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Abstract

A critical aspect in the modeling of biological systems is the description view point. On the one hand, the
Stochastic π-calculus formalism provides an intuitive and compact representation from an internal perspective.
On the other hand, other proposed languages such as Hybrid Automata and Stochastic Concurrent Constraint
Programming introduce in the system description an external control and provide more structured models.
This work aims at bridging the above discussed gap. In particular, we propose a different approach for the
encoding of biological systems in Stochastic π-calculus in the direction of introducing an external control and
comparing different formalisms. We show the effectiveness of our method on some examples.
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Introduction

Systems Biology exploits different languages and formalisms mainly inherited from
mathematics and computer science with the aim of modeling and analyzing com-
plex biological systems in terms of their components and their interactions. A
formal modeling and understanding of the underlying laws of life are at the basis
of all the scientific research in biology. We just mention here the impact that systems
biology could produce on the development of new therapies and drugs.

The huge complexity of biological systems calls for the definition of a range
of modeling languages operating at different levels of description (e.g., different
space/time scales). However, it is also essential to compare and integrate such
languages in a global framework in which information is shared and analyzed
from many perspectives.
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Among the formalisms proposed for systems biology, the Stochastic π-calculus,
proposed by Priami in [15], has received growing attention in the last years
[16,14,13,6]. Many advantages come by the use of Stochastic π-calculus and more
in general by the use of process calculi: if we consider the problem of describing
a system, it allows to model biological entities (e.g., molecules, genes, proteins) as
processes and entity interactions as communications between processes. This perspec-
tive has been taken also in other process algebras developed for systems biology.
Such approach has some interesting peculiarities: for instance it is strongly com-
positional, and it explicitly models the biological meaning (functional activity) of
each entity. In this sense we can say that it represents the system from an internal
point of view, because all the terms inside the representation have a counterpart in
the physical system, so there are not “external” contributions in the description.
Stochastic π-calculus is also powerful for the analysis, because it inherits all the
theoretical results, such as the notion of bisimulation, that are already available
for the more traditional calculi (CCS, π-calculus, ...). Unfortunately, it also has few
critical aspects, such as the fact that describing interactions by communications
forces to consider only binary exchanges, since communications among three or
more principals are not immediately encodable inside the language.

On the other hand, Ordinary Differential Equations (see, e.g., [17]) describe the
system from a different perspective. If xi is an entity and Xi is the quantity of
xi in the system, the differential equation Ẋi = f (X1, . . . ,Xn) represents the time
evolution of xi, while the biological meaning of xi (which is explicit in the internal
point of view) has to be reconstructed by looking at all the right hand sides of
the system equations. Roughly speaking we can say that the differential equation
Ẋi = f (X1, . . . ,Xn) allows to syntactically represent an external view of the system:
from outside we can measure the global quantity of each entity; moreover, the
analytic structure of the differential equation is a (not always immediate) translation
in mathematical language of the interactions between entities. Such external point
of view in the Stochastic π-calculus models is hidden at a semantic level, where
the reaction rates depend on the total amount of reactants. Of course there are
disadvantages also in the use of differential equations: it is very difficult to find
their exact solutions and, at the same time, they lack the linguistic structure of
process algebra and hence standard model-checking techniques are hard to apply.

Other formalisms known in literature, such as Stochastic Concurrent Constraint
Programming (sCCP) [3,4] and Hybrid Automata [1,11,7], push even forward the
discrepancy between the internal and the external perspectives by allowing at the
syntactic level to model changes in dynamic laws according on global constraints
(e.g., activation and reset conditions in the case of hybrid automata). In other
words, while we talked about an “internal” perspective of the Stochastic π, here
we have an “external” contribution of constraints and control structures that do
not really exist in the physical system.

