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Abstract: We leverage the attention mechanism to investigate and comprehend the contribution
of each input symbol of the input sequence and their hidden representations for predicting the
received symbol in the bidirectional recurrent neural network (BRNN)-based nonlinear equalizer.
In this paper, we propose an attention-aided novel design of a partial BRNN-based nonlinear
equalizer, and evaluate with both LSTM and GRU units in a single-channel DP-64QAM 30Gbaud
coherent optical communication systems of 20 × 50 km standard single-mode fiber (SSMF) spans.
Our approach maintains the Q-factor performance of the baseline equalizer with a significant
complexity reduction of ∼56.16% in the number of real multiplications required to equalize
per symbol (RMpS). In comparison of the performance under similar complexity, our approach
outperforms the baseline by ∼0.2dB to ∼0.25dB at the optimal transmit power, and ∼0.3dB to
∼0.45dB towards the more nonlinear region.
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1. Introduction

The era of big data stimulates the tremendously increasing demand of data-rich applications such
as Internet of Things (IoT) and multimedia services enabled by 5G communications. Service
providers and researchers have therefore raised unprecedented interest in achieving reliable
high-capacity optical transmissions [1]. However, fiber nonlinearities are still considered to be
major impairments that limit the achievable capacity in coherent point-to-point transmission
systems [2–4]. Digital signal processing (DSP)-based equalization techniques at the receiver
end, such as digital backpropagation (DBP) [5,6], Volterra series nonlinear equalizer (VSNE)
[7,8], and perturbation-based nonlinearity equalization [9], to mention a few important example,
have been studied extensively over the past few decades to combat optical fiber nonlinear effects.
However, these advanced DSP equalization algorithms can only be applied in static connections,
as they require prior knowledge of the optical link characteristics (in their original form). Hence,
they rely heavily on channel parameters for their computations [10]. Fortunately, machine learning
(ML), and especially neural networks (NN), have caught the attention of the research community
in the last decade for their ability to learn latent features and underlying connections [11]. They
may be used for nonlinear signal equalization without the need to acquire link knowledge in
advance. Several NN-based nonlinear equalizers have been proposed as an appended block
after chromatic dispersion compensation (CDC) [12–15]. These NN-based nonlinear equalizers
adopt several NN structures, such as multilayer perceptrons (MLPs) [12,13], convolutional neural
networks (CNNs) [14], and recurrent neural networks (RNNs) [15].

Whilst chromatic dispersion (CD) can be efficiently equalized with linear signal processing, its
interplay with nonlinearity results in a nonlinear channel memory effect that requires further
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equalisation. The use of delay blocks at the input of the NN is first proposed in [12] to take
into account channel memory. Such NN architectures consider the received, proceeding, and
succeeding symbols together as input and are therefore referred to as “dynamic”. To this end,
RNNs are popular for their ability to capture temporal dynamic behavior and processes sequential
information [16]. A typical unidirectional RNN models the dependence of the current state on
the previous state and is principally used for processing data with memory, such as speech and
signals affected by inter-symbol interference (ISI) [11]. Moreover, bidirectional RNNs (BRNNs)
extend traditional unidirectional RNNs to model the dependence on both past and future states
[17]. As a result, several works have investigated RNN-based nonlinear equalizers that consider
dynamic sequential input [15,18–21]. These equalizers use long short-term memory (LSTM)
[22] and gated recurrent unit (GRU) [23] as the unit structures of the RNNs [15,21] for their
capability to learn long term dependencies with gated controls of the input [16]. The notable
performance of the BRNN-based equalizers has been validated and confirmed in [19,20].

Despite the great potential of the BRNNs for non-linear equalization, the considerable number
of multiplications performed by the gate operations inside the RNN units is still a major concern.
The complexity in terms of the number of real multiplications per equalized symbol (RMpS)
is strongly correlated with the input sequence length and the number of hidden units of the
RNN. Some low-complexity designs have been proposed to reduce such complexity [18,21]. For
example, for the bidirectional RNN, GRUs have been used in [21] instead of the more commonly
used LSTMs [19]. The work in [18] uses unidirectional RNNs and only includes the preceding
half of the symbols as the input. However, these designs either attempt to utilize a new unit
structure with a full-length sequence input, or make changes to the input based on trial and error
methods rather than understanding the relevance and effects of the input length. It is therefore
crucial to investigate and comprehend the role of the input symbols within the input sequence in
order to effectively design low-complexity BRNN-based nonlinear equalizers.

