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Abstract: In this work, the performance of five deep learning architectures in classifying COVID-19 in
a multi-class set-up is evaluated. The classifiers were built on pretrained ResNet-50, ResNet-50r (with
kernel size 5 × 5 in the first convolutional layer), DenseNet-121, MobileNet-v3 and the state-of-the-art
CaiT-24-XXS-224 (CaiT) transformer. The cross entropy and weighted cross entropy were minimised
with Adam and AdamW. In total, 20 experiments were conducted with 10 repetitions and obtained
the following metrics: accuracy (Acc), balanced accuracy (BA), F1 and F2 from the general Fβ macro
score, Matthew’s Correlation Coefficient (MCC), sensitivity (Sens) and specificity (Spec) followed by
bootstrapping. The performance of the classifiers was compared by using the Friedman–Nemenyi
test. The results show that less complex architectures such as ResNet-50, ResNet-50r and DenseNet-
121 were able to achieve better generalization with rankings of 1.53, 1.71 and 3.05 for the Matthew
Correlation Coefficient, respectively, while MobileNet-v3 and CaiT obtained rankings of 3.72 and 5.0,
respectively.

Keywords: deep neural networks; COVID-19; weighted cross entropy; bootstrap; Friedman–Nemenyi
tests; transformer

1. Introduction

Coronavirus 2019 (COVID-19) is an infectious disease caused by the Severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [1], which has lead to a pandemic with
millions of cases and deaths confirmed all over the world. The outbreak has triggered not
only a health crisis but has also had a severe psychological, social and economic impact
worldwide [2,3]. Attempts to improve the diagnosis, contain, and reduce the spread
of the disease, has led COVID-19 to become one of the most researched topics in the
world. At the time of writing (June 2022), PubMed reported 269,111 COVID-19-related
entries (https://pubmed.ncbi.nlm.nih.gov/?term=covid-19 (accessed on 1 June 2022)), a
significant number accumulated in just two years as prior to 2019 there are only 56 entries.
Diagnosis of COVID-19 with Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)
tests is widespread; however, its sensitivity is only moderate [4–8]. For this reason, medical
imaging diagnosis with radiographs and Computed Tomography (CT) has been widely
used [9–11] as it is generally considered more reliable for the identification of COVID-
19 hallmarks, which include ground glass opacity with or without consolidation in the
posterior and peripheral lung, linear opacity, “crazy-paving” pattern, “reversed halo” sign
and vascular enlargement in the lungs [12–15].

Deep Learning (DL) is a sub-field of Artificial Intelligence (AI) that enables algorithms
to automatically extract features from data, learn patterns and characteristics, and generate
predictions on unseen data.
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Some principles and ideas behind DL and AI have been known for decades, e.g.,
the WISARD architecture from 1984 [16] or the Self Organising Maps from 1982 [17]).
Interestingly, discussions about the hype or reality of Neural Computing [18] and how
difficult Artificial Intelligence really is [19], have remained. With the addition of a large
number of multiple processing layers, thus the use of the term deep, the availability of large
data sets and the increase computational power, these techniques have recently shown
excellent results in many areas [20]. These multiple layers allow a large number of nonlinear
modules to convert the representation of the input data, which can be an image or text, to a
more abstract representation [21]. The breakthrough of deep learning is sometimes related
to the outstanding results presented in the classification of the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [22]. In medical applications, deep learning architectures
have provided excellent results, for instance, in the classification of skin cancer images [23].

Recent studies on image analysis of radiographs and CT scans have shown that DL-
based methods are capable of detecting, quantifying and monitoring COVID-19 with high
accuracy [24–29]. For conventional radiographs or 2D X-ray images, deep learning ap-
proaches have combined Convolutional Neural Networks with Long Short Time Memory
(CNN-LSTM) models [30], Genetic Adversarial Networks with Long Short Time Mem-
ory [31], or self-augmentation mechanisms [11], with the objective to distinguish between
different cases such as healthy against disease, COVID against pneumonia, etc. Some stud-
ies have focused on the segmentation of regions of interest within the lung region [32–34]
using modifications of the popular U-Net architecture [35]. The present study focused on
classification of the images and not in segmentations, in part because there was no ground
truth available, but also because the focus was the methodology to compare the classifica-
tion with non-parametric statistics. CT scanners, as well as Magnetic Resonance Imaging
and other medical imaging devices can generate volumetric data, which in some cases can
provide better results than analysis on a per-slice basis [36]. As such, some COVID studies
have focused on the volumetric analysis of the data. For instance, Bougourzi analysed the
percentage of the COVID infection to infer the state of patients (e.g., Normal, Moderate,
Severe, etc.) [37–39]. It is also possible to combine slice-level decisions with tools such
as Long Short Term Memory models [40]. When data other than images is present, i.e.,
medical notes, electronic health records or audio recordings, it is possible to perform multi-
modal diagnosis [41–43]. However, it is not always the case that researchers have access
to multi-modal data and thus thorough evaluation of a single type of data is important.
Ensemble techniques, in which several deep learning models are trained and a decision
is taken based on votes from all the models are popular [44–46] and can provide good
results. However, the energy consumption of training many models, several of which
may provide suboptimal results should be considered in the present world where carbon
footprint of computational processes is not negligible [47] For further information about
approaches to COVID, the reader is referred to recent review papers, e.g., [48–51]. Many of
the reported COVID studies consist mainly on fine-tuning pre-trained convolutional net-
works [24,28,52,53], or ensembles of methods together with optimization techniques [54,55].
Although these studies have shown very promising results, a large proportion of them do
not provide sufficient information about the how and from where the data are sourced, how
the data are handled and pre-processed if at all, the training configurations or statistical
grounds to support why a proposed model is significantly better than another and studies
have shown that the limitations of studies still present little value in clinical settings [56].

To address these issues, in this work, 20 experiments were built based on five DL archi-
tectures: CaiT-24-XXS-224, DenseNet-121, MobileNet-v3-large, ResNet-50 and ResNet-50r.
The first selection was the ResNet architectures, which have had a major influence on the
design of deep neural convolutional and sequential networks followed by DenseNet and
MobileNet. These are based on convolutions and the latter is designed for mobile appli-
cations. Meanwhile CaiT is a state-of-the-art transformer that does not use convolutions.
Each of these DL architectures were developed in intervals of roughly two years from
2015 to 2021. Table 1 outlines the parameters, the inference time required in GPU/CPU
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(running in GPU), the operations utilising more resources when processing images and the
year in which each of the architecture was published. Whilst there are numerous options
of architectures, for the present work, it was considered that the choice of architectures
were representative of the fast developments in artificial neural networks for application in
computer vision.

Table 1. Architectures and their trainable parameters per architecture considered for the classification
of COVID-19 in CT chest scans (3 classes).