We propose a different use of Stochastic π-calculus in the modeling of biological
systems with the aim of joining its positive aspects with the possibility of intro-
ducing the external control structure we have just mentioned for hybrid automata.
To obtain this, we model the entities as messages on a “memory” channel and the
interactions as processes. In particular, we focus on chemical reactions and we use
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a single process to coordinate all the reactions. The process is external with respect
to the original system, since it “counts” the global amount of entities contained in
it. In a sense our approach try to bridge the gap between the Stochastic π-calculus
models described in [16,14,13,6] and other formalisms such as sCCP and hybrid
automata, moving the control on the global state of the system from the semantics
to the syntactic level. Our main aim is that of comparing / integrating different
modeling languages. This should allow us to extend standard analysis techniques
of process algebra to other formalisms. Interestingly, our approach also allows to
easily model n-ary chemical reactions.

The paper is organized as follows. In Section 1 we recall the syntax and seman-
tics of both Stochastic π-calculus and SPiM [13], while we present our proposal in
Section 2. Some examples are discussed in Section 3. Section 4 ends the paper with
some remarks and future work proposals. More technical details and semantics
equivalences can be found in [9].

1 Stochastic Pi-Calculus, Biology, and Simulations

Since the beginning of our work, we have chosen to implement our approach using
SPiM, an high level language based on Stochastic π-calculus. The reason for this
is twofold: from the one hand, Stochastic π is well known in the literature, and it
is already widely used in biologic descriptions. On the other hand, SPiM is, at the
same time, rather intuitive (also for non-trained user) and equivalent to Stochastic
π. So, in this section we would like to offer a short introduction to these two
languages and to their use in biological modeling.

1.1 Stochastic Pi-Calculus

Stochastic π-calculus is an extension of the π-calculus process algebra. It has been
introduced in [15] with the aim of modeling performances of dynamically reconfig-
urable or mobile networks. It inherits all the syntax of π-calculus and enriches this
last with the possibility of associating to each action a probability distribution. As
a consequence, we can associate to each prefix a time duration, represented by the
value of a random variable, which follows the above mentioned probability distri-
bution. In the case of memoryless processes exponential distributions can be used
and actions take the form (a, r), also denoted by ar, where a is the action name and
r (activity rate) is the parameter characterizing the exponential distribution, i.e., the
average duration of (a, r) is 1/r. Notice that the language also allows instantaneous
actions, corresponding to r = ∞, in which the rate is omitted.

Let us briefly recall the syntax of Stochastic π-calculus.

Definition 1.1 [Stochastic π-calculus – Syntax] Let N = {a, b, .., x, y, . . . } be an infi-
nite set of names. A Stochastic π-calculus process is an expression of the following
grammar:

P ::= 0 | (π, r).P | (νx)P | [x = y]P | P|P | P + P | P(y1, .., yn)

where r ∈ R+
∪ {∞}.
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The intuitive meaning of the operators is essentially the same as in π-calculus.
In particular:

• π is either x(y) or x̄y or τ. x(y) denotes that we are waiting for a message on the
channel x and y acts as a placeholder, which will be replaced with the received
message. x̄y represents the output of the message y on the channel x. τ is the
silent action. All the standard considerations about free and bound names hold.

• P + Q stochastically behaves as either P or Q. The choice depends on the time
durations of the actions occurring in P and Q. The fastest will win the race. This
is one of the main differences with π-calculus, where + is a nondeterministic
choice operator.

• In general the behavior of processes depends on race conditions: among all the
executable activities we will activate the one which has the shortest duration.

A complete presentation of the operational semantics of the Stochastic π-calculus
is outside the scope of this paper and can be found in [15]. We also implicitly adopt
all the standard syntactic conventions.

Example 1.2 Consider the following toy example, representing the interaction be-
tween a man and a coffee/tea machine.

Man
de f
= coin am.choi co f .drink(smthg)

Machine
de f
= coin(m).choi(c).(([c = co f ]drink co f ) + ([c = tea]drink tea))

System
de f
= Man |Machine

In this case all the actions are instantaneous and there are no stochastic effects.
The following example uses the stochastic features of the calculus on a mutual

exclusion protocol.

P1
de f
= down1r1 pars1.0

P2
de f
= down2r2 pars2.0

mutex
de f
= (down1r1(p1).0 + down2r2(p2).0)

race
de f
= P1|P2|mutex

The fastest process win.

