would support a robust argument for similarity. The use of 452 

structural alerts for assignment of compounds to chemical classes could have lower confidence in 453 

terms of structural definition. This would allow for a larger number of compounds to be grouped 454 

together, and associated with this could be lower mechanistic understanding with the possible 455 

expectation of sub-categorisation later on to allow for efficient analogue selection. However, for uses 456 

such as hazard identification or prioritisation lower confidence may be acceptable to allow for the 457 

identification of potential toxicants, with the possibility of false positives being ameliorated by further 458 

evidence or testing. 459 

Knowledge from the scheme for the evaluation of confidence of structural alerts can also help indicate 460 

how to use alerts. For instance, the aliphatic alcohol and aromatic amine alerts (assessed in Tables S1 461 

and S2 respectively) are associated with low confidence for their coverage and performance, as these 462 

statistics are not known. In addition, they can be considered as quite broadly defined, thus likely to 463 

capture or identify many analogues in a read-across scenario. In such a situation sub-categorisation is 464 

recommended, for instance using similarity indices (Mellor et al., 2019). Thus, the evaluation of 465 
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confidence through the scheme presented does not preclude the use of any structural alert but will 466 

assist in the identification of how and where they can be used optimally and justifiably. Other aspects 467 

to be considered are the definition of the various domains i.e., structural, mechanistic and metabolic. 468 

As noted above and in Table 4, high confidence in the structural definition is a pre-requisite for use, 469 

whilst mechanistic and, in particular, metabolic definition may be more aspirational.  470 

 471 
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Table 5. Ideal levels of confidence and characteristics of structural alerts in different use case scenarios. The ideal levels of confidence as defined in Table 3. 472 

Criteria  

 Hazard Identification 

Supporting Risk 

Assessment 

Mechanism-Based 

Analogue Identification  

Category Identification 

e.g., Chemical Class-

Based Analogue for 

HPV Chemicals 

Predictions Leading to 

Classification and 

Labelling 

Screening and/ or 

Prioritisation 

      

Structural Description  High High High High High 

Property Domain  High High High Moderate Moderate 

Toxicity or 

Relationship to 

Adversity 

High High High High High 

Species Specificity High High High High Moderate (depends on if 

alerts is endpoint 
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agnostic or endpoint 

specific) 

Metabolic Domain High / Moderate High / Moderate High / Moderate Moderate Moderate (now to 

include metabolites as a 

key improvement of 

prioritization for some 

endpoints) 

Purpose High High Moderate Moderate Moderate 

Mechanistic 

Interpretation 

High High High High High 

Mechanistic Causality High High Moderate/ High Moderate/ High Moderate / High 

Coverage High High Low Low Low 

Performance High High Moderate Moderate Moderate 

Jo
urn

al 
Pre-

pro
of



41 
 

Corroborating 

Evidence  

High  High  Moderate Moderate Moderate 

Supporting Evidence Moderate Moderate Moderate / Low Low Low 

 473 
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4. Conclusions 474 

A scheme is proposed that characterises the uncertainty associated with structural alerts in an attempt 475 

to understand the confidence that may be associated with them. Twelve criteria have been considered 476 

that account for the quality and usability of an alert for a specific purpose. These criteria have been 477 

ranked according to how essential they are for a particular use case. Assessment of existing alerts 478 

suggests that those derived directly from expert knowledge have different uncertainties to those from 479 

data-driven analyses. This does not discount any particular method of alert creation, rather these 480 

findings can be used to reduce uncertainty through finding further data and information to increase 481 

confidence in the use of these predictive approaches as well as allowing for increased confidence on 482 

decisions made on the alerts and for benchmarking existing alerts.  483 
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Characterising Uncertainties 

 

Highlights 

• Structural alerts are useful tools for predictive toxicology 

• 12 criteria to evaluate structural alerts have been identified 

• A strategy to determine confidence of structural alerts is presented 

• Different use cases require different characteristics of structural alerts 
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