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Abstract: The Pleistocene presence of the genus Homo in continental Southeast Asia is 68 

primarily evidenced by a sparse stone tool record and rare human remains. Here we report the 69 

first Middle Pleistocene hominin specimen from Laos, with the discovery of a molar from the 70 

Tam Ngu Hao 2 (Cobra Cave) limestone cave in the Annamite Mountains. The age of the fossil-71 

bearing breccia ranges between 164-131 kyr, based on the Bayesian modelling of luminescence 72 

dating of the sedimentary matrix from which it was recovered, U-series dating of an overlying 73 

flowstone, and U-series–ESR dating of associated faunal teeth. Analyses of the internal structure 74 

of the molar in tandem with palaeoproteomic analyses of the enamel indicate that the tooth 75 

derives from a young, likely female, Homo individual. The close morphological affinities with 76 

the Xiahe specimen from China indicate that they belong to the same taxon and that Tam Ngu 77 

Hao 2  represents, most likely, a Denisovan. 78 

 79 

 80 

MAIN TEXT  81 
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Introduction: From the Early to Late Pleistocene, the presence of Homo erectus is well 82 

documented in Asia, notably in China and Indonesia 
1–3

. However, the taxonomic attribution of 83 

most Asian late Middle Pleistocene Homo specimens remains a matter of contention 
4-7

. The 84 

recent description and analysis of the Harbin cranium from China has reignited this debate by 85 

suggesting its attribution to a new species named Homo longi 
8
, but this taxonomic attribution of 86 

this specimens remains highly debated. In fact, the Harbin cranium shows close morphological 87 

similarities with other late Middle to early Late Pleistocene Asian Homo specimens from Dali, 88 

Xujiayao, Xuchang and Hualongdong, whose taxonomy remains unclear 
4,9,10

. These fossils are 89 

considered to belong to a different taxon than H. erectus and are often grouped under the generic 90 

label ‗archaic humans‘ 
9,10

. Due to the combination of features they exhibit, including 91 

Neanderthal-like traits, it has been  suggested that they  belong to an Asian sister taxon of 92 

Neanderthals, the Denisovans, even if this attribution to the latter group remains under debate 93 

5.11.12
. The small number of fossils currently securely attributed to this group (Denisova 2, a 94 

lower left molar; Denisova 3, a distal manual phalanx; Denisova 4, an upper left M3; Denisova 95 

8, an upper molar; and the Xiahe mandible) 
13–16

 prohibits a clear morphological picture of the 96 

overall Denisovan morphology. Their geographic distribution also remains debated. Modern 97 

Papuans, Aboriginal Australians, Oceanic/Melanesian, Philippine Ayta groups and, to a much 98 

lesser extent, mainland Southeast Asian populations, retain a Denisovan genetic legacy 
14,17,18,19

. 99 

Combined paleoproteomic and morphometric analyses  recently suggested that the Middle 100 

Pleistocene Xiahe mandible from Baishiya Karst Cave belonged to a Denisovan, extending the 101 

known range of this group onto the Tibetan Plateau 
15

. However, there is still no fossil evidence 102 

explaining the Denisovans genetic imprint on modern southeast Asian populations and—due to 103 

the paucity of the Middle Pleistocene fossil record—it is still unknown whether one or more 104 

human lineages (co)existed in continental southern Asia. We present here the first unambiguous 105 

Middle Pleistocene Homo specimen from mainland southeast Asia and discuss its taxonomic 106 

attribution and implications for human evolution in the region. 107 

In December 2018, a hominin permanent lower molar was recovered from a breccia block at 108 

Tam Ngu Hao 2 (Cobra Cave), Huà Pan province, Laos (20°12‘41.5‖N, 103°24‘32.2‖E, altitude 109 

1,116 m; Fig. 1, Fig. S1). The tower karst in which the cave was formed is positioned on the 110 

south-eastern side of P‘ou Loi Mountain with an entrance located 34 m above the alluvial plain 111 