1.2 Stochastic Pi-Calculus in Systems Biology

Many works have pointed out the usefulness of Stochastic π-calculus in the mod-
eling of biological systems (see, e.g., [16,14,13,6]). We start focusing on [6]. Cardelli
observes that the available description languages for biochemical system (e.g., state
transition diagrams) are in a sense similar to process algebras, since in both cases
labeled transition systems represent concurrent systems. This is not the case in
differential equation models. Hence, the use of process algebras in systems biology
is natural and provides double advantages: on the one hand, the representation
is incremental and compositional; on the other hand, the models support formal
verification techniques such as behavioral equivalences and model checking.

Then, the paper formally establishes connections between discrete and continu-
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ous descriptions of systems of chemical reactions. The discrete representations are
given as processes of a fragment of the Stochastic π-calculus, while the continuous
models are systems of ordinary differential equations.

Let us formally introduce the above mentioned representations:

• Chemical reactions are expression of the form A k
→ B1 + ... + Bn or A1 + A2

k
→

B1 + ...+Bn or A+A k
→ B1 + ...+Bn. They represent the problem from a macroscopic

point of view.
• Ordinary differential equations can be automatically inferred from chemical re-

actions and describe the dynamic of a reactant concentration in terms of the other
concentrations.

• The chemical ground form (CGF) is a subset of the Stochastic π-calculus. It does
not allow the use of the restriction operator (νx) and of the test operator [x = y].
It is expressive enough to represent each chemical entity involved in the system
and hence it provides a microscopic description.

Example 1.3 Let us consider the Na-Cl ionization example. The chemical reaction
describing the system is the following:

Na + Cl k
→ Na+ + Cl−

The corresponding differential equations are:

d[Na+]/dt = d[Cl−]/dt = k[Na][Cl]

d[Na]/dt = d[Cl]/dt = −k[Na][Cl]

In the CGF we have the parallel composition of the processes:

Cl = ek/g().0 Na = ek/g().(Na+
|Cl−)

where g is a constant for the dimensional conversion (see [6]).

In [6] equivalences between the discrete and continuous semantics of chemical
reactions, ordinary differential equations, and CGF are proved. This formally
clarifies the connections between the microscopic and macroscopic points of view.

A graphical representation of the above described approach is presented in
[14] on a variant of the Stochastic π-calculus. This is at the basis of the current
implementation of the stochastic simulator SPiM [13]. In particular, in [14] the
language is specialized for the biological context. A system has the form E ` P,
where E is a constant environment, i.e., a library of entity definitions, and P is the test
tube containing all the copies of the entities. Semantics equivalences between the
language proposed in this paper and the original Stochastic π-calculus are proved.

Example 1.4 Let us consider a system consisting of a gene G which can synthesize
a protein A in time τt. Moreover, protein B, produced by another gene, can either
inhibit gene G for time τu or decay in time τd. The description of the system in
Graphical Stochastic π-calculus is the following:
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E : G
de f
= τt.(G|A) + br().τu.G P : G|B

B
de f
= br.B + τd

1.3 SPiM

The Stochastic Pi-Machine (SPiM) simulates the behavior of Stochastic π-calculus
processes. The latest versions of SPiM have been optimized for the simulation
of processes representing biological systems [13]. The input for the simulator is
a process. SPiM simulates the time evolution of a given process determining the
amount of time that each action requires and by selecting the next action. The
selection is based on a random procedure. At the basis of SPiM computation there
is a variant of Gillespie’s algorithm [12], a Monte Carlo simulation procedure for
Continuous Time Markov Chains (CTMC).

SPiM’s input language is a high level translation of the Stochastic π-calculus.
Since, we will use it in the remaining part of this work, we briefly introduce here
part of its syntax. We address the reader to [13] for all the details.

Definition 1.5 [SPiM – Syntax]

Dec ::= new x{@r} : chan{(Type1, ...,Typen)} | run P

| let D1 and ... and DN

P ::= X(v1, ..., vn) | if b then P {else P} | () | π{; P}

| (P1|...|PM) | do π1{; P1} or ... or πM{; PM} | n of P

D ::= X(m1, ...,mN) = P

π ::= !x{(v1, ..., vN)} | ?x{(m1, ...,mN)} | delay@r

Let us give some intuitions about the meaning of the operators with an example.

