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Abstract

Background:  Age-associated cognitive decline may be influenced by testosterone status. However, studies evaluating the impact of bioavailable 
testosterone, the active, free testosterone, on cognitive function are scarce. Our study determined the relationship between calculated 
bioavailable testosterone and cognitive performance in older men.
Methods:  We used data from the U.S. National Health and Nutrition Examination Survey (NHANES) between 2013 and 2014. This study consisted 
of 208 men aged ≥60 years. Bioavailable serum testosterone was calculated based on the total serum testosterone, sex hormone–binding globulin, and 
albumin levels, whereas cognitive performance was assessed through the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) Word 
List Learning Test (WLLT), Word List Recall Test (WLRT), and Intrusion Word Count Test (WLLT-IC and WLRT-IC), the Animal Fluency Test (AFT), 
and the Digit Symbol Substitution Test (DSST). Multiple linear regression analyses were performed upon adjustment for age, ethnicity, socioeconomic 
status, education level, medical history, body mass index, energy, alcohol intake, physical activity levels, and sleep duration.
Results:  A significant positive association between bioavailable testosterone and DSST (β: 0.049, p = .002) score was detected, with no signs of 
a plateau effect. No significant associations with CERAD WLLT (p = .132), WLRT (p = .643), WLLT-IC (p = .979), and WLRT-IC (p = .387), 
and AFT (p = .057) were observed.
Conclusion:  Calculated bioavailable testosterone presented a significant positive association with processing speed, sustained attention, and 
working memory in older men above 60 years of age. Further research is warranted to elucidate the impact of the inevitable age-related decline 
in testosterone on cognitive function in older men.
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Age-related cognitive decline can be a precursor of dementia, which 
currently remains a major public health challenge (1). An aging brain 
is characterized by a reduction in gray and white matter volume and 
is associated with decreased processing, attention, memory, and 
executive function (2). In the United States, there are ~5.1 million 
people living with dementia (3), with an estimated financial impact 
projected at >$9 trillion worldwide by 2050 (4). Currently, there are 
multiple risk factors associated with cognitive decline throughout 
the lifespan, including genetic predisposition, malnutrition, physical 
inactivity, and androgen deficiency (5,6), factors that represent an 
important focus for future research in an attempt to treat and/or 
manage a cognitive decline in older age.

Evidence regarding the influence of the primarily male hormone 
testosterone on cognitive function is conflicting (7–13), while both 
total and bioavailable levels of testosterone consistently decline with 
aging (14). Specifically, previous studies have observed associations 
between low serum testosterone levels and decreased cognitive per-
formance (7,8) or dementia severity (9), whereas other studies have 
neither observed associations (10,13) nor negative correlations be-
tween these variables (11,12). These findings have led to uncertainty 
as to whether serum testosterone is linked with risk of cognitive de-
cline in men during aging.

One of the challenges in interpreting published literature is that 
studies variably report total testosterone or bioavailable testosterone. 
The majority of testosterone within the human body is tightly bound 
(~60% of total testosterone) to sex hormone–binding globulin 
(SHBG) and to a lesser extent (~38%) bound to albumin. Only a 
small fraction (~2%) of total testosterone is unbound or “free” and 
thus “biologically active” and available at the tissue level (15). SHBG 
may vary according to a wide variety of factors including nutritional 
state, weight, androgen levels, intercurrent illness, and age (16,17). 
The subsequent influence this has on testosterone binding and thus 
activity makes bioavailable testosterone a more preferable param-
eter than total testosterone in isolation. Indeed, as total testosterone 
typically reduces with age, while SHBG typically increases (18), the 
overall effect of aging will have a greater effect on bioavailable, ac-
tive testosterone. Therefore, the aim of the current cross-sectional 
study was to examine the association of bioavailable testosterone 
with cognitive function in older men.

