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1.  Introduction
Ionospheric sporadic E (Es) layers are abnormal thin-layered structures of high electron density in the E region 
between 90 and 130 km altitude. The Es layer is remarkably thin, typically 0.1–10 km thick, and horizontally 
widespread, extending for more than 1,000 km (Qiu, Yu, et al., 2021; Tsai et al., 2018). The intense plasma irreg-
ularities within Es layers can cause perturbations and scintillation in radio signals due to a large vertical gradient 
in electron density. The influences of Es layers on radio communications are crucial for the accuracy, reliability, 
and further applications of modern real-time global navigation satellite system (GNSS) precise point positioning 

Abstract  The intense plasma irregularities within the ionospheric sporadic E (Es) layers at 90–130 km 
altitude have a significant impact on radio communications and navigation systems. As a result, the modeling 
of the Es layer is very important for the accuracy, reliability, and further applications of modern real-time 
global navigation satellite system precise point positioning. In this study, we have constructed an empirical 
model of the Es layer using the multivariable nonlinear least-squares-fitting method, based on the S4max 
from Constellation Observing System for Meteorology, Ionosphere, and Climate satellite radio occultation 
measurements in the period 2006–2014. The model can describe the climatology of the intensity of Es layers 
as a function of altitude, latitude, longitude, universal time, and day of year. To validate the model, the outputs 
of the model were compared with ionosonde data. The correlation coefficients of the hourly foEs and the 
daily maximum foEs between the ground-based ionosonde observations and model outputs at Beijing are 0.52 
and 0.68, respectively. The model can give a global climatology of the intensity of Es layers and the seasonal 
variations of Es layers, although the Es layers during the summer are highly variable and difficult to accurately 
predict. The outputs of the model can be implemented in comprehensive models for a description of the 
climatology of Es layers and provide relatively accurate information about the global variation of Es layers.

Plain Language Summary  Sporadic E (Es) layers are unusual clouds of intense ionization in the 
upper atmosphere. The Es layer causes anomalous long-distance propagation of radio waves; thus, it can have 
a significant impact on wireless radio communications. The effects of the Es layer on the global positioning 
system/global navigation satellite system (GNSS) radio occultation (RO) receivers can be used to study the 
global occurrence and intensity of Es layers. Even though the formation mechanism of the midlatitude Es 
layer is well-known and related to the ion vertical drift, its prediction is hard due to a large uncertainty in 
neutral winds from numerical models. In this study, we have constructed an empirical model of the Es layer 
based on the maximum value of the amplitude scintillation S4 index (S4max) from GNSS RO observations 
during the period 2006–2014. A function is fitted to the S4max data to provide the empirical model outputs 
continuously in altitude, latitude, longitude, time of day, and day of year. The model performance is validated 
by ground-based ionosonde data. This model can be used for applications requiring global climatology of Es 
layers or requiring the climatology of the Es layer at some location far from the observing ionosondes.
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(Yue et al., 2016). Because of the growing demand for reliable GNSS communication, position, navigation as 
well as the increasing use in GNSS applications in agriculture, avionics, sea, and location-based services (i.e., 
Fernandez-Prades et al., 2011), it is critical to track and predict these intense E-region plasma structures.

The most widely accepted mechanism for the formation of Es layers at midlatitudes is vertical neutral wind 
shear (J. Mathews, 1998; Whitehead, 1961, 1970). The Es layer is composed of long-lived metallic ions, such 
as Fe +, Na +, Mg +, and Ca + (Kopp, 1997; Plane et al., 2015). Metallic ions converge vertically to form a thin 
layer of intense ionization, as a result of vertical shears in zonal and meridional neutral winds. Many theoretical 
and numerical modeling studies have shown that the spatial distributions of the occurrence and intensity of Es 
layers are in general accordance with vertical ion convergence (VIC) by neutral wind shear (Arras et al., 2009; 
Chu et al., 2014; Koto et al., 1972; Niu, 2021a, 2021b; Qiu et al., 2019; Shinagawa et al., 2017; Yu et al., 2019). 
However, the wind shear theory does not account for the overall morphology of Es layers (Tang, Zhou, et al., 2021; 
Whitehead, 1989), particularly the seasonal variability with a large summer maximum (Yu et al., 2019). The 
discrepancies between the VIC and Es layers are attributed to the influences of other processes on the formation of 
Es layers, for example, gravity wave breaking in the upper atmosphere (Guo & Liu, 2021; A. Z. Liu et al., 2013), 
global distribution and variation of metallic ions (Shinagawa et al., 2017), intense geomagnetic activities (Tang, 
Zhao, et al., 2021; Yu, Scott, Xue, Yue, Chi, et al., 2021), and chemical reactions of metallic ions (Plane, 2012; J. 
Wu et al., 2021). Additionally, without an available routine measurement of global high-resolution thermospheric 
winds, the wind shear process in the E region is typically provided using numerical models, making validation of 
the predicted winds practically difficult. Shinagawa et al. (2021) compared the VIC by wind shear obtained from 
the GAIA model with the observed critical frequencies of Es layers (foEs) from an ionosonde. The correlation 
coefficient between daily average VIC and daily average foEs at 120 km altitude is 0.764, while the correlation 
coefficients at 110 and 130 km altitude are only 0.357 and 0.347, respectively. Thus, accurate forecasting is 
diffi cult to achieve. At present, the accuracy of the hourly foEs prediction by the numerical model is not sufficient. 
The correlation coefficient between the hourly foEs from ionosonde observations and hourly foEs from the model 
is 0.213 (Shinagawa et al., 2021).