Example 1.6 Let us consider again Example 1.3 where we described the chemical

reaction Na + Cl k
→ Na+ + Cl−. The SPiM program representing it can be written as

follows.

new e@r:chan (*declaration of channel e with rate r=k/g*)

let Na()=?e;(Nap()|Clm()) (*declaration of Na molecule*)

and Cl()=!e;()

and Nap()=()

and Clm()=()

run (Na()|Cl())

Similarly Example 1.4 can be translated in SPiM as follows.

new a@0.4:chan

new b@0.4:chan

let G()=do delay@1.0;(G()|A())

or ?b;delay@0.5;G()
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and A()=do !a;A()

or delay@0.3;()

and B()=do !b;B()

or delay@0.3;()

run (G()|B())

1.4 Internal versus External

We already noticed that compositionality is one of the main advantages of the
use of Stochastic π-calculus in the modeling of biological systems. As emerged
from the examples, once we have defined the actors of the system and their rules
(interactions, delays, . . . ), we only have to let them play. This represents an internal
perspective on the system, in the sense that each actor inside the representation
exists also (or, better, has a correspondent entity) in the physical system. Moreover,
the actions executed inside the model find an immediate counterpart in the reactions
occurring in the real system.

On the opposite side, as we mentioned in the Introduction, we can find for-
malisms, such as hybrid automata, based on external perspectives, with their own
advantages and disadvantages.

How can we compare and integrate internal and external perspectives?
In the next section we try to partially answer this question, proposing a different

use of Stochastic π-calculus which is closer to formalisms with external perspec-
tives.

2 Memory and Pi-Molecules

We start with an informal description of our approach for modeling biochemical
systems in (Graphical) Stochastic π-calculus. The idea is that of introducing an
external control mechanism in the model. We aim to: (1) keep the representation
simple and compositional; (2) remain inside the Graphical Stochastic π-calculus
language.

The approaches described in the previous section model the reactants of bio-
chemical systems as active entities. Each of them plays a fundamental role in the
system evolution.

A first idea could be that of introducing a control process in the system and
asking the reactants to communicate only with the control process. The control
process should acquire information from the reactants and give them back the or-
ders. Unfortunately, this makes life very complex, since too many communications
and stochastic rates are involved. As a matter of fact in this way both the reactants
and the reactions would be active players.

So we propose to have active reactions and passive reactants.
Let us focus on the passive reactants. We model them as arguments of messages

which are sent and received on a memory channel. In particular, inside a message of
the form !mem(react1,...,reactn) the argument reacti represents the number
of molecules of the ith reactant inside the system.

Now we have to model the active reactions. Our idea is to consider them all
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together inside a unique abstract entity that we call π-Molecule. The role of the
π-Molecule is to manage all the control flows that are related to the biochemical
systems we are describing.

From a high level perspective, a π-Molecule can be thought as a cyclic and
unbounded execution of the following operations: acquisition of memory, selection
of feasible reactions, race condition among feasible reactions, and memory update.

The first instruction is easy to implement: since the memory is represented as a
polyadic output message, we only have to synchronize the π-Molecule with it by
performing an input command on the same channel, namely ?mem(x1,...,xn).

The selection of feasible reactions depends on their preconditions: for each
reaction the π-Molecule checks if the system has enough reactants to trigger the
reaction. In this way, if we consider a system composed of n reactions, the π-
Molecule will provide all the 2n possible combinations among the reactions (i.e.,
the powerset of the set of reactions), and this includes also the empty one that
represents the termination condition for the simulation. Clearly, at each step the
configuration of the memory will satisfy one (and only one) combination.

The third part of the π-Molecule is devoted to the race condition among all
feasible reactions, and it has been built upon the results of Gillespie ([12]).