To understand the high-level contribution of the preceding and succeeding symbols in the
input sequence and their hidden representations to the equalization of the received symbol, we
leverage the attention mechanism. Attention is first introduced in neural machine translation
(NMT) for sequence-to-sequence tasks [24]. Its original purpose is to search for the most relevant
parts of the input sentence for the prediction of target words. This mechanism can be of great use
for nonlinear optical signal equalization, where the input symbols can be regarded as an input
sequence with memory and the predicted received symbol as the target. [25] integrates attention
mechanism for pruning the fully-connected output layer of the nonlinear equalizer for complexity
reduction, however there are neither detailed nor clear descriptions of the complexity reduction
and the pruning process, and also no rigorous calculations regarding the complexity presented.
The attention mechanism can be further explored in such equalizer. In this paper, we consider
the Q-factor as the performance metric in a single channel dual-polarization (DP) 64 quadrature
amplitude modulation (QAM) coherent optical transmission system transmitting at 30GBaud
along 20 × 50km standard single mode fiber (SSMF) spans. We choose the BiLSTM equalizer in
[20] as the baseline model. The main contributions of this paper are summarized as follows:

1) We apply an attention mechanism on both the forward and backward directions of the
BiLSTM layer of the equalizer. We leverage the information obtained through the
attention block to understand and identify which symbols within the input symbol sequence
contribute the most to the equalization.

2) We propose a low-complexity partial BRNN-based equalizer with GRU units, which
utilizes the attention information acquired through the attention block. We show that our
design has better performance than the baseline structure with less complexity.

The rest of the paper is organized as follows. We briefly review important concepts related to
RNNs in Section 2. Section 3. presents the attention-assisted partial BRNN equalizer, where the
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attention mechanism is introduced in Section 3.1, its application in BRNN equalizers in Section
3.2, and the proposed partial BRNN equalizer in Section 3.3. Section 4. shows the numerical
system setup and results, including the simulation results with the added attention block and
the performance and complexity comparisons between our proposed equalizer and the baseline.
Finally, Section 5. concludes the paper.

2. Related work

2.1. Recurrent neural networks

A recurrent neural network (RNN) extends the feed-forward neural network to one that processes
arbitrary input sequences by capturing the sequential information i.e. time dependence from
the input data. RNN comprises recurrent hidden states, whose activation at each time step is
dependent on that of the previous time step [26]. Therefore, RNN can be used to learn, for
example, the nonlinear memory of a communication channel and handle inter-channel interference
(ISI) [11,16,27]. For the classic, or “vanilla” RNN, each unit takes the hidden state of the
preceding unit and outputs a current state [11]. Specifically, a sequence of vectors xt is taken as
the input such that

ht = f (xt, ht−1), (1)

where ht ∈ IRn is a hidden state at time t, and f represents an activation function/nonlinear
operation. The hidden states are often transformed into a “context vector” c, which summarizes
the hidden states as:

c = q({h1, . . ., hTx }), (2)

where q is a nonlinear function and Tx is the input length.
It is, however, known that the vanilla RNN can often suffer from the infamous vanish-

ing/exploding gradients problem [11]. To solve this impeding issue, some variations such as
LSTMs and GRUs, have been introduced [16], which are briefly reviewed next.

2.2. LSTM and GRU

LSTMs can learn the long-range temporal dependencies of a sequential input [22]. GRUs can
also learn such long-term dependencies [24], but with less complexity due to its reduced gate
operations, and in our work we will deal with LSTMs and GRUs. The structure details of LSTMs
and GRUs and their corresponding gated operations are introduced in [16] and [26]. We consider
LSTM as is used in the baseline equalizer, meanwhile GRU has less complicated unit structure,
and the performance of it has been validated in [21] for nonlinearity equalization in a 120 Gb/s
64-QAM coherent optical communication system with a transmission distance of 375 km.

2.3. Bidirectional RNN

An RNN can also be used with a reverse input sequence, i.e., from end to start [28]. When used
in conjunction with the sequence from start to end, it exploits both preceding and future hidden
states. This is done by concatenating the output of two RNNs, which is called the bidirectional
RNN (BRNN). Hereinafter, we refer to NN-based equalizers that used bidirectional RNNs as
BRNN equalizer, and we differentiate them only when we refer to the specific unit structures
used, such as LSTMs and GRUs. We refer to BRNN with LSTMs and GRUs as BiLSTM and
BiGRU. A BRNN consists of a forward RNN from the start x1 to the end xTx of a sequence and a
backward one in reverse order from the end xTx to the start x1 [17].
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The hidden state hj at time j that concatenates its forward hidden state h⃗j and its backward
hidden state

←
hj, together with the overall BRNN output hidden states h, are written as:

hj =
[︂
h⃗⊤j ;

←
h
⊤
j

]︂⊤
, where j = 1, . . ., Tx,

h =
[︂
h1; · · · ; hTx

]︂
.

