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ABSTRACT  

Pharmacometric analyses of time series viral load data may detect drug effects with 

greater power than approaches using single time points.  Because SARS-CoV-2 viral 

load rapidly rises and then falls, viral dynamic models have been used.  We compared 

different modelling approaches when analysing Phase II-type viral dynamic data. 

Using two SARS-CoV-2 datasets of viral load starting within 7 days of symptoms, we 

fitted  the slope-intercept exponential decay (SI), reduced target cell limited (rTCL), 

target cell limited (TCL) and TCL with eclipse phase (TCLE) models using nlmixr. 

Model performance was assessed via Bayesian information criterion (BIC), visual 

predictive checks (VPCs), goodness-of-fit plots, and parameter precision. The most 

complex (TCLE) model had the highest BIC for both datasets. The estimated viral 

decline rate was similar for all models except the TCL model for dataset A with a 

higher rate [median (range) day-1: dataset A; 0.63 (0.56 – 1.84); dataset B: 0.81 (0.74 - 

0.85)]. Our findings suggest simple models should be considered during 

pharmacodynamic model development.    
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What is already known about this subject 

 The target cell limited model has been widely used to support antiviral 

development for respiratory infections. For SARS-CoV-2, extensions and 

simplifications of the target cell limited model have been reported in recent 

studies but model selection or justification of the chosen pharmacodynamic 

model is often lacking.  

What this study adds  

 This study compared the simplified and extended forms of the TCL model and 

found no advantage of the more complex (TCL, TCLE) models over 

simplified forms which could inform the selection of a suitable modelling 

approach for SARS-CoV-2 viral dynamics. 
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INTRODUCTION 

The COVID-19 pandemic continues to threaten public health largely now due to new variants 

of concern with increasing ability to evade antibody responses. Most importantly, these 

variants challenge vaccination efforts to halt the pandemic, thereby necessitating efforts to 

develop new antivirals as well as repurposing of existing antiviral therapies (1).  

So far, the ongoing development of novel antivirals is promising, albeit drug development 

processes are time consuming. Drug repurposing is a time saving approach as clinical 

efficacy and safety data are already known for other therapeutic indications (2). Nonetheless, 

the push for repurposing therapies for SAR-CoV-2 has been hampered by clinical 

inefficiencies such as non-randomised placebo-controlled trials and an over-emphasis on 

hospitalized patients (2, 3).  

As with other respiratory viral infections, an understanding of SARS-CoV-2 viral dynamics 

could shape the future of potential treatment options to identify antivirals which can disrupt 

viral replication. The target cell limited model (TCL) has been previously used to support 

antiviral development for respiratory infections (4, 5). For SARS-CoV-2, extensions and 

simplifications of the target cell limited model have been described in recent studies (6-10).  

During pharmacokinetic model building, common practice involves starting with the simplest 

model (often one-compartment) and then adding complexity (further compartments) where 

data supports this.  The goal is to find a model which adequately describes the data and from 

which important secondary parameters such as area under the curve (AUC) or highest 

observed concentration (Cmax) can be derived.  SARS-CoV-2 viral pharmacodynamic 

modelling has so far often not taken this approach, in that only one model is often considered. 

As Phase II type trials of repurposed and novel antivirals read out, it is important to consider 

a model building approach that is sufficient to characterise viral decline rate as clinical 
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endpoint of interest. And for most pharmacodynamic models, characterisation of the of 

infected cells death rate (i.e., δ) is the main driver of viral decline rate since often virus 

clearance (e.g., c in the TCL model) is much faster than viral production rate (7-10).  

Therefore, we aimed to compare the performance of different published viral dynamic 

models for SARS-CoV-2 in predicting the rate of viral decline to inform the model selection 

for pharmacodynamic model development of Phase II trial of antiviral treatment options. 

 

METHODS 

Data 

Two published datasets on patients with COVID-19 were obtained from a recent 

systematic review  (Gastine et al, herein referred to as dataset A) (6) and a prospective 

cohort study  (Néant et al, herein referred to as dataset B) (7). Details of patients' 

characteristics have been previously published (6, 7). Briefly, for dataset A, a mild 

disease state was presented by majority of patients with one reported death. Viral load 

samples were obtained from either upper or lower respiratory, blood, stool, urine, 

ocular, and breast milk. Patients were either untreated or received treatment including 

antiviral, antibiotic, hydroxychloroquine, and interferon. For dataset B, patients were 

hospitalised in either conventional or intensive care units and a total of 78 deaths were 

reported during follow-up. Nasopharyngeal viral load samples were utilised and 

patients were on treatment including antiviral, antibiotic, antifungal or corticosteroid. 

