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Purpose: Quasi-diffusion MRI (QDI) is a novel quantitative technique based on
the continuous time random walk model of diffusion dynamics. QDI provides
estimates of the diffusion coefficient, D1,2 in mm2 s−1 and a fractional exponent,
α, defining the non-Gaussianity of the diffusion signal decay. Here, the b-value
selection for rapid clinical acquisition of QDI tensor imaging (QDTI) data is
optimized.
Methods: Clinically appropriate QDTI acquisitions were optimized in healthy
volunteers with respect to a multi-b-value reference (MbR) dataset comprising
29 diffusion-sensitized images arrayed between b = 0 and 5000 s mm−2. The
effects of varying maximum b-value (bmax), number of b-value shells, and the
effects of Rician noise were investigated.
Results: QDTI measures showed bmax dependence, most significantly for α
in white matter, which monotonically decreased with higher bmax leading
to improved tissue contrast. Optimized 2 b-value shell acquisitions showed
small systematic differences in QDTI measures relative to MbR values,
with overestimation of D1,2 and underestimation of α in white matter, and
overestimation of D1,2 and α anisotropies in gray and white matter. Addi-
tional shells improved the accuracy, precision, and reliability of QDTI esti-
mates with 3 and 4 shells at bmax = 5000 s mm−2, and 4 b-value shells at
bmax = 3960 s mm−2, providing minimal bias in D1,2 and α compared to
the MbR.
Conclusion: A highly detailed optimization of non-Gaussian dMRI for
in vivo brain imaging was performed. QDI provided robust parame-
terization of non-Gaussian diffusion signal decay in clinically feasible
imaging times with high reliability, accuracy, and precision of QDTI
measures.
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1 INTRODUCTION

Diffusion-weighted magnetic resonance imaging (dMRI)
is sensitive to the effects of random translational motion
of water molecules at the length scale of cellular and
subcellular structures, allowing interrogation of healthy
and pathological tissue properties beyond nominal image
resolution. Quasi-diffusion magnetic resonance imaging
(QDI), a novel non-Gaussian dMRI signal attenuation
modeling technique that provides rapid acquisition, was
recently proposed.1 QDI provides analogous tissue con-
trast and microstructural inference to diffusional kurtosis
imaging (DKI).2,3 QDI is mathematically robust. It pro-
vides feasible QDI parameter estimates in voxels, for which
DKI assigns infeasible negative excess kurtosis, without
requiring regularization1,4 and represents the dMRI signal
attenuation by a completely monotonic decreasing func-
tion unlike DKI.5

The continuous time random walk (CTRW) model of
diffusion6 provides a mathematical description of dMRI
signal decay with a physical interpretation of diffusion
dynamics, which makes no assumptions about tissue
geometry. The spin’s random walk is described by 2 dis-
crete stochastic processes, with fractional exponents relat-
ing to step lengths, β, over time intervals α. Quasi-diffusion
is a special case of the CTRW model, which assumes
a Gaussian scaling relationship between space and time
fractional exponents, β = 2α, which leads to mean squared
displacement that is linearly proportional to diffusion
time. In QDI, the dMRI signal decay is defined by a
stretched Mittag-Leffler function parameterized by the
rate of decay (diffusion coefficient D1,2 in mm2 mm2 s−1)
and the shape of the power law tail (the fractional expo-
nent, α).1 QDI is a model-based quantitative alternative to
DKI that indicates non-Gaussian diffusion for 0 < α < 1,
and Gaussian diffusion when α = 1.1,5

The quasi-diffusion model has similar assumptions to
the random permeable barriers model7,8 — it assumes
local Gaussian diffusion propagators generate an ensem-
ble average of diffusing spins, which is observed as
non-Gaussian dMRI signal attenuation within a voxel.5
The mathematics and interpretation of QDI enable direct
derivation of a spectrum of Fickian diffusion coefficients
within a voxel and a quasi-diffusion propagator via the
inverse Laplace and Fourier transforms, respectively.5
This mathematical formulation is currently unique among
dMRI signal representation and modeling techniques —
QDI is the only approach in the literature, which has
closed forms for its propagator and both the Fourier and
Laplace transforms. The form of the propagator also allows
derivation of quasi-diffusion mean apparent propagator
(qMAP) imaging,5 which is a model based alternative to
standard MAP imaging.9

The mathematical description of QDI provides insight
into the heterogeneity of the diffusion environment, there-
fore, D1,2 and α will be similarly sensitive to pathology
as DKI and MAP techniques.1,5 Recent evidence suggests
that QDI provides comparable sensitivity to age-related
changes in white matter complexity as DKI.10 Conse-
quently, QDI has potential applications in quantitative
tissue microstructural research and clinical imaging stud-
ies.

A recent study showed that neuroradiologists endorse
quantitative MRI (qMRI) to improve diagnostic accuracy,
however, there has been limited clinical translation of
qMRI into clinical neuroradiology, with DWI the most
commonly used qMRI technique and DKI the least.11 DWI
is a particularly important sequence for oncology and rec-
ommendations for improving precision of conventional
DWI for calculating ADC maps have been suggested.12

Moreover, a recent meta-analysis suggests DKI has higher
diagnostic accuracy for cancer screening than standard
DWI.13 QDI offers an alternative to DKI for simultaneously
assessing non-Gaussian diffusion and DWI/DTI measures.

Clinical translation of quantitative QDI requires stan-
dardization of acquisition and processing, assessment
of parameter precision and accuracy, and the ability to
acquire high-quality data within clinically appropriate
times.14 Development and assessment of qMRI techniques
involve 4 types of studies15: (1) simulations16,17 that allow
absolute control of imaging and sample parameters, but
are the least realistic; (2) phantom studies18–20 that include
actual instrumental errors and a stable parametric ground
truth, although absolute accuracy may not be known by
standard assay; (3) pre-clinical studies,21–26 designed to
validate imaging measurements against actual tissue char-
acteristics, but where instrumental measurement errors
and tissue characteristics may not be fully representa-
tive of measurements made in humans; and (4) patient27

and healthy volunteer studies16,20,28 that provide actual tis-
sue characteristics and instrumental measurement errors,
but have unknown ground truth parameters, which are
inferred from highly detailed or repeated measurements.