Let us intuitively argue about the soundness of our approach. Consider a bio-
chemical system in which we can observe the execution of two chemical reactions
exactly once: we expect to see (in the average case) first the products of the fastest
one. But if the reactants for the fastest reaction are scarce, we may see the contrary,
because the slowest reaction has more possibilities to win the race. For short, we
have that the speed of the reaction is determined by the chemical rate of the reaction
together with the quantity of each involved reactant. Gillespie formalized all these
considerations by proving that the speed of a reaction depends on the reaction rate
times the number of possible combinations of mi molecules of reactant i in groups
of ci, where mi is the number of i molecules in the system and ci is the number of i
molecules required by the reaction. To implement this property, we describe each
reaction by a delay action (delay@...) with a rate that is the rate of the reaction
times the number of possible combinations of its reactants, as explained before. In
this way each reaction is simulated by a delay, no matter how many reactants it
uses.

Finally, the π-Molecule updates the state, by consuming and producing reac-
tants, and concludes its activities with a self recursive call.

Example 2.1 We propose a simple implementation of the above ideas. Let us enrich
the chemical system of Example 1.3 by allowing the reaction to be bidirectional
(ionization has rate 100.0, deionization has rate 10.0), namely Na + Cl
 Na+ + Cl−.
Let us suppose that the system starts from an initial state which has the following
values for the chemical species: Na = 100, Cl = 100, Na+ = 0, Cl− = 0.

To encode such a system in SPiM we must begin with an easy syntactic adjust-

ment, that splits the reaction into Na + Cl 100.0
→ Na+ + Cl− and Na+ + Cl− 10.0

→ Na + Cl.
Now, we can implement the following π-Molecule to properly simulate the system:

new mem:chan(float,float,float,float)
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let PiM()=

?mem(na,cl,nap,clm);

if(na>0.0)

then (*ionization is feasible*)

if(nap>0.0)

then (*deionization is feasible*)

do

delay@100.0*na*cl;

(!mem(na-1.0,cl-1.0,nap+1.0,clm+1.0)|PiM())

or

delay@10.0*nap*clm;

(!mem(na+1.0,cl+1.0,nap-1.0,clm-1.0)|PiM())

else (*deionization not feasible*)

delay@100.0*na*cl;

(!mem(na-1.0,cl-1.0,nap+1.0,clm+1.0)|PiM())

else (*ionization not feasible*)

if(nap>0.0)

then (*deionization feasible*)

delay@10.0*nap*clm;

(!mem(na+1.0,cl+1.0,nap-1.0,clm-1.0)|PiM())

else (*deionization not feasible*)

println("end of simulation")

run (!mem(100.0,100.0,0.0,0.0)|PiM())

The first line is a declaration for a polyadic channel mem. Notice that the channel
does not have any rate, so we have instantaneous exchanges on it. This agrees with
our target, that is to demand the stochastic behavior to the execution phase.

The last line sets the simulator properly, by creating a system with exactly one
instance of π-Molecule and one of memory.

Let us consider a set of chemical reactions C consisting of M reactions of the

form “i : ci,1A1 + ...+ci,nAn
ki
→ pi,1A1 + ...+pi,nAn”. Let us also consider an initial state

for the system given by the values m1, ..., mn for the species A1, ..., An, respectively.
C together with 〈m1, ..., mn〉 creates what we called a general chemical system.

The procedure π-MoleculeBuilder, described in Table 1, explains how to create
the π-Molecule for (C, 〈m1, ..., mn〉).

It is possible to prove an equivalence between the discrete semantics of a general
chemical system and the discrete semantics of the corresponding program obtained
using π-MoleculeBuilder (we called such program virtual chemical system, consid-
ering it as a couple composed by the program for the chemical reactions itself and
the mem component representing the initial state).

The semantics of both the two systems is defined following [6], and it is based
upon the notions of labelled transition graph ψ and Continuous Time Markov
Chain (CTMC) |ψ|.