Architecture Parameters Inference (ms) Operation Memory Year

CaiT 11,763,843 CPU: 75.522 GPU:
57.952

attention matrix
multiplication 1.02 Gb 2021

DenseNet-121 6,956,931 CPU: 49.303 GPU:
41.284 convolutions 689 Mb 2017

MobileNet-v3 4,205,875 CPU: 22.692 GPU:
11.40 convolutions 269.01 Mb 2019

ResNet-50 23,514,179 CPU: 42.971 GPU:
40.537

convolutions batch
norm 678.85 Mb 2015

ResNet-50r 23,509,571 CPU: 45.068 GPU:
42.788

convolutions batch
norm 731.66 Mb 2015

For each architecture, two loss functions (cross entropy and weighted cross entropy)
and two optimisers (Adam and AdamW) were applied and the architectures were eval-
uated with seven metrics. In addition, the results for each metric were bootstrapped for
1000 cycles and their prediction power was further compared with non-parametric statis-
tics for robustness in different scenarios. Thus the main contributions of this work are
summarised as follows:

• A well-structured experimental setup for the evaluation and unbiased comparison of
the performance of five representative deep learning architectures (CaiT-24-XXS-224,
DesNet-121, MobileNet-v3-large, ResNet-50 and ResNet-50r) for the classification of
COVID-19 as observed with Computed Tomography was proposed.

• The ResNet-50r architecture, which is based on ResNet-50 but the convolutional layer
(Conv1) with filters of size 5 × 5, was used to observe the effect of the kernels size
(filters) on the classification of COVID-19.

• Bootstrapping technique was applied to derive a very large number of samples, which
will compensate for any cases of outliers for non-normal distributed data.

• The results of each deep network architecture and experiment with different optimisers
and loss functions were compared using non-parametric statistical comparison of the
performance of deep network architectures.

• The results show that less resource-demanding networks can outperform more com-
plex architectures. This is a significant consideration related to the energy consumption
necessary to train deep learning architectures in the light of the current climate emer-
gency, and given the climate emergency of the present world [57–59].

2. Materials and Methods
2.1. Data Collection

To build the classification dataset, data from two public repositories was collated.
The first dataset was sourced from Kaggle [60,61]. This dataset comprises a multi-nation
collection of curated COVID-19 CT scans from 7 public sources [62]. This dataset contained
7593 curated images from 466 patients that were diagnosed with COVID-19, 6893 images
from 604 patients that were considered as healthy with normal lungs, and 2618 images from
60 patients diagnosed with community-acquired pneumonia (CAP). The second dataset
was sourced from Mendeley Data [63] and contained COVID-19 and common pneumonia
(CP) CT scans. From this dataset only used 328 CP images which were merged with the
CAP images were used. Figure 1 shows some representative images of COVID-19, CAP
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and Non-COVID (normal lungs) from the collated dataset. The dataset was split by class
stratification to ensure all subsets had the same number of images from the minority class
“CAP”. The split ratios were 80:10:10 for training (13,945 images), validation (1743 images)
and test (1744 images), respectively. Table 2 shows the number class instances per subset.

cap cap covid covid non_covid non_covid

Figure 1. Illustration of six representative Computed Tomography (CT) images of the three different
classes: community-acquired pneumonia (CAP), COVID and non-COVID.

Table 2. Class distribution in the training, validation and test for Non-COVID, COVID and
Community-acquired pneumonia (CAP).

Class Training Validation Test Total

COVID-19 6074 759 760 7593
Non-COVID 5514 689 690 6893
CAP 2357 295 294 2946

2.2. Deep Learning Architectures

To build the classification experiments (models) four pre-trained out-of-the-box deep
convolutional architectures with different levels of complexity and one transformer were
proposed. Next, the prediction power of CaiT-24-XXS-224, DenseNet-121, MobileNet-v3-
large, ResNet-50, ResNet-50r on the collated multi-class COVID-19 dataset were evaluated
and compared.

ResNet-50 is a 50-layer deep convolutional architecture that features 3-layer skip con-
nections (bottleneck block). The skip connections enable the network to copy activation
from bottleneck block to bottleneck block [64]. To built ResNet-50r the kernels from the first
convolutional layer (Conv1d) of ResNet-50 were resized from 7 × 7 to 5 × 5. The term ‘r’
was used to indicated that the network had resized kernels. DenseNet-121 (121 layers deep)
consists of multiple dense blocks (small convolutional layers, batch normalisation and ReLU
activation) and transition layers. Each layer in a dense block is forward-connected to every
other layer by using concatenation shortcuts [65]. A MobileNet-v3-large (MobileNet-v3) is
a convolutional neural network designed for mobile and embedded vision applications.
It is based on a streamlined architecture that uses depth-wise separable convolutions.
MobileNet-v3 has an efficient last stage at the end of the network that further reduced
latency [66]. Transformers were initially used in the field of Natural Language Process-
ing [67] and have been recently adapted for large scale image classification, demonstrating
that convolutional networks are not strictly necessary for image processing. Class Attention
in Image Transformers (CaiT) is a transformer for computer vision applications created to
optimise the performance of the transformers when they have large number of layers [68].
CaiT-24-XXS-224, indicates that the architecture has a depth of 24 class attention layers,
working dimensionality of 192 and was trained at resolution 224. The parameters of each
architecture are shown in Table 1.

2.3. Experimental Setup

The experimental setup for this work is described in Table 3. The experiments (clas-
sifiers) were designed by combining three factors: neural network architecture, the loss
function (objective) and the optimiser to minimise the loss. To detect the impact of the
class imbalance on the predictions, the weighted version of the cross entropy (wCE) loss
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function was minimised with Adam and AdamW. The wCE handles the class imbalance
by penalising with higher cost (weight) misclassification of the minority class. The Adam
optimiser (derived from adaptive moment estimation) is an optimiser in which the learning
rate is adaptive and can handle sparse gradients on noisy problems [69]. AdamW is Adam
with weight decay and the primary choice to train transformer models. Whilst there are
many other options for optimisers such as adaptive gradient algorithm (Adagrad), stochas-
tic gradient descent (SGD), SGD Momentum (SGDM), Root Mean Square Propagation
(RMSprop), Adam and AdamW were selected due to fact that these adaptive gradient
methods do not underperform momentum or gradient descent optimisers [70]. Adam is
probably the most popular optimiser option. A search for “Adam optimiser” in Google
Scholar (https://scholar.google.co.uk/scholar?q=adam+optimizer accessed on 4 August
2022) returned 103,000 entries. Equivalent searches returned fewer entries: Adagrad: 10,200,
SGD: 36,300, SGDM: 1500, RMSProp: 20,700, AdamW: 5950. On the other hand, AdamW
has shown to improve the performance of Adam by decoupling the weight decay and
outperforming SGD Momentum in image classification tasks [71].

Table 3. Experimental design for the comparison of deep learning networks for the classification of
COVID-19 in a multi-class setup. All experiments were trained in batches of 8 images, for 8 epochs
and learning rate of 0.00002. CaiT: CaiT-24-XXS-224, MobileNet-v3: MobileNet-v3-large. ResNet50r:
ResNet-50 with the first kernel resized from 7 × 7 to 5 × 5. CE: Cross Entropy, wCE: weighted
Cross Entropy.