Our study primarily takes the fourth approach, assess-
ing the accuracy and precision of quasi-diffusion tensor
imaging (QDTI) measures of mean D1,2 and α and their
anisotropies, in normal brain tissue using healthy volun-
teers. We aim to determine optimal protocols with mini-
mal acquisition times on a standard 3T clinical MR system.
Here, the ground truth is unknown, but we assume that a
dMRI acquisition with a large number of b-value shells will
lead to signal decay from which accurate voxel-by-voxel
D1,2 and α estimates can be obtained as a reference against
which to compare faster, more clinically acceptable acqui-
sitions. Similar methodology has been used for optimizing
kurtosis measures from DKI in healthy volunteers16,28 and
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stroke patients,27 as well as for optimizing microstruc-
tural parameters derived from complex multi-dimensional
models29,30 and for optimizing novel formulations of the
diffusion kurtosis tensor.4,31,32

Our definition of a “conventional clinical dMRI”
is a 6-direction single-shot DTI protocol acquired with
high in-plane resolution and thick axial slices, typi-
cally acquired in 1 min. Our QDTI optimization is per-
formed with a similar spatial resolution and with refer-
ence to a comprehensive dMRI acquisition acquired in
6 non-collinear diffusion gradient directions across 29
b-values equally spaced between 0 and 5000 s mm−2. We
minimize the normalized sum of squared error (NSSE)
between fitted QDI decay curves for different b-value shell
combinations and the QDI decay curves obtained from the
multi-b-value reference (MbR) up to a defined maximum
b-value (bmax). Optimal QDTI protocols with 6 diffusion
gradient directions are identified for bmax of 2000, 3000,
4000, and 5000 s mm−2 (therefore, enabling representa-
tive results for scanners with lower gradient strengths than
our maximum of 80 mT m−1) and reliability, accuracy, and
precision relative to the MbR value, are investigated. Fur-
thermore, we investigate the behavior of D1,2 and α param-
eters as bmax is increased and describe the effects on QDTI
measures calculated for 2000 ≤ bmax ≤ 5000 s mm−2.

Effects of Rician noise in magnitude images are
dependent on SNR17 and maximum b-value in DKI16

for which tissue contrast is dependent on bmax.16 These
effects can lead to significant overestimation of kur-
tosis in DKI measurements33 and affect complex met-
rics derived from high b-value multi-shell dMRI data.34

Here, we use a model-based approach to investigate
the effects of noise on QDTI measures. Various meth-
ods have been devised to compensate for these noise
effects, from simple bias correction assuming Rician
noise33 to model-free noise mapping and signal correc-
tion.35 The more complex approaches are needed for
multi-coil reconstructions where image noise character-
istics are spatially variant with more complex distribu-
tions than Rician.36,37 In this study, we process diffusion
data without noise reduction and use image noise lev-
els estimated from our data to model its effects on QDTI
measures.

2 METHODS

2.1 Participants

Five young healthy volunteers (age, 22 ± 4.5 years; n = 5
male participants) were recruited from St. George’s Uni-
versity of London. Ethical approval for the study was
granted by East London 3 Research Ethics Committee

(10/H0701/36). All individuals provided informed written
consent before MRI.

2.2 Magnetic resonance image
acquisition

MRI was acquired on a 3T Philips Achieva Dual TX MR
system (Philips Healthcare, Best, Netherlands) equipped
with a 32-channel head coil. Whole-brain axial dMRI
were acquired using a single-shot diffusion sensitized
spin-echo planar imaging sequence in enhanced gradi-
ent mode (maximum amplitude 80 mT m−1, slew rate
100 mT m−1 ms−1) in 6 diffusion gradient directions
equally spaced on the hemisphere (TE= 90 ms, TR= 6000
ms, FOV = 210 × 210 mm with 22 5-mm thick slices
acquired at 2.3 × 2.3 × 5 mm resolution and zero-filled to
provide 1.5 × 1.5 × 5 mm). Fat suppression was achieved
using spectral presaturation inversion recovery (SPIR)
and slice selection gradient reversal (SSGR). A SENSE
factor 2 and half scan factor 0.891 was used to minimize
echo-train length and acquisition time.

DWIs were acquired in 4 blocks to minimize the
effects of subject movement and scanner drift. Each
block included 4 images without diffusion sensitiza-
tion (b = 0 s mm−2) followed by interleaved b-values
from b = 180 to 5000 s mm−2 (𝛿 = 23.5 ms, Δ = 43.9 ms)
with number of shot averages (NSA) = 2 to increase
SNR. Diffusion weightings for each block were: b =
{0, 180, 900, 1620, 2340, 3060, 3780, 4500, 5000} s mm−2,
b = {0, 360, 1080, 1800, 2520, 3240, 3960, 4680, 5000}
s mm−2; b = {0, 540, 1260, 1980, 2700, 3420, 4140, 4860,
5000} s mm−2; and b = {0, 720, 1440, 2160, 2880, 3600,
4320, 5000} s mm−2. This provided an acquisition with
28 b-value shells at intervals of 180 s mm−2 with total
acquisition time of 40 min 24 s. Sagittal 3D T1-weighted
volume images were acquired using a turbo field echo
sequence (TE = 3.73 ms, TR = 7.8 ms, flip angle = 8◦,
FOV = 240 × 240 mm, 140 slices of thickness 1.5 mm)
providing voxel resolution of 1 × 1 × 1.5 mm within an
acquisition time of 6 min 19 s.

