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Abstract A new procedure supporting filtering and classi-
fication of LiDAR data based on both elevation and inten-
sity analysis is introduced and validated. After a preliminary
analysis to avoid the trivial classification of homogeneous
datasets, a non-parametric estimation of the probability den-
sity function is computed for both elevation and intensity
data values. Some statistical tests are used for selecting the
category of data (elevation or intensity) that better satisfies a
bi- or a multi-modal distribution. The iterative analysis of
skewness and kurtosis is then applied to this category to
obtain a first classification. At each step, the point with the
highest value of elevation (or intensity) is removed. The

classification is then refined by studying both statistical
moments of the complementary data category, in order to
look for potential sub-clusters. Remaining clusters are iden-
tified by applying the same iterative procedure to the still
unclassified LiDAR points. For more complex point distri-
bution shapes or for the classification of large scenes, a
progressive analysis is proposed, which is based on the
partitioning of the entire dataset into more sub-sets. Each
of them is then independently classified by using the core
procedure. Some numerical experiments on real LiDAR
data confirmed the potentiality of the filtering/classification
method.

Keywords LiDAR . Filtering . Classification .Algorithms .

Skewness . Kurtosis

Introduction

Filtering and classification of airborne LiDAR (light detec-
tion and ranging) data is a complex task, requiring the
exploitation of different properties. Several approaches have
been developed up until now, although no one seems to
feature a general applicability.

Filtering methods refer to discarding all off-terrain points
in order to reconstruct the bare-earth only. As proposed in
Vosselman and Mass (2010), filtering methods can be
grouped in four classes: morphological filtering (Haralick
and Shapiro 1992), progressive densification (Axelsson
2000), surface-based filtering (Kraus and Pfeifer 1998),
and segment-based filtering (Sithole and Vosselman 2005).
In Sithole and Vosselman (2004), a comparison among
different techniques applied to the same benchmarking data-
set can be found.
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Fig. 1 On the top, two
examples of PDFs (in red lines)
with skewness smaller (left) and
larger (right) than a normal
PDF (in green line). On the
bottom, two examples of PDFs
(in red lines) with kurtosis
larger (left) and smaller (right)
than 3, which corresponds to
normal PDF (in green line)

Fig. 2 Example of classification of a bi-modal dataset of airborne
LiDAR data. The analyzed area is shown with a red contour in the
intensity image (upper-left sub-figure). The right column reports the
histograms corresponding to four different steps of iterations along

with the point featuring the highest intensity value (lighter points in
the intensity image, corresponding to ground) is removed at each step.
At the bottom-left, plots of skewness (in blue line) and kurtosis (in red
line) computed along iterations are shown
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Classification methods are used to split different catego-
ries of objects into homogeneous classes. Different classes
are considered here, not only the bare terrain as in filtering
procedures. Among these methods, some exploit the inte-
gration of multiple properties, chiefly elevation and laser
intensity. This solution could increase the chance to accom-
plish a successful classification in those regions where a
single data type does not provide enough information con-
tent. In the same direction, sometimes also aerial images are
used to support the classification process (Xu et al. 2011).

Some authors proposed algorithms to perform the unsu-
pervised point filtering/classification by studying the behav-
ior of some statistical parameters of the LiDAR point cloud
distribution values. Bartels et al. (2006) and Bartels and Wei
(2006, 2010) have introduced a “skewness balancing” algo-
rithm based on the analysis of elevations, that is able to
distinguish ground and off-ground points, either in the case
of flat and sloped terrains.

As well-known from Statistics, skewness (sk) and kurto-
sis (ku) are third- and fourth-order moments about the mean
(see, e.g., Johnson et al. 1994). Sometimes they are grouped
under the name of “higher-order moments”. Their mathe-
matical expression can be summarized as follows:

M ðnÞ ¼ 1

Nσn

XN
i¼1

xi � μð Þn
 !1 n=

; ð1Þ

where n=3 for skewness and n=4 for kurtosis, respectively;
N is the number of points; xi is the observed value of the ith
point; μ and σ2 are the mean value and the variance of
population.