Experiment Architecture Loss Optimizer

Exp-01 CaiT CE Adam
Exp-02 CaiT CE AdamW
Exp-03 CaiT wCE Adam
Exp-04 CaiT wCE AdamW
Exp-05 DenseNet-121 CE Adam
Exp-06 DenseNet-121 CE AdamW
Exp-07 DenseNet-121 wCE Adam
Exp-08 DenseNet-121 wCE AdamW
Exp-09 MobileNet-v3 CE Adam
Exp-10 MobileNet-v3 CE AdamW
Exp-11 MobileNet-v3 wCE Adam
Exp-12 MobileNet-v3 wCE AdamW
Exp-13 ResNet-50 CE Adam
Exp-14 ResNet-50 CE AdamW
Exp-15 ResNet-50 wCE Adam
Exp-16 ResNet-50 wCE AdamW
Exp-17 ResNet-50r CE Adam
Exp-18 ResNet-50r CE AdamW
Exp-19 ResNet-50r wCE Adam
Exp-20 ResNet-50r wCE AdamW

With these, 20 experiments were built and evaluated (5 × 2 × 2) by training CaiT,
DenseNet, MobileNet-v3, ResNet-50, ResNet-50r to minimise CE and wCE with Adam or
AdamW (Table 3). Figure 2 illustrates the pipeline approach to classification and comparison
of the models in out experimental setup. All experiments were implemented in PyTorch
Framework and run on google Colab Pro and Pro+. The code is available on an as-is basis on
the following github repository: https://github.com/ace-aitech/COVID-19-classification
(accessed on 4 August 2022).

https://scholar.google.co.uk/scholar?q=adam+optimizer
https://github.com/ace-aitech/COVID-19-classification
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Figure 2. Graphical illustration of the pipeline steps used for the training, evaluation and comparison
of the deep neural network models for the classification of COVID-19 in a multi-class setup used in
this work. All outputs from test phased were bootstrapped. Training, validation and test were run 10
times. After this, the test and validation results were further bootstrapped for 1000 cycles. * Indicates
the bootstrapped outputs from validation phase.

2.4. Training and Validation

All networks architectures described in Section 2.2 were pre-trained on the ImageNet
dataset. Thus, the images were normalised and resized to align them to the pre-trained
setup. On-line random horizontal flips augmentations were also applied at training. The
approach to training was transfer learning by fine-tuning the experiments for 8 epochs with
a learning rate of 2 × 10−5 in batches of 8 images. Training and validation classification loss
and accuracy were calculated after each epoch of training. The validation accuracy was the
primary indicator on how well the classifiers were performing.

2.5. Performance Metrics for Evaluation

The training procedure outlined in Section 2.4 and the evaluation on the test dataset
was repeated 10 times per experiment. To make an unbiased comparison of the classifiers,
the weights from the last epoch of training for evaluation on the test set were used. For this
study, True/False Positives/Negatives (TP/TN/FP/FN) were defined by the correct or
incorrect prediction of the class for the whole image. Accuracy (Acc), Balanced Accuracy
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(BA), F1 and F2 from the general Fβ macro score, Matthew’s Correlation Coefficient (MCC),
Sensitivity (Sens) and Specificity (Spec) were used to evaluate the performance of models
by experiment and network. These seven metrics are defined as follows:

Acc =
TP + TN

(TP + TN + FP + FN)
, (1)

BA =

TP
(TP+FN)

+ TN
(TN+FP)

2
, (2)

Fβ =
(1 + β2)TP

((1 + β2)TP + βFP + FN)
, (3)

F1 =
2TP

(2TP + FP + FN)
, (4)

F2 =
(5)TP

((5)TP + 2FP + FN)
, (5)

MCC =
((TP × TN)− (FP × FN))

((TP + FP) + (TP + FN) + (TN + FP) + (TN + FN))
, (6)

Sens =
TP

(TP + FN)
, (7)

Spec =
TN

(TN + FP)
. (8)

Despite being widely used to evaluate the performance of classifiers, accuracy is biased
towards the majority class in imbalanced datasets. On the other hand, Precision, Recall, Fβ

macro score and MCC have been widely used to overcome the imbalance problem [72]. The
BA provides an average measure of how likely an instance of a class is correctly classified
across different classes. It consists of the arithmetic mean of the recall of each class, so it
is “balanced” because every class has the same weight and the same importance [73]. The
macro Fβ score is a weighted harmonic mean of the macro-precision and the macro-recall.
For the multi-class setup, the F1 and F2 where β takes the values of 1 and 2, respectively,
were used. F1 score weights all classes equally (recall and precision). [73] whereas F2 score
weights twice the recall favouring it against precision. F2-score severely penalizes false
negatives. The MCC is a measure of the correlation between the true and the predicted
class. Moreover, it is regarded as a good indicator of total imbalanced of the prediction
model. Recent work [72] demonstrated that the MCC is a well-suited metric for imbalanced
multi-class domains. The sensitivity (or recall) is the number of true positive results divided
by the number of all samples that should have been identified as positive. Specificity is the
fraction of the true negatives divided by the total number of negatively classified instances.

2.6. Statistical Comparison

Non-parametric statistics do not require the distribution of the data to be known to
make assumptions about them. Parametric comparison tests such ANOVA and MANOVA
not only assume that samples come from a normal distribution but most importantly that
all variables have equal variance (sphericity). For comparison of intelligent algorithms
this cannot be assumed and can also have a detrimental impact on the post hoc test [74].
Therefore, non-parametric Friedman omnibus test [75] and Nemenyi post hoc pairwise
comparison were used [76]. In this work, a holdout approach to evaluate the performance
of the classifiers (experiments) by using the metrics defined in Section 2.5 was used. Boot-
strapping is a non-parametric method that consists of sampling, with replacement, from a
single original sample. This allows an approximation of sample distribution of statistics
from original data [77]. To build the initial sample, the hold-out process was ran and
evaluated 10 times per experiment. Then, 1000 bootstrap samples per experiment were
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generated and the average ranking and confidence interval (CI) for each of the evalu-
ation metrics by network and experiment were calculated. Bootstrapped BA has been
used to compare traditional machine learning classifiers with DL methods for the stress
recognition in drivers [78]. Statistical difference amongst the performance of experiments
(classifiers) was determined by using the Friedman test followed by the Nemenyi post
hoc test at α = 0.05 for the Acc, BA, F1, F2, MCC, Sens and Spec. These tests have been
used to compare the performance of time series classification algorithms for gravitational
waves [79]. The Friedman test indicates whether the ranked classifiers are significantly
different amongst themselves while the Nemenyi test applies pairwise comparison to the
ranked classifiers [74,80]. The statistical tests were applied by using scipy and scikit-post
hoc libraries.

3. Results and Discussion
3.1. Training, Test and Validation Accuracy

Figure 3 illustrates the results of one experiment (Exp-13) comparing predicted and
actual classes of representative images on the test set.
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Figure 3. Illustration of results (horizontal label) with their prediction and probability score (vertical
label). (a) Correct predictions. (b) Misclassifications.