Method

Study Design and Participants
We retrieved publicly available data from participants aged ≥60 years 
from one survey cycle in the National Health and Nutrition 
Examination Survey (NHANES): 2013–2014. NHANES is con-
ducted by the Centers for Disease Control and Prevention (CDC) 
and the National Center for Health Statistics (NCHS) to monitor 
health in the U.S.  population. A  cutoff age of ≥60  years old was 
used based on data availability for total serum testosterone, SHBG, 
and albumin concentrations. Exclusion criteria included no recorded 
data for total serum testosterone, SHBG, and albumin concentra-
tions, and incomplete data for the cognitive assessments or missing 
demographic data. The NHANES protocol was approved by the 
NCHS Research Ethics Review Board, while all participants pro-
vided written informed consent.

Bioavailable Testosterone Assessment
Bioavailable serum testosterone was computed according to the 
Vermeulen methodology (19) using measured concentrations of 

total serum testosterone, SHBG, and albumin. Total serum testos-
terone from overnight fasted samples was estimated through iso-
tope dilution–liquid chromatography–tandem mass spectrometry 
(ID–LC–MS/MS) method. SHBG was reacted with immune anti-
bodies and chemoluminescence measurements of microparticles and 
measured by a photomultiplier tube. Albumin concentration was as-
sessed using the DcX800 method by means of a biochromatic digital 
endpoint methodology with Bromcresol Purple.

Cognitive Assessment
Cognitive function was evaluated using a variety of tests including 
the Consortium to Establish a Registry for Alzheimer’s Disease 
(CERAD) Word List Learning Test (WLLT), Word List Recall Test 
(WLRT), and Intrusion Word Count Test (WLLT-IC and WLRT-IC), 
the Animal Fluency Test (AFT), and the Digit Symbol Substitution 
Test (DSST). The assessments were administered by trained, quali-
fied personnel at the end of the in-person private interview at the 
mobile examination centers. The full details of the cognitive func-
tion interviews have been presented elsewhere (https://www.cdc.gov/
nchs/nhanes/index.htm).

The CERAD WLLT, WLLT-IC, WLRT, and WLRT-IC examine 
the immediate and delayed learning ability for novel verbal infor-
mation and consist of 3 progressive learning trials followed by a 
delayed recall challenge with a range of scores between 0 and 10. 
The AFT assesses executive function by evaluating categorical verbal 
fluency with scores ranging from 3 to 39. The DSST comprises a 
performance challenge from the Wechsler Adult Intelligence Scale-
III, which assays processing speed, sustained attention, and working 
memory, and is scored between 0 and 105. Higher test scores depict 
better cognitive performance. Participants without a response for 
any of the tests were excluded.

Covariates
Age (years), ethnicity (race), socioeconomic status (family income 
to poverty ratio [FIPR]), education level (school qualification), med-
ical history (memory–cognitive function loss and stroke), body mass 
index (BMI; kg/m2), daily sleep duration (hours of sleep spent at 
night on weekdays or workdays) and physical activity (minutes spent 
doing moderate-intensity sports, fitness, or recreational activities), 
daily energy intake (kcal), and alcohol intake (g) were considered as 
covariates. All covariates were identified as potential confounders 
in the relationship between bioavailable testosterone and cognitive 
performance. Participants with a current medical prescription of 
aromatase inhibitors and glucocorticoids were excluded, considering 
that they may alter endogenous testosterone levels (20).

Age groups consisted of participants with ≥60 years of age and 
classified into 60–69, 70–79, and ≥80 years of age. Ethnic groups 
comprised of Mexican American, other Hispanic, non-Hispanic 
White, non-Hispanic Black, non-Hispanic Asian, and other (multi) 
race. Social economic status was categorized as low–middle (FIPR 
< 1) and middle–high (FIPR ≥ 1). Education level was defined as no 
high school degree, at most a high school degree or a college degree at 
minimum. Medical history based on loss of cognitive-memory func-
tion or stroke was categorized as Yes/No responses in terms of past 
incidence reported by a doctor or other health professional. BMI was 
defined as a participant’s weight in kilograms divided by the square 
of height in meters. A physical activity of <150 min/wk was con-
sidered low-moderate and ≥150 min/wk was considered moderate-
high. Energy and alcohol intake were calculated as averages of the 
24-hour dietary recall and categorized into low, moderate, and high. 
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A BMI of <18 kg/m2 was considered low, 18–24.9 kg/m2 moderate 
and ≥25 kg/m2 high. An energy intake of <2 000 kcal was considered 
as low, 2 000–3 000 kcal moderate, and >3 000 kcal high. Alcohol 
intake < 15 g was considered low, 15–30 g moderate, and >30 g high. 
Sleep duration of ≤6 hours was classified as low, 7–9 hours as mod-
erate, and >9 hours as high.