The behavior of Es layers is dominantly controlled by wind shear convergence nodes and the Es layer presents 
pronounced 24-hr and 12-hr periodicities (Haldoupis,  2011; J. D. Mathews et  al.,  1997). J. Mathews  (1998) 
proposed that the Es layer is sporadic owing to instrumental limitations rather than physical properties. A sequen-
tial sporadic E layer has often been identified to appear by the Arecibo incoherent scatter radar. Based on GNSS 
radio occultation (RO) measurements from satellites, it has been confirmed that weak Es layers are not spatially 
sporadic, and thus, the “sporadic” E layers should be more frequent than we thought (Yu et al., 2020; Yu, Scott, 
Xue, Yue, & Dou, 2021). A case of global simultaneous Es layers was observed in a broad region by satellites 
and seven ground-based ionosondes (Yue et al., 2015). As a result, given that the Es layer occurs frequently and 
periodically, it is reasonable to construct a model of the global climatology of Es layers.

The ionospheric effects of plasma irregularities on GNSS signals from low Earth orbit-based receivers can be 
used to extract information on variations in electron density irregularities (Hu et al., 2014; Yue et al., 2016). 
The global occurrence and intensity of Es layers have been widely investigated using GNSS RO signals (D. L. 
Wu et al., 2005; Arras et al., 2008; Chu et al., 2014; Z. Liu, Fang, et al., 2021; Tsai et al., 2018; Yu et al., 2019). 
Prediction of Es layers remains rare, although it is practically important and widely studied. Recently, Yu, Xue, 
et al. (2021) proposed a generalized three-dimensional wind shear theory and found that a large-scale winter-to-
summer interhemispheric transport of long-lived metallic ions is responsible for the seasonal dependence of Es 
layers. Seasonal meridional transport plays an important role in the latitudinal distribution of Es layers in different 
seasons and thus influences the climatology of Es layers.

In this study, we have constructed an empirical model of the ionospheric Es layer using the multivariable nonlin-
ear least-squares-fitting method, based on GNSS RO measurements during 2006–2014 from the Constellation 
Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellites (Anthes et  al., 2008). The 
model describes the climatology of Es layers and represents the degree to which the Es layer is sporadic and 
climatological. The model describes the Es layer as a function of altitude, latitude, longitude, universal time (UT), 
and day of year (DOY). It can be implemented in comprehensive models for a description of the climatology of 
Es layers and provide relatively accurate information about the global variation of Es layers.
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2.  Radio Occultation Data
Ionospheric scintillation of radio signals occurs when a radio wave passes through plasma density irregularities 
in the ionosphere (Weber et al., 1985; Yue et al., 2014). The phase and amplitude scintillation in transionospheric 
radio signals are related to the temporal and spatial evolution of plasma irregularities. In general, the amplitude 
scintillation S4 index quantifies the amplitude of scintillation. The S4 index is defined as the standard deviation 
of the detrended intensity of received signals normalized to the average signal intensity (Briggs & Parkin, 1963), 
which is as follows:

𝑆𝑆4 =

√⟨(
𝐼𝐼 − ⟨𝐼𝐼⟩

)2
⟩

⟨𝐼𝐼⟩
,

� (1)

where I represents the square of the signal-to-noise ratio (SNR); and the bracket 𝐴𝐴 ⟨ ⟩ denotes the time average taken 

over one second. A low-pass temporal filter has been applied in 𝐴𝐴 ⟨𝐼𝐼⟩ to obtain a new average of the intensity 𝐴𝐴 ⟨𝐼𝐼⟩ 
at each second.