(3)

2.4. BRNN-based nonlinear equalization in coherent optical communication systems

In coherent optical communication systems, CD as a linear impairment of optical fibers, could be
efficiently negated using linear filtering. However, the interplay between CD and non-linearities
along the transmission in optical fibers, which results in nonlinear channel memory, is still
uncompensated for [19]. NN-based nonlinear equalizers find hidden patterns and latent features
in order to further equalize the received signal after CDC. Such equalizers are usually appended
at the coherent receiver side after the DSP process, which performs linear equalization for CDC.
The use of delay blocks at the NN input in [12] takes into account the channel memory. As a
result, the input signal of such an equalizer is considered to be the desired symbol along with its
preceding and subsequent symbols as the input sequence.

BRNN handles well with sequential data, utilizes the hidden states of both the previous and
future symbols, and takes advantage of the temporal correlations. Consequently, BRNN-based
nonlinear equalizers are proposed to enhance the detection of the received signal with LSTM and
GRU units [19–21]. The learning process in BRNN-based nonlinear equalizers can be used for a
regression task for the prediction of the received symbols [20], or a classification task, where the
targets are categorized in correspondence to QAM constellation points [19,21]. The work in
[29] has shown that regression-based learning surpasses classification-based learning in higher
Q-factor performance. Therefore, the regression-based learning for the BRNN equalizers is
adopted in this paper.

We consider a baseline structure of the BRNN-based nonlinear equalizer in Fig. 1, which
is proposed in [20]. It consists of an input symbol sequence, a BRNN layer, a flattening layer,
and a dense layer as the output layer. The input to the equalizer is a sequence formed by the
received symbol ri together with its preceding and succeeding k symbols: {ri−k, . . ., ri, . . ., ri+k},
with a length of 2k + 1. Each symbol has four features, i.e., the real and imaginary parts,
{Re{rj}, Im{rj}}, of both the X and Y polarizations. The RNN layers forward and backward of
the BRNN are composed of 2k + 1 LSTM/GRU units to take into account the i-th input sequence
associated with ri, which we call a full BRNN (F-BRNN). This is because the baseline equalizer
takes the full length of the symbol sequence as the input. After the BRNN layer with LSTM
units, the output is a sequence of hidden states, {hi−k, . . ., hi, . . ., hi+k}, with each hidden state
concatenating forward and backward hidden states according to Eq. (3). The output sequential
hidden states are then flattened by the flattening layer, resulting in a single row vector. The
dense layer takes the output of the flattening layer and outputs two values relying on two neurons.
The real and imaginary parts {Re{r̃i}, Im{r̃i}} of the final predicted received symbol r̃i are the
outputs of the equalizer.

2.5. Complexity

In this section, the RMpS of the baseline BRNN-based nonlinear equalizer is introduced based
on the calculation in [20] and [21]:

Cunit = nopni + nopnh + 3, (4)



Research Article Vol. 30, No. 18 / 29 Aug 2022 / Optics Express 32912

Fig. 1. Baseline BiLSTM-based equalizer

where nop = 4 for an LSTM and nop = 3 for a GRU as in-unit operations. Therefore:

Cunit |LSTM = 4ni + 4nh + 3,
Cunit |GRU = 3ni + 3nh + 3,

(5)

where ni is the number of input features, and nh is the number of hidden units. The complexity
for the full BiLSTM and BiGRU Cfull is given by the following.

Cfull = nbinsnhCunit⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
Cinput

+ nbinsnhno⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
Coutput

= 2(2k + 1)nhCunit + 2(2k + 1)nhno,

(6)

where nbi = 2 since we deal with the bidirectional RNNs; ns is the input symbol sequence length;
and no is the size of the outputs.

The multiplications can be divided into two terms Cinput and Coutput in Eq. (6). It can be seen
that the multiplications mostly occur due to the interactions between the input sequence and the
gated operations inside the LSTM/GRU units of the BRNN layer. It is therefore pivotal to take
good advantage of the recurrent units by reserving only the essential part of the input sequence, in
order to design low-complexity nonlinear equalizers. Low complexity RNN equalizer structures
have been introduced in [18,21,25,30]. A center-oriented LSTM structure is proposed in [30] that
reduces Cinput, and [25] proposes to use attention mechanism which reduces Coutput. However,
including the baseline structure, there has been no solution that considers the relevance of the
preceding and future symbols in the input sequence and their contribution to the output hidden
states of the BRNN layer. To this end, we propose a low complexity BRNN-based equalizer based
on the attention information gathered from an attention mechanism. We do not only visualize
and make sense of the center-oriented LSTM structure in [30], but we also combine the RMpS
reduction in both Cinput and Coutput as detailed in the next section.