Accuracy and standard deviation for the training, validation and test sets by archi-
tecture and experiment are shown in Tables 4 and 5, Figure 4. From the Figure 4 it can be
seen that the ResNet-50 models achieved the highest accuracy during the validation and
test phases. Table 4 shows that DenseNet models obtained the greatest accuracy of the five
architectures during training. Conversely, CaiT based models showed the lowest accuracy
on the validation and test stages. For the individual experiments the top three training
accuracies were 99.45%, 99.44% and 99.42% for Exp-05, Exp-06 and Exp-13, respectively.
The best validation accuracy was obtained for Experiments Exp-17 and Exp-18 (99.19% both
of them) which are based on ResNet-50r, followed by Exp-13, Exp-15 which are built on
ResNet-50. The top performers at the test phase were Exp-18, Exp-15 and Exp-05 (Table 5).
At architecture level CaiT models showed the highest standard deviation for the three
stages, in particular Exp-04 at training and test. It should be noted that in all phases and
for all models, the average accuracy was greater than 98.0%.
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Table 4. Train, validation and test accuracy by architecture before bootstrapping for all architectures.
CaiT (Exp-01:Exp-04), DenseNet-121 (Exp-05:Exp-08), MobileNet-v3-large (Exp-09:Exp-12), ResNet-50
(Exp-13:Exp-16), ResNet-50r (Exp-17:Exp-20). Best results are highlighted in bold.

Architecture Train Accuracy Validation Accuracy Test Accuracy

CaiT 99.23 ± 0.79 98.43 ± 0.64 98.55 ± 0.54
DenseNet-121 99.42 ± 0.10 99.07 ± 0.29 98.89 ± 0.40
MobileNet-v3 98.42 ± 0.58 98.65 ± 0.46 98.86 ± 0.33
ResNet-50 99.36 ± 0.10 99.16 ± 0.32 99.02 ± 0.22
ResNet-50r 99.20 ± 0.14 99.10 ± 0.40 98.99 ± 0.32

Table 5. Train, validation and test average accuracy and standard deviation by experiment before
bootstrapping. Best top three average accuracy results are highlighted in bold.

Experiment Train Accuracy Validation Accuracy Test Accuracy

Exp-01 99.38 ± 0.06 98.25 ± 0.60 98.47 ± 0.41
Exp-02 99.38 ± 0.12 98.70 ± 0.43 98.64 ± 0.44
Exp-03 98.84 ± 1.56 98.35 ± 0.73 98.44 ± 0.52
Exp-04 99.31 ± 0.13 98.41 ± 0.76 98.64 ± 0.76
Exp-05 99.45 ± 0.06 99.10 ± 0.20 99.08 ± 0.17
Exp-06 99.44 ± 0.06 99.13 ± 0.22 98.97 ± 0.30
Exp-07 99.40 ± 0.12 99.01 ± 0.34 98.67 ± 0.55
Exp-08 99.38 ± 0.12 99.03 ± 0.40 98.86 ± 0.42
Exp-09 98.61 ± 0.09 98.77 ± 0.36 98.89 ± 0.22
Exp-10 98.24 ± 1.17 98.57 ± 0.71 98.87 ± 0.54
Exp-11 98.41 ± 0.09 98.56 ± 0.43 98.83 ± 0.32
Exp-12 98.44 ± 0.05 98.70 ± 0.22 98.84 ± 0.18
Exp-13 99.42 ± 0.07 99.17 ± 0.29 98.94 ± 0.33
Exp-14 99.38 ± 0.08 99.15 ± 0.30 99.04 ± 0.18
Exp-15 99.34 ± 0.06 99.18 ± 0.41 99.08 ± 0.16
Exp-16 99.31 ± 0.15 99.14 ± 0.31 99.01 ± 0.19
Exp-17 99.22 ± 0.17 99.19 ± 0.30 98.97 ± 0.34
Exp-18 99.22 ± 0.15 99.19 ± 0.35 99.16 ± 0.19
Exp-19 99.17 ± 0.10 98.94 ± 0.53 98.71 ± 0.29
Exp-20 99.20 ± 0.15 99.08 ± 0.39 99.13 ± 0.23
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Figure 4. Train, validation and test accuracy before the bootstrapping cycle by network and experi-
ment. (a) Train accuracy by architecture. (b) Validation accuracy by architecture. (c) Test accuracy
by architecture. (d) Train accuracy by experiment. (e) Validation accuracy by experiment. (f) Test
accuracy by experiment.

3.2. Performance Metrics Prior to Bootstrapping

Table 6 summarises the performance metrics during the test phase by network prior
to bootstrapping. The average performance of each network for all evaluation metrics was
in the following descending order: ResNet-50, ResNet-50r, DesNet-121, MobileNet-v3 and
CaiT (Figure 4). The five networks reached an average performance of over 98% for the
7 evaluation metrics, except for CaiT, which showed an average MCC of 97.64%. ResNet-50
achieved values over 99.0% in six of the seven evaluation metrics, followed by ResNet-50r
which hit the the highest F1 and F2 scores and the same average performance than ResNet-
50 in Sens and Spec. It was observed that the BA, F1, F2 and Sens presented very close
values to each other when evaluating the performance of the architectures (Table 6). The
MCC suggests that there is high correlation among the predictions and their real class and
reflects the impact of the class imbalance [81]. In addition, from the metrics by experiment
it was noted that, Exp-18 and Exp-20 obtained the highest values from all experiments for
all metrics followed by Exp-05 and Exp-15 (Table 7). Exp-03 and Exp-04 showed the largest
standard deviation in three and four of the evaluation metrics, respectively.
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Table 6. Evaluation metrics by architecture before bootstrapping. Best results are highlighted in bold.

Architecture Acc BA F1 F2

CaiT 98.55 ± 0.54 98.71 ± 0.66 98.70 ± 0.63 98.70 ± 0.65
DenseNet-121 98.89 ± 0.40 99.10 ± 0.34 99.10 ± 0.34 99.08 ± 0.37
MobileNet-v3 98.86 ± 0.33 99.06 ± 0.30 99.06 ± 0.29 99.06 ± 0.29

ResNet-50 99.02 ± 0.22 99.19 ± 0.20 99.15 ± 0.22 99.16 ± 0.22
ResNet-50r 98.99 ± 0.32 99.16 ± 0.32 99.16 ± 0.30 99.18 ± 0.31

Architecture MCC Sens Spec

CaiT 97.64 ± 0.86 98.72 ± 0.67 99.17 ± 0.28
DenseNet-121 98.27 ± 0.60 99.11 ± 0.34 99.36 ± 0.23
MobileNet-v3 98.18 ± 0.52 99.08 ± 0.29 99.35 ± 0.25

ResNet-50 98.42 ± 0.37 99.17 ± 0.22 99.43 ± 0.13
ResNet-50r 98.41 ± 0.51 99.17 ± 0.32 99.43 ± 0.18

Table 7. Evaluation metrics by experiment before bootstrapping. Average and standard deviation
per each metric are given in percentage. The best top three values per metric are highlighted in bold.