Skewness represents the degree of asymmetry around the
mean. A skewness value of zero indicates a symmetric
distribution. Kurtosis measures the degree of dominance of
the distribution’s peaks about its mean. Normal distribution
has a sk=0 and ku=3. A normalized version of formula (1)
can be found in the literature for kurtosis; in this case,
normal distribution has ku=0. Figure 1 reports some exam-
ples of probability distribution functions (PDF) with skew-
ness and kurtosis respectively smaller and larger than the
ones of normal distribution.

Some distribution characteristics of the elevation values
in LiDAR datasets can be highlighted by looking at both
higher-order moments. In the case of skewness, negative
values indicate dominance of “valleys”, while positive val-
ues show dominance of “peaks”. For kurtosis, values larger
than 3 indicate a “peak” distribution, while values smaller
than 3 characterize a “valley” distribution. In the case of
intensity data, no physical interpretation of both parameters
is meaningful.

As a preliminary assumption, a homogeneous class in a
LiDAR dataset is expected to contain normally distributed
values (Duda et al. 2001). Consequently, the analysis of

both skewness and kurtosis can be useful for recognizing
whether these parameters show a Gaussian behavior or
not. In particular, this hypothesis should be satisfied for
elevation data in the case of a flat area (sloped terrain
entails some critical issues as discussed later) and for a
homogeneous intensity data cluster. In Bao et al. (2007),
the analysis of kurtosis point distribution is exploited
for a classification into ground, buildings, and vegeta-
tion classes. A further improvement on the classification
process was obtained by a combined analysis of both
skewness and kurtosis for both elevation and intensity
distribution values (Bao et al. 2009; Liu et al. 2009;
Costantino and Angelini 2011).

In the mentioned literature, skewness and kurtosis are
used within a classification scheme that is summarized
in Fig. 2. Here the intensity histogram of a LiDAR
dataset is considered at first (upper-right graph in

Fig. 3 a Flowchart of the classification procedure for elevation
(“P1Z”) and intensity data (“P1I”), respectively. b Flowchart of the
bi/multi-modality testing procedure “P2”

Appl Geomat (2013) 5:225–240 227

Author's personal copy



Fig. 2). A preliminary analysis of the data variance, or
another technique to check the presence of bi- or multi-
modality, can be applied to avoid classifying a homo-
geneous dataset. In the example in Fig. 2, the presence
of three trees in a field introduces a clear bi-modality in
the dataset. By applying an iterative procedure, the
point with the highest intensity value is sequentially
removed from the dataset at each step. This operation
results in discarding ground points that are characterized
by the highest intensities (lighter points in Fig. 2). As
soon as points are removed, both fractions of ground
and tree points will become similar (second and third
histograms from the right top in Fig. 2).

It is possible to notice how during the iterations (or
cycles), when the ground intensity values are sequentially
removed, skewness and kurtosis continuously change.
When sk=0 and kurtosis has the minimum value, the distri-
bution is symmetric and the same number of points is
expected for the two different clusters. At this point, skew-
ness and kurtosis start rising and the latter reaches a local
maximum (ku=3) when nearly only vegetation points are
present. This fact is also verified by a local maximum of
skewness, confirming the presence of only one cluster made
up of vegetation points. Because there is a range of intensity
shared between both classes, Liu et al. (2009) suggested to
stop the classification process at the iteration corresponding
to the last local maximum of kurtosis. This point refers to

the lower histogram in Fig. 2. All points with lower intensity
are then collected into the same class (“trees” in this case).
The same procedure can be applied again to the already
removed points in order to seek for any possible sub-
classes. This behavior is true for intensity but not for
elevation data. In this last case, the topography deeply
affects both higher-order moments. As said before, neg-
ative skewness values indicate dominance of “valleys”
while positive values show dominance of “peaks”. Any-
way, Liu et al. (2009) introduced an alternative ap-
proach to identify clusters of homogeneous points. In
this case, the sequential classification procedure was
applied by removing the points with the highest eleva-
tion values. Owing to the fact that these points belong
to vegetation, once they have been removed, the two
curves of skewness and kurtosis become and remain
stable up to the end of process.