3. Attention-aided partial-BRNN nonlinear equalizer

3.1. Attention mechanism

Attention is a mechanism in NNs which observes a collection of data and selectively focuses on a
subset of the collection. It was first applied to sequence-to-sequence learning in [24] and was
applied mostly to sequential data to further exploit the importance of each subset among the input
data. In other words, attention is one add-on component of a network’s architecture, in charge of
managing and quantifying the interdependence between the data of interest. General attention
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investigates the interdependence between input and output elements, whilst self-attention deals
with finding correlations among input elements [31].

We have a case of general attention to account for the interdependence between the final
predicted symbol and both the input symbols and the output hidden states. We simplify the
attention mechanism in [24] as our outputs are not sequential. By adding such an attention
mechanism, we expect to find the contribution of the input symbols and their hidden representations
to the final received symbol prediction. Therefore, we can identify the essential part of the input
sequence for training that could lower the computational complexity.

The attention is generally a single- or multi-layer feed-forward NN with trainable weights and
biases, which are applied to the output hidden states of the BRNN layer.

In the original attention mechanism [24], an input sequence {x1, . . ., xTx } targets an output
sequence {y1, . . ., yTy }. The conditional probability for a certain target output yi, is defined as:

p(yi |y1, . . .yi−1, x) = g(yi−1, si, ci), (7)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yi; si is a
RNN’s hidden state for time i computed through: si = f (si−1, yi−1, ci). Similarly, as defined in
Eq. (2), ci is a vector generated from the sequence of the hidden states for predicting the current
target output yi. ci is a context vector conditioned for each target yi; it is computed as a weighted
sum of the hidden states {h1, · · · , hTx }:

ci =

Tx∑︂
j=1
αi,jhj, (8)

where the weight αi,j of each hj is computed by

αi,j =
exp eij∑︁Tx

k=1 exp eik
, (9)

where eij = a(si−1, hj) is an alignment model which scores how well the inputs around position j
and the output at position i match.

We adapt Eqs. (7) to (9) in [24] to our nonlinear equalizer to apply the attention mechanism.
Instead of predicting the conditional probability of each target yi from a sequence of targets, we
focus only on the received symbol yi:

yi = g(c), (10)

where
c = α ∗ h = [α1h1 · · · αTxhTx ]. (11)

The weight αi of each hi is calculated by

αi =
exp {ei}∑︁2k+1

j=1 exp {ej}
, (12)

where ei = a(hi) is the adapted alignment model and indicates the matching score between the
output symbol yi and the hidden representations h of the input sequence x. According to [24],
we can define the activation function f of the RNN and the alignment model a by choice. A
single-layer perceptron (SLP) is selected as our alignment model.

A block diagram of the attention mechanism adopted in this paper with the selected alignment
model is shown in Fig. 2. A matrix multiplication is first performed between the hidden input
states and a trainable weight matrix Wa ∈ IR1×nh with bias ba ∈ IR1×ns , where nh is the number of
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Fig. 2. Block diagram of the adopted attention mechanism.

hidden units, and ns is the input sequence length, after which a tanh function is applied as the
activation function of the SLP:

a(hj) = tanh(Wahj + baj ). (13)

The softmax activation function shown in Eq. (12) is then applied to the alignment model to
compute a probability, i.e., the attention score of the hidden states with respect to the final output
symbol. The context vector c is then obtained by element-wise matrix multiplication between the
attention score α and the hidden states as in Eq. (11). The attention score specifies the amount of
attention given to each element of the hidden state sequence that corresponds to that of the input
symbol sequence. The block diagram depicting application of the attention block in the BRNN
equalizer is shown in Fig. 3(a), with more implementation details shown in Fig. 3(b).

X-pol

X-pol 

X-Pol
X-Pol
Y-Pol
Y-Pol

Fig. 3. Block diagram and implementation details of the attention mechanism in BRNN-
based equalizer

3.2. Leveraging attention in BRNN equalizer

3.2.1. Attention on packed hidden states

As defined in Eq. (3), the conventional way that the hidden states for a F-BRNN are generated
is by concatenating the forward and backward or "packed" hidden states for each hidden unit.
The block diagram of how the attention mechanism is utilized on this type of F-BRNN is shown
in Fig. 3(b). The attention is applied to the summaries of forward and backward hidden states
for each time step. In this way, we can see an overall attention that is applied to the hidden
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representations of the input symbols, as the attention block learns how important the hidden
states are on each time step in the form of a joint attention score for both directions.