2.3 Image analysis

2.3.1 Diffusion-weighted image
pre-processing

Simultaneous eddy current and movement correction
was performed for each dMR image to an average
b = 0 s mm−2 image using FSL (version 5.0.11, https://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/).38 Data were skull stripped
using FSL and the normalized signal attenuation

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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(Sb∕S0) computed across all b-value shells. No noise
reduction or spatial smoothing were performed. Whole
brain gray and white matter tissue regions of interest
(ROIs) were defined on QDTI maps via coregistration
of high-probability (95% likelihood) T1-weighted tissue
segmentations (see Supporting Information section S1).

2.3.2 Quasi-diffusion tensor imaging

The quasi-diffusion model is described by the
Mittag-Leffler function (MLF),

Eα(z) =
∞∑

k=0

zk

𝛤 (αk + 1)
. (1)

For 0 < α ≤ 1, whereΓ(x) is the gamma function. The MLF
can be considered to be a generalization of the exponen-
tial function and is completely monotone in the negative
real axis for 0 < α ≤ 1.5 The quasi-diffusion signal attenua-
tion, S(b), at a given diffusion-sensitization, b, (in s mm−2)
is given by,

S(b)
S(0)

= Eα
(
−
(

bD1,2
)α)

, (2)

where D1,2 is the diffusion coefficient in mm2 s−1, and α
is the fractional exponent. Equation (2) describes Gaus-
sian diffusion when α = 1 and non-Gaussian diffusion
for 0 < α < 1. The fractional exponent is indicative of
the inverse power law of the diffusion signal attenua-
tion.1,5 D1,2, and α, are estimated by fitting Equation (2) to
acquired dMRI data.1 In this study, quasi-diffusion model
fitting was performed in each diffusion gradient direction
to a minimum of 3 b-values on a voxel-by-voxel basis using
a Levenberg–Marquardt algorithm (http://www.gnu.org/
software/gsl). Data fitting was initialized in each voxel
using expected values for Gaussian diffusion with D1,2 =
2.98 × 10−3 mm2 s−1 and α = 0.978 providing robust ini-
tial fitting conditions. Padé approximation was used to
rapidly estimate the MLF and its derivatives.39 The fitting
procedure estimates D1,2 and α along each diffusion gra-
dient direction. Supporting Information Figure S1 shows
QDI model fits to MbR data with bmax = 5000 s mm−2 for
representative gray and white matter voxels.

Parameter estimates in each diffusion gradient direc-
tion are considered to be spherical samples, from which
3 × 3 symmetric tensors of D1,2 and 𝛼 may be calculated
within a voxel.1,5,40 Here, we use a novel approach to cal-
culate the α tensor, A, that better uses the directional resid-
uals of

(
D1,2

)α. Along a given diffusion gradient direction,
g =

(
gx, gy, gz

)
, we have

yg =
(

D1,2
)
𝛼g
g , (3)

and

αg =
ln
(

yg
)

ln
(

D1,2
)

g

. (4)

To allow general linear model estimation of the α tensor,
A, we use the matrix logarithm to obtain an equation for A
using the D1,2 tensor as,

gTAg =
ln
(

D1,2
)
𝛼g
g

gTQ ln(Λ)QTg
, (5)

where Q is the eigenvector matrix of the D1,2 tensor and
Λ is its matrix of eigenvalues. Each tensor was diago-
nalized and mean and fractional anisotropy maps were
calculated from the D1,2 and tensors,1 along with axial and
radial maps. Here, we consider α anisotropy to describe the
anisotropy of the heterogeneity of the tissue microenviron-
ment.

2.3.3 Investigation of the effect
of maximum b-value on QDTI measures

Before optimization for minimum acquisition time, we
investigated whether the behavior of QDTI measures
in whole brain gray and white matter ROIs is affected
by bmax using subsets of the MbR data, in which bmax
was increased from 1980 to 5000 s mm−2. QDTI maps
were computed from each MbR subset from 1980 to
5000 s mm−2, giving 18 sets of QDTI data. Mean, axial,
radial, and anisotropy measures for D1,2 and α were cal-
culated within gray and white matter ROIs for each MbR
subset.

2.3.4 Investigation of the effect of Rician
noise on quasi-diffusion model fitting

Full methods for investigation of Rician noise in QDI
can be found in the Supporting Information section S2.
In brief, Rician noise levels were estimated from ven-
tricular CSF based on the assumption of a Rayleigh
noise distribution. Noise-free decay curves were calcu-
lated for CSF, cortical gray matter and callosal white
matter for mean D1,2 and α values obtained by fit-
ting the quasi-diffusion model to all acquired b-values.
Simulated Rician noise (based on the standard devia-
tion of estimated Gaussian noise, σ) was added at each
b-value within our simulated dMRI signal (1000 sim-
ulations at different noise levels). Means and standard
deviations of estimated D1,2 and α values were cal-
culated from MLF fits to the simulated noisy decay
curves.

http://www.gnu.org/software/gsl
http://www.gnu.org/software/gsl
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2.3.5 Optimization of b-values
for quasi-diffusion model fitting

Optimization was performed to match the shape of the
fitted decay curves by minimizing the NSSE along all 6
diffusion gradient directions rather than optimizing for
D1,2 and α separately or minimizing a cost function that
included magnitudes or weightings of D1,2 and α estimates.
This strategy ensured the existence of a single solution
to the optimization problem and simultaneously provided
optimization of QDTI maps. Several optimization experi-
ments were performed to obtain minimal data acquisition
protocols while maximizing image quality, precision, and
accuracy for different bmax:

1 Two b-value shells. To derive acquisition protocols
for 3T scanners across a range of gradient strengths,
we optimized for fixed bmax of approximately: 2000,
3000, 4000, and 5000 s mm−2 (actual MbR b-values:
1980, 3060, 3960, and 5000 s mm−2). The most rapidly
acquired optimal solution for each bmax will include
the b = 0 s mm−2 data and 2 b-value shells (acquisition
time 3 min 12 s). The voxelwise NSSE between the fitted
curves for the MbR (the expected measure computed
across the b-value range 0 ≤ b ≤ bmax) and that from
each permutation of 2 b-values (a subset of the MbR
data) was calculated in each diffusion gradient direc-
tion. NSSE was computed across evenly spaced b-values
(step size of b = 100 s mm−2) from 0 to b ≤ bmax. The
NSSE was averaged across gradient directions to pro-
vide a single error value at each voxel for each sub-
ject. b-value optimization was performed by identify-
ing the b-value combination with the minimum cohort
average (n = 5) of the median error within the brain
tissue ROI.