The COSMIC mission is a constellation of six low Earth orbit satellites launched in April 2006 (Schreiner 
et  al.,  2007). The primary payload of each satellite is a global positioning system (GPS) RO receiver. Six 
COSMIC satellites were initially spaced sequentially in the same orbit at approximately 512 km before being 
raised to orbits at 800 km in the following 17 months. The COSMIC mission can provide 2000–2500 RO profiles 
every day, almost distributed evenly in local solar time (Yue et al., 2014). Long-term COSMIC S4 data have been 
processed and archived from the SNR intensity fluctuations of RO signals by the COSMIC Data Analysis and 
Archive Center (CDAAC) (Schreiner et al., 2011).

In the present study, the maximum values of amplitude scintillation S4 index (S4max) data occurring at 
90–130 km altitudes over 9 years from 2006 to 2014 were used. The observations of S4max from COSMIC RO 
measurements have been used to investigate the climatology of the intensity of Es layers (Qiu, Yu, et al., 2021; 
Yu et al., 2019). The S4max index correlates well with foEs measured from global ground-based ionosondes (Yu 
et al., 2020). The S4max occurring at Es altitudes of 90–130 km is used as a proxy for the electron concentration 
within Es layers (Arras & Wickert, 2018; L. C. A. Resende et al., 2018; Yu et al., 2020; Yu, Scott, Xue, Yue, & 
Dou, 2021).

3.  Model Variables
We constructed an empirical model of the ionospheric Es layer by a five-dimensional polynomial. The five vari-
ables are altitude (alt), geographic longitude (lon), geographic latitude (lat), UT, and DOY. These variables are 
used to represent the temporal and spatial variations in S4max on a global scale.

Figure 1 shows the density plot of S4max from COSMIC RO data with altitude in the period 2006–2014. The 
distribution of the probability of S4max is close to a typical Gaussian function of altitude with a peak at approx-
imately 95 km. The distribution of S4max shows a gamma distribution. The number of S4max < 0.4 accounts 
for 73% of the S4max measurements ranging from 0 to 1. The blue crosses and yellow dots represent the mean 
and median S4max values at varying altitudes. The green line represents the curve over the mean S4max points 

fitted by a Gaussian function of altitude 𝐴𝐴 𝐴𝐴 = 0.15 ⋅ exp

(
−(𝑥𝑥−107.42)2

2⋅7.792

)
+ 0.22 . The variation in S4max shows that 

the intensity of the Es layer has a Gaussian function of altitude with a peak approximately 107 km.

The winds play a fundamental role in the formation and dynamic process of Es layers (Cai et  al.,  2017; 
Haldoupis, 2011; J. D. Mathews et  al., 1997; Yuan et  al., 2014). These thin electron density irregularities in 
the E region ionosphere have diurnal and semidiurnal periodicities (Cai et al., 2019; Pancheva et al., 2003). To 
study the local time variation in Es layers, the left panel of Figure 2 shows the local time-longitude distribution of 
S4max from COSMIC RO measurements in the period 2006–2014. The green horizontal line represents 18 LT. 
The S4max daily maximum is at around 18 LT and the S4max daily minimum is at around 6 LT. The right 
panel of Figure 2 shows the UT-longitude distribution of S4max with the daily maximum occurring at 18 LT 
represented by the green lines. The occurrence and intensity of Es layers exhibit strong diurnal and semidiurnal 
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variations from RO measurements GNSS-RO satellite measurements (Y. Liu et al., 2018; D. L. Wu et al., 2005) 
and ground-based ionosondes (Pancheva et al., 2003; Pignalberi et al., 2014, 2015; Qiu, Zuo, et al., 2021; Šauli & 
Bourdillon, 2008; Whitehead, 1989). The low-latitude Es layer presents a relatively strong diurnal variation and 
the midlatitude Es layer presents a relatively strong semidiurnal variation (Chu et al., 2014; D. L. Wu et al., 2005; 
Yu et al., 2020).

Figure 3 shows the geographic latitude-DOY distribution of S4max and the geomagnetic latitude-DOY distri-
bution of S4max from COSMIC RO measurements in the period 2006–2014. The seasonal dependence of Es 
layers was found to be associated with the winter-to-summer interhemispheric transport of metallic ions by 

Figure 1.  Density plot of S4max from Constellation Observing System for Meteorology, Ionosphere, and Climate radio 
occultationmeasurements with altitude in the period 2006–2014. The blue crosses and yellow dots represent the mean and 
median S4max values. The green line represents the curve over the mean S4max points fitted by a Gaussian function of 
altitude.

