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A B S T R A C T   

Significant developments in digital technologies can potentially provide managers and engineers with the ability 
to improve the quality of the construction industry. Acknowledging the current and future use of digital tech
nologies in construction quality management (CQM), we address the following research question: What de
velopments in digital technologies can be used to improve quality in the construction industry? In addressing this 
research question, a systematic review approach is used to examine the studies that have been used for the 
management of quality in the construction industry. This review indicates that there is a need for digital 
technology-based quality management to be: (1) enhance defect management for concealed work, (2) enhance 
pre-construction defects prevention as well as post-completion product function testing, and (3) research on 
construction compliance inspection as a direction. We suggest that future research focus on quality culture 
development, advanced data analytics, and behavioral quality assessment.   

1. Introduction 

From design to project delivery, construction quality is the result of 
joint actions from multiple participants on the premise of safety oper
ation. The construction industry is widely criticized for the low-quality 
delivery of construction projects, especially in terms of finished prod
ucts, as well as the processes used during the project design and con
struction stages (Marasini and Quinnell, 2010). Quality problems and 
defects such as waterproof roof leakage, wall deformation and cracks, 
insufficient floor thickness, floor base bulging and cracking, and coating 
falling off still occur from time to time (Forcada et al., 2016), (Alen
castro et al., 2018). In addition, construction accidents are seldomly 
caused by unqualified construction practitioners. Compared with 
manufacturing and service industries, new employment rates are 
declining every year in the construction industry (‘The next normal in 
construction, 2020) due to poor working conditions (Söderberg et al., 
2021), low employment stability (Jide et al., 2018), and high occupa
tional risk (Meng et al., 2018). 

Digital technologies (e.g., Building Information Modeling, Internet of 
Things, etc.) have been applied substantially to construction safety (Guo 
et al., 2021a), cost (Vigneault et al., 2020), and schedule (Chen et al., 

2021), while quality management has received less research in this area. 
The existing quality research focused on applying a single digital tech
nology to specific quality management problems. Numerous previous 
studies have demonstrated the application of building information 
modeling (BIM) and construction surface quality inspection. No 
state-of-the-art review examined the extant research, proposed future 
research directions, and determined the current limitations of digital 
technologies in CQM. Such a review is needed to examine the de
velopments and provide an avenue for ensuring that future research has 
a robust theoretical underpinning. 

To this end, this study aims to examine digital technologies appli
cations and identify opportunities and challenges for digital technolo
gies applications in CQM. To understand the digital-based quality 
management research status, 108 articles related to the topic were 
collected, and 44 are further analyzed in Section four. In this paper, a 
brief overview of the leading existing digital technologies applied to 
quality management is presented in Section two. Sections two and three 
describe the existing leading digital technologies applied to quality 
management and the research methodology of this paper. The current 
research based on digital technologies is the main focus of Section four. 
The challenges and future research directions of digital technologies in 
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CQM are presented in Sections five and six, respectively. Finally, there is 
a summary of this paper in Section seven. 

2. Major digital technologies applied in CQM 

Digital technologies refer to the collection and paradigm of various 
intelligent and innovative technologies for connectivity, communica
tion, and automation (Ivanov et al., 2019). They have currently been 
widely used in CQM for information access and manipulation, mainly 
including BIM, Augmented Reality (AR), Internet of Things (IoT), 
Computer Vision (CV), and blockchain. 

BIM can help eliminate information barriers (Cus-Babic et al., 2014) 
between architectural design, prefabrication, and construction and help 
reduce reworks (Khalesi et al., 2020). Research studies on BIM mainly 
focus on design review (He et al., 2017), construction management 
(Chen and Luo, 2014) and facility management (Hilal et al., 2019). 

AR is a real-time view of the physical real-world environment 
enhanced by adding virtual information generated by a computer 
(Carmigniani et al., 2011). AR technology can help facilitate quality 
management and benefit the project by accelerating onsite training and 
safety, design and development, and communication with relevant 
parties (Schiavi et al., 2022). 

IoT is essential to simplify the communication between intelligent 
devices by transmitting or sharing digital data through sensors, actua
tors, and networks. IoT has been widely used in manufacturing, the 
service industry, infrastructure management, medical treatment, and 
national defense (Dai et al., 2019). In the construction industry, IoT is 
applied in real-time monitoring of construction processes and preven
tive maintenance (Fang et al., 2020a). 