2 Investigation of the effect of including up to 4
b-value shells. Further analysis was performed to
investigate whether QDI parameter estimates were
improved by using 3 and 4 b-value shells.

2.3.6 Assessment of image contrast
and quality

The tissue contrast parameter, t1
c provides a measure of

global image contrast between gray and white matter.
Higher tc indicates greater separation of gray and white
matter measures, and greater visual tissue delineation
when there is less variability in estimated tissue values
across the brain because of reduced noise. tc was used to
compare visual quality of QDTI maps obtained from the
MbR and optimal combinations for 2, 3, and 4 b-value
shells.

2.4 Statistical analysis

QDTI measures (including mean and anisotropy of D1,2
and α) were calculated from the optimized QDI acquisi-
tions and compared to MbR values for each bmax. Intraclass
correlation coefficients (ICC) were used to test the relia-
bility of voxelwise measures computed from the optimal
b-value datasets relative to the MbR. ICC values were
defined as excellent (ICC > 0.9), good (0.75 < ICC ≤ 0.9),
moderate (0.5 < ICC ≤ 0.75) or poor (ICC ≤ 0.5).41 Rela-
tionships were visualized using scatter and Bland Altman
plots.42 Average and standard deviation of cohort QDTI
measures are reported in gray and white matter ROIs.
Accuracy (difference between means) and precision (stan-
dard deviation of voxelwise differences) of the QDTI mea-
sures in comparison to the MbR are also reported in gray
and white matter ROIs.

3 RESULTS

3.1 Effect of maximum b-value
on QDTI parameters

Figure 1 shows the bmax dependence of QDTI measures
from MbR data. Statistical significance of trends (Table 1)
was determined from paired t tests between measures at
bmax 1980 and 5000 s mm−2. Bonferroni corrected P-values
indicated significant reductions with bmax for gray mat-
ter mean (−0.6%), axial (−0.8%), and radial (−0.5%) D1,2
and no change in D1,2 anisotropy. White matter showed a
significantly decreased mean (−1.9%) and radial (−5.3%)
D1,2, but an increased axial D1,2 (0.9%), leading to sig-
nificantly increased anisotropy (5.6%) with bmax. After
multiplicity correction there was a significant decrease
in axial α (−1.4%) with bmax for gray matter, and a con-
comitant significant decrease in α anisotropy (−22%), this
latter being a large percentage change of an absolute
value close to 0. White matter showed significant reduc-
tions in α with bmax for mean (−7.1%), axial (−7.4%),
and radial (−7.1%) measures and no resultant change in
anisotropy.

3.2 Effects of Rician noise
on quasi-diffusion model fitting

Figure 2B,C show that effects of Rician noise on the esti-
mation of D1,2 and α are dependent on the diffusion char-
acteristics of the tissue. Further results are presented in
the Supporting Information section S3. The smallest effect
is for white matter radial measurements, for which the
dMRI signal does not fall below the typical noise floor
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F I G U R E 1 The effect of b-value range on quasi-diffusion tensor (QDTI) measures. Graphs of QDTI measures against bmax (over the
range 2000 ≤ b ≤ 5000 s mm−2) are shown for: (A) axial, mean, and radial D1,2 in gray matter, (B) axial, mean, and radial D1,2 in white matter,
(C) D1,2 anisotropy, (D) axial, mean, and radial α in gray matter, (E) axial, mean, and radial α in white matter, and (F) α anisotropy. Cohort
means± standard deviations are presented. Axial = blue, mean = red, radial = green, gray matter anisotropy = magenta, white matter
anisotropy = black. Row (G) shows mean α maps for bmax of 1980, 3060, 3960, and 5000 s mm−2. Row (H) shows mean D1,2, D1,2 anisotropy,
and α anisotropy maps for a bmax of 5000 s mm−2.

(NF), and on average, for any bmax and noise σ there
is no net shift in either D1,2 or α. CSF rapidly decays
to below the NF by bmax ≈ 1500 s mm−2 and for gray
matter it is just above the NF at bmax ≈ 5000 s mm−2.
This results in a negligible effect of noise on the average

estimate of D1,2, but a systematic underestimation of α that
increases with increased noise and increasing bmax. For the
noise levels estimated from the image center, there is an
α shift of −0.15 (−15%) for CSF and −0.04 (−5%) for gray
matter.
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T A B L E 1 QDTI measures computed over different b-value ranges in the multi-b-value reference

MbR b-value range (s mm−2)

Tissue type 0 ≤ b ≤ 1980 0 ≤ b ≤ 3060 0 ≤ b ≤ 3960 0 ≤ b ≤ 5000 Paired t test (T, P)

D1,2(×10−3 mm2 s−1)

Mean Gray 0.880 ± 0.049 0.878 ± 0.049 0.877 ± 0.049 0.875 ± 0.049 −15.81a, <0.001a

White 0.700 ± 0.020 0.691 ± 0.020 0.687 ± 0.020 0.687 ± 0.021 −14.88a, <0.001a

Axial Gray 1.031 ± 0.065 1.027 ± 0.065 1.025 ± 0.065 1.023 ± 0.065 −10.33a, <0.001a

White 1.164 ± 0.017 1.164 ± 0.017 1.168 ± 0.017 1.175 ± 0.016 −14.70a, <0.001a

Radial Gray 0.805 ± 0.041 0.804 ± 0.041 0.803 ± 0.042 0.801 ± 0.042 −7.30a, 0.002a

