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Abstract: this work is devoted to the analytic study of the characteristic roots of scalar
autonomous Delay Differential Equations (DDEs) with complex coefficients. The focus is placed
on the robust analysis of the position of the roots in C with respect to the variation of the
coefficients, with the final aim of obtaining suitable representations for the relevant stability
boundaries and charts. The investigation benefits from a preliminary shift of the coefficients
which reduces the number of free parameters allowing for useful graphical visualizations. The
present research is motivated on the base of studying the stability of systems of DDEs.

Keywords: delay differential equations, characteristic roots, stability charts, robust analysis

1. INTRODUCTION

Consider the autonomous system of DDEs
x′(t) = Ax(t) +Bx(t− τ) (1)

with a single constant delay τ > 0 and A,B ∈ Rm×m.
The asymptotic stability of (1) switches as the associated
rightmost characteristic root crosses the imaginary axis.
Despite its simplicity and to the best of the author’s
knowledge, the study of the stability of (1) through the
analysis of the exact position in C of its roots w.r.t. A and
B is still an open problem and a subtle issue (Hale, 1977,
p.109), which nevertheless gave the start to a wide range of
numerical investigations (e.g. Breda et al. (2005); Butcher
et al. (2004); Engelborghs and Roose (2002); Jarlebring
(2008); Vyhĺıdal and Źıtek (2006)). It is known that the
question can be reduced to that of scalar DDEs as far
as A and B are simultaneously reducible to Schur form
(e.g. Jarlebring and Damm (2007)). Precisely, suppose that
there exists a unitary matrix U such that A = UTAU

H and
B = UTBU

H with both TA and TB upper triangular. Then
the stability problem for (1) can be trivially decomposed
to the study of the m equations

x′(t) = aix(t) + bix(t− τ), i = 1, . . . ,m, (2)
where ai’s and bi’s are the diagonal entries of TA and TB ,
respectively.

At this point, two important facts are worthy noticing: (i.)
the case of simultaneous Schur factorization is the most
general one potentially allowing for a complete study of
the roots (and stability) of (1) in terms of the coefficients
A and B, in view of the above reduction; (ii.) the study
of the characteristic roots of (2) w.r.t. its coefficients is
completely known as long as ai, bi ∈ R, e.g. (Hale, 1977,
p.109), but, in general, the above reduction can lead to
ai, bi ∈ C, a case for which a total and clear knowledge
is not yet available (see e.g. Maset (2000)). Therefore
this study aims at developing a complete analysis of the
characteristic roots of (2) with ai, bi ∈ C, attempting also

to produce useful representations for the relevant stability
boundaries in some suitable parameters plane (as it is the
wide- and well-known case of real coefficients). DDEs with
complex coefficients not coming from a Schur factorization
arise in Sipahi et al. (2006).

With this objective, and without loss of generality, we
consider the autonomous DDE with one unit delay

x′(t) = a0x(t) + b0x(t− 1). (3)

where a0, b0 ∈ C and b0 6= 0. The characteristic equation
associated to (3) reads

F0(λ) = 0 (4)

where C 3 λ 7→ F0(λ) := λ−a0−b0e−λ is the characteristic
function whose zeros λ, the solutions of (4), are the
characteristic roots. The study of these latter is not as easy
as that of the correspondent real case. Consider only the
fact that they depend on the four real parameters a0,R :=
<(a0), a0,I := =(a0), b0,R := <(b0) and b0,I := =(b0).
We then perform a preliminary shift of the coefficients of
(3) which reduces the number of effective parameters from
four to two. The advantage of this reduction is twofold:
(i.) stability charts are suitably representable together
with stability boundaries and all imaginary root crossings
(i.e. bifurcation curves, number of unstable roots, etc.);
(ii.) characteristic roots can be obtained (in principle
analytically) starting from intersections of curves for the
simplified shifted equation and then shifting them back
to the original problem. Both targets are achieved by
standard algebraic techniques similar to those used for the
real case.