The extracted viral load data were limited to 14 days post-symptom onset to replicate 

the time window of a 7-day treatment course started a maximum of 7 days after 
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symptom onset. Additionally, for dataset A, viral load data were limited to upper 

respiratory sampling sites and untreated patients.  

Viral dynamic models for SARS-CoV-2  

Schematic diagram of the slope-intercept exponential decay (SI), reduced target cell 

limited (rTCL), target cell limited (TCL), and TCL with eclipse phase (TCLE) models 

are shown in Figure 1. Details of the mathematical expressions underlying all four 

models which are characterised by 2 (SI), 5 (rTCL), 7 (TCL) and 9 (TCLE) 

parameters are expressed in equations (1), (2), (3) and (4) respectively (4, 6-10).  T, I, 

I1, I2, V and f are uninfected target cells, infected target cells, latently infected cells, 

productively infected cells, viral particles, and fraction of target cells remaining, 

respectively. The  parameters β, δ, ρ, c, γ and k represent the rate constant for virus 

infection, death rate of infected cells, viral production rate, clearance rate of viral 

particles, maximum viral replication rate, and conversion rate from I1 to I2, 

respectively. For the SI and rTCL models, the assumption of quasi-steady state 

between I and V due to the typically faster c than δ translates δ as the overall viral 

elimination rate as previously described (6,8).  

𝑑𝑉(𝑡)

𝑑𝑡
= −𝛿𝑉(𝑡).                                                             (1) 

 

𝑑𝑓(𝑡)

𝑑𝑡
= −𝛽𝑓(𝑡)𝑉(𝑡).                                                  (2) 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝛾𝑓(𝑡)𝑉(𝑡) − 𝛿𝑉(𝑡).       𝑤ℎ𝑒𝑟𝑒  𝛾 = 𝜌𝛽𝑇 (0) 𝑐⁄ . 
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𝑑𝑇(𝑡)

𝑑𝑡
= −𝛽𝑇(𝑡)𝑉(𝑡).                                                (3) 

𝑑𝐼(𝑡)

𝑑𝑡
= −𝛽𝑇(𝑡)𝑉(𝑡) − 𝛿𝐼(𝑡).                                          

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌𝐼(𝑡) − 𝑐𝑉(𝑡).                                               

 

𝑑𝑇(𝑡)

𝑑𝑡
= −𝛽𝑇(𝑡)𝑉(𝑡).                                               (4) 

𝑑𝐼1(𝑡)

𝑑𝑡
= −𝛽𝑇(𝑡)𝑉(𝑡) − 𝑘𝐼1(𝑡).                                        

𝑑𝐼2(𝑡)

𝑑𝑡
= 𝑘𝐼1(𝑡) − 𝛿𝐼2(𝑡).                                                   

𝑑𝑉(𝑡)

𝑑𝑡
= 𝜌𝐼2(𝑡) − 𝑐𝑉(𝑡) − 𝛽𝑇(𝑡)𝑉(𝑡).                               

 

Initial estimates for model parameters were derived from published studies from 

which model structures were utilized for evaluation (4, 6-10). Time since symptoms 

onset as reported by the authors of the included datasets was utilized for model fitting. 

For TCL and TCLE models, since time of infection is unidentifiable,  the incubation 

period (i.e., time from infection to onset of symptoms) employed were based on 

sensitivity analysis of incubation periods ranging from 0.5 to 14 days.  

The basic reproduction number (R0) was calculated based on the estimated model 

parameters and expressed in equations (5) (SI, rTCL) (8), (6) (TCL) (5) and (7) 
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(TCLE) (10). The duration of virus production (L) was also derived for all models 

using equation (8) (10). 

𝑅0 =
𝛾

𝛿
.                                                    (5) 

 

𝑅0 =
𝜌𝛽𝑇0

𝑐𝛿
.                                             (6) 

 

𝑅0 =
𝜌𝛽𝑇0

𝛿(𝑐 + 𝛽𝑇0)
.                                      (7) 

 

𝐿 =
1

𝛿
.                                                        (8) 

 

Model fitting assessment 

Each non-linear mixed-effects model was fitted to viral load data using the stochastic 

approximation expectation maximization in R package nlmixr (version 2.0.6). For 

each subject i, the parameter value is θi (= θ × eΠi ), where θ and eΠi are fixed and 

random effects respectively. The inclusion of fixed and random effects accounts for 

interindividual variability which follows a log-normal distribution. Random effect 

terms were specified for each estimated parameter using the full covariance matrix 

structure where possible. Otherwise, when convergence was not achieved, the 
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variance was specified individually for the parameters without estimating correlations. 