If we consider that the SPiM implementation of a system of chemical reactions is
composed of proper chemical states (the execution point just before the acquisition
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HEADER
new mem:chan(float,...,float) Declaration of an n-ary channel

DECLARATION AND MEMORY ACQUISITION
let PiM()=

?mem(a1,...,an);

PRECONDITION CHECK
REACTION EXECUTION
if((a1 ≥ c1,1)*...*(an ≥ c1,n)) Precondition for reaction 1
then if ((a1 ≥ c2,1”)*...*(an ≥ c2,n)) Precondition for reaction 2

... All other preconditions
then Feasible reactions: 1, 3, 5
do

delay@k1*
( a1
c1,1

)
*...*

( an
c1,n

)
; Reaction simulation

(!mem(a1 + p1,1,...,an + p1,n)|PiM()) State update and recursion
or

delay@k3*
( a1
c3,1

)
*...*

( an
c3,n

)
; Reaction simulation

(!mem(a1 + p3,1,...,an + p3,n)|PiM()) State update and recursion
or

delay@k5*
( a1
c5,1

)
*...*

( an
c5,n

)
; Reaction simulation

(!mem(a1 + p5,1,...,an + p5,n)|PiM()) State update and recursion
...
else println(‘‘end of simulation’’) No feasible reactions

SIMULATION DIRECTIVE
run (!mem(m1,...,mn)|PiM())

Table 1
π-MoleculeBuilder

of memory) and improper chemical states (which have not any counterpart in the
chemical behavior of the system) it is possible to demonstrate (refer to [9] for all
the details) that the following theorem holds.

Theorem 2.2 Let |ψC| and |ψV | be the two CTMCs associated to the general chemical
system (C, 〈m1, ..., mn〉) and to the virtual chemical system (M,mem), respectively. There
is a weak bisimulation between |ψC| and the proper chemical states of |ψV |.

It is worth to point out that the version of the π-Molecule returned by π-
MoleculeBuilder does not produce any visible interaction with the user, so if we
are interested in this we must enrich the implementation with some instructions to
expose the value of the mem component. For instance, in Example 2.1 we obtain
this by declaring an instantaneous output channel, new sinc:chan(float,float),
that is used every time a reaction occurs. In particular, we add the command
!sinc(na-1.0,nap+1.0) to each reaction branch of the π-Molecule. The command
synchronizes with a printing process, namely Printmem, which uses the SPiM
syntax to print the mem values:

let Printmem()=

?sinc(b,c); print(show b); println(show c); Printmem()

In order to properly instruct the simulator the last line has to be changed as
follows:

run(!mem(100.0,100.0,0.0,0.0)|PiM()|Printmem())
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Summarizing we can say that from the structural point of view our approach
is compact and modular. Further, since in our approach we focus more on the
chemical reactions, than on the reactants, the complexity of our models should
not depend on the reactant quantities. Moreover, the kinetic behavior is syntac-
tically (explicitly) declared in the delay rates, which depends also on the reactant
concentrations.

3 Some Examples

In this section we present a set of case studies. Some case studies are taken from
the SPiM test suite 3 , where they are modeled and studied exploiting the approach
described in [16,14,13,6]. Here we model them as defined in our approach and we
compare the simulation results, always obtained using SPiM. Our last case study,
namely the Brusselator, is taken from [12] and cannot be modeled with the classical
molecule centric approach, since it also involves ternary reactions. It is immediate
to model it with our approach.

3.1 NaCl

Let us consider again the two reactions Na+Cl 100
→ Na++Cl− and Na++Cl− 10

→ Na+Cl.
We already saw in Section 2 how to model them with our approach, while the

classical SPiM model is available in the SPiM test suite. We show the results of the
simulation of our model on the left part of Figure 1, while on the right side we have
the results obtained with the classical approach. In both cases the initial state has
100 molecules of Na and 100 molecules of Cl.

Fig. 1. Na + Cl
 Na+ + Cl−

Notice that, since in our approach we print the configuration of memory after
each reaction, while in the classical approach the number of processes is measured
on a given time window, there are some discrepancies in the time scales of our
graphs.

3.2 Mg2Cl

In this case we consider another bidirectional reaction of ionization, namely

Mg + 2Cl
Mg2+ + 2Cl−

Using the classical approach one can only describe binary reactions, so the
encoding of the system is based on the use of a short term molecule, namely
Mg+. With this trick, the reactions become Mg + Cl
Mg+ + Cl− and Mg+ + Cl


Mg2+ +Cl−, so they can be translated in Mg+Cl 10
→Mg+ +Cl−, Mg+ +Cl− 50

→Mg+Cl,

3 Available at http://research.microsoft.com/∼aphillip/spim/Examples.pdf
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Mg+ + Cl 100
→ Mg2+ + Cl− and Mg2+ + Cl− 5

→ Mg+ + Cl. In Figure 2 we show our
results (left) and the classical ones (right). The initial state is the same for both
simulations and it has 100 molecules of Mg and 100 molecules of Cl.