White 0.468 ± 0.031 0.453 ± 0.031 0.447 ± 0.032 0.443 ± 0.032 −27.95a, <0.001a

Anisotropy Gray 0.170 ± 0.014 0.168 ± 0.013 0.168 ± 0.013 0.169 ± 0.133 −2.65, 0.057

White 0.533 ± 0.030 0.548 ± 0.031 0.557 ± 0.032 0.563 ± 0.032 30.21a, <0.001a

Fractional exponent, α

Mean Gray 0.892 ± 0.007 0.891 ± 0.007 0.890 ± 0.007 0.890 ± 0.008 −5.25, 0.063

White 0.854 ± 0.008 0.825 ± 0.009 0.808 ± 0.009 0.793 ± 0.009 −44.08a, <0.001a

Axial Gray 0.941 ± 0.004 0.932 ± 0.004 0.930 ± 0.004 0.928 ± 0.004 −9.33a, <0.001a

White 0.961 ± 0.014 0.924 ± 0.015 0.905 ± 0.016 0.890 ± 0.017 −24.83a, <0.001a

Radial Gray 0.867 ± 0.009 0.870 ± 0.009 0.870 ± 0.009 0.870 ± 0.010 2.30, 0.083

White 0.801 ± 0.007 0.775 ± 0.007 0.759 ± 0.006 0.744 ± 0.006 −46.45a, <0.001a

Anisotropy Gray 0.059 ± 0.005 0.050 ± 0.006 0.047 ± 0.006 0.046 ± 0.008 −6.65a, 0.003a

White 0.127 ± 0.008 0.121 ± 0.009 0.121 ± 0.009 0.124 ± 0.011 −1.46, 0.217

Notes: Cohort averages± standard deviations across subjects are reported within whole brain gray and white matter regions of interest. Paired t tests were
performed comparing QDTI measures calculated from the multi-b-value reference (MbR) data for the ranges 0≤ b≤ 5000 compared to 0≤ b≤ 1980. t-statistics
(T) and P-values (P) are reported.
a Significant results after Bonferroni correction for 16 measures (P< 0.0031).

In practice, for cortical gray matter (that is closer to
the RF coil components and has higher SNR) there would
be a negligible shift. The greatest effects of Rician noise
are for axial white matter measurements, for which the
dMRI decay curve will fall below the typical NF in central
regions of the image by bmax ≈ 2500 s mm−2, leading to sys-
tematic increases in D1,2 and decreases in αwith increased
noise and increased bmax. For white matter close to the
central coil region, we estimate axial D1,2 could be over-
estimated by 0.04 mm2 s−1 (2%) on average, and axial α
underestimated by 0.04 (4%) on average.

3.3 Optimization of QDI for reduced
data acquisition times

3.3.1 Minimization of NSSE to obtain
optimal b-value combinations

NSSE minima were used to indicate b-value combinations
that best matched the MbR decay curves across each dif-
fusion gradient direction for bmax of 1980, 3060, 3960, and
5000 s mm−2 and for 2, 3, and 4 b-value shells. Low NSSE
values were found across a range of b-value combinations
for the 2, 3, and 4 b-value shell analyses. Figure 3 illustrates

this using contour plots for the 3 b-value shell analysis
for each bmax and demonstrates a broad floor of possi-
ble low NSSE acquisition protocols. Optimal b-value shell
combinations were as follows:

• 2 b-value shells: b = {0,540, 1980}, b = {0, 900, 3060},
b = {0, 1080, 3960} and b = {0, 1080, 5000} s mm−2.

• 3 b-value shells: b = {0, 540, 900, 1980}, b = {0, 900,
1440, 3060}, b = {0, 1080, 2160, 3960} and b = {0, 540,
2160, 5000} s mm−2,

• 4 b-value shells: b = {0, 540, 900, 1440, 1980}, b = {0,
900, 1260, 2160, 3060}, b = {0, 540, 1620, 2160, 3960},
and b = {0, 540, 1980, 2160, 5000} s mm−2.

3.3.2 Reliability, accuracy and precision
of QDTI measures for optimal 2 b-value
combinations

Figures 4 and 5 show boxplots of cohort ICC values for
QDTI measures within brain tissue and accuracy and pre-
cision (relative to MbR values) of QDTI measures in gray
and white matter. Results for the optimal 2 b-value shell
combinations are shown in red. Reliability (according to
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F I G U R E 2 The effect of Rician noise on the estimation of D1,2 and α for our comprehensive b-value acquisition. Row (A) shows “noise
free” quasi-diffusion signal decay curves calculated from D1,2 and α values (from left to right) CSF, gray matter, axial white matter, and radial
white matter. The Rician noise floor (NF) is shown for each tissue type by the horizontal dotted line. Rows (B) and (C) show graphs of
differences between D1,2 and α estimates from simulated noisy data compared to the “noise free” values (“noise free” minus noisy estimates)
across a range of σ noise levels. The simulation used the same set of b-values as our dMRI acquisition. The x-axis indicates the maximum
b-value over which the quasi-diffusion model fitting was performed. Noise simulation results are shown over the range
1980 ≤ bmax ≤ 5000 s mm−2 at bmax values closest to intervals of 500 s mm−2. Circular symbols represent the mean of 1000 noise simulations
and capped lines indicate the standard deviation. For clarity, the standard deviations are only shown 1-sided and only for the maximum and
minimum levels of noise used in the simulations.

ICC) was excellent for mean D1,2 (Figure 4A) and D1,2
anisotropy (Figure 5A) for each bmax, although a decrease
in reliability was apparent as bmax was increased. Good
to excellent reliability was found for all bmax for mean
α, which increased and showed less variability for higher
bmax (Figure 4D). Reliability of α anisotropy was moderate
for each bmax and decreased as bmax increased (Figure 5D).