Statistical Analysis
Multiple linear regression analyses were performed to examine the 
association between bioavailable and total testosterone and cogni-
tive function (overall and test-specific cognitive performance) with 
the adjustment of all covariates. A restricted cubic spline was em-
ployed to model the nonlinear and dose–response relationship be-
tween calculated bioavailable testosterone and cognitive function 
using 3 knots after covariate adjustments. Statistical significance was 
established as p < .05. Statistical analysis was performed using IBM 
SPSS statistics software (Version 28.0, IBM Corp., Armonk, NY).

Results

Characteristics of Study Participants
Data for cognitive function and calculated bioavailable testosterone 
were available for a total of 208 participants (Figure 1). Background 
information (ie, sociodemographic status, anthropometrics, and nu-
tritional characteristics) of all participants are reported in Table 1. 
The study population had a mean age of 69.4 (± 0.5) years and con-
sisted of mostly non-Hispanic White (53%) of high socioeconomic 
status (69%) with a college degree at minimum (67%). Sleep dur-
ation was moderate (63%) among participants and physical activity 
was high (55.3%). Energy intake was below the typical recom-
mended consumption (51%) or within recommendations (42%). 
Alcohol intake was low (78%), and BMI was high (71%). The mean 
calculated bioavailable testosterone was 185.7 (± 4.0) ng/dL. The 
average score for CERAD WLLT was 19.3 (± 0.3) of 30, 6.1 (± 0.2) 
of 10 for CERAD WLRT, 0.6 (± 0.1) of 12 for CERAD WLLT-IC, 
0.4 (± 0.1) of 10 for CERAD WLRT-IC, 18.3 (0.4) of 40 for the AFT, 
and 49.0 (± 1.0) of 100 for the DSST.

Figure 1.  Flow chart of the screening process for the selection of eligible 
participants in the National Health and Nutrition Examination Survey 
(NHANES).

Table 1.  Sociodemographic, Behavioral, and Nutritional 
Characteristics of Included Participants (n = 208)

Age  

  60–69 109 (52)
  70–79 66 (32)
  ≥80 33 (17)
Ethnicity
  Mexican American 22 (11)
  Other Hispanic 15 (7)
  Non-Hispanic White 111 (53)
  Non-Hispanic Black 38 (18)
  Non-Hispanic Asian 19 (9)
  Other Race—including multiracial 3 (1)
Socioeconomic status
  Low 17 (8)
  Middle 47 (23)
  High 144 (69)
Educational level
  No high school degree 31 (15)
  High school degree 38 (18)
  College degree 139 (67)
Energy intake
  Low 105 (51)
  Moderate 88 (42)
  High 15 (7)
Body mass index
  Low 2 (1)
  Normal 59 (28)
  High 147 (71)
Alcohol intake
  Low 163 (78)
  Moderate 20 (10)
  High 25 (12)
Physical activity
  Low 30 (14)
  Moderate 63 (30)
  High 115 (55)
Sleep duration
  Low 56 (27)
  Moderate 130 (63)
  High 22 (11)
Bioavailable serum testosterone (ng/dL)
  Minimum 22.9
  Average 185.7 (12.0)
  Maximum 543.4
Total serum testosterone (ng/dL)
  Minimum 87.8
  Average 415.0 (12.5)
  Maximum 1 260.0
CERAD WLLT (score)
  Minimum 0.0
  Average 19.3 (0.3)
  Maximum 30.0
CERAD WLRT (score)
  Minimum 0.0
  Average 6.1 (0.2)
  Maximum 10.0
CERAD WLLT-IC (score)
  Minimum 0.0
  Average 0.6 (0.1)
  Maximum 6.0
CERAD WLRT-IC (score)
  Minimum 0.0
  Average 0.4 (0.1)
  Maximum 4.0
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Calculated Bioavailable Testosterone and Cognitive 
Function
Calculated bioavailable testosterone was significantly positively as-
sociated with the DSST (β: 0.049, p  =  .002) score (Table 2). No 
significant associations were found with CERAD WLLT (p = .132), 
WLRT (p = .643), WLLT-IC (p = .979), and WLRT-IC (p = .387), and 
AFT (p = .057). Cubic spline modeling showed no signs of a plateau 
effect across the distribution of calculated bioavailable testosterone 
levels explored on the significant associations observed (Figure 2). 
According to our multiple linear regression model, a change in bio-
available testosterone of 100 ng/dL corresponded to a 5% improve-
ment in DSST performance. Finally, similar analysis of the same 
cohort based on total testosterone concentrations showed no signifi-
cant associations with cognitive function (CERAD WLLT p = .335, 
WLLRT p = .786, WLLT-IC p = .612 and WLLRT-IC p = .774, AFT 
p = .321, and DSST p = .187; Supplementary Table S1).