Fig. 2. Mg + 2Cl
Mg2+ + 2Cl−

We would like to stress that our approach does not need the introduction of the
new molecule Mg+, since inside our framework one can immediately implement
ternary reactions. The results in Figure 3 are indeed obtained by directly imple-

menting the reactions Mg + 2Cl 500
→ Mg2+ + 2Cl− and Mg2+ + 2Cl− 250

→ Mg + Cl with
our approach and confirm the expressive power of our approach.

Fig. 3. Mg + 2Cl
Mg2+ + 2Cl− - π-Molecule (1 step)

3.3 Repressilator

Let us show how our approach can be easily applied also in the case of genetic
regulatory networks.

We consider the Repressilator example which is described also in the SPiM dis-
tribution. The Repressilator is a biological system containing three genes, namely
A, B, and C. Each gene produces a protein, in particular b is produced by A, c by B,
and a by C. Each gene can also be blocked by its suppressant protein (each gene is
suppressed by the protein with the same letter, e.g., A is blocked by a).

The implementation of the system in the classical approach is as follows.

new a@1.0:chan

new b@1.0:chan

new c@1.0:chan

let Gene(a:chan,b:chan)=

do delay@0.1; (Protein(b) | Gene(a,b))

or ?a; delay@0.0001; Gene(a,b)

and Protein(b:chan) =

do !b; Protein(b)

or delay@0.001

run ( Gene(a,b) | Gene(b,c) | Gene(c,a) )

One can see that the program actually contains three genes (Gene(a, b), Gene(b, c)
e Gene(c, a)) that can synthesize a protein (by executing the delay statement) or can
do an exchange with the suppressor, after which they enter in an idle state for a
while (delay@0.001).

In this situation we can consider the following set of “reactions”:

• A 0.1
→ A + b, B 0.1

→ B + c and C 0.1
→ C + a represent the synthesis of the proteins;

• a 0.001
→ τ, b 0.001

→ τ and c 0.001
→ τ represent the decays of proteins;
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• A + a 0.001
→ A′ + a, B + b 0.001

→ B′ + b and C + c 0.001
→ C′ + c represent the idle phase of

gene X through a conversion in a temporary gene X′;

• A′ 0.0001
→ A, B′ 0.0001

→ B and C′ 0.0001
→ C represent the waking up of the genes.

We can use our method to translate these reactions in a π-Molecule for the
Repressilator. In Figure 4 we compare our results (on the left) with the traditional
approach (on the right).

Fig. 4. Repressilator - SPiM

In both cases we find a periodic behavior. In particular, only one gene is active
in a certain moment. The curves are different because of the stochastic mechanism
that drives the systems.

3.4 Brusselator

The following example does not belong to the test suite of SPiM because it con-
tains ternary reactions. The system is an abstraction of the well-known Belusov -
Zhabotinsky (BZ) system, that appears in literature with the name of Brusselator.

The chemical reactions inside the Brusselator are the following: X1
c1
→ Y1,

X2 + Y1
c2
→ Y2 + Z1, 2Y1 + Y2

c3
→ 3Y1 e Y1

c4
→ Z2, and the overall result of the

system is an oscillation of quantities of the species Y1 and Y2. Further details about
Brusselator are in [2].