3.2.2. Attention on unpacked hidden states

As the residual channel memory from both preceding and future symbols induced by the
interdependence between fiber nonlinearity and chromatic dispersion is often symmetric, we
investigate the input sequence from both forward and backward directions individually. This
is achieved by concatenating the forward hidden state vector and backward hidden state vector
horizontally or "unpacked", as shown in Eq. (14):

h⃗ =
[︂
h⃗i−k · · · h⃗i · · · h⃗i+k

]︂
,

←
h =

[︂←
hi−k · · ·

←
hi · · ·

←
hi+k

]︂
,

h =
[︂
h⃗;
←
h
]︂

.
(14)

Details of such an implementation in the nonlinear equalizer can be found in Fig. 3(a).

3.2.3. Attention as an auxiliary block

The purpose of applying the attention mechanism is to investigate the relevance between input
symbols, their hidden representations, and the outputs. The attention block is leveraged as an
auxiliary block to determine which input symbols are selected as the input of the BRNN equalizer
and which hidden representations are kept for the final prediction. The attention score is obtained
during this auxiliary training process on: (1) the conventional type of concatenated hidden states
of the forward and backward RNNs of length 2k+ 1 based on Eq. (3) to observe the joint attention
on the sequence; (2) the horizontally concatenated forward and backward direction of length
2 · (2k + 1) based on Eq. (14) to observe the attention in each direction respectively. After getting
the attention information, only the relevant part of the input sequence and hidden representations
are kept for the proposed BRNN equalizer. The details of such an equalizer are given next.

3.3. Attention-aided partial BRNN equalizer

Despite the fact that attention is directly applied on the hidden representations at the BRNN
layer outputs, not only the significance of those hidden representations but also the role of the
input symbols in the input symbol sequence can be concluded. As the forward RNN starts
from the beginning of the sequence at symbol ri−k to the end, we therefore hypothesize that the
attention stops at ri+a⃗, and that only the first few symbols of the sequence matter. Similarly, as the
backward RNN learns the sequential correlation of the sequence in reverse order, the attention
also starts from the end ri+k and stops at ri−←a , as only these symbols matter. In terms of hidden
representation, we hypothesize a range (−←a, a⃗) of the input symbol sequence in correspondence
to the center received symbol. We obtain an attention score on hidden representations of the
BRNN layer, which are generated with the conventional method in Eq. (3). Only a few central
hidden representations have a significant score, which verifies our hypothesis. Based on the
information we obtain from the attention mechanism, we propose the partial BRNN (P-BRNN)
in Fig. 4, where we feed only the relevant symbols in the input sequence to the forward and
backward BRNN, respectively. RNNs are applied to a sequence, and the output hidden state
of the current time step always relies on that of the previous time step. Therefore, taking the
forward RNN as an example, if there is no attention given after a certain element of the sequence,
then the input sequence should start from the beginning of the sequence and end at that specific
symbol. This is because the time steps after this are redundant and do not contribute to the final
prediction. Thus, no unnecessary complexity is introduced, as only the essential part of the
input sequence is kept. Moreover, as the attention stops at certain symbols in both forward and
backward directions, not all of the output hidden states of the BRNN layer need to be kept and
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fed into the flattening layer. Only {hi−←a , . . .hi+a⃗} where the attention is given, which are those
that correspond to the few adjacent to the center symbols. This means that the corresponding
inputs are not necessary for training the network either. The forward and backward attention
stops at symbol ri+a⃗ and ri+←a for the received symbol ri, which indicates that the forward output
hidden states from symbol ri+a⃗ to the end of the sequence, and the backward output hidden states
from symbol ri−a⃗ to the start of the sequence can be trimmed out before the flattening layer. The
symbol sequence {ri−k, . . ., ri+a⃗} is regarded as the input for the forward RNN, and the symbol
sequence {ri+←a , . . ., ri+k} as outputs for the backward RNN. As for the input for flattening and
dense layer, it is straight forward to keep the hidden state outputs of the centre few symbols, i.e.
{hi−←a , . . ., hi, . . ., hi+a⃗} to which the attention is given.

Fig. 4. Proposed partial BRNN-based equalizer which leverages the attention score learned
through the attention mechanism during training

3.4. Complexity reduction

Similarly to the calculation in Section 2.5, the complexity of our proposed partial BRNN equalizer
Cpart is calculated as follows:

Cpart = (n⃗s +
←ns)nhCunit + 2(a⃗ + ←a + 1)nhno

= [(k + a⃗ + 1) + (k + ←a + 1)]nhCunit + 2(a⃗ + ←a + 1)nhno,
(15)

where a⃗ and ←a are the absolute indices of the symbols where the attention of forward and backward
RNNs stops, respectively. The implementation details can be found in Fig. 4.