CV can provide enriched information to support and achieve a high- 
level understanding of objects and events present in a scene through the 
analysis of digital images or videos (Guo et al., 2021a). CV has been used 
for construction activities identification (Seo et al., 2015), site produc
tivity assessment (Luo et al., 2018), detection and visualization of dy
namic workspaces (Luo et al., 2019), and real-time structural health 
(Dong and Catbas, 2021). Visual data collected from construction sites 
are used for site safety (Fang et al., 2020b), abnormal construction ac
tivity identification (Lin et al., 2021), and automated postconstruction 
quality assessment for defects in inspection (Liu et al., 2017). 

Blockchain is defined as a distributed ledger technology character
ized by decentralized operations across a consensus mechanism network 
(i.e., peer to peer), where all data are stored as blocks that are immutable 
once joined and authenticated in a chain (Viriyasitavat et al., 2019). It 
was originally created for financial transactions, and now it has been 
gradually applied in the construction industry to enhance quality in
formation management (Sheng et al., 2020). 

These digital technologies support quality planning and control 
through efficient information processing, as shown in Table 1. Besides, 
Natural Language Processing (NLP), etc. have also been applied in CQM. 

3. Research methods 

This paper first introduces major technologies in CQM, and then 
collects related articles through strategic searching in Web of Science 
database. Through bibliometric analysis of keywords, current research 
status is presented, and future research are discussed. The structure of 
this review is shown in Fig. 1. 

3.1. Related articles selection 

As the literature on certain digital technologies in construction 
quality is not yet abundant, this study selected related articles in two 
steps. First, articles were initially retrieved through keywords searching 
on Web of Science of digital technology in CQM。 The keyword search is 
conducted using the combinations of keywords such as “construction 
quality + (building information modeling OR BIM OR AR OR IoT OR 

BC)” published from 2011 to 2022. For example, on blockchain in 
construction quality, the complete search phrase used in Web of Science 
was “All in fields: (Blockchain OR BC OR CV) + construction quality.” 
Then, irrelevant articles were excluded through manual abstract reading 
and screening. One hundred and eight papers from approximately 47 
journals related to the topic were identified as an object of this study. 

Fig. 2 shows the number of academic articles published from 2011 to 
2022 on CQM and digital technology-based CQM. Both topics have 
shown a periodical fluctuating publication growth since 2011, and 
related articles have increased sharply in the recent five years due to the 
accelerated development of multiple digital technologies. The publish 
trend shows CQM and digital technology-based CQM are highly corre
lated and implies that digital technology-based CQM takes a certain 
proportion in CQM research. 

Table 1 
Research and applications of digital technology in construction.  

Technology Instructions Research and applications in 
CQM 

BIM (Building 
Information 
Model) 

Digital representation of 
physical and functional 
characteristics, carrying and 
sharing a large amount of 
facility information. Achieve 
visualization, coordination, 
simulation, optimization, 
and drawing.  

1. Mobile BIM for lean 
interaction (Koseoglu and 
Nurtan-Gunes, 2018).  

2. Spatiotemporal dynamic 4D 
planning (Mazars and 
Francis, 2020).  

3. Design review (Hossain 
et al., 2018).  

4. Reducing reworks (Khalesi 
et al., 2020). 

AR (Augmented 
Reality) 

Overlay and integrate site 
information and virtual 
reality for continuous 
interaction and perception.  

1. Occupational safety training 
(Tatic and Tesic, 2017)  

2 Multi-user collaborative 
BIM-AR system (Garbett 
et al., 2021).  

3 BIM data flow architecture 
with AR/VR (Schiavi et al., 
2022). 

IoT (Internet of 
Things) 

Ubiquitous computing, 
Internet protocol, sensing 
technologies, 
communication 
technologies, and embedded 
devices are merged to form a 
system where the real and 
digital worlds meet and are 
continuously in a symbiotic 
interaction.  

1. Logistic and product 
lifetime management (Cai 
et al., 2014).  

2. Smart home/building 
service quality (Hui et al., 
2017).  

3. Public safety and 
environmental monitoring 
(Zhou et al., 2019).  

4. Health and well-being 
(Gyrard et al., 1007). 

CV (Computer 
Vision) 

Multidisciplinary synthesis, 
making the machine learn to 
“see” and focusing on 
perception and recognition.  