Here we show the π-Molecule which implements the system, and then the
comparisons between our results and Gillespie’s ones [12].

new mem:chan(float,float) (*memory content: Y1 Y2*)
new sinc:chan(float,float)

let PiM()=
?mem(y1,y2);
if(y1>0.0)
then (*ok 1,2,4*)
if(y1>1.0*y2>0.0)
then (*feasible: 3*)
do (*1*)
delay@5000.0;(!mem(y1+1.0,y2)|!sinc(y1+1.0,y2)|PiM())
or (*2*)
delay@50.0*y1;(!mem(y1-1.0,y2+1.0)|!sinc(y1-1.0,y2+1.0)|PiM())
or (*3*)
delay@ 0.00005*y1*(y1-1.0)*0.5*y2;
(!mem(y1+1.0,y2-1.0)|!sinc(y1+1.0,y2-1.0)|PiM())

or (*4*)
delay@ 5.0*y1;(!mem(y1-1.0,y2)| !sinc(y1-1.0,y2)|PiM())

else (*not feasible: 3*)
do (*1*)
delay@5000.0;(!mem(y1+1.0,y2)|!sinc(y1+1.0,y2)|PiM())
or (*2*)
delay@50.0*y1;(!mem(y1-1.0,y2+1.0)| !sinc(y1-1.0,y2+1.0)|PiM())
or (*4*)
delay@ 5.0*y1;(!mem(y1-1.0,y2)| !sinc(y1-1.0,y2)|PiM())

else (*only 1 is feasible*)
delay@5000.0;(!mem(y1+1.0,y2)|!sinc(y1+1.0,y2)|PiM())

let Printmem(n:int)=
?sinc(b,c);
if(n>200)
then
print(show b);println(show c);Printmem(0)
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else
Printmem(n+1)

run (!mem(1000.0,2000.0)|PiM()|Printmem(0))

In Figure 5 (Figure 6) we plot the time evolution of Y1 (Y2, respectively); Figure
7, instead, contains the phase portrait of both the two species. As always, we put
our results on the left, while on the right you can find the results from Gillespie’s
paper. There are small differences between our results and Gillespie’s ones (e.g.,
in our results Y1 spends less time around the minimum) which are still under
investigation.

Fig. 5. Brusselator, Y1

Fig. 6. Brusselator, Y2

Fig. 7. Brusselator, Y1 and Y2
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As already said it is not possible to encode and simulate the Brusselator in SPiM
using the classical molecule centric approach, since it involves the ternary reaction

2Y1 +Y2
c3
→ 3Y1. We tried to implement a simplified version of the system (by using

two consecutive reactions to simulate the ternary one), but it does not behave like
the original one, and this is probably due to the nontrivial problem of assigning
stochastic rates to the coupled reactions.

4 Conclusions

We described an alternative reaction centric use of Stochastic π-calculus.
Our idea is based on the use of passive reactants and active reactions: this choice

injects an external point of view inside a typical internal point of view framework,
but retains the structure of the language and its available theoretical tools. We got
this result by translating chemical reactions in delay transactions, following the
chemical meaning of the formers. The pure chemical based models (such as ODEs)
are not usable in the context of formal analysis (e.g., model checking techniques).
Our approach should allows us to get around this problem.

As a byproduct of our approach we notice that reactions involving more than
two inputs can be directly encoded and simulated. This potential has been exploited
in the Brusselator example.

Moreover, we have briefly discussed how our method can be used to model
genetic regulatory networks on the Repressilator case study.

In the long period our main aim is that of providing a deeper understanding
and integration between different formalisms. In particular, we are interested
in translations from ODEs and hybrid automata into processes algebra. In this
sense the external point of view seems necessary for the translation of the global
constraints (invariant, activations, and resets). A continuos semantics in terms of
ODEs has been provided for Biocham (see, e.g., [10]), while translations from sCCP
programs into hybrid automata have been considered in [5].

For the moment we focused on Stochasticπ-calculus, since its notion of channels
seems to be useful to naturally implement the memory component. In a sense our
results demonstrate the effectiveness of Stochastic π-calculus for the description
of nontrivial biochemical systems, by showing that, even if the classical use of
Stochastic π-calculus in systems biology is molecule centric, it is easy to use it from
a reaction centric perspective. However, since we are interested in the integration
of different formalisms, in the future we plan to consider also other languages. In
particular, in this context the recent work done on Bio-PEPA (see, e.g., [8]) is very
relevant: it allows to model different kind of reactions without limitations on the
number of reactants; it has been used from both a reactant centric and a pathway
centric point of view.
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