Tissue-specific biases were evident for QDTI estimates.
In gray matter, mean D1,2 (Figure 4B,C) and mean α
(Figure 4E,F) were, in general, accurately estimated and
showed consistent levels of precision across all bmax. In
white matter, mean D1,2 was overestimated (Figure 4B,C),
and mean α was underestimated (Figure 4E,F), with both
effects increasing with bmax. Increasing bmax also caused
the precision of mean D1,2 to decrease and the preci-
sion of mean α to increase. D1,2 and α anisotropies were
overestimated in both tissue types and became progres-
sively less accurate and precise as bmax increased, however,
this effect was greater in white matter than gray matter
(Figure 5B,C,E,F).

Figure 6 shows QDTI maps calculated using the
optimal 2 b-value shell combinations. Tissue contrast
and QDTI values for the optimal combination at bmax =
5000 s mm−2 are consistent with previously published
results for young, heathy subjects.1 Exceptional image
quality and tissue contrast is apparent for mean D1,2
(Figure 6A), and D1,2 anisotropy (Figure 6B) across all bmax
Tissue contrast for mean α increased with bmax (Figure 6C)
and remained unchanged for mean D1,2, and D1,2 and
α anisotropy maps. Effects of noise were apparent in α
anisotropy maps for all bmax (Figure 6D).

3.3.3 The effect of including up to 4 b-value
shells in the QDI optimization

Figures 4 and 5 show box plots of cohort ICC values for
QDTI measures within brain tissue, and the accuracy and
precision of QDTI measures in gray matter and white mat-
ter for each optimal b-value shell combination and bmax
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F I G U R E 3 Contour maps showing cohort average normalized sum of squared error (NSSE) surfaces for 3 b-value shell combinations
with bmax of (A) 1980, (B) 3060, (C) 3960, and (D) 5000 s mm−2. A broad range of b-value combinations produced QDI fitted decay curves,
which closely matched those fitted to the multi-b-value reference (MbR) i.e. low NSSE (dark blue).

(colored red, green, and blue for 2, 3, and 4 b-value shells,
respectively). Increasing the number of b-value shells from
2 to 4 improved the reliability of all QDTI estimates, an
effect that increased the reliability of mean α estimates
from good to excellent and α anisotropy estimates from
moderate to good. Precision was also improved for all
QDTI measures. In addition, increasing the b-value shells
increased the accuracy of D1,2 and α anisotropies in both
gray and white matter, but the effect was less consistent
for mean D1,2 and mean α. Nevertheless, high accuracy
was achieved for gray and white matter across all QDTI
measures by increasing the number of b-values from 2
to 3 at bmax = 5000 s mm−2 and from 3 to 4 at bmax =
3960 s mm−2. Supporting Information Figure S2 shows
voxelwise Bland–Altman plots of gray and white matter
for bmax = 5000 s mm−2 and increasing numbers of b-value
shells, for a single participant. The increase in accuracy
and precision achieved by 3 b-value shells can be clearly
visualized as measurement biases are removed and 95%
confidence intervals decrease. Figure 7 also shows this
effect visually as all QDTI parameter maps become more

similar to the MbR when the number of b-value shells is
increased from 2 to 3.

3.3.4 The effect of bmax on tissue contrast
for optimal b-value shell combinations

Detailed results are shown in the Supporting Informa-
tion section S4 and Supporting Information Figure S3.
Although tc of mean D1,2 shows little dependence on
bmax or number of shells, there was a trend toward small
increases in α and D1,2 anisotropy contrast with bmax. Mean
α showed a large increase in tc with bmax for MbR data.
Optimal b-value combinations exhibited a decrease in tc as
more b-value shells were included, representing tc tending
toward MbR values. tc for mean α at bmax > 3000 s mm−2

was higher for 2 b-value shells than 3 or 4 shells, and
was the highest tc obtained for all bmax, including MbR
maps. Supporting Information Figure S3 quantitatively
confirms the visual impression in Figures 1, 6, and 7 that
2 b-value shells provide the highest quality mean α maps,
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F I G U R E 4 Box plots showing the reliability (intraclass correlation coefficient [ICC]), accuracy and precision (with respect to the
multi-b-value reference [MbR]) of voxelwise quasi-diffusion tensor (QDTI) measures within brain tissue. These are shown for optimal
b-value combinations with 2 (red), 3 (green), and 4 (blue) b-value shells for bmax of 1980, 3060, 3960, and 5000 s mm−2. Plots are presented for
mean D1,2 showing (A) reliability, (B) accuracy, and (C) precision, and for mean α showing (D) reliability, (E) accuracy, and (F) precision.
Reliability was defined as excellent (ICC> 0.9), good (0.75< ICC≤ 0.9), moderate (0.5< ICC≤ 0.75) or poor (ICC≤ 0.5). Plots of ICC show
results within brain tissue. Gray matter (left) and white matter (right) results are shown in the accuracy and precision plots separated by a
vertical black dashed line. The second y-axis in the accuracy plots (colored cyan) shows the mean tissue values for the MbR (solid lines) and
optimal b-value combinations (circular markers).

with greater tissue contrast at higher bmax (Figure 1G), and
no visually apparent change in mean D1,2, or D1,2 and α
anisotropy maps with bmax (Figure 1H).

4 DISCUSSION

We have performed a detailed analysis of the accuracy
and precision of deriving QDTI measures from differ-
ent b-value shell combinations in comparison to those
derived from a 28 b-value shell reference dMRI dataset.
The quasi-diffusion model provides a robust 2-parameter
fit for bmax from 2000 to 5000 s mm−2 in individual diffu-
sion gradient orientations, from which a tensor model pro-
vides reliable, accurate, and precise mean and anisotropy
measures. In the following sections, we discuss: (1) condi-
tions necessary for a rapid QDTI protocol that achieves the
best measurement accuracy in relation to the reference; (2)
compromises to accuracy and precision in using the fastest
2 b-value shell acquisitions; and (3) the bmax dependence
of QDTI measures.