1. Automated defects 
detection and quality 
performance assessment 
(Wei et al., 2021a).  

2. Construction activities 
identification (Seo et al., 
2015; Kong et al., 2021; Liu 
et al., 2022).  

3. Site productivity assessment 
(Luo et al., 2018).  

4. Detection of dynamic 
workspaces (Luo et al., 
2019).  

5. Abnormal construction 
activity identification (Lin 
et al., 2021; Fang et al., 
2018).  

6. Real-time structural health 
(Dong and Catbas, 2021).  

7. Automated postconstruction 
quality assessment for 
defects in inspection (Liu 
et al., 2017). 

Blockchain A decentralized, open, 
transparent, secure, and 
traceable database.  

1. Biomedical and health care 
(Kuo et al., 2017).  

2. Supply chain tracking 
(Bashir et al., 2016).  
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3.2. Bibliometric analysis of digit-based CQM 

Based on the collected article, further bibliometric analysis of au
thors and keywords is conducted with VOSviewer software to visualize 
the keyword mapping relationship. The keyword network indicates the 
research theme, the applied digital technology, and its inter-relatedness. 
The minimum number of occurrences of the set keywords was set to 2, 
and 56 out of 428 keywords met the threshold. The Keywords network of 
digit-based CQM is presented in different colors and clustered with 
research topics, their relationship, and frequency of occurrence. The 
network illustrates the mapping relationship between technologies and 
CQM research themes, as shown in Fig. 3. 

As shown in Fig. 3, the yellow circular area indicates that BIM is the 
most widely studied technology and usually incorporates other tech
nologies for quality control, inspection, and compliance check. Other 

digital technologies such as AR, IoT, CV, and blockchain are scattered in 
the figure and are less associated with each other. 

The top-cited articles on digital technology-based CQM are listed 
with the author and research theme listed below in Table 2. In this table, 
quality defects identification and assessment are the most cited and 
active field in digital technology-based CQM, in which CV plays a crit
ical part for automated quality defects identification. Followed by the 
compliance check of product and dimensional deviation assessment. The 
combination of BIM with other technologies also forms a pattern for 
information manipulation and comparison in CQM. 

Through bibliometric analysis, current COM research focuses on the 
following fields: First, damage and defects identification, including 
cracks detection based on machine vision and image processing; Second, 
condition assessment on dimensional deviation analysis and dynamic 
quality monitoring based on machine vision or image processing; Third, 

Fig. 1. Review structure.  

Fig. 2. Articles published from 2011 to 2022 in CQM.  

Fig. 3. Digit-based CQM keywords co-occurrence for network visualization.  
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research on compliance checking and quality inspection with blockchain 
and BIM. 

4. Application of digital technology in CQM 

The quality inspection process includes quality defect identification, 
deviation check with design, compliance check with codes and specifi
cations, and test run of functionality. The main challenge is to precisely 
capture and efficiently analyze construction products for every link of 
the CQM process. To address this issue, studies on non-contact sensing 
and defect identification algorithms are widely conducted. Digital 
technologies that were applied in existing studies could be summarized 
in four main aspects, as illustrated in Fig. 4. 

4.1. Quality defects identification and assessment 

Construction quality defects mainly refer to functional deficiency or 
failure of construction products to meet codes and specifications. 
Traditionally, quality defects are manually detected during inspection 
before delivery with visual observation, tape measurement, and the use 
of a total station. However, construction site operation is labor-intensive 
and may make work unaccountable (Fan, 2841). 

Currently, research in construction quality defects identification 
mainly focuses on product surface defects, including cracks, spalling, 
flatness, and deformation (Fan, 2014; Qiu et al., 2018; Zhou et al., 2021; 
Li et al., 2021).  

(1) Cracks 

The development of computer vision methods facilitates continuous 
monitoring and compensates the human judgment inaccuracy. Vision- 
based technology has been used in structural crack detection, crack 
measurement, and crack pattern recognition (Liu and Yeoh, 2021). 
Testing methods like laser, infrared, radiographic, and thermal testing 
approaches have been used to automate the process of crack detection 
and measurement (Zou et al., 2019). 