The examples reported in “Experiments” section will
describe how the classification method based on skew-
ness and kurtosis analysis can be exploited in a more
effective procedure for classification or filtering of air-
borne LiDAR data. According to Vosselman and Maas
(2010), the availability of multiple approaches is a fun-
damental prerequisite to accomplish this task in a suc-
cessful way. This solution is important for both
automatic (unsupervised) and interactive (supervised)
procedures.

Table 1 Error values in the four
experiments; the lower row
gives the error related to road
extraction on the basis of inten-
sity data from points that had
been already classified as ground
points

Exp. A1 (%) Exp. A2 (%) Exp. B1 (%) Exp. B2 (%)

Total error 5.60 2.69 8.90 1.40

Type I error 0.15 1.54 9.38 0.66

Type II error 20.79 6.60 7.05 1.80

Error of road extraction – 31.66 – 20.19

Fig. 4 Intensity image of the
area of experiment “A1”
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On the other hand, some aspects need to be improved for
an extensive application of this method. The chance to work
alternatively with both elevation and intensity data can be
used for exploiting the property which is more likely to be
successful. In the majority of the classification methods
which rely on the higher-order statistical moments, their
integration was not fully exploited. Real scenarios are not
always as simple as the case studies reported in the most
papers. Consequently, a strategy to decompose large scenes
in smaller regions, where the basic discrimination criteria
can be separately applied, is still pending. In addition,
results achieved in different regions could be checked across
one another to find discrepancies, to correct mistakes, and to
merge those regions corresponding to the same category.
Finally, some work is necessary to analyze how noise in the
dataset might influence the classification process. Indeed,
the same level of noise can affect more the classification of a
smaller region than a larger one.

In the following sections, some solutions to cope
more effectively with these concerns will be proposed
and discussed. First of all, the description of the

filtering/classification procedure is given in “The pro-
posed filtering/classification procedure” section. “Experi-
ments” section shows the application of the procedure
to a few case studies coming from a real airborne
LiDAR survey (see “Dataset description” subsection)
with the purpose of validation. First, in “Analysis of
simple scenes” subsection, the analysis of small scenes
with an increasing level of complexity is carried out.
Secondly, in “Analysis of complex scenes” subsection,
larger and more involved regions are faced. Some final
considerations on the achievements and the open prob-
lems are discussed in “Final considerations and future
work” section, addressing to work to do in the future.

The proposed filtering/classification procedure

Classifying and filtering LiDAR data based on skewness
and kurtosis analysis is a proved methodology. Howev-
er, as pointed out at the end of the “Introduction”
section, some problems have to be overcome to setup

Fig. 6 Skewness (blue) and
kurtosis (red) behavior for the
intensity values of experiment
“A1”

Fig. 5 a Intensity distribution function and b elevation distribution function for the points from experiment “A1”
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an effective classification procedure capable of dealing
with complex real scenes. Indeed, the complete automa-
tion of such procedure would be an important goal. The
user would have only to check out the results and to
label different classes. On the other hand, here the goal
is to set up the basic algorithms and the general work-
flow of the filtering/classification method, while the user
has still to make decisions. To better understand the
processing pipeline, the case of a single homogeneous
scene is considered at first. In a second stage, the
extension to larger and more complex scenarios will
be tackled.