(Fig. 1A, Fig. S1). The site was discovered during a survey of the area around Tam Pà Ling, 112 
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where early Homo sapiens fossils have previously been recovered 
20-22

. The tooth (TNH2-1) is a 113 

mandibular left permanent molar crown germ (Fig. 2A-F; Fig. S2), and the absence of occlusal 114 

and interproximal wear combined with the incipient root formation suggests that the tooth was 115 

unerupted at the time of the individual‘s death. The morphology of the tooth is compatible with 116 

an attribution to either a first or a second lower molar (Supplementary Material). In either case, 117 

considering the early maturational stage of the root, this tooth belonged to a juvenile individual 118 

corresponding to an age ranging from 3.5 to 8.5 years following modern developmental 119 

standards 
23

. 120 

To best document THN2-1, morphological description and comparative analyses were 121 

performed. We also developed a specific sampling protocol that allowed us to sample for 122 

palaeoproteomic and future isotopic analyses while preserving the whole occlusal surface 123 

morphology of the crown. Sampling for these destructive analyses took place after microCT 124 

analyses of the entire tooth, ensuring full morphological data were saved. No additional sampling 125 

for ancient DNA analyses was performed at this stage given the old age of the specimen and the 126 

tropical conditions under which the sediment and fossils were deposited. The invasive sampling 127 

strategy to collect dental tissues for molecular analyses only focused on the distal part of the 128 

inferior aspect of the crown, keeping the mesial portion of the crown intact.  129 

 130 

 131 

Results 132 

Context and Dating 133 
The geological setting, stratigraphy and micromorphology of the sediment sequence were 134 

analysed to obtain a comprehensive, multi-scalar assessment of the depositional context and 135 

taphonomic history of the fossils recovered from the cave (Supplementary Material). The 136 

partially eroded sediments that infill the studied entrance passage comprise a lower and an upper 137 

facies representing two phases of sediment accumulation separated by an erosional surface and 138 

an unknown period of time (Fig. 1B). The lower facies (Lithological Unit 1, LU1) is weakly 139 

cemented and forms an arenitic silty clay deposit that is devoid of fossils (Fig. 1E). The upper, 140 

fossiliferous facies (Lithological Unit 2, LU2) is well cemented and coarse grained, containing 141 

intrakarstic angular limestone clasts and extrakarstic rounded pebbles, forming a very hard 142 

breccia/conglomerate layer from which skeletal elements—and in particular, teeth—were 143 

recovered in high frequencies (Fig. 1D). The change in lithology between the two facies most 144 
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likely reflects a reconfiguration of the karstic hydrological system as would be associated with a 145 

major flood, eroding space in LU1 onto which the sediments of LU2 were unconformably 146 

overlain. The sediments of LU2 are laterally contiguous and densely packed throughout the 147 

exposure excavated for this study, precluding major reworking of material and confirming the 148 

stratigraphic context of the fossils contained within, including the hominin tooth (see detailed 149 

observations described in Supplementary Material). The upper facies (LU2) is draped with two 150 

carbonate flowstones, indicating a final change in hydrology and the passage of surface water out 151 

of the cave and the precipitation of laminar speleothem (Fig. 1C). 152 

 153 

Three bovid teeth (TNH2-10/CC10, TNH2-11/CC11, TNH2-12/CC12) recovered from the upper 154 

fossil-bearing breccia (LU2) were directly dated using coupled uranium series and electron spin 155 

resonance (US-ESR), providing a weighted mean age estimate of 151+/-37 thousand years ago 156 

(kyr) (2-sigma) (Fig. 1B; Tables S1, S2) and an age range of 188-117 kyr. Two large blocks of 157 

breccia (LCC1 and LCC2) from LU2 (upper) and one block of the silty clay unit (LCC3) from 158 