Crack detection relies heavily on image processing and machine 
learning (Liu and Yeoh, 2021; Li et al., 2017; Dung and Anh, 2019). The 
Convolutional Neural Network (CNN) is the most commonly used 
method (Cha et al., 2017). The Minimum Path Selection (MPS) is also 
found to provide robust and accurate crack segmentation within grey 
level images (Baltazart et al., 2017). The Deep Convolution Neural 
Network (DCNN) method—the network in transfer learning mod
e—accurately detected 86% of cracked images and could detect cracks 
coarser than 0.04 mm (Dorafshan et al., 2018). For characterizing the 
crack pattern for condition assessment from visible cracks, binary clas
sification of crack patterns into isolated patterns and map patterns is 
proposed (Liu and Yeoh, 2021). To further reduce manual operation, an 
automatic surface crack detection robot is designed to capture the 
concrete surface by the sectoring method. The Haar trained cascade 
object detector classified surface crack by using both positive and 
negative samples (Balbin et al., 2017). 

For crack measurement, 2D image processing and 3D point cloud 
reconstruction method are used to extract crack parameters that reflect 
the severity of cracks (Slonski and Tekieli, 2020; Wei et al., 2021b). 
Using Fusion Features-based Broad Learning System(FF-BLS)and image 
processing for crack measurement, the results show that compared with 
CNNs(Convolutional Neural Networks), FF-BLS achieved a similar level 
of recognition accuracy but the training speed was increased by more 
than 20 times (Zhang and Yuen, 2021). 

Using the two-dimensional amplitude and phase estimation method, 
the effective identification rate of bridge cracks can reach 90.5% (Dan 
and Dan, 2021). The average deviations between the crack length and 
width observed by the crack viewer and calculated from the 3D point 
cloud data are 7.52% and − 9.01%, respectively (Wei et al., 2021b). An 
image-based method is introduced to extract crack pattern characteris
tics, including crack width and length in crack monitoring of concrete 
bridges and tunnels (Asjodi et al., 2021). In addition, a combination of 
2D and 3D is proposed, which the experiments shows that the results can 
achieve an absolute error of less than 0.08 mm and a relative error of less 
than 3% (Liu et al., 2016).  

(2) Spalling 

The spalling of the structural surface weakens the corrosion resis
tance and durability of the structure. The accuracy of results heavily 
relies on lighting conditions. Using piece-wise linear stochastic gradient 
descent logistic regression and image texture analysis can achieve good 
detection accuracy of concrete spalling, with a classification accuracy of 
90.24% (Hoang et al., 2019). Image processing technology and support 

Table 2 
Summary of highly cited literature in digit-based CQM.  