The sequential procedure proposed by Liu et al.
(2009) and described in the previous section is based
on the alternative use of the most effective data catego-
ry between elevation and intensity for classifying homo-
geneous point clusters. If the graph of the distribution is
such to prefer the intensity values, since it shows a
clear bi- or multi-modality, from the analysis of skew-
ness and kurtosis, the last part of the distribution values
will be classified as in Fig. 2. Points relating to the
right side of the kurtosis local maximum are assigned to
the same class, while points relative to its left part are
not classified. A similar approach is still valid if the
point classification is carried out on the basis of eleva-
tions. Points that satisfy a local flat condition for the
last part of skewness and kurtosis functions are homo-
geneously classified, while the others remain unclassi-
fied. The same procedure can be applied again to all the
points, but using the complementary data category, the
intensity analysis is applied to the data already classi-
fied on the basis of elevations and vice versa. This
mixed procedure might identify further subclasses with-
in the already classified points and to classify some
points that are still unclassified.

The procedure starts with a given point cluster and
the first step is to check whether it corresponds to a
unique class. This step is accomplished by fitting both
elevation and intensity data with a plane. The analysis
of the residuals with respect to the estimated plane
allows one to assign all points to a single class if the
root mean square (RMS) of residuals is less than a
predefined threshold. In this case, the classification pro-
cedure is halted, otherwise the next processing stages
can be tackled.

If the process goes on, the following step is the
analysis of the point elevation and intensity histograms
to select the data category to be considered at first.
Owing to the irregularity of histograms, a non-parametric
estimation of the PDF which better fits each histogram is
applied. Here the approach proposed in Epanechnikov
(1969) was followed. A PDF can be obtained by a convolution
process of a chosen kernel applied to each sampled value.

Given a data set (x1, x2, …, xn) sampled from a distribution
having an unknown PDF f(x), the problem is to estimate the
shape of this function from the following relationships:

fhðxÞ ¼ 1

n

Xn
i¼1

Kh x� xið Þ; with Kh ¼ 1

h
K

x

h

� �
; ð2Þ

where K (x/h) is the kernel, i.e., a non-negative density func-
tion with integral equal to 1; h>0 is a real positive parameter
defining the size of the sampling class (the default value is

Fig. 7 a Point classification based on intensity data (experiment
“A1”); classified points at this stage are depicted in red. b PDF for
the elevation values of the classified points
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100). Symmetrical density functions, with respect to the ori-
gin, are usually applied (a normal PDF in this case).

The selection of the data category to start with falls
on the one that better shows a bi- or multi-modality. If
the clusters are totally disjoint, the problem is trivial. If
this is not the case, further analyses are carried out.
Hartigan and Hartigan (1985) proposed to apply the
“dip test” to measure multi-modality in a sample by
the maximum difference, over all sampled points, be-
tween the empirical distribution function and the unim-
odal distribution function that minimizes that maximum
difference. More recently, profile analysis was carried
out by applying different strategies like the Bayesian
Information Criterion score (see, e.g., Yeoung et al.
2001) and the variational Bayesian approach (see, e.g.,
Teschendorff et al. 2005). Teschendorff et al. (2006)
proposed integrating the analysis of kurtosis into the
previous models. They showed that in the case of a
bi-modal distribution, a mixture of two approximately
equal mass Gaussians must have ku<3, whereas ku>3
in the case of highly unequal masses. They also found
out a relationship among kurtosis, the standardized sep-
aration between the two clusters and the minor cluster
mass (as fraction of the total). Practically, comparing
two distribution functions, the best seems to be the
one with the kurtosis value much lower than 3. How-
ever, here the “dip test” is applied to select between
elevation and intensity data (see the flowchart of the
process “P2” in Fig. 3b). In addition, if no significant
difference is found by this test, the user is asked to
make a decision about the data property to use or to
stop the classification process.

In the case the selection of elevation and intensity values
is positively accomplished, the skewness and kurtosis vari-
ation analysis is applied to identify a significant point cluster
through the point removal cycle. Afterwards, the selected
cluster is analyzed by considering the complementary data

category. Then the procedure is repeated for the remaining
unclassified data. Figure 3a shows the flowchart of the
procedure “P1” for the elevation (“P1Z”) and for intensity
data (“P1I”), respectively.