LU1 (lower) were removed for luminescence dating (Fig. 1B). These samples produced coeval 159 

age estimates of 143 ± 24 kyr (LCC1) and 133 ± 19 kyr (LCC2) for the deposition of the LU2 160 

breccia and 248 ± 31 kyr (LCC3) for the underlying LU1 silty clay deposit (Table S3). These 161 

ages are in stratigraphic agreement with the age of the overlying flowstone (CCF1), which was 162 

precipitated earlier than 104 ± 27 kyr based on the weighted mean of U-series age estimates on 163 

four separate sub-samples of flowstone carbonate (Table S4). Bayesian modelling was performed 164 

on all independent age estimates to determine an overall geochronological framework for the site 165 

and tooth (Supplementary Material and Fig. S3). The fossiliferous breccia including the tooth 166 

was deposited between 164-131 kyr (at 68% confidence limit). 167 

 168 

Fauna  169 
The Tam Ngu Hao 2 faunal assemblage comprises 186 identified dentognathic specimens (NISP) 170 

dominated by isolated teeth of large mammals, including several megaherbivores (Table S5). 171 

Their analyses reveal typical taphonomic pathways of assemblages from karstic systems in terms 172 

of representation of specimens and types of damage. Due to the energy associated with the 173 

deposition of  (LU2), only teeth of large mammals are present in the assemblage, and we note the 174 

absence of small and light teeth of any microvertebrates. Moreover, most teeth are gnawed by 175 

porcupines, known to be a major accumulator agent in the region 
24

. Therefore, the poor 176 
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preservation of specimens as shown in Fig. S15, precludes identification to the species level for 177 

most of the recorded taxa. The fauna bears close affinities to those known from the late Middle 178 

Pleistocene of southern China and northern Indochina and, to a lesser extent, Java, which is 179 

consistent with the sedimentary chronology of the site. It can be assigned to the ―Stegodon-180 

Ailuropoda faunal complex‖ 
25–28

. We note the absence of Neogene taxa that persist in the Early 181 

Pleistocene and that of two key-species, Pachycrocuta brevirostris and Gigantopithecus blacki, 182 

which are good indicators of pre-300 kyr faunas in the region 
29–31

. The archaic Stegodon 183 

persisted in Asia most likely until the end of the Late Pleistocene 
32

. We recovered herbivores 184 

including Tapirus, Stegodon, and Rhinocerotidae, animals that were adapted to canopied 185 

woodlands in the area. We also found animals such as the Bos species, small-sized Caprinae and 186 

large-sized Cervidae (possibly Rusa unicolor), which are all known to exhibit a great variability 187 

in their preferred habitats, from closed and intermediate forests to open grassland 
33

, and feeding 188 

behaviour.   189 

 190 

Ancient proteins analyses 191 
The enamel from the TNH2-1 tooth specimen was analysed using nanoLC-MS/MS and the 192 

recently developed approach for ancient enamel proteomes 
29

. The TNH2-1 proteome is 193 

composed of a common set of enamel-specific proteins, all of which have previously been 194 

observed in Pleistocene enamel proteomes 
34-36

 (Table S6). The enamel proteome has elevated 195 

levels of diagenetic protein modifications (Fig. S4A-D, Table S7) and preserves serine (S) 196 

phosphorylation within the S-x-E motif previously observed in ancient dental enamel 
34,35

 (Fig. 197 

S4E). Based on proteome composition and modification, as well as the absence of peptides 198 

matching to any of these proteins in our extraction and mass spectrometry blanks, we consider 199 

our proteomic data as indicative of endogenous proteins deriving from the sampled enamel.  200 