Figure 2.  Left panel: local time-longitude distribution of S4max from Constellation Observing System for Meteorology, 
Ionosphere, and Climate radio occultation measurements in the period 2006–2014. The green horizontal line represents the 
diurnal variation in S4max with a daily maximum occurring at approximately 18 LT, which is also plotted in the right panel: 
universal time-longitude distribution of S4max.
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the lower thermospheric meridional circulation (Yu, Xue, et  al.,  2021). In Figure 3, the Es layer represented 
by S4max migrates from the southern midlatitudes of 30°S–60°S in January to the northern midlatitudes of 
20°N–50°N in July, followed by transport backwards to the southern midlatitudes of 30°S–60°S in December. 
The Es layer mainly resides over midlatitudes and is weaker at low-latitudes, particularly the gap near the equator 
(Yu et al., 2019). Therefore, we described the Es layer as a function of latitude by a double-Gaussian fitting to 
exhibit the migration of Es layers with DOY from the Southern Hemisphere to the Northern Hemisphere and the 
relatively strong Es layers at midlatitudes.

Figure 4 shows the altitude-local time, altitude-DOY, altitude-latitude, and altitude-longitude distributions of 
S4max from COSMIC RO measurements in the period 2006–2014. S4max is a function of altitude by a Gaussian 
distribution as shown in Figure 1. In the second panel of Figure 4, the annual and semiannual periodic variations 
are found in the seasonal-to-interannual time series of S4max. The annual and semiannual variations in S4max 
were described using a 2-order trigonometric function of DOY.

Furthermore, the longitudinal wavenumber-4 (WN4) structure is observed in the occurrence and intensity of 
Es layers at low latitudes and midlatitudes (Z. Liu, Fang, et al., 2021; Z. Liu, Li, et al., 2021; Niu, 2021b; Niu 
et al., 2019). The occurrence of the WN4 structures strongly depends on the season. Figure 5 shows the global 
distribution of S4max from COSMIC RO measurements in the spring (March, April, and May) and autumn 
(September, October, and November). A low S4max is observed near the geomagnetic equator. As a result of the 
parallel magnetic field preventing the ionized particles from efficiently vertically converging, the Es layer is weak 
at the geomagnetic equator. The WN4 pattern of the Es layer is very significant at low latitudes of 30°S–30°N. 
Therefore, the longitudinal variation in S4max was described using a 4-order trigonometric function of longitude.

Figure 3.  Left panel: geographic latitude-day of year (DOY) distribution of S4max from Constellation Observing System for 
Meteorology, Ionosphere, and Climate radio occultation measurements in the period 2006–2014. Right panel: geomagnetic 
latitude-DOY distribution of S4max.

Figure 4.  Left to right panels: altitude-local time, altitude-day of year, altitude-latitude, and altitude-longitude distributions 
of S4max from Constellation Observing System for Meteorology, Ionosphere, and Climate radio occultation measurements in 
the period 2006–2014.
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4.  Mathematical Formulation
The empirical model of the Es layer was constructed by a nonlinear least square fitting method based on S4max 
from COSMIC RO measurements in the period 2006–2014. The coefficient matrix of the nonlinear polynomial 
function is a least-square-approximation solution for all the S4max data points. This method has been applied 
to ionospheric empirical models, for example, the ionospheric electron density model (Kakinami et al., 2008), 
the total electron content (TEC) model (Jakowski et  al.,  2011), and the F2-layer peak density model (Z. Liu 
et al., 2019). The function of S4max was constructed using five variables as expressed below:

𝑆𝑆4𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑓𝑓1(𝑎𝑎𝑎𝑎𝑎𝑎)𝑓𝑓2(𝑈𝑈𝑈𝑈 )𝑓𝑓3(𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 )𝑓𝑓4(𝑙𝑙𝑙𝑙𝑙𝑙)𝑓𝑓5(𝐷𝐷𝐷𝐷𝐷𝐷 ),� (2)

The base functions from f1 to f5 are given as:

𝑓𝑓1 = 𝑎𝑎0 + 𝑎𝑎1exp

(
−(𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑎𝑎2)

2

2 ⋅ 𝑎𝑎2
3

)
,� (3)

𝑓𝑓2 = 𝑏𝑏0 +

2∑

𝑖𝑖=1

𝑏𝑏1𝑖𝑖 ⋅ cos

(
𝑖𝑖2𝜋𝜋 ⋅ (𝑈𝑈𝑈𝑈 + 𝑙𝑙𝑙𝑙𝑙𝑙∕15 + 𝑏𝑏2𝑖𝑖)

24

)
,� (4)

𝑓𝑓3 = 𝑐𝑐0 + 𝑐𝑐1exp

⎛
⎜
⎜
⎜⎝

−

(
𝑙𝑙𝑙𝑙𝑙𝑙 −

(
𝑐𝑐2 ⋅ cos

(
2𝜋𝜋⋅(𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑐𝑐3)