Across the whole brain we observed excellent reli-
ability (defined by ICCs) for D1,2 measures, and lower

ICCs for α, which is the lower SNR parameter, with
an expected trend for ICCs to increase with inclusion
of more b-value shells. Each optimal b-value combina-
tion included unequally spaced b-values, a result consis-
tent with similar DKI experiments.27,28 A reproducibility
study also concluded that DKI fits to b-values of 1000 and
3000 s mm−2 showed lower coefficients of variation than
to 1000 and 2000 s mm−2.43 These previous studies used
maximum b-values within the range commonly used for
DKI, whereas we showed that a larger b-value range is
well-fitted by the MLF.

Separate analyses for gray and white matter revealed
significant differences. The accuracy and precision of
mean D1,2 and α measures are independent of bmax and
the number of b-value shells in gray matter, but vary
significantly for white matter, where decreasing accu-
racy, compared to the MbR, is found with increasing
bmax and depends on the number of b-value shells. Accu-
racy of anisotropy in gray matter, showed similar bmax
dependence, likely because of a proportion of white mat-
ter fibers penetrating gray matter. A systematic aver-
age decrease in mean α in white matter is consistent
with our noise modeling (Figure 2) when the Rician NF
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F I G U R E 5 Box plots showing the reliability (intraclass correlation coefficient [ICC]), accuracy and precision (with respect to the
multi-b-value reference [MbR]) of voxelwise quasi-diffusion tensor (QDTI) measures within brain tissue. These are shown for optimal
b-value combinations with 2 (red), 3 (green), and 4 (blue) b-value shells for bmax of 1980, 3060, 3960 and 5000 s mm−2. Plots are presented for
D1,2 anisotropy showing (A) reliability, (B) accuracy, and (C) precision, and for α anisotropy showing (D) reliability, (E) accuracy and (F)
precision. Reliability was defined as excellent (ICC> 0.9), good (0.75< ICC ≤ 0.9), moderate (0.5< ICC≤ 0.75) or poor (ICC≤ 0.5). Plots of
ICC show results within brain tissue. Gray matter (left) and white matter (right) results are shown in the accuracy and precision plots
separated by a vertical black dashed line. The second y-axis in the accuracy plots (colored cyan) shows the mean tissue values for the MbR
(solid lines) and optimal b-value combinations (circular markers).

becomes comparable to the tail of the decay curve at
high b-values. Simulation studies have shown that DKI
is highly sensitive to noise and experimental design.17

Low SNR can lead to overestimation or underestima-
tion of DKI parameters, which are also dependent on
fitting algorithm and parameter constraints.17 In addi-
tion, the minimum relative error of mean K estimates is
strongly dependent on bmax, tissue type and fitting proce-
dure.16 Although we have not investigated different fitting
algorithms, we observed a systematic decrease in α with
increased noise in all tissues, which further decreases with
increasing bmax.

Accurate estimation of α in particular, requires the
deviation from Gaussian signal decay to be larger than
the effects of noise. For bmax of 2000 s mm−2 the tis-
sue signal is above the Rician NF, and on average, there
is good accuracy for α across whole brain regions, irre-
spective of the number of b-values. However, gray-white
matter tissue contrast is poor because of voxel-by-voxel
variations in α. Higher b-values lead to better image con-
trast, but systematic offsets in α and D1,2 because of
Rician noise, which we find can be offset by inclusion
of additional b-value shells. For bmax of 5000 s mm−2 our
optimization suggests the best accuracy and precision is
achieved with b = {0, 540, 2160, 5000} s mm−2, or with

4 b-values of b = {0, 540, 1620, 2160, 3960} s mm−2 for
lower bmax.

The most rapid QDTI acquisition requires only 2
b-value shells. Although decreased accuracy is observed
with increasing bmax, there is greatly improved image qual-
ity and contrast. Therefore, we suggest that 2 b-value
shells with a bmax ≥ 3960 s mm−2 provides stable mea-
surements and high contrast images. It remains to be
determined whether optimization of high-angular resolu-
tion data would identify the same optimal b-value com-
binations and would provide averaging that improves the
accuracy and precision of QDTI measure estimates in the
same way as increasing the number of b-value shells. An
acquisition protocol including b = {0, 1100, 4000} s mm−2

represents a good candidate for future high resolution
QDI experiments as higher b-values and greater numbers
of diffusion gradient directions are reported to improve
white matter fiber tractography.44–48 For this analysis,
rapid acquisitions were optimized relative to MbR data
comprising all b-values up to a given bmax This ensured
that the signal-to-noise of the MbR was maximized, but
may have introduced bias, as the MbR comprised different
numbers of b-values.

To ensure high SNR we acquired dMRI data with 2 sig-
nal averages. Acquisition time reductions could include
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F I G U R E 6 Single-subject
quasi-diffusion tensor (QDTI)
maps of (A) mean D1,2 (in
mm2 s−1), (B) mean α, (C) D1,2

anisotropy, and (D) α anisotropy
for the optimal 2 b-value shell
combinations for bmax of 1980,
3060, 3960 and 5000 s mm−2.
Optimal acquisitions were
b = 0, 540, 1980 s mm−2, b = 0,
900, 3060 s mm−2, b = 0, 1080,
3960 s mm−2, and b = 0, 1080,
5000 s mm−2. All axial images
are presented using the
radiological convention.

no data averaging to obtain 2 b-value shell QDTI full
brain coverage in 2 min, if lower SNR is acceptable,1 or
reducing the number of b = 0 s mm−2 acquisitions. Other
applicable methods include compressed sense, multi-band
imaging, and deep-learning based image reconstruction
from undersampled k-space data.49,50 Additionally, neu-
ral network techniques show promise for improving the
SNR of rapidly acquired QDI maps.51 Fast DKI pro-
tocols have also been developed, which acquire 13 or
19 dMR images (termed 1-3-9 and 1-9-9 protocols),52–54

but require additional assumptions for calculating the
full kurtosis tensor.54 Currently, we use a symmet-
ric second-order α tensor representation, compared to
DKI, which includes a fourth-order K tensor represen-
tation. The simpler representation used by QDTI could

generate orientational dependence of anisotropy and is
a potential limitation of the technique. Further work
is needed to assess high-angular resolution QDTI for
detailed characterization of complex microstructural tis-
sue geometries such as crossing fibers, and to develop
QDTI using concepts from anisotropic fractional diffusion
imaging55 to provide an improved representation of the
α tensor.