No. Author or 
Affiliations 

Numbers of 
citations 

Theme of CQM Digital 
technology 

1 Dung and Anh 
(2019) 

309 Quality defects 
identification and 
assessment (Dung and 
Anh, 2019) 

CV 

2 Zou et al. 
(2019) 

299 Quality defects 
identification and 
assessment (Zou et al., 
2019) 

CV 

3 Dorafshan 
et al. (2018) 

214 Quality defects 
identification and 
assessment (Dorafshan 
et al., 2018) 

CV 

4 Park et al. 
(2013) 

175 Quality defects 
identification and 
assessment (Park et al., 
2013) 

BIM and AR 

5 Chen and Luo 
(2014) 

162 Compliance check of 
product (Chen and Luo, 
2014) 

BIM 

6 Zhang and 
El-Gohary 
(2016) 

111 Compliance check of 
product (Zhang and 
El-Gohary, 2016) 

Natural 
language 
processing 

7 Kim et al. 
(2015) 

108 Quality defects 
identification and 
assessment (Kim et al., 
2015) 

BIM and IoT 

8 Kim et al. 
(2016) 

100 Dimensional deviation 
assessment (Kim et al., 
2016) 

BIM and IoT 

9 Zhou et al. 
(2017) 

79 Dimensional deviation 
assessment (Zhou et al., 
2017) 

AR 

10 Kwon et al. 
(2014) 

77 Quality defects 
identification and 
assessment (Kwon et al., 
2014) 

BIM and AR 

11 Zhong et al. 
(2012) 

71 Compliance check of 
product (Zhong et al., 
2012) 

Ontology- 
based semantic 
modeling 

12 Yang et al. 
(2020) 

71 Quality defects 
identification and 
assessment (Yang et al., 
2020) 

Blockchain 

13 Wang et al. 
(2016) 

70 Dimensional deviation 
assessment (Wang et al., 
2016) 

IoT 

14 Li et al. 
(2017) 

68 Quality defects 
identification and 
assessment (Li et al., 
2017) 

CV 

15 Xu et al. 
(2018) 

66 Construction 
information integration 
cloud platform (Xu 
et al., 2018) 

IoT  
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vector machines have been integrated for subway wall spalling, and the 
accuracy could be as high as 91.7% (Dawood et al., 2017). Ground laser 
scanner has also been used to locate and quantify spalling defects on 
concrete surfaces, but shallow spalling less than 3 mm deep cannot be 
identified yet (Li et al., 2021).  

(3) Deformation 

In terms of structural deformation monitoring, Global Navigation 
Satellite System (GNSS) monitoring technology has great potential in 
large-scale structural deformation monitoring, while research has been 
focused on hardware and algorithm development. Compared with 
traditional monitoring methods (i.e., accelerometers and displacement 
sensors), GNSS can provide real-time monitoring with higher accuracy 
(10–20 mm) and reliability (Yi et al., 2018; Yu et al., 2017). The com
bination of GPS and other GNSS constellations can improve the overall 
performance of the monitoring system. The multi-constellation GNSS 
can enhance satellite geometry and improve positioning accuracy by 
obtaining more accurate double differential measurements (Yu et al., 
2020). Combined with machine vision, the accuracy of deformation 
detection is less than 0.12 mm in the tunnel project (Qiu et al., 2018). 

Research on quality defect detection benefited and was restrained 
from the rapid development of laser scanning technology and image 
processing algorithm. On the one hand, most of these studies focus on 
surface quality evaluation, and few studies concentrate on the internal 
quality of concealed works. On the other hand, there is a lack of research 
on other general quality problems such as leakage, blockage, unrea
sonable spatial layout, etc. 

4.2. Dimensional deviation assessment 

The key quality control process is to examine the deviation between 
construction products and design parameters and control the deviation 
within the allowable specifications or codes. Research on construction 
deviation mainly focused on products dimension includes size (Wang 
et al., 2016), shape (Kim et al., 2016), position and orientation (Zhang 
et al., 2018a). 

For digital deviation examination of site work, through experiments 
carried out using the cast-in-site concrete components, the accuracy is 
up to 97% (Maalek et al., 2019). Real-time automatic registration of 
video sequences to BIM is further proposed to monitor construction 

quality (Asadi et al., 2019) rapidly. 
To project design intent on the construction site, AR is applied to 

connect the site status and visual model (Napolitano et al., 2019). AR 
can improve capturing of essential facilities’ comprehensive, 
high-resolution, 3D measurements (Mascarenas et al., 2021). It has been 
applied to compare the field segment displacement (Zhou et al., 2017) 
with the baseline model to visually check on large deviations and 
missing architectural elements (Chalhoub et al., 2021). 

4.3. Codes compliance check 

Compliance checking provides the processes and results of whether 
construction complies with relevant laws, policies, and regulations. 

For construction process check, to ensure the vibration quality of 
fresh concrete, a real-time monitoring framework is proposed based on 
fine-tuned ResNet-50 model and IoT technology with an average F1- 
score of 97.97% (Wang et al., 2021). Compared to the manual 
method, the biases of insertion depth and vibration duration are 
respectively within 2.75 cm and 3s, which verifies the high accuracy and 
reliability of monitoring results (Wang et al., 2021). Casing grouting is 
often used to connect prefabricated components and form key nodes. 
Using the sensor to obtain the density and mechanical performance data 
of grouting in the casing for quality detection can improve the detection 
efficiency and accuracy of the quality of prefabricated component nodes 
(Yao et al., 2021). Through the integration of textual data and sensing 
data, a construction procedural data integration framework is developed 
to conduct construction execution steps compliance checking automat
ically (Ren and Zhang, 2021). 