As a final remark, let us observe that the requirement for
A and B in (1) to be simultaneously reducible to Schur
form is a rather strict one (Radjavi and Rosenthal (2000)).
However, we conjecture, mainly based on a large number
of experimental observations, that a similar decomposition
to n (perturbed) scalar equations is performable in a much
wider fashion, probably with a more involved relation



between the scalar coefficients and the original matrix
ones. If this were to hold true, the analysis of (3) would
represent the constitutive brick of the whole structure.
The author wishes to stress that a co-authored survey
paper about the topic of roots and charts for DDEs in
its generality is in preparation (Bozzo et al. (2010)).

The paper is organized as follows. Section 2 presents the
shifting strategy. Section 3 deals with real, imaginary
and crossing roots, respectively, of the shifted equation.
Section 4 analyzes two families of curves whose intersection
contains all characteristic roots. Finally, roots and stability
charts for the original equation are obtained in Section 5.
Remark 1. (on notation). Throughout the paper, we set
for brevity πk := kπ and π′k := (2k + 1)π2 , k ∈ Z.

2. SPECTRAL SHIFTING

Let z ∈ C be z := zR + izI with zR = <(z), zI = =(z).
Let λ = α+ iβ be a characteristic root of (3) and set µ by
imposing

λ = µ+ z.

Then, by substituting into (4) we get that µ is a solution
of F (µ) = 0 where C 3 µ 7→ F (µ) := µ − a − be−µ with
a = a0 − z and b = b0e

−z. If we write b0 = |b0|ei∠b0 with
|b0| =

√
b20,R + b20,I and ∠b0 = arctan b0,I

b0,R
, then we can

choose z in such a way that b ∈ R. In particular, it turns
out that the choice zI = ∠b0 leads to b = |b0|e−zR ∈ R+

(b = 0 is excluded by having assumed b0 6= 0). We see
moreover that zR can still be freely chosen. Then, by
assuming zR = a0,R we get also a = i(a0,I−∠b0) ∈ iR. Set
then a := −ia = a0,I − ∠b0 ∈ R. We may resume the use
of the shift by z ∈ C in the following.
Proposition 2. λ is a characteristic root of (3) if and only
if µ = λ− z is a characteristic root of

x′(t) = iax(t) + bx(t− 1) (5)
with a = a0,I−∠b0 ∈ R and b = |b0|e−a0,R ∈ R+ whenever
z = a0,R + i∠b0.

Proof. The proof was given above.

The characteristic equation associated to (5) reads
F (µ) = 0 (6)

where C 3 µ 7→ F (µ) := µ− ia− be−µ is the characteristic
function. Let us denote µ = γ + iδ, γ, δ ∈ R, the solutions
of (6), i.e. the characteristic roots of (5). It is clear that,
as long as γ, δ ∈ R, if µ = γ + iδ is a characteristic root,
then its conjugate µ = γ− iδ is not a root anymore, rather
it is a characteristic root of x′(t) = −iax(t) + bx(t − 1).
Therefore, we assume without loss of generality that δ ≥ 0
and study only the case a ∈ [0,+∞).

By substituting in (6) we get the couple of real algebraic
equations {

γ = be−γ cos δ
a− δ = be−γ sin δ. (7)

By squaring and adding member to member on the one
hand and by taking their ratio (and excluding the cases
δ = a and δ = π′k) on the other we get the system γ2 + (a− δ)2 = b2e−2γ

δ − a
γ

= − tan δ (8)

which has, in C \ {R + ia}, exactly double the solutions
of (7). In fact, half of them are exactly the characteristic
roots of (5), the others are the characteristic roots of

x′(t) = iax(t)− bx(t− 1). (9)
We now proceed to the analysis of the characteristic
roots of (5) by discussing the solutions of (8), keeping in
mind that we shall eventually eliminate those solutions
corresponding to characteristic roots of (9).
Remark 3. The case δ = a can lead to a solution of (7) if
and only if δ = πk, being b 6= 0. This is possible if and only
if a = πk, i.e. in a set of measure zero on the parameters
plane (a, b).