Experiments Acc BA F1 F2 MCC Sens Spec

Exp-01 98.47 ± 0.41 98.61 ± 0.40 98.65 ± 0.36 98.62 ± 0.40 97.52 ± 0.65 98.63 ± 0.41 99.12 ± 0.23
Exp-02 98.64 ± 0.44 98.89 ± 0.36 98.83 ± 0.43 98.86 ± 0.39 97.84 ± 0.69 98.88 ± 0.36 99.25 ± 0.23
Exp-03 98.44 ± 0.52 98.52 ± 1.06 98.62 ± 0.76 98.56 ± 0.95 97.52 ± 0.83 98.56 ± 1.09 99.12 ± 0.30
Exp-04 98.64 ± 0.76 98.81 ± 0.63 98.71 ± 0.90 98.77 ± 0.74 97.66 ± 1.23 98.81 ± 0.63 99.19 ± 0.38
Exp-05 99.08 ± 0.17 99.23 ± 0.15 99.22 ± 0.21 99.22 ± 0.17 98.51 ± 0.28 99.23 ± 0.15 99.47 ± 0.09
Exp-06 98.97 ± 0.30 99.16 ± 0.25 99.14 ± 0.26 99.15 ± 0.26 98.35 ± 0.48 99.16 ± 0.25 99.38 ± 0.16
Exp-07 98.67 ± 0.55 98.96 ± 0.50 98.97 ± 0.46 98.86 ± 0.53 98.04 ± 0.83 98.97 ± 0.51 99.25 ± 0.32
Exp-08 98.86 ± 0.42 99.05 ± 0.36 99.08 ± 0.36 99.09 ± 0.37 98.17 ± 0.65 99.09 ± 0.35 99.34 ± 0.24
Exp-09 98.89 ± 0.22 99.08 ± 0.19 99.06 ± 0.16 99.10 ± 0.20 98.22 ± 0.34 99.10 ± 0.21 99.37 ± 0.13
Exp-10 98.87 ± 0.54 99.07 ± 0.48 99.03 ± 0.46 99.07 ± 0.47 98.20 ± 0.85 99.09 ± 0.48 99.36 ± 0.34
Exp-11 98.83 ± 0.32 99.03 ± 0.30 99.04 ± 0.21 99.04 ± 0.25 98.14 ± 0.50 99.08 ± 0.23 99.30 ± 0.34
Exp-12 98.84 ± 0.18 99.06 ± 0.15 99.12 ± 0.29 99.04 ± 0.17 98.15 ± 0.28 99.05 ± 0.16 99.35 ± 0.12
Exp-13 98.94 ± 0.33 99.13 ± 0.29 99.11 ± 0.31 99.12 ± 0.29 98.30 ± 0.55 99.13 ± 0.28 99.39 ± 0.19
Exp-14 99.04 ± 0.18 99.19 ± 0.20 99.11 ± 0.22 99.12 ± 0.25 98.48 ± 0.30 99.12 ± 0.25 99.47 ± 0.10
Exp-15 99.08 ± 0.16 99.26 ± 0.14 99.23 ± 0.13 99.22 ± 0.14 98.53 ± 0.26 99.23 ± 0.15 99.46 ± 0.11
Exp-16 99.01 ± 0.19 99.18 ± 0.17 99.13 ± 0.17 99.16 ± 0.16 98.38 ± 0.31 99.20 ± 0.21 99.42 ± 0.11
Exp-17 98.97 ± 0.34 99.13 ± 0.37 99.11 ± 0.35 99.15 ± 0.34 98.36 ± 0.55 99.15 ± 0.37 99.43 ± 0.19
Exp-18 99.16 ± 0.19 99.32 ± 0.15 99.32 ± 0.15 99.32 ± 0.15 98.66 ± 0.31 99.32 ± 0.15 99.52 ± 0.11
Exp-19 98.71 ± 0.29 98.90 ± 0.35 98.90 ± 0.27 98.92 ± 0.34 97.94 ± 0.46 98.90 ± 0.35 99.27 ± 0.17
Exp-20 99.13 ± 0.23 99.28 ± 0.20 99.30 ± 0.21 99.31 ± 0.20 98.66 ± 0.35 99.31 ± 0.20 99.51 ± 0.13

3.3. Ranking And Confidence Intervals Post-Bootstrapping

Tables 8–11 summarise the medians, ranking and confidence intervals with α = 0.05 of
the architectures and experiments by metric. The ranks of the networks from the best to
poorest performance was as follows: ResNet-50, ResNet-50r, DenseNet-121, MobileNet-v3
and CaiT (Table 8). ResNet-50 models outperformed the other architecture models in 5 of
the 7 evaluation metrics (Acc, BA, MCC, Sens and Spec). ResNet-50r surpassed ResNet-50 in
the F1 and F2 scores. It also obtained the second best rank for the rest of metrics. Although
the medians obtained for each metric by network were almost identical to their respective
mean prior to bootstrapping, the confidence intervals were tighter (Tables 6–11). In general,
all networks showed wider CI for specificity than for sensitivity (Table 9). The MCC showed
lower confidence bounds for all networks. CaiT confidence intervals by architecture were
the lowest ranging from 97.36% to 97.88%. Models based on ResNet-50 and ResNet-50r
performance lower bounds were greater than 99.0% in five of the seven metrics and over
98.0% for the MCC and accuracy. The ranking of the bootstrap samples by experiments
for each metric is shown in Table 10. The top ranks in descending were achieved by Exp-
18, Exp-20, Exp-05 and Exp-15. ResNet-50r based experiments outperformed all models
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metrics when trained to minimise the loss function with AdamW. Exp-18 showed the
highest rank in all performance metrics except for the MCC where it ranked negligibly
lower than Exp-20. The opposite effect was observed when training ResNet-50r to minimise
the wCE with Adam (Exp-19). Exp-19 ranked the lowest for experiments based on ResNet-
50r. The results suggests that the size of the kernel in ResNet-50r have a positive effect
on the performance of Exp-18 and Exp-20 which are the modified versions of Exp-14 and
Exp-16. Furthermore, Exp-15 and Exp-13 were the highest and lowest ranks for experiments
built in ResNet-50. This effect might be due to the loss function that each of these two
experiments optimised (wCE and CE, respectively). DenseNet-121 and MobileNet-v3
models performed better when minimising the CE loss function (Exp-05, Exp-06, Exp-09
and Exp-10). In contrast, experiments built on ResNet-50 perform better when minimising
the wCE loss function. Further more, experiments built on CaiT and ResNet-50r performed
their best when optimising with AdamW (Exp-02, Exp-04, Exp-18 and Exp-20). The lowest
performance boundaries were 96.96% and 96.89% for the MCC (Table 11, Exp-03 and
Exp-04).

Table 8. Ranks and medians by architecture after 1000 bootstrapping cycles. Best results are high-
lighted in bold.