365.25

)
+ 𝑐𝑐4

))2

2 ⋅ 𝑐𝑐2
5

⎞
⎟
⎟
⎟⎠

+ 𝑐𝑐6exp

(
−𝑙𝑙𝑙𝑙𝑙𝑙2

2 ⋅ 𝑐𝑐7

)
,� (5)

𝑓𝑓4 = 𝑑𝑑0 +

4∑

𝑖𝑖=1

𝑑𝑑1𝑖𝑖 ⋅ cos

(
𝑖𝑖2𝜋𝜋 ⋅ (𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑑𝑑2𝑖𝑖)

360

)
,� (6)

𝑓𝑓5 = 𝑒𝑒0 +

2∑

𝑖𝑖=1

𝑒𝑒1𝑖𝑖 ⋅ cos

(
𝑖𝑖2𝜋𝜋 ⋅ (𝐷𝐷𝐷𝐷𝐷𝐷 + 𝑒𝑒2𝑖𝑖)

365.25

)
,� (7)

The altitude variation of S4max was described by a Gaussian function of f1. A 2-order trigonometric function 
was adopted in f2 to describe the diurnal and semidiurnal variations. f3 can capture the winter-to-summer inter-
hemispheric movement of metallic ions, which contributes to the seasonal variation in Es layers and considerable 

Figure 5.  Global distribution of S4max from Constellation Observing System for Meteorology, Ionosphere, and Climate 
radio occultation measurements in the period 2006–2014. Plots for the spring (March, April, and May) in the top panel and 
the autumn (September, October, and November) in the bottom panel.
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latitude dependence of the Es layer that occurs predominantly at midlatitudes. The longitudinal variation is 
described by f4. The annual and semiannual variations are described by f5. The base functions from f1 to f5 and the 
corresponding parameters are shown in Table 1.

5.  Model Results
Figure 6 shows the density scatter plot of S4max model outputs versus S4max observations. The correlation 
coefficient between S4max outputs and observations from RO measurements is 0.48. The model outputs are 
moderately correlated with the observations. The p value (≪0.01) represents that the correlation coefficient has 
statistical significance. When the p value is smaller than 0.05, the correlation coefficient is considered to have 
statistical significance. The model overestimated small S4max values and underestimated large S4max values. 
This is because, in this study, the model provides a climatology of Es layers, while other electrodynamic processes, 
for example, the neutral wind shear effect on the vertical motion of ions (Yu et al., 2019) and the geomagnetic 
activity effect on the significant periodic oscillations in Es layers (Yu, Scott, Xue, Yue, Chi, et al., 2021), have 
not yet been included. Carmona et al. (2022) compared observations of Es layers from five different GPS-RO 
techniques with ionosonde measurements over 8 years and found that the Yu et al. (2020) method, which uses 
the S4max index, shows better agreement with the measurements obtained from worldwide ground-based iono-
sondes. The results presented here show that the empirical model of Es layers can be made using S4max from 

Variable Range No. of CO-EFF Function

Altitude [90, 130] 4
𝐴𝐴 𝐴𝐴1 = 1.341 + 0.832𝑒𝑒𝑒𝑒𝑒𝑒

(
−(𝑎𝑎𝑎𝑎𝑎𝑎−108.219)2

2⋅8.1952

)
 

Universal Time [0, 24] 5
𝐴𝐴 𝐴𝐴2 = 0.462 + 0.120 ⋅ cos

(
2𝜋𝜋 ⋅ (𝑈𝑈𝑈𝑈 + 𝑙𝑙𝑙𝑙𝑙𝑙∕15+ 7.567)

24

)
+ 0.029 ⋅ cos

(
2𝜋𝜋 ⋅ (𝑈𝑈𝑈𝑈+𝑙𝑙𝑙𝑙𝑙𝑙∕15+ 2.610)

12

)
 

Latitude [−90, 90] 8
𝐴𝐴 𝐴𝐴3 = 0.796 + 1.582𝑒𝑒𝑒𝑒𝑒𝑒

(
−

(
𝑙𝑙𝑙𝑙𝑙𝑙+32.774 ⋅ cos

(
2𝜋𝜋⋅(𝐷𝐷𝐷𝐷𝐷𝐷 −0.206)

365.25

)
+0.723

)2

2⋅32.3682

)
− 0.341𝑒𝑒𝑒𝑒𝑒𝑒

(
−𝑙𝑙𝑙𝑙𝑙𝑙2

2⋅12.099

)
 