The two following basic results hold trivially. They indi-
viduate a couple of curves in C whose intersection contain
all the (infinitely-many, Hale (1977)) characteristic roots.
These curves will be detailed in Section 4.
Proposition 4. If µ = γ + iδ is a characteristic root of (5),
then (γ, δ) belongs to the graph of the curve

R 3 γ 7→ E(γ) := a±
√
b2e−2γ − γ2 (10)

whenever the righthand side is well-defined.

Proof. Trivial from the first in (8).
Proposition 5. If µ = γ + iδ is a characteristic root of (5),
then (γ, δ) belongs to the graph of the curve

R 3 δ 7→ T (δ) := −δ − a
tan δ

(11)

whenever the righthand side is well-defined.

Proof. Trivial from the second in (8).

In the sequel we shall again discuss separately the particu-
lar cases of pure real (δ = 0) and imaginary (γ = 0) roots.
This will be done with no reference to the above curves E
and T . Then, we shall address the analysis of the general
properties of these latter, recovering also the results on the
previous particular cases.

3. REAL, IMAGINARY AND UNSTABLE ROOTS

Let us assume δ = 0 and hence µ = γ ∈ R. System (7)
reduces to the single equation

γ = be−γ , (12)
being the second equation identically satisfied if and only
if a = 0. This soon leads to the following.
Proposition 6. The trivial root µ = 0 never exists.

Proof. Straightforward from (12).

In general, all possible solutions of (12) belong to the set
of intersections of the line l(γ) := γ with the exponential
curve e(γ) := be−γ . Based on this observation and on the
fact that b ∈ R+, we prove the following.
Proposition 7. There exists always a unique real and pos-
itive characteristic root µ = γ of (5) if and only if a = 0.
Moreover, µ is increasing with b and µ→ 0 as b→ 0.

Proof. The proof follows from l(γ) = e(γ).

Let us assume now γ = 0 and hence µ = iδ ∈ iR. System
(7) reduces to {

−b cos δ = 0
δ − a+ b sin δ = 0, (13)



by which an alternative proof of Proposition 6 is evident.

Since b 6= 0, it must be δ = π′k. By substituting into the
second equation in (13) it follows b = (−1)k [a− π′k]. This
leads to the following.
Proposition 8. If, for some k ∈ Z, (a, b) belongs to the
graph of the curve

[0,+∞) 3 a 7→ Ik(a) := (−1)k [a− π′k] , (14)
then µ = iπ′k is a characteristic root of (5) and vice-versa.

Proof. Trivial from system (13).

The curve (14) consists of infinitely-many lines as depicted
in Figure 1, each of which is characterized by one k ∈ Z.
Moreover, Ik has slope +1 if k is even and −1 if k is odd.
Remark 9. The (excluded but limiting) case b = 0 leads
to a pure imaginary root µ = ia for every choice of a ∈ R,
as it is easy to verify from (13).
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Figure 1. Imaginary crossings (14) in the parameters plane
(a, b) and relevant numbers of unstable roots.

By combining the above results we are now able to locate
all the curves in the parameters plane (a, b) along which
crossings of the imaginary axis occur for the corresponding
characteristic roots of (5), and we know that these occur
only with δ 6= 0. In particular the following result holds.
Proposition 10. A characteristic root µ of (5) crosses the
imaginary axis if and only if (a, b) belongs to the graph of
Ik in (14) for some k ∈ Z. For that k, µ = iπ′k.

Proof. It is just an alternative formulation of Proposition
8.

Again, since the characteristic roots of DDEs are infinitely-
many, but only a finite number of them is contained in
any right-half of C (Hale, 1977, Section 1, Lemma 4.1),
knowing the number of roots with positive real part for
a given choice of (a, b) is enough to determine the same
quantity in all the parameters plane through the foregoing
results. This is justified by the fact that the roots depend
continuously on the parameters.

We start with an easy choice, e.g. (a, b) = (π, 1). Then (7)
reads {

γ − e−γ cos δ = 0
δ − π + e−γ sin δ = 0.