Our MbR data shows significant changes in α and
D1,2 with bmax, hence our optimization was to bmax spe-
cific reference values. The <2% reductions in gray mat-
ter α over the range bmax 2000-5000 s mm−2 are within
the expected range for a Rician noise offset, but reduc-
tions of ≈7% in white matter are larger than expected
(≈4%). In addition, we predominantly observe a small
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F I G U R E 7 Single-subject
quasi-diffusion tensor (QDTI)
maps of (A) mean D1,2 (in
mm2 s−1), (B) mean α, (C) D1,2

anisotropy, and (D) α anisotropy
for the optimal 2, 3, and 4
b-value shell combinations for
bmax of 5000 s mm−2. From left
to right QDTI maps are
presented for the multi-b-value
reference (MbR), optimal 2
b-value shell acquisition (b = 0,
1080, 5000 s mm−2. acquisition
time 3 min 12 s), optimal 3
b-value shell acquisition (b = 0,
540, 2160, 5000 s mm−2,
acquisition time 4 min 24 s),
and optimal 4 b-value shell
acquisition (b = 0, 540, 1980,
2160, 5000 s mm−2, acquisition
time 5 min 36 s). All axial
images are presented using the
radiological convention.

reduction in D1,2, the largest effect for radial white mat-
ter (≈5%) with only axial D1,2 showing an increase (≈1%)
as expected for Rician noise. Therefore, there appear to
be systematic changes in QDTI measures that are not
explained by the effects of Rician noise, but may indi-
cate greater sensitivity to tissue microstructure at higher
bmax. These comparatively small changes in QDTI mea-
sures up to bmax 5000 s mm−2 contrast to observations
of 10%-20% variability in both Dapp and K for DKI with
1500 ≤ bmax ≤ 3000 s mm−2.56,57 In normal brain, Dapp
and K decreased with increasing bmax, with Dapp always
higher than reference values from a multi-b-value acquisi-
tion, whereas variation in K ranged from below to above
reference values.56 Therefore, QDI appears to provide a

more stable parameterization of the dMRI signal decay
than DKI.

The functional form of QDI (Equation [2]) means that
α describes the inverse power law of the dMRI signal
at high b-value, and our results in gray and white mat-
ter are consistent with experimental results for power
laws relating to spherically averaged dMRI signal for
bmax of 6000 s mm−2,58 and higher.59 It remains to be
determined whether our mean α tends to 0.5 for ultra-
high bmax as would be predicted by Veraart et al,59 how-
ever, were these 2 limits to coincide it would be evi-
dence of a deep connection between the approaches,
which may be useful in further theoretical and analytical
developments.



14 SPILLING et al.

Further work is required to understand how
the observed QDI bmax dependence relates to tissue
microstructure by focusing measurements within specific
white matter regions of known structure, and acquiring
data to accurately assess the background noise, such as
by acquiring complex data to avoid Rician noise bias.60

Our preliminary results suggest high bmax provide greatest
contrast in α, and so greatest potential for detecting patho-
logical change. Although our optimization is over healthy
brain, we believe our protocols would be suitable for
studies of non-Gaussian diffusion in aging and neurode-
generative diseases, but further work is needed to assess
their optimization for lesional tissue such as brain tumors
or stroke.

5 CONCLUSION

We have shown that QDI provides robust parameteriza-
tion of non-Gaussian diffusion signal decay in clinically
feasible imaging times with high reliability, accuracy, and
precision of QDTI measures without the need for noise cor-
rection. This extends parameterization of the dMRI signal
decay to higher b-values than routinely acquired for DKI
and takes advantage of increased sensitivity to microstruc-
tural properties. QDI can be used to robustly fit dMRI
signal decay in single diffusion gradient directions without
restrictions of cumulant expansions. For optimal accuracy,
precision, and image contrast, a 3 b-value shell acquisi-
tion with bmax of 5000 s mm−2 is preferred (acquisition
time 156 s for 1 average with 8 b = 0 s mm−2 images and
TR = 6 s). bmax of 4000-5000 s mm−2 provides the highest
image contrast for α, and, if reduced accuracy and preci-
sion is acceptable, a 2 b-value shell acquisition will enable a
shorter acquisition time of 120 s. Further work is required
to investigate the systematic changes in D1,2 and α with
bmax within specific white matter regions while including
precise compensation for noise.
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FIGURE S1 Signal attenuation and fitted QDI signal decay
curves for representative gray matter and white matter
voxels shown in each diffusion gradient direction. The
anatomic location of the gray (red arrow) and white mat-
ter (blue arrow) voxels are shown on axial slices of mean
D1,2 and mean α maps.
FIGURE S2 Voxelwise Bland–Altman plots showing
quantitative differences between QDTI measures and the
MbR for a bmax of 5000 s mm−2 for optimal 2, 3, and 4
b-value shell combinations. Plots are shown for (A) mean
D1,2, (B) mean α, (C) D1,2 anisotropy, and (D) α anisotropy
for voxels from a single representative subject. Solid hor-
izontal lines indicate the mean difference (accuracy) and
dashed horizontal lines indicate the 95% lower and upper
confidence limits (precision). Gray matter voxels = red,
white matter voxels = blue.
FIGURE S3 Plot showing the cohort average tissue con-
trast (tc) between gray and white matter for QDTI mea-
sures with respect to bmax for MbR (solid), and 2 (dotted),
3 (short dashes) and 4 b-value shells (long dashes). Mean
D1,2 = blue, mean α = green, D1,2 anisotropy = gray and α
anisotropy = orange
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