Longitude [−180, 180] 9
𝐴𝐴 𝐴𝐴4 = 0.072 − 0.005 ⋅ cos

(
2𝜋𝜋 ⋅ (𝑙𝑙𝑙𝑙𝑙𝑙−6.705)

360

)
− 0.004 ⋅ cos

(
2𝜋𝜋 ⋅ (𝑙𝑙𝑙𝑙𝑙𝑙+144.419)

180

)
 

𝐴𝐴 − 0.0005 ⋅ cos

(
2𝜋𝜋 ⋅ (𝑙𝑙𝑙𝑙𝑙𝑙−4.033)

120

)
− 0.001 ⋅ cos

(
2𝜋𝜋 ⋅ (𝑙𝑙𝑙𝑙𝑙𝑙+11.302)

90

)
 

DOY [1, 365] 5
𝐴𝐴 𝐴𝐴5 = 3.996 − 0.245 ⋅ cos

(
2𝜋𝜋 ⋅ (𝐷𝐷𝐷𝐷𝐷𝐷 +24.060)

365.25

)
+ 0.900 ⋅ cos

(
2𝜋𝜋 ⋅ (𝐷𝐷𝐷𝐷𝐷𝐷 −178.470)

182.625

)
 

Table 1 
Summary of Base Functions and Parameters in the Model

Figure 6.  Density scatter plot of S4max model outputs versus S4max observations.
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satellite RO measurements, although the prediction of Es layers is severely constrained at present due to a lack 
of  sufficient thermospheric wind data.

Figure 7 shows the statistical analyses of the difference between the S4max model outputs and S4max obser-
vations in the period 2006–2014. The S4max difference between the model and data shows a typical Gaussian 
distribution. The mean and the root mean square error are 0.00 and 0.33, respectively. The lower quartile is 
−0.113, while the upper quartile is 0.189, as seen in the box plot. Some points that fall outside of 1.5 times the 
inner quartile range, represented by black lines on both sides of the quartile box, indicate that some S4max values 
from the model outputs are overestimated and underestimated. The majority of outliers are found on the left side 
of the inner quartile range. The S4max from the model is often underestimated due to a lack of wind shear effects 
on the formation of intense Es layers in the model.

To evaluate the model performance, the distributions of S4max from the model outputs are shown in Figures 8 
and 9. Figures 8a and 8b show the local time-longitude and UT-longitude distributions of S4max from the model 
outputs, which are consistent with the S4max observations in Figure 2. In addition to the diurnal variation in the 
Es layer, Figures 8c and 8d show the geographic latitude-DOY and geomagnetic latitude-DOY distributions from 

Figure 7.  Statistical analyses of the difference between S4max model outputs and S4max observations in the period 
2006–2014.

Figure 8.  Results from model outputs: (a) local time-longitude, (b) universal time-longitude, (c) geographic latitude-day of 
year (DOY), and (d) geomagnetic latitude-DOY distributions of S4max.
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the model. The latitudinal distributions of S4max show a meridional movement of Es layers in the latitudes of 
±60°, consistent with the distributions in Figure 3. The altitudinal distribution of S4max is a function of local 
time, DOY, latitude, and longitude. In comparison with S4max observations from RO measurements, the S4max 
altitudinal distributions from the model in Figure 9 generally agree with the observations in Figure 4. In addition, 
the model can describe the annual and semiannual variations of Es layers.

Figure 10 shows the global distributions of the intensity of Es layers at 0 UT in the four seasons, represented by 
S4max from satellite RO observations and the model outputs in the period 2006–2014. The morphologies of the 
Es layers in the four seasons from the model agree with the observations. The seasonal variations dominate the 
variability of the Es layers, with a maximum in the summer hemisphere and a minimum in the winter hemisphere. 
The intense Es layer with S4max values exceeding 0.5 is predominantly distributed at midlatitudes. The Es layer 
is weaker in the lower latitudes in both hemispheres. The weakest Es layers with S4max values less than 0.1 can 
be found at 60°E longitude. These features of the climatology of Es layers are reproduced by the model.

Figure 11 shows the global distributions of the intensity of Es layers at 12 UT in the four seasons, represented 
by S4max from satellite RO observations and the model outputs in the period 2006–2014. The peaks of S4max 
values exceed 0.5 at 20°W and 120°E longitudes. The S4max minimum is at 120°W longitude. In addition to 
the seasonal variation in Es layers, the model can also reproduce the longitudinal structure in the Es layer, for 
example, the WN4 patterns as a result of the influence of lower atmospheric non-migrating tides (Z. Liu, Li, 
et al., 2021; Niu, 2021b).

Figure 9.  The same as Figure 4 but S4max from the model outputs.