From the second equation, by denoting ε = π− δ, we have

eγ =
| sin δ|
|π − δ|

=
| sin (π − ε)|

|ε|
=
| sin ε|
|ε|

≤ 1

and hence γ < 0, i.e. there cannot be unstable roots (i.e.
with nonnegative real part). The case δ = π leads to γ < 0
anyway.

Now we study the direction of the crossings by a pertur-
bation argument. Fix k ∈ Z, k even, and choose a point

(a, b) such that b = Ik(a). Then, for the choice δk = π′k, the
root µ = iδk exists thanks to Proposition 8. Consider now
εa > 0 sufficiently small, the perturbed point (a + εa, b)
and the corresponding perturbed root µ = εγ + i(δk + εδ).
The original point (a, b) satisfies{

−b cos δk = 0
δk − a+ b sin δk = 0 (15)

while the perturbed one satisfies{
εγ − be−εγ cos (δk + εδ) = 0
δk + εδ − (a+ εa) + be−εγ sin (δk + εδ) = 0. (16)

By using (15), the sine and cosine sum laws and by
observing that cos δk = 0 and sin δk = 1, (16) reduces
to {

εγ = −be−εγ sin εδ
εδ = εa + b(1− e−εγ cos εδ).

(17)

From the first one we get sign(εγ) = −sign(b)sign(εδ)
and, being b > 0, sign(εγ) = −sign(εδ). Suppose now,
by contradiction, that εγ > 0. Then, simultaneously we
get e−εγ = 1−, cos εδ = 1− and, from the second in
(17), εδ > 0. Consequently, εγ < 0, contradicting the
assumption. The following result resumes and extends
what above.
Proposition 11. A point (a, b) crossing the graph of Ik in
(14) for some k ∈ Z generates a characteristic root µ = iπ′k
crossing the imaginary axis from the right to the left if k
is even and vice versa if k is odd.

Proof. The proof for k even was given above. The proof
for k odd is similar.

Now, by recalling that the only possible real roots are
positive (and correspond to points (0, b) in the parameters
plane), we conclude that all bifurcations are of Hopf type
and that the number of unstable roots in C \ R is dis-
tributed as depicted in Figure 1. From this simple analysis
we conclude that the region of asymptotic stability is
represented by the lower triangular portions in Figure 1
included between the lines b = Ik(a) and the horizontal
axis b = 0 as detailed in the following.
Proposition 12. If µ = γ+iδ is a characteristic root of (5),
then

γ ≤ 0⇔
{

0 ≤ b ≤ a− π′k for a ∈ [π′k, πk+1]
0 ≤ b ≤ π′k+1 − a for a ∈

[
πk+1, π

′
k+1

]
for some k ∈ Z, k even.

Proof. Argumented above.

We terminate this Section by observing that the asymp-
totic stability regions mentioned in Proposition 12 refers
to the shifted equation (5) and not to the original one (3).
We will go back to this point in Section 5.

4. THE CURVES E AND T

We analyze now the curve E introduced in (10). Recall that
if µ = γ+iδ is a characteristic root of (5), then δ = E(γ) by
Proposition 4. Such a curve behaves asymptotically as the
exponential E(γ) ≈ a ± |b|e−γ when γ → −∞. Opposite,
when γ → +∞ the curve is not defined. Hence γ must
be bounded above, as is already known and similarly to
the real case. Since the curve is decreasing (with + sign),
in order to explore the behavior around the maximum