 201 

Unfortunately, no high-confidence peptides overlapped diagnostic amino acid positions with 202 

sequence differences between H. sapiens, Denisovans, or Neanderthals, making further 203 

taxonomic assignment based on palaeoproteomics impossible. This is in line with previous 204 

research, which indicated that closely related hominin populations can be distinguished based on 205 

dentine and bone proteomes, while enamel proteomes are less informative in the context of close 206 

phylogenetic proximity 
35

. Nevertheless, by comparing the sequences recovered from the TNH2-207 

https://paperpile.com/c/iVmnZg/AD6R+PHgo
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1 enamel proteome with that of extant hominids for which protein sequences are available, we 208 

find that the specimen belongs to a member of the genus Homo (Table S8).  209 

The absence of peptides specific to male-diagnostic amelogenin Y (AMELY) suggests that either 210 

the sampled molar was from a female individual or that AMELY-specific peptides were not 211 

observed due to degradation beyond the limit of detection of the instrument. 212 

 213 

External and internal structural analyses of the tooth 214 
Externally, the TNH2-1 crown displays a coarse wrinkling pattern that is found in Pleistocene 215 

Homo (H. erectus s.l., European and Asian Middle Pleistocene Homo and Neanderthals), but is 216 

rare in modern H. sapiens. The mid-trigonid crest is well developed as commonly recorded  in 217 

European Middle Pleistocene Homo and Neanderthals, while it is generally absent or less 218 

frequent in H. erectus s.l. and fossil and extant H. sapiens 
37

. Below the external surface, the 219 

enamel-dentine junction (EDJ) of the tooth shows the dentine horns of the five main cusps and of 220 

a tuberculum intermedium and a low but uninterrupted mid-trigonid crest (Fig. 2A-H, Fig. S2; 221 

Supplementary Material). The latter feature is generally found in Neanderthals (80-100% 222 

depending on the molar position) 
38-40

 but is less frequent in H. erectus s.l. and H. sapiens 
41–47

 223 

(Fig. S5). In addition, the EDJ of TNH2-1 shows an internally-positioned metaconid reminiscent 224 

of Neanderthal molars 
40

 and a low crown topography similar to that of H. erectus 
41–47

. These 225 

features, as well as a slight buccal shelf present on the EDJ of TNH2-1, are all expressed on the 226 

EDJ of the Denisovan molars from Baishiya Karst Cave (Xiahe, Gansu, China) (Fig. S5) 
15

. 227 

TNH2-1 dentine differs from the much higher and proportionally more mesiodistally compressed 228 

EDJ of Neanderthals and H. sapiens 
39,40

, as well as from the shorter dentine horns and more 229 

densely wrinkled occlusal basin of H. erectus s.l. 
41–47

 (Fig. S5). 230 

 231 

In terms of absolute dimensions, only Asian Middle Pleistocene Homo have larger tooth crowns 232 

than TNH2-1 (Tables S9, S10). TNH2-1 crown metrics are within the ranges of variation for H. 233 

erectus s.l., H. antecessor, Asian Middle Pleistocene Homo and Neanderthals, but they 234 

statistically differ from the smaller crowns of European Middle Pleistocene Homo and from 235 

Pleistocene and Holocene H. sapiens (Fig. 2I-J; Tables S10, S11). With respect to tooth crown 236 

tissue proportions, TNH2-1 has a high percentage of crown dentine (Vcdp/Vc: 55.37%) with 237 

moderately thick enamel as shown by absolute and relative enamel thickness values (3D AET: 238 

1.18 mm; 3D RET: 17.00; Table S12). These crown tissue proportions match to those of the 239 
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nearly unworn M2 of the Xiahe mandible 
15

 (Vcdp/Vc: 54.62%; 3D AET: 1.47 mm; 3D RET: 240 

18.97) and the upper molar of Denisova 4 (3D RET: 15.27; B. Viola, pers. comm.), but within 241 

the ranges of variation of all comparative fossil and extant human groups (Fig. S6A-C; Tables 242 

S12, S13). Three-dimensional maps of topographic enamel thickness distribution show that 243 