Figure 10.  Global distributions of the intensity of Es layers at 0 UT in the four seasons, represented by S4max from satellite radio occultation observations and the 
model outputs in the period 2006–2014. Plots for the autumn (September, October, and November) in the top left, the winter (December, January, and February) in the 
top right, the spring (March, April, and May) in the bottom left, and the summer (June, July, and August) in the bottom right.
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To further examine the model performance, the S4max from the model based on COSMIC satellite RO data was 
compared to the hourly manually scaled critical frequencies of Es layers, foEs, obtained from a ground-based 
ionosonde at Beijing (40.3°N, 116.2°E). Figure 12 shows the density scatter plot of the hourly foEs from the 
Beijing ionosonde versus the hourly S4max model outputs in the period 2006–2014. The orange and white 
contour lines represent the number of data accounting for 50% and 90% satellite RO measurements. The red line 
represents a linear least-squares fit with the standard deviation from the mean within a 0.15 S4max band as an 
error, which yields the relation between foEs and S4max model outputs foEs = 2.51 + 3.22× S4max (correlation 
coefficient: r = 0.52, p « 0.01).

Figure 11.  The same as Figure 10 but at 12 UT.

Figure 12.  Density scatter plot of the hourly manually scaled foEs measured by an ionosonde at Beijing versus the hourly 
S4max model outputs in the period 2006–2014. The orange and white contour lines represent 50% and 90% of the number of 
data. The red line represents the linear least-squares fit with the standard deviation from the mean within a 0.15 S4max band.
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Figure 13 shows a comparison of the hourly foEs from the ionosonde obser-
vations at Beijing (blue) with the hourly foEs from the S4max model by the 
fitting equation foEs = 2.51 + 3.22× S4max (red). The Es layer is more likely 
to be beyond the climatology in summer, possibly due to stronger vertical 
convergences of ions caused by wind shear, horizontal movement of metal-
lic ions (Yu, Xue, et al., 2021), and significant dynamical/electromagnetic 
coupling between the lower and upper atmosphere (Davis & Johnson, 2005; 
Yu et al., 2015). The model can describe the diurnal and seasonal variations 
in Es layers, but it cannot capture the significant variability of Es layers during 
summer. The vertical shear effects on the midlatitude Es layer formation are 
not included due to the lack of global high-resolution thermospheric wind 
measurements in the model.

Figure  14 shows the density scatter plot of the daily maximum foEs from 
the ionosonde at Beijing versus the daily maximum S4max model outputs 
in the period 2006–2014. The orange and white contour lines represent the 
number of data accounting for 50%, and 80% of satellite RO measurements. 
A linear relationship (r = 0.68, p « 0.01) between the foEs and S4max model 
outputs was found to be foEs = 2.06 + 5.77× S4max. The least-square fit is 
represented as a red line, with its uncertainty represented by the standard 
deviation. The results show that the model can describe the climatology of 

daily Es layers, although the correlation between ionosonde observations and model outputs based on S4 from 
the COSMIC satellite RO data may be influenced by differences in the observational geometry of ground-based 
ionosondes and satellite RO measurements (Yue et al., 2016; Zeng & Sokolovskiy, 2010), as well as the local 
ionospheric variability within 1 day.

Figure 15 shows a comparison of the daily maximum foEs from the ionosonde observations at Beijing with the 
daily maximum foEs from the S4max model by the fitting equation. The model outputs of foEs are moderately 
correlated with foEs from the ionosonde. The difference between the observations and model primarily results 
from the “sporadic” characteristics of Es layers represented by the deviations from the ionospheric climatology.

6.  Discussion
Carmona et  al.  (2022) compared the observations of Es layers from five 
different GPS-RO techniques (i.e., L1, L2 amplitude SNRs, and phase 
perturbations (Chu et al., 2014), L1 SNR (Arras & Wickert, 2018), TEC (Niu 
et al., 2019), excess phase and TEC (Gooch et al., 2020), and the maximum 
amplitude scintillation S4 index (S4max) (Yu et  al.,  2020)) against obser-
vations from ground-based ionosondes in the Global Ionosphere Radio 
Observatory network. Among the five techniques, the methodology by Yu 
et al. (2020) using the S4max index is one recommended method for studying 
the climatology of Es layers, since it shows better agreement with measure-
ments from ionosondes in most circumstances (Carmona et al., 2022). The 
intensity of Es layers can be obtained from the S4max model outputs. Note 
that the linear regression equation between the foEs and S4max model outputs 
may be slightly different due to the geographic location and different types 
of ionosondes. The performance of the model may potentially be improved 
by combining the amplitude and phase of the L1/L2 signals in the GNSS RO 
data.