values attainable for γ, we search for the values γ for
which E(γ) = a, hence the zeros of E − a. These latter are
characterized by the intersection of the curves l(γ) := γ
and e(γ) := be−γ as discussed in Section 3. Since b > 0,
there is always a unique possible real solution γ > 0. Such
a solution tends to 0 when b → +∞ whereas it tends to
+∞ when b → 0. Moreover, there are also spurious roots
due to the squaring with respect to the original problem.
In fact, b2e−2γ − γ2 = 0⇔ l(γ) = ±e(γ), but the equality
with minus sign gives raise to solutions which have to be
discharged. These latter can be 0, 1 double or 2 distinct,
the discriminant being given by the tangent conditions
−e′(γ) = l′(γ) and −e(γ) = l(γ) leading to γ = −1 and
b = e−1. Therefore, while there is always a true value
γ > 0 such that E(γ) = a, if b > e−1 there is no spurious
value γ such that E(γ) = a; if b = e−1 there is one double
spurious value γ = −1 such that E(γ) = a; if b < e−1 there
are two distinct spurious values γ1 < −1 < γ2 such that
E(γ1,2) = a; and the situation is represented in Figure 2.
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Figure 2. possible roots δ = a along E for b > 0. Left:
intersections of l(γ) with ±e(γ); right: curves E (top
to bottom relevant to lines l(γ) left to right), •: true
roots, ◦: spurious roots (a = 0 is represented).

We analyze now the curve T introduced in (11), Figure 3.
Recall that if µ = γ+iδ is a characteristic root of (5), then
γ = E(δ) by Proposition 5. There is nothing particular to
say about this curve except on how prolonging it by conti-
nuity. This can be done correspondingly to the values π′k by
setting T (π′k) = 0, in particular lim

δ→π′
k
±
T (δ) = sign(π′k−a)·

(0±). Instead, correspondingly to the values πk, there exist
vertical asymptotes, in particular lim

δ→πk±
T (δ) = sign(πk −

a) · (∓∞). Moreover, T ′(δ) = − 1
sin2 δ

(
1
2 sin 2δ − δ + a

)
and, consequently,

sign(T ′(a)) =
{
−1 if a ∈ (πk, π′k)
+1 if a ∈ (π′k, πk) ,

while

sign(T ′(π′k)) =
{

+1 if π′k > a
−1 if π′k < a.

Obviously, due to periodicity, the curve T is not invertible,
but so is each of its branches, i.e. for δ ∈ [πk, πk+1].

We go back now to the relation between the characteristic
roots of (5) and the intersection of the curves E and T as
anticipated in Section 2. In particular, we focus on which
half of the roots in C \ {R + ia} must be eliminated from
E ∩T . Examples are given in Figure 4 for a = 7 and b = 1
and in Figure 5 for a = −1 and b = 0.35.
Proposition 13. µ = γ+ iδ is a characteristic root of (5) if
and only if (γ, δ) ∈ E∩T and the signs of γ and δ−a match
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Figure 3. Curve T for a = 2 (solid-thick lines): dashed
lines are the vertical asymptotes, dot-dashed lines are
zeros, the solid horizontal line is γ = 0 and the vertical
one is δ = a.
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Figure 4. Roots of (5) (•) and intersection of E (solid lines)
and T (dashed lines) for a = 7 and b = 1.
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Figure 5. Roots of (5) (•) and intersection of E (solid lines)
and T (dashed lines) for a = −1 and b = 0.35.

the choices given in Table 1 (where k even is assumed
without loss of generality).

Proof. The proof and the construction of the table of
signs is based on (7) and on the fact that b > 0, hence:
sign(γ) = sign(cos δ) and sign(a− δ) = sign(sin δ).

[πk, π
′
k] [π′

k, πk+1] [πk+1, π
′
k+1] [π′

k+1, πk+2]

δ > a > a < a < a
γ > 0 < 0 < 0 > 0

cos δ > 0 < 0 < 0 > 0
sin δ > 0 > 0 < 0 < 0

Table 1. Signs of γ and δ − a (k even).

Remark 14. In order to discharge those points in E ∩ T
which are not characteristic roots of (5) it is enough to
check one point with γ < 0 and δ > a (or δ � a). Then,
all the other roots are every second intersection from this
one. This procedure avoids to start by checking which is
the true root among the two intersections originated from
the branch of T across δ = a. This latter is, in fact, a little
more involved.