TNH2-1 has the thickest enamel at the top of the hypoconid and hypoconulid cusps and in the 244 

distobuccal quarter of the crown (Fig. S6D). In comparison, all other samples tend to have the 245 

thickest enamel distributed on all buccal cusps and more spread on the buccal aspect of the 246 

crown, even if variable between groups and between molar positions. The M2 of the Xiahe 247 

specimen shows thicker enamel spread along the buccal crown aspect but its distribution pattern 248 

is partly obliterated by occlusal wear.  249 

 250 

The EDJ shape of TNH2-1 was quantitatively compared with those of Pleistocene and Holocene 251 

human groups using geometric morphometrics (Supplementary materials). Landmark-based and 252 

surface deformation-based approaches were used, with both methods similarly distinguishing 253 

between H. erectus s.l., European Middle Pleistocene Homo and Neanderthals and H. sapiens 254 

using canonical variate and a between-group principal component analyses (Fig. 3, Fig. S7). 255 

Along CV2 and bgPC1, the higher EDJ and more externally set dentine horns of Neanderthals 256 

and H. sapiens are discriminated from the lower and more centrally positioned dentine horns of 257 

H. erectus molars. The CV1 and bgPC2 axes separate Neanderthals from modern humans, with 258 

the former having more internally placed mesial dentine horns and a more developed 259 

hypoconulid than the latter. TNH2-1 falls outside the ranges of all other groups. It has an 260 

intermediate EDJ shape between the low crown of H. erectus (but exceeding the variation of the 261 

latter group along CV1 and bgPC2) and the cusp position of Neanderthal molars (even if outside 262 

their range of variation along CV2 and bgPC1). TNH2-1‘s closest morphological affinity lies 263 

with the Denisovan specimen Xiahe, which also displays Neanderthal-like features (Fig. 3, Fig. 264 

S7).  265 

 266 

Discussion 267 

Reconstructing dispersals and ultimately evolutionary trajectories of Homo in Asia depends on a 268 

currently poor fossil record. The Asian late Middle Pleistocene fossil record is mostly limited to 269 

the eastern part of the continent 
4,8–10,15,48

. Any additional human remains from this time period 270 

documenting the evolution of Homo in southern Asia might thus help confirm previous 271 
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hypotheses or reveal new lineages. Proteomic analysis of the TNH2-1 molar indicates that it 272 

belongs to a female individual of the genus Homo. Morphometric analyses of the external and 273 

internal crown structural organisation allow us to reject a number of hypotheses regarding 274 

species assignment.  TNH2-1 has large crown dimensions and a complex occlusal surface that 275 

differentiates it from the smaller and morphologically simpler teeth of H. floresiensis 
49

, H. 276 

luzonensis 
50

 and H. sapiens. The EDJ shape shows a mixture of Neanderthal-like and H. 277 

erectus-like features, closely resembling the M1 morphology of the Denisovan specimen from 278 

Xiahe (Fig. 2, Fig. S5). The similarities between TNH2-1 and H. erectus are mostly related to the 279 

proportionally lower crown, although H. erectus molars display even lower molar crowns and a 280 

narrower occlusal basin (Fig. 2, Fig. S5). The Lao fossil shows clear Neanderthal-like features 281 

such as a well-developed mid-trigonid crest and internally-positioned mesial dentine horns, but 282 

differs with its much lower EDJ topography and occlusal basin shape.  283 

The differences from Neanderthals that we observe do not preclude TNH2-1 from belonging to 284 

this taxon and would make it the south-eastern-most Neanderthal fossil ever discovered. 285 

However, considering the morphological particularities of TNH2-1 in unison, as well as the 286 

high-degree of morphodimensional similarities with the molars of the Denisovan specimen from 287 

Xiahe, the most parsimonious hypothesis is that TNH2-1 belongs to this sister group of 288 