Discussion

The current study explored the association between calculated bio-
available testosterone and cognitive function in older men living in 
the United States. Our results demonstrated a significant association 
between calculated bioavailable testosterone with DSST score, after 
adjustment for multiple sociodemographic, anthropometric, and nu-
tritional covariates. The effect was insignificant on CERAD WLLT, 
WLLT-IC, WLRT and WLRT-IC, and AFT scores.

Our study adds to the existing body of literature that supports 
the potential role of testosterone for regulating cognitive function in 
men. For example, it has been previously shown that calculated bio-
available testosterone in healthy men 20–84 years old is significantly 
associated with decrements in visual and auditory learning (21). 
Likewise, a significantly, albeit weak negative correlation (r = −.222) 
was found in older men 55 years old and above, between measured 
bioavailable testosterone and executive function via trails B test (22). 
Furthermore, Chu et al. presented that measured bioavailable testos-
terone levels in older Chinese men with amnestic mild cognitive im-
pairment and Alzheimer’s disease aged 55–93 years were positively 
associated with delayed Stroop word recall tests and verbal and 
visual memory (23). Additionally, further correlations were observed 
in independently living men aged 40–80 years with calculated bio-
available testosterone and improved processing speed and executive 
function (24). Similarly, in healthy older men above 65 years of age, 
calculated bioavailable testosterone was associated with trails B and 
digit symbol tests that measured several indices of cognitive func-
tion, including attention, working memory, psychomotor perform-
ance, and perpetual organization (25).

In contrast to our findings, several studies fail to report positive 
associations between testosterone and cognitive function. Geerlings 
et al. revealed that in older Japanese American men aged 71–93 years 
without dementia, calculated bioavailable testosterone using quan-
titative competitive immunoassay—an inferior assessment method 
compared to LC–MS—across serum concentration tertiles did not 
have any association with Cognitive Abilities Screening Instrument 
score (26). The latter is a quantitative assessment of attention, con-
centration, orientation, short- and long-term memory, language and 
visual construction, verbal fluency, abstraction, and judgment (27). 
Likewise, Alibhai et al. reported that high concentrations of calcu-
lated bioavailable testosterone in older men with or without prostate 
cancer aged 50–87 years old were not linked with processing speed 
(trails A  and Delis–Kaplan executive function system color-word 
interference test), attention (digit and spatial span forward score), 
verbal fluency (controlled oral word association and animal fluency 
test), visuospatial abilities (card rotation and judgment of line orien-
tation raw scores), and working memory (conditional associative 

Table 2.  Multiple Linear Regression Analysis of the Association 
Between Bioavailable Testosterone and Cognitive Function by Test 
Cognitive Performance

Cognitive Function β p R2 

CERAD WLLT 0.008 .132 .130
CERAD WLLRT 0.001 .643 .128
CERAD WLLT-IC 0.000 .979 .068
CERAD WLLRT-IC 0.001 .387 .055
AFT 0.013 .057 .270
DSST 0.049 .002 .338

Notes: AFT = Animal Fluency Test; CERAD = Consortium to Establish a 
Registry for Alzheimer’s Disease; CI = confidence interval; DSST = Digit Sym-
bol Substitution Test; WLLT = Word List Learning Test; WLRT = Word List 
Recall Test. WLLT-IC  =  Word List Learning Test—Intrusion Word Count; 
WLRT-IC = Word List Recall Test—Intrusion Word Count.