Viral loads were log transformed with residual error assumed to follow a normal 

distribution. Viral loads below the limit of detection (LOD) were censored between a 

pre-defined “LIMIT” (i.e., log (0.001) copies/ml)  and the LOD as per the censoring 

method described for nlmixr (11). Model performance was assessed via Bayesian 

information criterion (BIC), visual predictive checks (VPCs), goodness-of-fit plots, 

and parameter precision. A lower comparative BIC value indicated a better model fit. 

For the generation of VPCs, we chose the most frequently reported LOD value for 

each dataset as it is not possible to make VPCs with multiple LOD values. However, 

the LOD values as reported in the included studies were used in the models. 

 

RESULTS 

In all, 252 patients with 747 viral load samples from dataset A and 321 patients with 

563 viral load samples from dataset B were extracted. TCL achieved the lowest BIC 

value (4155 vs 4185 (SI), 4254 (rTCL) and 4383 (TCLE)) for dataset A.  For dataset 

B, SI yielded the lowest BIC value (3432 vs 3546 (rTCL), 3551 (TCL) and 

3665(TCLE)) (Table S1). Based on sensitivity analysis, an incubation period of 0.5 

days yielded the lowest BIC for TCL and TCLE with dataset A. Likewise, with 

dataset B, the lowest BIC was achieved with incubation periods of 1 day and 1.5 days 

for TCL and TCLE, respectively  (Figures S1 and S2).  

Both datasets recorded parameter estimates with adequate precision for all models 

except TCL which yielded the highest imprecision for c (%RSE; 130%) with dataset 

B (Tables S2 and S3). All models predicted similar  δ  values except the TCL model 
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for dataset A with a higher rate. For dataset A, δ was in the range 0.56 – 1.84 day-1 

(median: 0.63 day-1) and that of dataset B was 0.74 – 0.85 (median: 0.81 day-1). R0 for 

TCLE indicted very high within-host reproduction numbers of 1995 (dataset A) and 

2908 (dataset B). Similarly, the R0 for TCL was 16787 for dataset A and 64894  for 

dataset B, indicating parameter estimates that were not physiologically plausible. The 

high R0 for TCLE were considerably lower (22.21 for dataset A and 24.09 for dataset 

B) when ρ was fixed to 10 copies/ml.day−1.  In contrast, R0 for TCL remained high 

following evaluation with fixed parameters. For rTCL, low R0 values of 1.79 (dataset 

A) and 1.23 (dataset B) were estimated. L ranged from 0.59 to 1.85 days across all 

models for both datasets (Tables S2 and S3).  

All four models yielded goodness-of-fit plots that were in satisfactory agreement with 

trends observed with both datasets (Figure S3). VPC plots were adequate for all 

models for dataset B. However, VPC for TCL and TCLE displayed poor predictive 

performance on the 5th percentile below the limit of detection (LOD) at early time 

points for dataset A (Figure S4).  

 

DISCUSSION 

In the present study, the model performance of TCL including both extended and 

simplified forms was evaluated with two datasets from patients infected with COVID-

19.  Overall, based on the datasets employed here, our results showed no advantage of 

the more complex (TCL, TCLE) models over the simplified forms (SI, rTCL) for the 

characterisation of SARS-CoV-2 viral dynamics in estimating the death rate of 
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infected cells. This observation may be attributed to the parsimony and identifiability 

of the different model structures.  

The complexity of viral dynamics may suggest more complex models to include all 

biologically plausible effects. However, the proposal of such models may result in 

overparameterised models with identifiability problems. For example, a ten-equation 

model with 27 parameters has previously been reported for influenza A infection (12). 

Indeed, to ensure identifiability of all the parameters would require almost all 

variables (i.e. viral load per epithelial cell, proportion of healthy cells, proportion of 

infected cells, activated antigen presenting cells per homeostatic level, interferons per 

homeostatic level of macrophages, proportion of resistant cells, effector cells per 

homeostatic level, plasma cells per homeostatic level, antibodies per homeostatic level 

and antigenic distance) to be quantified which may not be practically and ethically 

feasible.  