Hence, the total reduction of the complexity in terms of the number of real multiplications per
symbol can be calculated based on Eqs. (16) and (15) as:

Creduction = Cfull − Cpart

= [(nbinsCunit |LSTM − (n⃗s +
←ns)Cunit |GRU]nh

+ [nbins − 2(a⃗ + ←a + 1)]nhno

= [2(2k + 1)Cunit |LSTM − [2k + 2 + (a⃗ + ←a)]Cunit |GRU]nh

+ 2(2k − a⃗ − ←a)nhno.

(16)
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4. Simulation results and discussion

4.1. System setup

We establish our simulations on the single channel transmission of a 30 Gbaud DP-64QAM
signal transmitted over 20×50 km SSMF fiber spans with the power swept from −3 dBm to 5
dBm to gain a thorough understanding of how the BRNN-based equalizers perform on a range of
transmitted powers.

The received symbols are generated by the simulation that emulates a coherent fiber optic
transmission system, shown in Fig. 5. The parameters of the transmission and fiber channel can
be found in Table 1. A pseudo random number generator (PRNG) with a Mersenne twister is used
to generate 220 random transmitted bits at the transmitter to avoid repetitive patterns of the data.
After QAM symbol mapping, data symbols are upsampled, pulse shaped by root-raised cosine
(RRC) filters with 0.1 roll-off, modulated by optical in-phase quadrature-phase (IQ) modulator,
and sent to the optical fiber channel. At the receiver side, after coherent detection and receiver
DSP, i.e., linear filtering that compensates chromatic dispersion, the BRNN-based nonlinear
equalizer is applied to further equalize the received signal. The final output predicted received
symbol then goes through symbol detection, after which the BER and Q-factor are calculated to
evaluate the system performance.

Fig. 5. System setup of our numerical simulations with NN-based nonlinear equalizer for
receiver-end processing.

Table 1. Transmission system and fiber parameters

Parameter (Unit) Value

Modulation format 64QAM

Symbol rate (GBd/s) 30

RRC roll-off factor 0.1

Total fiber length 20 × 50km

Central wavelength (nm) 1550

Fiber attenuation α (dB/km) 0.21

Chromatic dispersion D (ps/nm/km ) 16.8

Nonlinear coefficient γ (/W/km) 1.14

Noise Figure (dB) 4.5

4.2. Data pre-processing and model training

We generate two sets of the transmitted and received symbols from our simulation. In the
pre-process stage, the received symbols are separated into groups of 41 symbols with 20 preceding
and 20 succeeding symbols adopted in [20]. These are combined into a single full dataset with
1046536 samples. We take the grouped received symbols as the input symbol sequence and the
transmitted symbols as the target.
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The training, test and validation datasets comprise 80%, 10% and 10%, respectively, of the
total data. The BRNN-based nonlinear equalizers are built, trained, and evaluated using PyTorch
1.9.1. We use mean square error (MSE) as the loss function between the predicted symbols and
the received raw symbols, and the Adam optimizer for the gradient descent algorithm in the
optimization process. We use the training dataset for training, then validate the model with the
validation dataset. As training continues, the Q-factor for the validation dataset is tested with the
current trained model. If the computed Q-factor exceeds the last trained model, the best model is
updated as the most recently trained model. The test dataset subsequently uses the “best model”
to test the Q-factor performance of the BRNN-based equalizer. The maximum training epochs is
set to 999, and the training is stopped if the Q-factor for the validation process does not change
for a consecutive 300 epochs.

4.3. Experiments of attention on BRNN equalizer

As the hidden representations of both directions of RNNs are utilized for the BiLSTM layer, we
therefore apply the joint attention and the individual attention of both forward and backward
RNNs in BRNN-based nonlinear equalizers. We first apply the attention mechanism on top of the
vertically concatenated LSTM outputs in Fig. 3(b). Figure 6 shows the one-dimensional attention
heatmap corresponding to the joint attention score on the bidirectional context features of the
BRNN layer computed through the attention block during the training process. Figure 6(a) shows
the initialization of the attention score, which is calculated by the softmax function in Eq. (12)
after the weight matrix Wa and the bias ba of the attention layer are initialized, where Wa is drawn
from the normal distribution with a standard deviation of 0.001 and ba is initialized with 0 s.

(a) Attention score initialization. (b) Final attention score after training.

Fig. 6. Heatmap of joint attention scores on full BiLSTM outputs.

Figure 6(b) shows the final attention score after training, where we can see that generally no
attention is given to the symbols on the edges other than the few at the center. The study on the
joint attention of both directions gives us good motivation to study individually the attention on
each direction of the BRNN.