The classification method here proposed works well
for small areas, where the presence of only a few modal
distribution values can be expected for elevation and
intensity. The method becomes prohibitive when applied
to large, not homogeneous, and complex areas, where
both data categories might show a multi-modal behavior.

This is the reason why the classification procedure
“P2” was thought as a “progressive multi-analysis meth-
od”, where the whole area is subdivided into regular
sub-areas to be independently processed. Some first
experimental results confirmed the suitability of the
filtering/classification method to cope effectively with

Fig. 9 Red points are classified on the basis of elevation, after the first
classification based on intensity data (see Fig. 7a—experiment “A1”);
points in green are not considered

Fig. 8 Skewness (blue) and
kurtosis (red) values for
elevation of the points classified
in red in Fig. 7a (experiment
“A1”)
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complex scenes (see “Analysis of complex scenes” sub-
section). As can be seen in Fig. 3b, the workflow of
procedure “P2” is extended when working with complex
and large regions.

In the current implementation, the dataset has been
inscribed into a rectangular window. “No-data” values
are assigned where there are no LiDAR data. If the
classification procedure cannot be successfully applied
to the whole region, this is split up into regular rectan-
gular sub-windows. Then the process is applied inde-
pendently to each of them. Only those sub-windows that
cannot be classified are sub-divided again. The proce-
dure is repeated as far as all regions will be classified.
An upper limit to the sub-window levels is established
to avoid processing of too smaller regions. A reasonable
alternative to the subdivision of large datasets into
smaller regular sub-regions is to apply a preliminary
rough classification based on a well-assessed state-of-
art technique. Moreover, the strategy for splitting the
larger datasets do not influence the basic classification

algorithm, which does not require any data regularity
and can process sparse point clouds as well.

Once this process is accomplished, each region will be
independently classified. At the moment, the user tries to
identify classes shared by different regions. This task is
simply carried out by assigning the same label to the classes
corresponding to the same category of objects. In “Dataset
description” subsection more details about this aspect will
be given.

The establishment of a common classification frame-
work gives also the chance to check inconsistencies and
mistakes left by the independent classification in each
region, for instance by exploiting the topological prop-
erties of neighboring classes as suggested in Forlani et
al. (2006).

At the current state of this research, different tasks have
not been implemented yet in an automatic way. Indeed,
hitherto the aim has been to establish and assess some
criteria to support the decision making process in a “super-
vised” manner.

Fig. 11 a Intensity and b elevation PDF for the points of experiment “A2”

Fig. 10 3D view (on the left) and 2D view (on the right) of the area of experiment “A2;” colors change according to elevation values from blue to red
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Experiments

The performances of the sequential classification proce-
dure have been verified by some experiments. Some
regions extracted from the LiDAR dataset described in
“Dataset description” subsection have been utilized to
this purpose.

Experiments have concerned two different kinds of scenes:
at first, simple, small scenes have been focused on (“Analysis
of simple scenes” subsection); then two larger scenes have
been afforded (“Analysis of complex scenes” subsection).

The performance of the algorithm is measured by com-
paring the obtained classification against a manual classifi-
cation of the same reference data. Table 1 shows the total
error (number of misclassified points as a fraction of all
points), the type I error (number of misclassified ground
points as a fraction of all ground points), and type II error
(number of misclassified points as a fraction of all points in
the selected class).

Dataset description

Data used for experiments are relative to two strips of a
LiDAR survey over the municipality of Tavagnacco
(Udine, Italy). The flight was carried out in 2007 with
a Leica ALS50 sensor. Forty strips, covering an area of
more than 30 km2, for more than 400 millions of points, have
been acquired at a flight height of 1,000 m a.s.l. with a point
density of ca. 13 points/m2. The mean linear distance among
the surveyed points is 28 cm. The available (not re-sampled)
data concern the first-echo response only. Consequently, clas-
sification did not rely on multiple responses, although this
information could help, especially for the classification of
vegetation.