The S4max data from the GNSS RO measurements were used to describe 
the global variability of the Es layer. The results presented here show that it 
is a practical approach to construct an empirical model of the climatology of 
Es layers based on sufficiently large GNSS RO data. In Figures 10 and 11, 
we found that the Es layers at high latitudes cause the most disagreements 

Figure 13.  Comparison of the hourly foEs from the ionosonde observations 
at Beijing with the hourly foEs derived from the S4max model outputs by the 
fitting equation.

Figure 14.  Density scatter plot of the daily maximum foEs measured by an 
ionosonde at Beijing versus the daily maximum S4max model outputs in the 
period 2006–2014. The orange and white contour lines represent 50% and 80% 
of the number of data. The red line represents the linear least-squares fit with 
the standard deviation from the mean within a 0.15 S4max band.
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between the model outputs and the observations, although the morphology 
of Es layers can be reproduced by the model. One shortcoming of the model 
is that it mainly describes the meridional movement of Es layers in the lati-
tudes of ±60° while the high-latitude Es layers were not well defined in the 
latitudinal distribution of the model. Besides, the influences of solar activity, 
equatorial electrojet current plasma instabilities, and geomagnetic distur-
bances are not yet included in the model. The short-term variations in the 
low- and high-latitude Es layers are associated with fast solar wind streams 
(Davies, 1990; L. Resende et al., 2021) and recurrent geomagnetic activity 
(Yu, Scott, Xue, Yue, Chi, et al., 2021).

The global morphology of Es layers generally agrees with the morphology 
of VIC from the Horizontal Wind Model (Qiu et al., 2019). However, the 
comparison of hourly foEs values from ionosonde observations and average 
VIC using the GAIA model indicates that the large uncertainty in thermo-
spheric winds from current numerical models makes accurate prediction of the 
Es layer a technical challenge, due to the lack of high spatial-resolution global 
wind measurements in the mesosphere and lower thermosphere (Shinagawa 
et al., 2021). A recent study shows a good relationship between the Es layer 

and the vertical wind shear measured from the Ionospheric Connection Explorer (Yamazaki et al., 2022). There-
fore, we will address the shortcomings of the model in the future work by including more input factors (e.g., 
strong wind shears, solar activity, geomagnetic disturbances, lower atmosphere perturbations, and variations in 
meteor flux).

7.  Conclusions
In this study, we have constructed an empirical model of the ionospheric Es layer using the multivariable nonlin-
ear least-squares-fitting method, based on S4max data retrieved from COSMIC satellite RO measurements in the 
period 2006–2014. The empirical model describes the intensity of Es layers as a function of altitude, latitude, 
longitude, UT, and DOY. The model not only provides a global climatology of the intensity of Es layers, but also 
captures the seasonal variations of Es layers (Yu, Xue, et al., 2021) and the significant latitude dependence of the 
Es layer, which occurs predominantly at midlatitudes (Tsai et al., 2018; Yu et al., 2019).

The S4max model outputs were compared to the hourly manually scaled observations of foEs from a ground-based 
ionosonde at Beijing. The model can reproduce the diurnal and seasonal variations in Es layers, while the variabil-
ity of Es layers with a significant deviation from climatology during summer was not presented in the model. The 
correlation coefficient between the hourly foEs and the S4max model outputs in the period 2006–2014 is 0.52. 
The correlation coefficient between the daily maximum foEs and the S4max model outputs is 0.68. The largest 
discrepancies between the model and observations are at the high-latitude Es layers. The differences result from 
the simplified spatial distribution of the Es layer, especially for the latitudinal variation. In this study, we mainly 
focus on constructing a climatological model of the Es layer. In future work, we will improve the model by incor-
porating more year-to-year variables, including Kp, F10.7 parameters, and wind fields.

Data Availability Statement
The Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) satellite radio occul-
tation data are available from the COSMIC Data Analysis and Archive Center website (https://data.cosmic.ucar.
edu/gnss-ro/). The ionosonde data are available from the Data Centre for Meridian Space Weather Monitoring 
Project (https://data.meridianproject.ac.cn/data-directory/) and the Geophysics Center, National Earth System 
Science Data Center at BNOSE, IGGCAS (http://wdc.geophys.ac.cn/dbView.asp?IonoPublish).

Figure 15.  Comparison of the daily maximum foEs from the ionosonde 
observations at Beijing with the daily maximum foEs derived from the S4max 
model outputs by the fitting equation.

https://data.cosmic.ucar.edu/gnss-ro/
https://data.cosmic.ucar.edu/gnss-ro/
https://data.meridianproject.ac.cn/data-directory/
http://wdc.geophys.ac.cn/dbView.asp?IonoPublish
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