Architecture
Rank

Acc BA F1 F2 MCC Sens Spec

CaiT 5.00 5.00 5.00 5.00 5.00 5.00 5.00
DenseNet-121 3.20 2.98 2.82 3.18 3.05 2.92 3.30
MobileNet-v3 3.63 3.62 3.58 3.50 3.72 3.54 3.56
ResNet-50 1.40 1.38 1.92 1.84 1.53 1.75 1.51
ResNet-50r 1.77 2.02 1.68 1.47 1.71 1.80 1.63

Architecture
Median

Acc BA F1 F2 MCC Sens Spec

CaiT 98.56 98.72 98.71 98.72 97.65 98.73 99.17
DenseNet-121 98.89 99.10 99.11 99.08 98.27 99.12 99.36
MobileNet-v3-large 98.86 99.07 99.07 99.06 98.19 99.08 99.35
ResNet-50 99.02 99.19 99.14 99.15 98.42 99.17 99.43
ResNet-50r 98.99 99.16 99.16 99.18 98.41 99.18 99.43

Table 9. Confidence intervals by architecture after 1000 bootstrapping cycles with α = 0.05. Best
results are highlighted in bold.

Architecture Accuracy BA F1 F2

CaiT 98.37–98.71 98.49–98.90 98.50–98.87 98.49–98.88
DenseNet-121 98.76–99.00 98.99–99.20 99.00–99.20 98.96–99.19
MobileNet-v3 1 98.75–98.95 98.97–99.15 98.96–99.15 98.97–99.15
ResNet-50 98.95–99.09 99.13–99.25 99.07–99.21 99.09–99.22
ResNet-50r 98.90–99.08 99.05–99.25 99.07–99.25 99.09–99.26

Architecture MCC Sens Spec

CaiT 97.36–97.88 98.48–98.90 99.08–99.25
DenseNet-121 98.07–98.44 99.00–99.21 99.29–99.43
MobileNet-v3 98.01–98.33 98.98–99.16 99.26–99.42
ResNet-50 98.31–98.53 99.10–99.24 99.39–99.47
ResNet-50r 98.25–98.57 99.07–99.26 99.38–99.48

1 MobileNet-v3-large is the full named of the architecture.
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Table 10. Ranks by experiment after 1000 bootstraps cycles. Best results are highlighted in bold.
Experiments 18 and 20 correspond to ResNet-50r with AdamW, CE (18) and wCE (20).

Experiment
Rank Median

Acc BA F1 F2 MCC Sens Spec Acc BA F1 F2 MCC Sens Spec

Exp-01 18.70 19.14 18.89 18.96 18.84 19.05 18.78 98.46 98.61 98.65 98.62 97.52 98.62 99.12
Exp-02 16.51 16.03 16.67 16.11 16.49 16.40 15.69 98.64 98.90 98.84 98.87 97.85 98.89 99.26
Exp-03 18.90 18.96 18.59 18.75 18.85 18.75 18.68 98.45 98.54 98.64 98.58 97.53 98.57 99.12
Exp-04 15.82 16.51 17.15 16.96 17.30 16.84 16.79 98.64 98.85 98.74 98.78 97.70 98.82 99.20
Exp-05 3.90 4.50 4.40 4.70 4.64 4.78 4.20 99.08 99.24 99.23 99.22 98.51 99.23 99.47
Exp-06 7.92 7.87 7.77 7.69 8.15 7.84 9.88 98.97 99.16 99.14 99.15 98.35 99.16 99.38
Exp-07 15.98 14.18 13.62 15.75 13.55 13.83 15.41 98.67 98.97 98.98 98.87 98.07 98.98 99.25
Exp-08 11.58 11.50 10.42 10.02 11.57 10.59 11.75 98.86 99.06 99.08 99.09 98.18 99.09 99.35
Exp-09 10.88 10.92 11.46 9.84 10.86 10.48 10.23 98.89 99.08 99.06 99.10 98.23 99.10 99.38
Exp-10 10.82 10.72 11.36 10.22 10.88 9.93 10.57 98.89 99.08 99.05 99.08 98.22 99.11 99.37
Exp-11 12.44 12.49 11.89 12.26 12.60 11.18 13.31 98.84 99.04 99.05 99.04 98.14 99.08 99.31
Exp-12 12.38 11.70 8.64 12.45 12.51 12.56 11.58 98.84 99.07 99.11 99.04 98.15 99.05 99.35
Exp-13 8.98 9.10 9.23 8.68 9.19 8.85 8.97 98.95 99.13 99.11 99.13 98.31 99.14 99.40
Exp-14 5.49 6.44 8.93 9.03 5.24 9.51 4.49 99.05 99.20 99.12 99.12 98.48 99.12 99.47
Exp-15 4.29 3.76 4.11 4.57 4.29 4.76 5.33 99.08 99.26 99.23 99.22 98.52 99.23 99.45
Exp-16 6.87 6.66 8.05 7.37 7.58 6.11 7.65 99.01 99.19 99.14 99.16 98.38 99.20 99.42
Exp-17 8.23 8.95 8.98 7.68 7.85 8.31 7.07 98.97 99.14 99.12 99.15 98.36 99.16 99.43
Exp-18 1.84 1.66 1.70 1.69 2.06 1.87 1.70 99.16 99.32 99.32 99.32 98.66 99.32 99.53
Exp-19 15.55 15.90 15.81 15.07 15.52 16.09 15.30 98.71 98.90 98.90 98.93 97.95 98.90 99.27
Exp-20 2.92 3.03 2.32 2.20 2.03 2.28 2.62 99.12 99.28 99.30 99.31 98.66 99.31 99.50

Table 11. Confidence interval by experiment for Acc, BA, F1, F2, MCC, Sens and Spec after 1000
bootstrapping cycles with α = 0.05. Best results are highlighted in bold. Experiment 18 corresponds
to ResNet-50r with AdamW and CE.

Experiment Acc BA F1 F2 MCC Sens Spec

Exp-01 98.24–98.71 98.36–98.85 98.45–98.86 98.39–98.85 97.14–97.91 98.40–98.88 98.99–99.25
Exp-02 98.38–98.87 98.67–99.10 98.56–99.06 98.62–99.08 97.40–98.21 98.67–99.08 99.09–99.37
Exp-03 98.09–98.67 97.82–98.92 98.13–98.92 97.91–98.92 96.96–97.88 97.83–99.00 98.92–99.25
Exp-04 98.12–98.94 98.42–99.12 98.13–99.11 98.26–99.11 96.89–98.24 98.39–99.12 98.96–99.38
Exp-05 98.99–99.18 99.15–99.32 99.08–99.34 99.11–99.31 98.35–98.66 99.15–99.32 99.42–99.52
Exp-06 98.80–99.14 99.02–99.30 98.99–99.29 99.01–99.30 98.08–98.63 99.02–99.31 99.28–99.47
Exp-07 98.33–98.95 98.64–99.21 98.68–99.20 98.55–99.17 97.48–98.47 98.64–99.25 99.06–99.42
Exp-08 98.61–99.10 98.85–99.26 98.85–99.27 98.87–99.29 97.79–98.54 98.88–99.28 99.20–99.47
Exp-09 98.75–99.02 98.97–99.19 98.96–99.16 98.98–99.20 98.02–98.41 98.96–99.21 99.29–99.45
Exp-10 98.50–99.14 98.74–99.32 98.72–99.26 98.77–99.31 97.69–98.62 98.79–99.34 99.14–99.53
Exp-11 98.64–99.00 98.84–99.19 98.91–99.15 98.89–99.18 97.82–98.40 98.94–99.21 99.07–99.46
Exp-12 98.73–98.94 98.97–99.14 98.99–99.31 98.94–99.13 97.99–98.30 98.95–99.14 99.28–99.41
Exp-13 98.74–99.13 98.95–99.29 98.91–99.28 98.94–99.29 97.95–98.61 98.96–99.29 99.29–99.50
Exp-14 98.93–99.14 99.06–99.30 98.97–99.24 98.95–99.25 98.29–98.63 98.96–99.25 99.41–99.52
Exp-15 98.99–99.18 99.17–99.34 99.16–99.30 99.14–99.31 98.38–98.68 99.15–99.32 99.39–99.52
Exp-16 98.90–99.11 99.08–99.27 99.03–99.22 99.06–99.24 98.17–98.56 99.08–99.33 99.35–99.49
Exp-17 98.75–99.16 98.90–99.33 98.89–99.30 98.94–99.35 98.05–98.69 98.91–99.35 99.31–99.53
Exp-18 99.06–99.28 99.24–99.41 99.23–99.41 99.24–99.41 98.48–98.86 99.23–99.41 99.47–99.59
Exp-19 98.55–98.87 98.70–99.08 98.73–99.06 98.72–99.11 97.69–98.22 98.68–99.08 99.16–99.36
Exp-20 98.99–99.26 99.17–99.40 99.18–99.42 99.19–99.43 98.46–98.87 99.20–99.43 99.44–99.58
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3.4. Maximum Training Epochs