5. BACK TO THE ORIGINAL EQUATION

We observed at the end of Section 3 that the regions of
asymptotic stability individuated by Proposition 12 refer
to the shifted DDE (5) with parameters (a, b) ∈ R×R+ and
not to the original one (3) with parameters (a0, b0) ∈ C×C.

By virtue of Proposition 2, we have that λ = α + iβ is a
characteristic root of (3) if and only if

λ = (γ + a0,R) + i(δ + ∠b0), (18)
where µ = γ + iδ is a characteristic root of (5). It is
then obvious that the stability boundaries of the original
DDE (3) are given by the curves in (a, b) generated by
imposing γ = −a0,R (and not γ = 0 as it would be the
case for the stability boundaries of the shifted DDE (5)).
This final study will allow us to represent the stability
boundaries of (3) in the two-dimensional parameters plane
(a, b) instead that resorting to the larger four-dimensional
parameters hyperplane (a0,R, a0,I , b0,R, b0,I), which makes
no representation possible.

To perform such an analysis, let us consider (7) for γ =

−a0,R. From the first one we get b = −a0,Re
−a0,R

cos δ and by
substituting in the second one we get a = δ − a0,R tan δ
whenever δ 6= π′k. These latter individuate the curve
R 3 δ 7→ D(δ) = (a(δ), b(δ)) in (a, b) given by

D(δ) :=
(
δ − a0,R tan δ,−a0,Re

−a0,R

cos δ

)
. (19)

We soon observe that δ = 0 generates points on the vertical
axis a = 0. But being b > 0, among such points only
those satisfying −a0,Re

−a0,R ≥ e−1 are admissible (recall
Section 3), i.e. when a0,R ≤ ea0,R−1. Observe now that it is
not worthy to study (19) for all δ ∈ R, but it is enough to
restrict to δ ∈ [0, π]. In fact, being D(−δ) = (−a(δ), b(δ))
we know also what happens for δ ∈ [−π, 0]. Then we can
translate the obtained curve to the left (and to the right)
by 2πk for all k ∈ Z by virtue of the periodicity of tan δ in
a(δ) and of cos δ in b(δ).

First of all, for δ ∈ [0, π], the curve (19) is not defined in
δ = π

2 . Observe that lim
δ→π

2
±
D(δ) = sign(a0,R) · (±∞,±∞),

lim
δ→π

2
±

b(δ)
a(δ) = e−a0,R and lim

δ→π
2
±

[b(δ)− e−a0,Ra(δ)] = 0.

Hence the line b(a) = e−a0,R
(
a− π

2

)
is a oblique asymp-

tote in the parameters plane (a, b). Moreover, we have

D′(δ) = b′(δ)
a′(δ) = −a0,Re

−a0,R sin δ
cos2 δ−a0,R

and hence, correspond-
ingly to δ = 0 and δ = π the curve has a horizontal
tangent. Observe also that there is vertical tangency if
δ = arccos√a0,R, but this is the case only for a0,R ∈ (0, 1).
The cases a0,R = 0 and a0,R = 1 are particular since coin-
cident with δ = 0 and δ = π, respectively. Eventually we
have D(0) = (0,−a0,Re

−a0,R) and D(π) = (π, a0,Re
−a0,R).

The limiting condition to check whether these values are
above or below the oblique asymptote is a0,R = π

2 .

In view of all what outlined above, we shall distinguish
the cases (1) a0,R ∈ (−∞, 0); (2) a0,R ∈ (0, 1); (3)
a0,R ∈

(
1, π2

)
and (4) a0,R ∈ (1,+∞) and focus on the

values a0,R ∈ {0, 1, π2 } as particular and limiting ones. In
Case (1), the curve D starts from D(0) = (0,−a0,Re

−a0,R)
and increases to the right towards the oblique asymptote

as δ increases in [0, π2 ), maintaining itself above this latter.
Then it increases below the same asymptote as δ increases
in (π2 , π], reaching D(π) = (π, a0,Re

−a0,R). This main
branch is the solid curve in Figure 6. The other dashed ones
are obtained by the symmetry reasonings discussed at the
beginning. Being b > 0, only the first part is considered. In

−20 −15 −10 −5 0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

a

b

Figure 6. Imaginary crossings for a0,R = −0.5: line for δ ∈
[0, π2 ) (solid thick) and oblique asymptotes (dashed).