A manual point classification had been previously carried
out by the program MARS Explorer 6.1 (Merrick and Com-
pany 2010). Four target classes have been manually identi-
fied: “ground”, “streets”, “buildings”, and “vegetation and
other objects” (i.e., cars).

Fig. 13 Classification of points into ground (red points) and off-ground points (black points) based on elevation data for experiment “A2” (3D
view on the left and 2D view on the right)

Fig. 12 Skewness (blue) and
kurtosis (red) plots for the point
elevation values of experiment
“A2”
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The applied filtering/classification method in the adopted
software provides the analysis of individual sections along
the strip with the option “Place Adjustable Profile Line”.
This option allows the operator to create a section with an
input thickness. Afterwards, the option “Edit Toolbars” has
been applied in order to label a class of selected points.

At the end of the manual classification process 11,932,445
points have been classified. Out of these, 80.4 % of the total
points have been classified as “ground”, 8 % as “vegetation
and other objects”, 8.2 % as “buildings,” and 3.4 % as
“streets.”

Analysis of simple scenes

Experiment “A1”: road extraction

The experiment is related to one of the main applications of
the laser point analysis, i.e., road extraction. To this aim, a

small area of the dataset, crossed by a highway, is taken into
account (Fig. 4).

By analyzing the distribution functions obtained from the
histograms for both intensity (Fig. 5a) and elevation data
(Fig. 5b), the former shows a clear bi-modality for what
concerns the intensity. On the contrary, it is hard to distin-
guish any point cluster in the elevation data. This is con-
firmed by the values of the “dip test” that furnishes 0.0166
for elevation and 0.0543 for intensity. Thus, the choice falls
on the computation of skewness and kurtosis variations
along the cycles for the intensity values. Throughout the
paper, the graph of skewness behavior is represented with a
blue line, while that of kurtosis with a red line, as in Fig. 6.

The decision is to classify the points in correspondence of
the maximum value of kurtosis, where a “peak” value of
skewness is also present at cycle 206. The result is shown in
Fig. 7a, where classified points are represented as red dots
and unclassified points as gray ones.

Fig. 15 Behavior of skewness
(blue) and kurtosis (red) for the
intensity values of the classified
ground points (experiment
“A2”)

Fig. 14 PDF of the intensity values for the ground points of experi-
ment “A2”

Fig. 16 Classification based on intensity of the ground points of
experiment “A2”
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As expected, the largest part of the points belonging to the
asphalted area is correctly classified, including some points
belonging to vegetation (upper right part of Fig. 7a) and some
sparse ground points. A provisional classification label is
assigned to these points, while the ones not yet classified (gray
points in Fig. 7a) are considered as still unclassified.

According to the flowchart in Fig. 3a, b, the elevation
analysis is then applied to the classified data (i.e., red points
in Fig. 7a). As can be seen in the PDF diagram shown in
Fig. 7b, points belonging to the small cluster at height 187 m
should be separated from the ones in the range 188–191 m.
After applying again the skewness and kurtosis variation
analysis for the elevation values of such points, the behavior
shown in Fig. 8 is obtained.

On the basis of elevation analysis, the local flatness of
kurtosis suggests the classification of points at cycle 2,845.
The result makes it possible to extract from the red points in
Fig. 7a those belonging to the “ground” class (Fig. 9).

As can be seen in Table 1, a quite large type II error was
found, showing in this case the limit of the proposed method
for extracting road points.

Experiment “A2”: extraction of multiple classes

This experiment represents a very significant synthesis of
common real situations (see Fig. 10), with the presence of
ground, vegetation, one road, and one building.