We experiment with the attention mechanism applied to the hidden states of both the forward
LSTM and the backward LSTM layers individually, as shown in Fig. 3(a) and defined by Eq. (14).
By feeding h⃗ and

←
h together into the attention block, we are able to observe and compare the

attention score in both directions and the symbol indices of the input sequence where the attention
is given. The attention score for forward and backward LSTMs is displayed separately in Fig. 7
after training, where it compares the score value of forward and backward RNNs to check if
attention is different for both directions, and compares the symbol indices where the attention
stops in the forward and backward directions.

It is shown that attention is equally distributed in both directions. The forward symbol index
where attention stops a⃗ is 3 and the backward symbol index ←a is also 3. The hidden state of the
middle symbol plays the most important role in both directions. Furthermore, the forward and
backward attentions manifest similar trends, which validates our findings that it is the nonlinear
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Fig. 7. Attention score comparison between forward and backward RNN using one sequence
as an example.

channel memory that occurs at both directions from the center received symbol along the time
axis.

4.4. Attention-aided partial BRNN-based nonlinear equalizer

Based on the attention information obtained in Section 4.3, we truncate the input symbols
sequence to be fed to the forward and backward RNNs from a full length of 2k + 1 to k + a⃗ and
k + ←a, respectively, as the rest symbols of the sequence do not contribute to the final prediction.
The further trimming process occurs before feeding the sequential hidden state outputs of BRNN
layer to the flattening layer, where only the hidden states of symbol ri−←a , . . ., ri, ri+a⃗ are kept. We
use the prefix “trimmed” and suffix “trim” in the rest of the paper to refer to this further trimming
process. This is to study the impact on the performance and complexity of this process. As only
the necessary symbols of the input sequence are kept as the input of the proposed equalizer, the
complexity of the network structure is significantly reduced whilst maintaining the performance.
A more detailed complexity comparison can be found in Fig. 10.

4.4.1. Performance after complexity reduction

We first compare the BER performance between the baseline BiLSTM model (F-BiLSTM32)
and our proposed model with 32 hidden units (P-BiLSTM32). The models tested are listed in
Table 2. Including examining the extra trimming of the center hidden states to be fed into the
flattening and dense layers in the proposed partial BRNN equalizers, we compare the results
with full BiGRU, partial BiLSTM, and partial BiGRU with extra trim in terms of the hidden
representations.

Table 2. Models tested with the same number of hidden units.

Model Type Input Type/Length No. hidden units Trim hidden

F-BiLSTM32 full (2*41) 32 —

F-BiGRU32 full (2*41) 32 —

P-BiLSTM32 partial (2*24) 32 No

P-BiGRU32 trim partial (2*24) 32 Yes

It is shown in Fig. 8 that our proposed model maintains the performance of the baseline
BiLSTM, and a full BiGRU performs slightly worse than the rest. This may be because the
symbols that exceed the symbol index where attention stops in both directions not only do not
contribute to the sequential hidden state outputs, but also they may instead add to noise. It could
also be seen that the BER performance is maintained for the final trimming process.
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Table 3. Models tested under similar complexity

Model Type Input Type/Length No. hidden units Trim hidden

F-BiLSTM32 full (2*41) 32 —

P-BiGRU49 trim partial (2*24) 49 Yes

F-BiGRU32 full (2*41) 32 —

P-BiLSTM42 trim partial (2*24) 42 Yes

(a) Complexity based on F-BiLSTM32

Model Type Input Type/Length No. hidden units Trim hidden
P-BiGRU32 trim partial (2*24) 32 Yes

F-BiLSTM21 full (2*41) 21 —

F-BiGRU24 full (2*41) 24 —

(b) Complexity based on P-BiLSTM32 trim

Fig. 8. BER comparison between F-BRNN and P-BRNN

4.4.2. Performance comparison under similar complexity

In terms of further examination of performance enhancement, we conduct our experiment on
models with a similar comparable complexity between the baseline F-BiLSTM and our proposed
model.