Figure 2.  Dose–response relationship between bioavailable serum 
testosterone and cognitive function in older male adults. Significant 
association with Digit Symbol Substitution Test score was observed. Multiple 
linear and cubic-spline models were adjusted for age, gender, ethnicity, 
socioeconomic status, educational level, medical history, body mass index, 
physical activity, sleep duration, alcohol, and energy intake.

Age  

AFT (score)
  Minimum 7.0
  Average 18.3 (0.4)
  Maximum 36.0
DSST (score)
  Minimum 11.0
  Average 49.0 (1.0)
  Maximum 93.0

Notes: AFT  =  Animal Fluency Test; CERAD  =  Consortium to Establish 
a Registry for Alzheimer’s Disease; DSST = Digit Symbol Substitution Test; 
WLLT  =  Word List Learning Test; WLRT  =  Word List Recall Test. WLLT-
IC = Word List Learning Test—Intrusion Word Count; WLRT-IC = Word List 
Recall Test—Intrusion Word Count. Values are expressed as count (percent-
age) unless otherwise specified.

Table 1.  Continued
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learning test) (28). Evidence of a nonsignificant association between 
measured bioavailable testosterone levels and measures of cognition 
such as total memory interference in community-dwelling men aged 
35–80 years has also been reported (29).

Our findings, combined with those of previous studies, may ap-
pear conflicting; however, the varied methodological approaches 
adopted offer potential explanations to these discrepancies. For in-
stance, the variability among studies, in part, may be explained by 
the complexity of different cognitive measures and assessment tools 
used for the assessment of indices of cognition. The score for the one 
test we have found significant associations with calculated bioavail-
able testosterone is characterized by its brevity and high sensitivity 
for identifying individuals with cognitive impairments. The DSST 
has particularly shown to be sensitive at detecting both cognitive 
dysfunction as well as changes in cognitive dysfunction in a range 
of clinical populations (30). In addition, multiple studies recruited 
participants with a wide aging range that may be a confounder in 
assessing the relationship of calculated or measured bioavailable tes-
tosterone in aging cohorts similar to our study (60 years and above). 
The conflicting literature review findings can also be attributed to the 
method of testosterone assay (eg, immunoassay vs LC/MS) used. For 
example, the precision and accuracy of immunoassay methods have 
recently been questioned, particularly when assessing low levels of 
testosterone (31), a characteristic associated with aging. Indeed, at 
the lower range of testosterone, up to 40% of results from immuno-
assay vary by more than 20% from the reference assay result derived 
via gold-standard LC/MS–MS approaches (31). As such, testosterone 
values derived by LC/MS are the preferred standard in combination 
with SHBG and albumin to derive bioavailable or active testosterone. 
Moreover, in our analyses, sleep duration was one of the most im-
portant covariates that can influence concentration of bioavailable 
testosterone. It has been shown that the amount of nighttime sleep 
measured by polysomnography is an independent predictor of parti-
cipants’ morning total and free testosterone levels (32). Additionally, 
7 days of sleep restriction (5 hours of sleep per night) in younger men 
results in a decrease of daytime testosterone levels by ~10%–15% 
(33). In most studies that have explored the associations between cal-
culated/measured bioavailable testosterone (21–26,28,29), sleep dur-
ation was not accounted for as a covariate, and therefore, this may be 
a potential explanation for discrepancies in existing literature. In our 
case, the inclusion of sleep duration as a covariate may have contrib-
uted to a large decrease in our sample size; however, the confidence 
in our data and analyses were consolidated by the inclusion of sleep 
duration. Finally, another strength of our study is the statistical ana-
lyses employed, whereby we explored the linear relationship between 
testosterone and cognitive performance rather than investigating the 
prediction risk (odds ratio) of cognitive performance based on testos-
terone levels as others have done (12). Estimates from linear models 
explore the whole distribution of a variable rather than dichtomizing 
the data into above/below thresholds. This is more insightful, as from 
a linear regression model, one can predict the magnitude of change, 
as opposed to simply its occurrence.