For product compliance check with codes, to exam the thickness of 
the reinforcement covering layer, the diameter of reinforcement is 
estimated with electromagnetic induction, ground-penetrating radar 
and the maximum estimation error for the cover thickness does not 
exceed 6.7% (Zhou et al., 2018). Besides, sensor, sub-pixel boundary 
location method, and fast stitch method are used to obtain images and 
videos from the construction site to detect the diameter, spacing, and 
quantity of reinforcement with 0.002% error (Zhang et al., 2018b). 

Research on automatic compliance inspection with specifications 
mainly focused on the design stage rather than the construction stage 
(Soliman-Junior et al., 2021; Gao et al., 2022). Rule terms are mapped to 
keywords (concepts or properties) in BIM data through term matching 
and semantic similarity analysis (Guo et al., 2021b). Automated 

Fig. 4. Framework of digital technology application in CQM.  
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regulatory compliance checking requires automated extraction of re
quirements from regulatory textual documents and their formalization 
in a computer-processable rule representation. To reduce the number of 
needed patterns for information processing, phrase structure 
grammar-based phrasal tags and sequencing of semantic information 
elements are proposed (Zhang and El-Gohary, 2016). 

In addition to construction deviation control, a normative check of 
the construction process is also critical to ensure the quality of end 
products. By modeling the regulatory constraints as Object Windows 
Library (OWL) axioms and Semantic Web Rule Language (SWRL) rules 
(Zhong et al., 2012), the regulatory provisions for quality inspection can 
be transformed into a set of inspection checklists and associated with 
specific construction tasks. However, no tool can currently provide 
complete pre-inspection compliance capability before formal submis
sion (Beach et al., 2020). 

In general, construction quality research mainly focuses on obtaining 
detailed design information, acquisition and analysis of inspection data, 
and defect detection (Ma et al., 2018), but still faces following problems:  

1. Lack of defects identification of concealed works other than surface 
quality assessment and measurement on concrete and steel.  

2. Digital technology is mainly applied in the construction process. 
Thus, there is a lack of preventive control before construction and 
functional test runs for end products.  

3. In addition to design deviation, little attention is paid to the 
compliance of construction quality specifications, especially work 
behavior. 

5. Research and application challenges 

5.1. Research challenges  

(1) Data acquisition and processing 

Quality data accuracy is hard to guarantee due to the data acquisi
tion environment’s complexities, acquisition equipment performance 
limitations, and human factors (Chen et al., 2017). The real-world data 
might contain irrelevant or meaningless data artifacts termed noise. 
Noise data is detrimental to almost any data analysis (Gupta and Gupta, 
2019)]. It is difficult to guarantee data integrity because data might be 
lost or tampered with (Fan et al., 2021). Storage formats are diversified, 
semantic expressions vary from person to person, and numerical values 
are diverse, which may lead to data inconsistency (Shi et al., 2019). 

Data sources are challenging to obtain as very few public data on 
construction quality are available. Contractors and owners hesitate or 
refuse to provide quality records with sensitive information that might 
compromise construction projects. Insufficient training samples might 
lead to poor interpretation of models in data analysis using deep 
learning (Xi and Zhao, 2019). Data augmentation is proposed to maxi
mize the available data by providing additional data for limited training 
data with minor changes such as image rotation and flipping. However, 
data augmentation can also cause the potential loss of relevant data or 
outliers needed for training. A more comprehensive range of data in the 
construction industry is structured, and data augmentation for this data 
can be complicated (Akinosho et al., 2020). 

Deep neural networks require massive input data, long-time training, 
and advanced configuration of hardware. Even so, the gradient dissi
pation and collapse problems are easy to occur in the process of model 
training (Ratcliff, 1990). Some researchers used CNN to classify con
struction complaint texts and found that the smaller the number of 
samples in grouping training, the worse the model performance (Zhong 
et al., 2019).  

(2) Generalization ability of model and algorithm 

Machine learning models can generally be divided into two 

categories: (1) shallow structure model and (2) deep structure model. 
The algorithm models of shallow structure include support vector ma
chine, boosting, logistic regression, etc. Many experiments and pilot 
studies show that shallow structure model performs poorly for feature 
extraction in processing high-dimensional data such as images, video, 
voice, and natural language. While in discovering intricate structures in 
high-dimensional data, deep learning performs very well (LeCun et al., 
2015), there are many shallow structure models for image-based con
crete damage detection. However, they rely on low-level features and 
may not work effectively in practice (Jiang et al., 2021). 