Neanderthals. If TNH2-1 indeed belongs to a Denisovan, this occurrence, along with the recent 289 

discovery of a Denisovan mandible from the Tibetan Plateau, a high-altitude, hypoxic 290 

environment 
15

, would suggest that this Pleistocene Asian population possessed a high degree of 291 

plasticity to adapt to very diverse environments 
51

. Available Denisovan dental remains indicate  292 

a mixture of traits consistent with the current paleogenetic evidence that Denisovans and 293 

Neanderthals are sister taxa 
13,14,51–53

 and are therefore expected to share some craniodental 294 

features 
15,54

. This is further supported by recent analyses that identified possible Denisovan 295 

skeletal characteristics based on unidirectional methylation changes including traits that have 296 

been linked to Chinese fossils such as Xujiayao and Xuchang 
9,54

. Denisovans are notable for 297 

their large dentition, with some Neanderthal-like crown features 
15,48,54

 , as well as distinctive 298 

cusp and root morphology 
14–16

. In the absence of molecular analyses, looking for these 299 

combined features in the Asian human fossil record, including in fossils like the Penghu 1 300 

mandible from the Taiwan Strait 
55

, may help identify more Denisovan specimens (Fig. S8). 301 
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The alternative hypothesis that TNH2-1 belongs to a group of Neanderthals that made an 302 

incursion into southeast Asia (see for example discussions on fossils that may demonstrate this 303 

dispersal from Maba and Dali)
56, 57

 cannot be outright rejected.       304 

 305 

The tooth from Tam Ngu Hao 2 Cave in Laos thus provides direct evidence of a Denisovan or 306 

Neanderthal female individual with associated fauna in mainland Southeast Asia by 164-131 kyr. 307 

This discovery further attests that this region was a hotspot of diversity for the genus Homo (Fig. 308 

S8), with the presence of at least five late Middle to Late Pleistocene species: H. erectus 
58

, 309 

Denisovans/Neanderthals, H. floresiensis 
49

, H. luzonensis 
50

 and H. sapiens 
20–22

.  310 

 311 

 312 

Data and material availability: All mass spectrometry proteomics data have been deposited in 313 

the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE 314 

partner repository with the dataset identifier PXD018721. 315 

 316 
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Fig. 1. Geomorphological context and stratigraphy of TNH2. A) aerial view of the site. The 515 

red circle indicates the entrance of Tam Ngu Hao 2 cave; B) stratigraphy and sampling locations 516 

of the infilling of the cave, showing Lithological Unit 1 and 2 (LU1 and LU2) with the erosional 517 

interface between these layers indicated by a dashed red line; Micromorphological 518 

(microstratigraphic) samples (MM1 and MM2) are also shown. Encircled numbers denote 519 

approximate positions of photographs in C, D & E; C) view of the flowstone capping the upper 520 

remaining part of LU2. D) detail of the arenitic breccia/conglomerate of LU2 ; E) detail of the 521 

arenitic silty clay of  LU1.522 
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 535 

 536 

Fig. 2. Morphological and metrical features of the TNH2-1 specimen. A-F, pictures of TNH2 537 

in occlusal (A), inferior (B), mesial (C), distal (D), buccal (E) and lingual (F) views. G-H, virtual 538 

renderings of the outer enamel surface (G) and enamel-dentine junction (H) in occlusal view 539 

showing the main morphological features. I-J, bivariate scatter plots of the mesiodistal and 540 

buccolingual crown dimensions of TNH2 compared with the M1s (I) and M2s (J) of H. erectus 541 

(HE), H. antecessor (HA), Middle Pleistocene Neanderthals (MNEA), Late Pleistocene 542 

Neanderthals (LNEA), Asian Middle Pleistocene Homo (AMPH), Late Pleistocene modern 543 

humans (LPMH) and Holocene humans (HH).544 
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 554 

Fig. 3. Canonical variate analysis (A) and between-group principal component analysis (B) 555 

of the EDJ deformation-based shape comparison of TNH2-1, H. erectus s.l., the Denisovan 556 

specimen from Xiahe, Neanderthals and H. sapiens.  557 