Likewise, for SARS-CoV-2, having more complex models may be useful for 

hypothesis testing but particularly challenging for fitting data where strong prior 

information on required parameters may be lacking. Thus, in the proposed rTCL to 

characterise SARS-CoV-2 viral dynamics, Kim et al. (8), indicate that such reduced 

structure may not necessitate the inclusion of further compartments to describe 

immune effects as the structure implicitly captures innate responses that are expressed 

via model parameters such as infection rate. Also, Hernandez-Vargas and Velasco-

Hernandez (13) have reported a minimalist two-compartment model for SARS-CoV-2 

and its immune response which had lower Akaike information criterion (AIC) values 

compared to TCL.  
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Regarding model structure identifiability, time of infection is unidentifiable for TCL 

and TCLE, and therefore incubation period is fixed based on sensitivity analysis or 

estimates from epidemiological studies. However, fixing the time of infection may not 

always resolve identifiability problems. In this study, although the incubation period 

was fixed to 0.5 days (TCLE, dataset A) and 1 day (TCL, dataset B) based on low 

BIC values, this timeframe was still unidentifiable as other days had similar BIC 

values. Fixing the incubation period using epidemiological estimates may also be 

biased by the uncertainty of exposure time based on recall (14). Thus, following 

structural identifiability analysis, Gastine et al (6) opted for rTCL over TCL for 

SARS-CoV-2, stating that TCL is structurally unidentifiable except T, β, or ρ are 

known. 

Furthermore, the different incubation periods observed in the two datasets may infer 

that viral dynamics and  incubation period may vary with patient characteristics. A 

global meta-analysis involving 53 studies by Cheng et al (15) indicated that 

incubation period varied across different patient age groups with a shorter incubation 

period among middle-aged individuals (41 – 60 years). Also, the UK human challenge 

study in younger adults (18 – 29 years) reported shorter incubation period of  <2 days 

(16). Despite the limited generalisability of the human challenge study, their finding 

on the incubation period is consistent with the shorter incubation period (0.5 – 1.5 

days) observed with the TCL and TCLE for datasets A and B. Hence, the impact of 

patient characteristics on SARS-CoV-2 incubation period requires further exploration. 

The estimates for δ across the different models for both datasets were also largely 

consistent with those previously reported for SARS-CoV-2 (range: 0.27 – 2.29 day-1) 

(7, 8, 14). Of note, an alternate approach known as model averaging has been 
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described for viral dynamic models where different models yielding similarly good 

fits are simultaneously utilised to account for model uncertainty (17). Although this 

approach may be reasonable, such complexity may not be required as the primary 

focus of viral dynamic models is the estimation of δ which can equally be well 

characterised by simpler models as seen here.   

There are some limitations worth noting in this study. Firstly, only two datasets were 

evaluated and therefore our results may not be universally representative. Secondly, 

R0 was poorly estimated with the datasets employed in this study and as such the 

results should be interpreted with caution. Thirdly, participants in the two datasets 

were recruited prior to the emergence of SARS-CoV-2 variants of concern and 

therefore, the results here ought to be interpreted within this context. Further studies 

should explore the performance of these models with SARS-CoV-2 emerging 

variants. In addition, our analysis was restricted to models proposed to describe 

antiviral effects in clinical trials and we did not test viral dynamic models from 

epidemiological studies (18, 19) which would be interesting to address in future work. 

Future studies may also consider a joint pharmacometric and epidemiological 

modelling approach to broaden the understanding of SARS-CoV-2 viral dynamics. 

Finally, we did not compare the performance of the different models in addressing 

other potential goals in viral dynamics modelling such as detecting antiviral effects 

and the impact of timing of therapeutic interventions on treatment outcomes. Such 

evaluations may therefore necessitate the use of more complex models and a 

minimalist model may not be the best choice. In such context, complex models may 

be considered particularly where their structural identifiability could be improved 

without compromising on the intended modelling goal.    
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In conclusion, as shown in the present study, we found no advantage of the complex 

models over simplified forms. This emphasises the need to explore both simplified 

and extended models to ascertain the most appropriate pharmacodynamic model 

development for SARS-CoV-2 viral dynamics.   
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Figure 1: (A) Slope-intercept exponential decay model: Viral particles (V) are 

eliminated by an overall viral elimination rate of δ. (B) Reduced target cell limited 

model: Fraction of target cells remaining (f) are infected by viral particles at a rate of 

β to release viruses at a maximum rate constant of γ and cleared at an overall viral 

elimination rate of δ. (C) Target cell limited model: Uninfected target cells (T) are 

infected by viral particles at an infection rate of β and become productively infected 

cells (I) and release viruses at a rate of ρ with a viral clearance rate of c. Productively 

infected cells die at a rate of δ. (D) Target cell limited model with eclipse phase: 

Uninfected target cells (T) are infected by viral particles at an infection rate of β and 

become latently infected cells during an incubation period (I1) and convert to 

productively infected cells (I2) at a rate of k . I2 subsequently release viruses at a rate 

of ρ with a viral clearance rate of c. Productively infected cells die at a rate of δ. #For 

models (A) and (B), the assumption of quasi-steady state between I and V due to the 

typically faster c than δ translates δ as the overall viral elimination rate as previously 

described (6,8). 

 