Shallow and deep structure networks have overfitting and poor 
generalization issues. The depth network contains more hyper- 
parameters than shallow network, which increases the probability of 
overfitting (Bejani and Ghatee, 2021). Overfitting and poor general
ization reduce the model’s prediction ability to unknown data. Over
fitting may be caused by the noise of training samples, lack of training 
samples, biased or disproportionate training samples, non-negligible 
variance of the estimation errors (Cawley and Talbot, 2010), multiple 
patterns with different non-linearity levels that need different learning 
models (Caruana et al., 2001), biased predictions using different selec
tions of variables, stopped training procedure before convergence or 
dropping in a local minimum (Srivastava et al., 2014), different distri
butions for training and testing samples, etc. 

5.2. Application challenges 

Research on digital technology in construction has been widely 
conducted, but there are still problems to be solved for the quality 
aspect. AR application faces latency problems. The time delay of virtual 
environment calculation will lead to the displacement between the real 
and virtual environments (Xu and Moreu, 2021). Recently, most AR 
devices use the laser to overlay virtual images in real environments. The 
laser works well and steadily in the indoor environment, while outdoor 
temperature and brightness will affect performance with dizziness and 
nausea. 

Although machine vision has been widely introduced in research on 
surface quality, how to quickly and accurately identify targets and 
effectively construct reliable recognition algorithms remains to be 
further resolved. 

Storage capacity and scalability have been deeply questioned in 
blockchain (Reyna et al., 2018). At present, Ethereum can only reach 7 
transactions per second, which cannot meet the regular needs of work 
and production (Prewett et al., 2020). On the premise of ensuring 
credibility, blockchain technology faces scalability problems. If this 
problem is not solved, the transaction processing time may be longer and 
longer. The distributed, decentralized nature of blockchain “grants 
blockchain coders and developers’ freedom” to tailor systems to the 
needs of specific users. A lack of standardization is detrimental to user 
communication (Behnke and Janssen, 2020). 

6. Future research directions 

Although substantial efforts are made for automated CQM, chal
lenges on both research and application cannot be ignored. Based on the 
bibliometric analysis, a full review of related works, and challenges 
analysis, future research directions are proposed for better digital 
technology-based CQM. 

6.1. Quality culture development 

With the development of quality management theory, the objectives 
have moved from absolute zero defects (Psarommatis et al., 2022) to 
error prevention (Love et al., 2011). Although quality inspection of the 
end product is currently a significant strategy for error detection and 
prevention (Lin et al., 2016), the core of improving quality is a scientific, 
rigorous, and efficient quality system (Roderick, 1996) to establish an 
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adequate quality culture. 
Quality culture is a part of the organization culture and is situated in 

the organizational context (Ehlers, 2009). It reflects the general 
approach, the values, and the orientation to quality that permeate 
organizational actions (Cameron and Sine, 1999). Studies show that 
quality culture impacts quality performance (Corbett and Rastrick, 
2000). Cameron et al. classify quality culture according to its develop
ment: the absence of emphasis on quality, error detection culture, error 
prevention culture, and creative quality culture (Cameron and Sine, 
1999). One of the essential elements of quality culture is quality systems 
and rules such as total quality management. In addition, participation, 
trust, and communication are also crucial for a quality culture (Ehlers, 
2009). Poor quality management perceptions in organizations and 
employment conditions for construction workers, and safety and 
schedule pressures have contributed to poor quality culture. 

Quality culture focuses on organizations’ cultural patterns, like rit
uals, beliefs, values, and everyday procedures, while following pro
cesses, rules, and regulations (Ehlers, 2009). It affects workers’ and 
organizations’ attitudes and behavior from the inside and incorporates 
quality as a characteristic of organizational culture. For workers, the 
pursuit of quality culture is manifested to a large extent through sound 
knowledge of duties, the ability to improve skills, and total commitment 
to the performance of one’s duties. Workers are encouraged to upgrade 
their qualifications while increasing the strength of their actual influ
ence on colleagues (Pietruszka-Ortyl, 2019). 