The PDF for the intensity and elevation data are shown in
Fig. 11. Here the shape of PDF plot for elevations reveals
more than two classes, while the PDF of intensities mainly
indicates two partially overlapped classes. According to the
result of the “dip test”, the classification process started
from the elevation values (Fig. 11).

Points are classified in correspondence of cycle 1,890, where
the kurtosis plot features a local flat area (see Fig. 12). This first
classification splits points into ground and off-ground classes
(Fig. 13). Then, the ground points are classified again on the
basis of the intensity data. Figure 14 reports the behav-
ior of the ground point distribution analyzed by using
intensity. After computing skewness and kurtosis indi-
ces, the plots reported in Fig. 15 are obtained. Points
are classified according to cycle 141, in correspondence
of a local maximum of kurtosis. In this way, it is

Fig. 18 Plots of skewness
(blue) and kurtosis (red) for the
elevation of the unclassified
points (experiment “A2”)

Fig. 17 a Intensity and b elevation PDF for the unclassified points of experiment “A2”
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possible to separate those points belonging to road
surface (see Fig. 16).

Points not yet classified are now taken into account and
their distribution evaluated. The PDF of elevations (Fig. 17b)

showsmore than two classes, while intensity data are basically
unimodal. Consequently, the classification process carries on
by considering the elevation values (Fig. 18). Points are
classified according to the elevation following cycle 1,319,

Fig. 21 First subdivision of the
entire area of experiment “B1”
in four parts

Fig. 20 3D view of the “B1” experiment area colored according to elevation from blue to red

Fig. 19 Segmentation based on elevation of vegetation points (red) and building points (gray) from experiment “A2”
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in correspondence of a local flatness of kurtosis. The result
made possible to successfully split up vegetation and building
points (Fig. 19).

The results of comparison with benchmarking data in
Table 1 look quite satisfying for this dataset. In this case,
type II error relates the correct classification of buildings.

Fig. 23 Final subdivision of
the entire area of experiment
“B1”

Fig. 24 3D view of the final classification result of experiment “B1”: “ground” class in brown, “vegetation and other objects” class in green

Fig. 22 PDF for intensity and
elevation data per each of the
four main areas (experiment
“B1”)
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The only exception is the error on road extraction based on
the analysis of intensity from points previously classified as
“ground” (31.66 %).

Analysis of complex scenes

It was already mentioned that in the case of complex scenes,
it is necessary to subdivide the whole area in sub-regions
where the classification procedure can be successfully

applied. In the following, the results of two experiments in
such areas are reported. The first test relates to an area
covered by vegetation, characterized by two flat and one
sloped parts. The second experiment refers to a complex
urban environment, characterized by various kinds of
features.

Experiment “B1”: vegetation extraction

The experiment was carried out for the complex area
reported in Fig. 20. This area is characterized by two flat
parts, located at different height, connected by a sloped
terrain covered by trees and other kinds of vegetation.

At the beginning the whole area is subdivided into four
zones (Fig. 21) and for each zone the intensity and the
elevation distribution values are computed (Fig. 22).
According to the distribution results of the zones 1 and 3,
it is decided to still divide these zones in four sub-parts. In
this case, the use of preliminary rough classification is also
expected to work well, but it has not been applied here.

By proceeding this way, after the analysis of the shape of
PDF for elevation and intensity data, the whole area is
finally subdivided according to the layout reported in
Fig. 23. The skewness and kurtosis analyses for both data
categories of each zone result in the classification shown in
Fig. 24, where points classified as “ground” are depicted in
brown and those as “vegetation and other objects” in green.

The average value of three types of errors in Table 1 is ca.
7–9 %, result that is fairly good if compared to other state-
of-art methods (Vosselman and Maas 2010). Type II error
here means the correct classification of vegetation points.