The training of the networks has a critical effect on the evaluation of the models on
unseen data (generalisation performance). To have an insight into the number of training
cycles required for each of the classifiers to achieve their best validation accuracy, the num-
ber of epochs at which each experiment obtained the highest validation accuracy and the
accuracy achieved was recorded. Following this, 1000 bootstrap samples for the maximum
validation accuracy and the number epochs required to reach the maximum were simulta-
neously obtained. Tables 12 and 13 provide the ranking, the median of maximum accuracy
and the number of epochs required to reach the maximum accuracy during validation by
architecture and experiment. Figures 5 and 6 show the medians and distribution of the
data for both the maximum accuracy by architecture and experiment. The best ranks for
the number of epochs were given to models based on ResNet-50 and Dense-Net-121 which
required six and seven rounds of epochs training, respectively. Conversely, ResNet-50r and
CaiT mostly required to train for 8 epochs to reach their best performance. The information
in Tables 1 and 12 provides a wider overview on how the GPU/CPU/Memory resources
were utilised and their impact on training on the training and validation process. The
operation that required more memory for CaiT was matrix multiplication for attention. It
was observed that a huge reduction on ATTE for CaiT (over 56%) when training in Co-
labPro+. This huge reduction was not as apparent on the other architectures. Nevertheless,
CaiT models required more resources and longer training time that all networks in spite of
having less parameters than ResNet-50 architecture. Although ResNet-50 and ResNet-50r
have more parameters than the other three architectures, the only architecture that trained
faster than these two DL networks was MobileNet-v3. However, with a median of 6 epochs,
ResNet-50 not only outperforms MobileNet-v3 in training time but all other networks. On
the other hand, Exp-14 and Exp-15 achieved the best ranking for number of training epochs
accounting for 6 followed by Exp-05.

ResNet-50 and ResNet-50r reached the top ranks for the maximum accuracy during
validation while the top ranks by experiment were given to Exp-16 to Exp-18. Exp-17
obtained the highest rank for the maximum validation accuracy. All networks at their best
validation accuracy allowed lower accuracy bounds greater from 98.73%.

Table 12. Ranking of the maximum training accuracy and training epochs, medians and confidence
intervals (CI) by architecture with α = 0.05 and Average training time per epoch (ATTE). Best results
are highlighted in bold.

Architecture
Max Accuracy Epochs

Rank Median CI Rank Median CI ATTE (s)

CaiT 4.92 98.82 98.73–98.91 3.38 8 5–8 503.66 220.57 1

DenseNet-121 2.78 99.31 99.26–99.35 2.19 7 5–7 177.08
MobileNet-v3 4.08 98.92 98.82–99.02 3.14 7 7–8 87.60
ResNet-50 1.85 99.34 99.30–99.38 1.93 6 6–8 100.31
ResNet-50r 1.37 99.36 99.30–99.42 4.36 8 6–8 106.05

1 Running in Google Colab Pro+.
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Figure 5. Epochs required to reach the maximum validation accuracy. (a) Epochs by architecture.
(b) Epochs by experiment (CaiT experiments 1–4, DenseNet experiments 5–8, MobileNet experiments
9–12, ResNet-50 experiments 13–17, ResNet-50r experiments 17–20).
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Figure 6. Maximum training accuracy and training epochs to reach the maximum accuracy after
1000 bootstrap cycles. (a) Max accuracy by architecture. (b) Max accuracy by experiment. (c) Epochs
required to reach the maximum accuracy by architecture. (d) Epochs required to reach the maximum
accuracy by experiment. CaiT experiments 1–4, DenseNet experiments 5–8, MobileNet experiments
9–12, ResNet-50 experiments 13–17, ResNet-50r experiments 17–20.

Table 13. Ranking of the maximum training accuracy and training epochs with medians by experi-
ment. Best results are highlighted in bold.

Experiment
Max Accuracy Epochs

Rank Median Rank Median

Exp-01 17.59 98.80 8.14 5
Exp-02 17.05 98.84 11.39 7
Exp-03 19.05 98.76 9.79 7
Exp-04 16.42 98.88 13.45 8
Exp-05 7.55 99.32 8.09 6
Exp-06 5.69 99.35 9.31 7
Exp-07 9.21 99.30 7.18 6
Exp-08 9.69 99.28 8.11 6
Exp-09 15.10 98.93 12.28 7
Exp-10 16.41 98.88 11.75 7
Exp-11 15.53 98.91 13.64 7
Exp-12 14.76 98.95 11.61 7
Exp-13 6.98 99.33 14.11 8
Exp-14 8.38 99.31 6.58 6
Exp-15 5.25 99.36 6.65 6
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Table 13. Cont.

Experiment
Max Accuracy Epochs

Rank Median Rank Median

Exp-16 4.27 99.37 9.95 6
Exp-17 1.91 99.43 12.13 7
Exp-18 4.98 99.36 11.20 8
Exp-19 9.16 99.28 9.28 6
Exp-20 5.02 99.37 15.36 8

3.5. Non-Parametric Ranks Comparisons

The results of the Friedman test suggested significant differences among the average
ranks of the networks and experiments (p-value < 0.001). Therefore, the pairwise Friedman–
Nemenyi multiple comparisons by network and experiment for all performance metrics was
the next step. Figure 7 shows that there was no significant difference on the performance
ResNet-50 and ResNet-50r models for the MCC, Sens and Spec. The rest of the architectures
performed significantly different to each other for all metrics (p-value < 0.01). For the
maximum accuracy and the number of epochs, all architectures performed significantly
different (p-value < 0.01). This suggest that ResNet-50 networks train faster than the other
networks (Table 12).