An overriding assumption is that construction errors can be pre
vented; in practice, people are blamed for their errors. Errors are not 
random acts but are systematically connected to aspects of people’s 
tools, tasks, and work environment (Love, 2020). If a person perceives 
an error involving more potential punishment than benefits, they are 
more likely to hide them (Love et al., 2019a). Also, senior management 
is often reluctant to hear ‘bad news’, which are interpreted as poor 
management and deny the existence of quality problem (Love, 2020). 
Consequently, an error prevention culture encumbers workers’ positive 
engagement in construction quality and stifles the ability to innovate 
and learn from error (Love et al., 2019b; Love and Smith, 2016). Once an 
error-mastery culture is established in construction organizations, they 
will be better positioned to realize the benefits of the techniques, tools, 
and technologies espoused to address rework (Love et al., 2022). 

There have been studies on AR or VR-based employee skill 
enhancement (Osti et al., 2021; Bosché et al., 2016), and the establish
ment of individual and organizational reputation mechanisms based on 
blockchain (Qian and Papadonikolaki, 2021; Zhang et al., 2019). But 
there is still an absence of research on digital technology-based quality 
culture, such as rework and error management. Therefore, one future 
research direction is how to apply digital technology to construction 
quality culture and improve the existing quality culture. 

6.2. Advanced data analytics 

Data analytics capabilities are a key theme in many digital technol
ogies. Constantly optimized data analysis capabilities provide more 
robust methods to solve complex and large-scale problems. For example, 
the algorithms and models used for construction quality defect identi
fication discussed in the previous section are constantly upgraded to 
obtain better defect identification results. Since the data acquired by 
sensors as well as IoT, etc. Are large and prone to noise, incompleteness, 
and inconsistencies, the analysis of such large amounts of data requires 
advanced analytical techniques to effectively review or predict future 
courses of action with high accuracy and advanced decision-making 
strategies (Hariri et al., 2019). 

Improving data, algorithms, or models are beneficial to optimizing 
data analysis. Model faces problems with data fusion and model 
updating. Presently, deep learning is used for data fusion. The basic 
principle of multi-source and multi-modal deep learning fusion is the 
same as that of classical deep learning, but the datasets used for learning 

and training are different, from single data to multi-source and multi- 
modal datasets, or cross-use of datasets with different modes. Howev
er, data fusion may lead to an “exponential explosion” in the amount of 
computation. 

In summary, applying advanced data analysis methods to more 
construction scenarios or optimizing the efficiency and accuracy of 
existing CQM data analysis can help improve construction quality. 

6.3. Behavioral quality assessment 

Amongst the construction product quality data analysis, the quality 
defects in construction products can be identified in time with corrective 
measures. The focus of quality management is gradually shifting from 
post-control to in-process control and pre-control. Workers are the ul
timate executors of the engineering plan. They decide how the con
struction process will be implemented, which is reflected in their 
behavior (Závadský et al., 2020). Factors such as workers’ motivation, 
awareness, attitude, emotion, and ability will determine their behavior 
and affect the quality of the product. 

If work quality meets standards or specifications in each process, 
there is a high probability that the final product will meet the standards. 
Error operation by workers is the leading cause of quality problems 
(Rejeki et al., 2020). NLP can be used to parse the regulation provision 
from text into OWL axioms and SWRL rules and check semantic behavior 
for specific construction tasks. Through tracking and analyzing workers’ 
behavior onsite, the compliance inspection of the construction process 
can be automatically accomplished in time with corrective measures. 

7. Conclusion 

This study aimed to elucidate the state-of-the-art review of digital 
technologies for the CQM. A total of 108 articles were collected from 
international journals and keyword searches from Web of Science 
database. The results confirm that the current research lacks the quality 
management of concealed works, and effective process control on 
compliance check. Also, it is difficult to obtain quality data to perform 
thorough evaluation. For application, digital technologies also face 
personal privacy, security, and cost-effective challenges. Therefore, 
future research studies are warranted to consider quality culture, data 
processing algorithm, and behavioral quality to obtain and carry out 
comprehensive real-time CQM. This paper provides an essential refer
ence for practitioners studying digital technology-based CQM. This re
view makes contributions by revealing the state-of-the-art algorithms 
and techniques for the CQM. 
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