To further demonstrate the benefit from our design, we intentionally chose a slightly lower
complexity for our proposed model, as the RMpS is calculated based on several factors and the
complexity between two models is hard to precisely match. As shown in Eqs. (6) and (15), the
number of hidden units is a constant linear factor in complexity calculation, which is modified in
this comparison. We first compare the proposed BRNN equalizer under the similar complexity
as the F-BiLSTM with 32 hidden units (referred to as "BiLSTM32"). The models tested are
listed in Table 3. We experiment with the following configurations: F-BiGRU with 32 hidden
units (BiGRU32), trimmed P-BiGRU with 42 hidden units (partial BiGRU42 trim), and trimmed
P-BiGRU with 49 hidden units (partial BiGRU49 trim) in Fig. 9(a). It can be seen from Fig. 9(a)
that our proposed model, trimmed P-BiGRU with 49 hidden units, improves the Q factor by
0.2dB at the optimal transmit power 0dBm and 0.3dB in a more highly nonlinear region with
transmit power 2.0dBm compared to the baseline BiLSTM.
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(a) Q-factor comparison for F-BiLSTM32 (b) Q-factor comparison based on P-BiGRU32

Fig. 9. Performance comparison under similar complexity between FBRNN and PBRNN.

We then compare the performance of the models with the complexity of the proposed trimmed
P-BiGRU with 32 hidden units (partial BiGRU32 trim) as default. We tested F-BiLSTM with 21
hidden units (BiLSTM21) and F-BiGRU with 24 hidden units (BiGRU24). The results of which
can be found in Fig. 9(b). It can be seen from Fig. 9(b) that our proposed model trimmed P-BiGRU
with 32 hidden units improves the Q-factor by 0.25dB at the optimal transmit power 0dBm
and 0.45dB in the more highly nonlinear region with transmit power 2.0dBm compared to the
BiLSTM21. The performance enhancement is due to that the larger the number of hidden units,
the more features learned in the hidden representations. The Q-factor improvement indicates that
performance enhancement is achieved with our proposed design, with even less complexity than
other NN structures in comparison. This shows that the complexity of BRNN-based nonlinear
equalizer is successfully reduced without decreasing performance.

F-BiLSTM32

P-BiGRU49 trim
F-BiGRU32

P-BiGRU42 trim
P-BiGRU32

P-BiGRU32 trim
F-BiLSTM21

F-BiGRU24
0

1

2

3

4
·105

RM
pS

F-BiLSTM32

P-BiGRU49 trim
F-BiGRU32

P-BiGRU42 trim
P-BiGRU32

P-BiGRU32 trim
F-BiLSTM21

F-BiGRU24
0

0.5

1

1.5

·104

N
o.

Tr
ai

na
bl

e
Pa

ra
m

et
er

sRMpS
No. Trainable Parameters

Fig. 10. Complexity comparison for the variety of recurrent NN architectures studied
in this paper in terms of RMpS and number of trainable parameters. To demonstrate the
potential for complexity simplification when employing our technique, we have highlighted
the original BiLSTM with 32 hidden units (F-BiLSTM) and the BiGRU with 32 hidden units
following the pruning approach using attention described in this work (P-BiGRU).
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4.4.3. Complexity comparison

A detailed comparison of numerical complexity is conducted in Fig. 10. We calculate the RMpS
of the corresponding models based on Eqs. (6) and (15), and we obtain the number of parameters
using the summary method inside the torchinfo Python package, which returns the number of
trainable parameters in the NN model of interest.

As can be seen, our proposed trimmed partial BiGRU has the lowest complexity with the
same performance as the baseline full BiLSTM. The complexity of the BRNN-based nonlinear
equalizer is reduced by 56.16% in terms of the RMpS and 45.29% in terms of the trainable
parameters. Our proposed approach not only reduces the complexity of the equalizer in terms of
RMpS but also reduces the memory storage for the implementation based on the reduced number
of trainable parameters. It can also be seen that the final trimming process for hidden states
reduces trainable parameters effectively but insignificantly for RMpS.

5. Conclusions

In this paper, we applied an attention mechanism as an auxiliary block in the BRNN-based
nonlinear equalizer that equalizes coherent optical signals at the receiver side of a transmission
system. We aimed to investigate the significance of the input symbols and their hidden
representations in equalizing the received symbol of each input symbol sequence, and proposed a
novel design of low-complexity partial-BRNN equalizer, based on the attention score obtained
through the attention block. Our results validated symmetric channel memory from both ends of
the input sequence, which accumulates along with the transmission and stops at a few symbols
beyond the center symbol for both forward and backward directions. Our proposed design was
examined in a single-channel DP-64QAM 30Gbaud coherent optical system, in comparison to
the baseline BiLSTM equalizer. The proposed BRNN equalizer with GRU units reduced the
complexity by 56.16% compared to the baseline. When the equalizers are compared under
similar complexity, our approach outperforms the baseline equalizer by ∼0.2dB to ∼0.25dB at
optimal transmit power, and ∼0.3dB to ∼0.45dB in the more nonlinear region. We conclude that
our approach to the attention mechanism provides evidence and an explanation for the importance
of symbol-wise nonlinear memory, resulting in an effective evidence-based pruning process of
equalizers for optical transmission systems.
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