Figure 8 shows the Nemenyi test results by experiment for all the performance metrics.
Exp-18, Exp-20 obtained the highest ranks for all metrics (Table 10). The two experiments
showed no significant difference in the F1, F2, MCC, Sens and Spec. Consequently, the
two experiments show no statistical difference for the maximum validation accuracy. The
Nemenyi test also determined that there was no significant difference in the number of
the training epochs required by Exp-14 and Exp-15 to achieved the maximum validation
accuracy (top ranks for the number of epochs in Table 13).

In addition, Exp-05 showed no significant difference to Exp-14 and Exp-15 for the F1
and MCC. It can be noted that Exp-19 which was the under performer model based on
ResNet-50r has similar predictive power for BA, F1, Sens and Spec than from Exp-02.

The post hoc tests confirm with 95.0% confidence that in general ResNet-50 based
models have a significantly higher performance in the classification of COVID-19 than the
other architectures. ResNet-50 architecture not only outperformed the other networks in
all metrics but it also make a more effective use of resources by utilising less training time.
ResNet-50r models optimized with AdamW outperform all models configurations in all
metrics (Exp-18 and Exp-20). However, it requires longer training time, this may be due
to the size of the kernel generating more convolutions therefore increasing the number of
trainable parameters (Table 1).

The work presented here shows that CaiT performs better when optimising the objec-
tive with AdamW (Exp-02 and Exp-04), DenseNet when optimising CE with Adam (Exp-05),
MobileNet-v3 optimising CE with Adam or AdamW (Exp-9 and Exp-10). Whereas ResNet-
50 performs better when minimising wCE with Adam (Exp-15) and finally ResNet-50r
minimising CE with AdamW (Exp-17).

Kernels are small learnable filters that convolve along the depth of an image producing
a feature map [82]. It can be observed that the resized kernel on ResNet-50 has a positive
effect on experiments Exp-18 and Exp-20 which are the counterpart of Exp-14 and Exp-16.
It is possible to attribute this to the fact that the kernel was able to generate feature maps
at greater detail for images that might have only small or occluded areas with infection.
ResNet-50 is pretrained on the ImageNet dataset which has 1000 object classes of regular
size. Whilst identifying a large number of classes represents a challenge in itself, in the
medical field to be able to identify small areas of concern is critical for diagnosis. The
scope of this work was limited to evaluate the performance of the models by network
and experiment after eight rounds of epochs training. Alternatively, from this study of
the maximum validation accuracy and the number of epochs by experiment, the post hoc
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test shows that there is a potential for improvement in the performance of DenseNet-121,
MobileNet-v3, ResNet-50 and ResNet-50r. The performance of Exp-06, Exp-12 and Exp-17
can be evaluated after seven rounds of epochs training. Meanwhile the performance of
Exp-16 can be measured after six rounds of epochs training.
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Figure 7. Nemenyi post hoc rankings pairwise of the by network for each of the performance metrics.
The comparison was done for all metrics, the maximum accuracy during training and the epoch at
which the maximum accuracy was reached. The comparison carried out after 1000 bootstrap cycles.
(a) Accuracy. (b) Balanced accuracy, (c) F1 score, (d) F2 score, (e) Matthew’s correlation coefficient.
(f) Sensitivity. (g) Specificity. (h) Maximum validation accuracy. (i) Number of epochs required to
reach the maximum validation accuracy. NS stands for no significant difference.
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NS p < 0.05 p < 0.01 p < 0.001

Figure 8. Nemenyi post hoc rankings pairwise comparison for each experiment for all performance
metrics after 1000 bootstrap cycles. The probability bar shows the (a) Accuracy, (b) Balanced accuracy,
(c) F1 score, (d) F2 score, (e) Matthew’s correlation coefficient. (f) Sensitivity. (g) Specificity. (h) Maxi-
mum validation accuracy. (i) Number of epochs required to reach the maximum validation accuracy.
The NS stands for no significant difference.

3.6. Limitations of the Present Work

The methodology describe in this paper has several limitations. First, the number of
deep learning architectures that was compared was limited. This was a choice as the main
objective is not a through comparison of all possible architectures, but rather to present a
methodology through which these can be compared with statistical non-parametric tests.
Still, a variety of architectures with some of the most recent ones at the time of writing
was selected. Second, the data considered for this work were 2D images and not the
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3D datasets that can be obtained directly from CT scanners. The authors did not have
access to these datasets. Third, this work considered classification of images, but did not
extended to segmentation [34], localisation [83], assessment of severity or evolution of the
disease [37]. As previously mentioned, one objective was to present a methodology for
comparison. Finally, this work is not ready to be deployed in a clinical setting. It is hoped
that the methodology here described will help the comparisons of future works and when
a methodology is to be deployed clinically, a thorough and fair comparison such as the
ones suggested here will be performed.

4. Conclusions

In this work, public datasets of chest CT scans were collated and analysed with five
AI techniques which were capable to distinguish between positive cases of COVID-19,
community-acquired pneumonia and healthy individuals. All the deep learning models
were trained and their performance was evaluated with different metrics: accuracy, bal-
anced accuracy, F1 and F2 score, MCC, sensitivity and specificity. Non-parametric statistics
were applied, starting from bootstrapping to obtain confidence intervals, followed with
the comparison of the models by using the Friedman test and the Nemenyi pairwise post
hoc test. It can be concluded with statistical confidence that the ResNet-50 architectures
are robust to classify COVID-19 in a multi-class set-up. ResNet-50 models achieved perfor-
mances over 98% in all metrics and outperformed MobileNet-v3, DenseNet-121 and CaiT.
In the particular case, ResNet-50r which is a modified version of ResNet-50 was shown to
be the best classifier when optimising either CE or wCE (Exp-18 and Exp-20) with AdamW.
In these conditions, confidence intervals of 99.24% to 99.41%, 99.23% to 99.41%, and 98.48%
to 98.86%, were obtained for the BA, F1, MCC, respectively. Whilst the metrics of most
experiments were high, the rankings after thousands of bootstrap repetitions were more
discriminatory and placed ResNet-50r with AdamW in the top place. On the other hand,
the CaiT architectures had the lowest rankings. One important observation was that the
results suggest that less complex architectures can outperform more complex network
architectures in the detection of COVID-19 in a multi-class setup. In general, ResNet-50
showed to be more robust to changes achieving the top ranks in all metrics. With exception
of Exp-05, Exp-06, Exp-19, it was observed from Table 10 that Exp-13 to Exp-20 ranked
better than experiments Exp-01 to Exp-12 (i.e., those not using ResNet). This study was
not aimed to provide causal inference about the reason why ResNet-50 and ResNet-50r
networks achieved better results. However, it can be assumed that there was positive
interaction between the hyper-parameter selection and experimental setup.
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Abbreviations
The following abbreviations are used in this manuscript:

Acc Accuracy
ATTE Average training time per epoch
BA Balanced accuracy
CAP Community acquired pneumonia
CE Cross entropy
CT Computed tomography
MCC Mathew’s correlation coefficient
Sens Sensitivity
Spec Specificity
Val Validation
wCE Weighted cross entropy
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