Case (2), the principal branch for δ ∈ [0, π] is completely
below the horizontal axis. Hence we describe the branch for
δ ∈ [π, 3π

2 ), which is the right thick solid curve in Figure
7 (the left one is obtained by symmetry and corresponds
to δ ∈ (− 3π

2 ,−π]). This branch starts horizontally from
D(π) = (π, a0,Re

−a0,R), increasing to the left, turning
vertically and then backwards to the right, always below
the oblique asymptote towards it. In Case (3), again the
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Figure 7. Imaginary crossings for a0,R = 0.3: lines for
δ ∈ [π, 3π

2 ) -right- and δ ∈ (− 3π
2 ,−π] -left- (solid

thick) and oblique asymptotes (dashed).

principal branch for δ ∈ [0, π] is completely below the
horizontal axis. Hence we describe the secondary branch
as in Case (1). This branch starts always horizontally
from D(π) = (π, a0,Re

−a0,R) (see the zoom in the top-
right square), increasing directly to the right, always below
the oblique asymptote and towards it. In Case (4), we
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Figure 8. Imaginary crossings for a0,R = 1.01: lines for
δ ∈ [π, 3π

2 ) -right- and δ ∈ (− 3π
2 ,−π] -left- (solid

thick) and oblique asymptotes (dashed).

describe the secondary branch as in the previous Cases
(2) and (3). This branch starts always horizontally from



D(π) = (π, a0,Re
−a0,R), increasing to the right, this time

above the oblique asymptote and towards it.
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Figure 9. Imaginary crossings for a0,R = 2: lines for
δ ∈ [π, 3π

2 ) -right- and δ ∈ (− 3π
2 ,−π] -left- (solid

thick) and oblique asymptotes (dashed).

We complete the analysis by showing the configuration for
the particular cases a0,R = 0 in Figure 1 (in fact, whenever
a0,R = 0, the asymptotic stability regions of (5) and of
(3) are the same), a0,R = 1 in Figure 10 and a0,R = π

2
in Figure 11. Starting from Figure 1, by a continuity
argument, it is not difficult to argue that the same numbers
of unstable roots can be distributed seemingly in the plots
of all the other Figures 6, 7, 8, 9, 10 and 11. Among the
many conclusions that can be driven, the following one
results rather important.
Proposition 15. If a0,R ≥ 1, the region of asymptotic
stability of (3) is empty.

Proof. Argumented above.

As far as a0,R = 1, the zoom in the top square of Figure 10
shows that this is the only case for which the minimum of
such curves does not have a horizontal tangent. This is due
to the fact that the denominator in D′ annihilates as well
as the numerator. Moreover, this is the limiting situation
when the “pockets” of asymptotic stability present for
a0,R < 1 (Figure 7) disappear (Figure 8). Finally, as far
as a0,R = π

2 , the minimum point coincide with the lowest
intersections of the oblique asymptotes.
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Figure 10. Imaginary crossings for a0,R = 1.

So far in this Section we devoted our attention to recover
the regions of asymptotic stability for (3), or better, all
the curves corresponding to roots crossing the imaginary
axis for (3) or the vertical axis γ = −a0,R for (5). As
a final target, we now investigate the exactness of our
findings on the location of the characteristic roots of
(3). This is done simply by comparing the intersection
E ∩ T relevant to (5) and shifted back through (18),
with accurate approximations computed via the numerical
method in Breda et al. (2005). A single example is given in
Figure 12 (other choices of a0, b0 lead to similar results).
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Figure 11. Imaginary crossings for a0,R = π
2 .
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Figure 12. a0 = 2 + i and b0 = 3 − 2i: roots of (5) from
E ∩ T (•), roots of (3) by shift (�), by numerics (◦).
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