Experiment “B2”: road and terrain extraction

The area (10,000 m2) is characterized by a complex
urban environment (Fig. 25) and the density of surveyed
points is higher than in other datasets due to the overlap
between two strips (26.5 points/m2). In the upper-left
part, there is a sloped terrain with presence of a build-
ing and vegetation. The other areas are characterized by
the presence of buildings, roads, complex vegetation,
and flat terrain.

The whole area is subdivided into small sub-regions
(Fig. 25, image at bottom) and for each zone the inten-
sity and the elevation distribution values are computed.
By proceeding as in the previous experiment, the result
of the classification is reported in Fig. 26.

The filtering total error results equal to 1.40 %. Type I
error corresponds to 0.66 %, while type II error, i.e., the
classification error of “vegetation and other objects” as well
as “buildings” classes, is equal to 1.80 % (see Table 1).

In this experiment, from classified ground points, the
road points were extracted by using intensity with the

Fig. 25 Intensity (above) and elevation (below) image of the area of
experiment “B2”
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iterative removal method (Fig. 26, right image) and the error
(i.e., number of misclassified road points as a fraction of all
road points) result is equal to 20.19 %. The same type error
was found in the experiment “A2” (31.66 %).

Discussion

According to the reported results, the algorithm seems to
work well for filtering ground points, also in the case of
heavily vegetated slopes. In fact, as reported in Sithole and
Vosselman (2005), such kind of terrain is very often not
correctly classified with standard filtering methods. More-
over, the type II error value would be significantly reduced
in case of buildings and other kinds of man-made objects.

In the case of complex scenes, the subdivision of the
full dataset in rectangular areas worked effectively in
the reported examples. Other principles, like preliminary
pre-classification in free-form polygonal regions which
feature homogeneous properties, could be exploited as
well.

A further problem that might affect precision and
reliability of the results is the influence of different
kinds of noise in the dataset. In particular, it would be
really important to analyze the behavior of skewness
and kurtosis variations with respect to data errors. In-
deed, the adopted method selects a class of data at the
end of an iterative removal process. This means that the
computation of higher-order moments for the last data
characterizing a particular class might be strongly influ-
enced by the presence of outliers. For this reason,
skewness and kurtosis robust measures should be

considered in future instead of the traditional ones
(e.g., Mardia 1974; Kim and White 2004).

Final considerations and future work

The paper proposes a new LiDAR point filtering and classifi-
cation method based on the sequential skewness and kurtosis
analysis of elevation and intensity point distribution values.
This technique introduces some improvements with respect to
other similar approaches reported in the literature. Indeed, the
basic algorithm here implemented works well for simple
scenes, after removing at each step of the process the largest
data values as suggested by Liu et al. (2009). First of all, some
solutions have been included to better support user’s deci-
sions. Furthermore, a procedure to split larger datasets into
smaller regions to be independently processed has been added
here to extend the application to complex scenes.

Some numerical experiments with real airborne Li-
DAR data confirmed that classification errors (both I
and II type errors) are comparable and, in some cases,
also better than the ones reported in the literature when
using other well assessed techniques. Moreover, the
applicability of the method has been also demonstrated
for filtering out off-ground points in the case of vege-
tated slopes.

In the current implementation, the procedure runs as an
interactive procedure, where the user makes decisions along
the classification process. After further developments, this
method is prone to become an unsupervised classification
method. On the other hand, the user knowledge still will

Fig. 26 On the left, all points classified as “terrain” are shown (brown points); from these points, the ones belonging to the “road” class (red points
in the right sub-figure) are extracted (experiment “B2”)
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remain fundamental for the discrimination of critical cases,
as in the most classification procedures.

Finally, the evaluation of noise influence is a crucial
point. The core classification algorithm runs on the basis
of iterative elimination of points from a dataset. This means
that mistakes and noise can have a largely different influ-
ence in the first and last cycles, owing to the decreasing
number of remaining points. This effect is particularly crit-
ical because the classification is run on the points left at the
end of each cycle. Procedures to make the process more
robust will be investigated in the future.
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