Therefore, different methods of measuring bioavailable testos-
terone, different age ranges, covariates, statistical analyses, and as-
sessment tools of cognitive performance among studies may have 
accounted for the differential associations of bioavailable testos-
terone with cognitive function in older men.

Undoubtedly, further research is needed to improve our under-
standing of this potential causal link given that our limited interpret-
ations are based on the scarcity of literature on how testosterone may 
alter brain physiology and how that translates to changes in cognitive 

performance. For instance, testosterone may influence spatial memory 
by increasing the neuron volume of rostral hippocampus (34), changes 
that may be attributed to the direct effect of androgen receptors in 
the hippocampus (35) and their influence on synaptic plasticity (36) 
since it has been shown that long-term potentiation–like cortical plas-
ticity impairment is a key phenomenon in Alzheimer’s patients (37), 
while this impairment correlates with less-efficient verbal memory 
(37). Furthermore, another explanation underlies the increased levels 
of neurotrophines, including the nerve growth factor in the hippo-
campus and the upregulation of its receptor by forebrain neurons (38), 
along with the depolarization of N-methyl-d-aspartate receptor in 
hippocampal pyramidal cells and regeneration of its neurotransmitter-
evoked actions (39). Prospective studies specifically designed to con-
firm the influence of bioavailable testosterone at different serum levels 
on cognitive function and its domains are warranted, particularly lon-
gitudinal studies to monitor changes in testosterone throughout life. 
Such approaches, though logistically challenging, will undoubtedly 
provide novel insights into the potential role of an age-related decline 
in testosterone levels on cognitive function. Improving our under-
standing of the impacts of testosterone on cognitive function in older 
age may potentially have a meaningful impact on the development of 
therapeutic interventions to improve patient treatment and outcome 
and extending the health span.

Strengths and Limitations
Our retrospective analysis study employed large nationally repre-
sentative data (ie, NHANES) that have been subjected to rigorous 
quality control. In addition, multiple covariates were adjusted for 
during analysis to accurately examine (and isolate) the association 
between bioavailable testosterone and cognitive function in older 
adults. In doing so, overnight fasted concentrations of bioavailable 
testosterone, as opposed to total testosterone, were utilized in ex-
ploring the relationship between testosterone and cognitive func-
tion, overcoming the interacting age-related effect of testosterone by 
SHBG and albumin levels (40).

However, it is noteworthy that our study also had several limita-
tions. Observational studies using a cross-sectional model are unable 
to reveal a cause-and-effect relationship between dependent and inde-
pendent variables. Additionally, mood state could have affected mental 
factors accounting for changes in cognitive performance that may not 
be directly linked with total and/or bioavailable testosterone levels. 
Testosterone may alter amygdala activity and connectivity, reducing 
functional coupling with the orbitofrontal cortex during face judg-
ment tasks, and increasing during in response to emotional face tasks 
(41–43). Finally, cognitive function tests collected from NHANES fo-
cused on aspects of cognitive performance and may not fully repre-
sent overall cognitive function given the multiple mental parameters 
and assessment tools are warranted. For instance, backward number 
recall test may stimulate the parietal, occipital, frontal, and temporal 
cortices to a greater extend as opposed to forward recall testing (44).

Conclusion

In a population of older adults over the age of 60, calculated bio-
available testosterone was significantly associated with specific in-
dices of cognitive function such as processing speed, but showed no 
effect on learning, verbal fluency and episodic memory, and memory 
intrusion. The equivocal nature of our understanding around the 
impacts of testosterone on cognitive functions lends to the notion 
for the need for more prospective studies specifically designed to 
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confirm the influence of bioavailable testosterone at different serum 
levels on cognitive function and its domains.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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