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Transforming obstetric ultrasound 
into data science using eye 
tracking, voice recording, 
transducer motion and ultrasound 
video
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Ultrasound is the primary modality for obstetric imaging and is highly sonographer dependent. Long 
training period, insufficient recruitment and poor retention of sonographers are among the global 
challenges in the expansion of ultrasound use. For the past several decades, technical advancements 
in clinical obstetric ultrasound scanning have largely concerned improving image quality and 
processing speed. By contrast, sonographers have been acquiring ultrasound images in a similar 
fashion for several decades. The PULSE (Perception Ultrasound by Learning Sonographer Experience) 
project is an interdisciplinary multi-modal imaging study aiming to offer clinical sonography insights 
and transform the process of obstetric ultrasound acquisition and image analysis by applying deep 
learning to large-scale multi-modal clinical data. A key novelty of the study is that we record full-
length ultrasound video with concurrent tracking of the sonographer’s eyes, voice and the transducer 
while performing routine obstetric scans on pregnant women. We provide a detailed description of the 
novel acquisition system and illustrate how our data can be used to describe clinical ultrasound. Being 
able to measure different sonographer actions or model tasks will lead to a better understanding of 
several topics including how to effectively train new sonographers, monitor the learning progress, and 
enhance the scanning workflow of experts.

There are few population screening programs that rely on imaging as the primary screening modality—mam-
mography, aortic aneurysm screening and screening during pregnancy are three1. Of these, worldwide, obstetric 
ultrasound is by far the most used. Ultrasound is a relatively low-cost medical imaging modality, compared to 
X-ray, CT and MRI, is convenient and painless, does not use ionizing radiation, yields immediate results, and is 
widely considered to be safe2. In the past decade and by virtue of advancement in the understanding of fetal func-
tional anatomy, standardization of scanning guidelines, clinical diagnosis, and technical developments of image 
acquisition equipment, the quality of obstetric ultrasound has improved. In particular, advances in ultrasound 
physics, materials science, electronics, and computational power have collectively resulted in improvements in 
image quality and capabilities: higher spatial and temporal resolution as well as increased signal-to-noise ratio, 
minimization of artifacts, and three-dimensional (3D) rendering3–9.

Unlike these achievements, the process of ultrasound scanning, the technique of finding standard anatomi-
cal planes of the fetus to allow their diagnostic examination, remains relatively unchanged. Routine obstetric 
ultrasound scans are performed by a sonographer sitting or standing next to a pregnant woman lying down, 
manipulating a transducer and adjusting the machine settings, following a defined protocol, in order to acquire 
a series of two-dimensional standard imaging planes, observed on the screen of the ultrasound machine. This 
process can be thought of as the “sonographer loop”: the sonographer moves the transducer looking for a standard 
plane, receives real-time visual feedback of the video on the display screen and constantly moves their hand to 
adjust the transducer position, which changes the displayed video (Fig. 1).
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Deep learning is a highly sophisticated pattern recognition methodology, well suited, in theory, to recogniz-
ing image appearance characteristics associated with diagnostic criteria. This is a key reason why deep learning 
is currently having an impact on radiology for automation of reading of computed tomography (CT), magnetic 
resonance imaging (MRI), X-ray and optical imaging10–14. Ultrasound imaging is unique in the level of high 
skill required to acquire and interpret imaging “on-the-fly”. Obtaining a high‐quality and informative diagnostic 
ultrasound image requires substantial expertise, a skill traditionally acquired over several years. In addition, in 
the case of obstetric ultrasound, image quality depends on maternal habitus, fetal movements and fetal position7. 
To improve sonographer accuracy, efficiency, and productivity, we need to further our understanding of the 
interaction between the sonographer, transducer and live image15–18.

The PULSE (Perception Ultrasound by Learning Sonographer Experience) project is an interdisciplinary 
effort that aims to understand the entire obstetric imaging scanning process as a data science problem. For this 
purpose, we have developed a custom-built dedicated multi-modality ultrasound system that acquires the ultra-
sound scan and logs the sonographer actions by simultaneously recording full-length ultrasound video scans, 
eye-tracking data, transducer motion data, and audio of the sonographer speaking. Our system is deployed in 
a tertiary hospital clinic to capture data during routine obstetric ultrasound scanning for women attending the 
clinic for first, second and third trimester scans.

The aims of the paper were, first, to outline the PULSE methodology for the acquisition of data on sonog-
rapher perceptions and actions. To the best of our knowledge, the system, and dataset are unique. Second, we 
describe some of the deep learning image analysis models that have been built using data from the multiple 
perceptual cues. Third, we present lessons leant from the new field of ultrasound big data science. Fourth, we 
discuss some future technical research directions and possible new clinical applications of the emerging deep 
learning-based technology.

Methods
In this prospective data collection study, we record anonymized full-length obstetric ultrasound scan videos 
while tracking the actions of the sonographer. In the current paper we describe the data acquisition process of 
the PULSE study, explain how we interpret the multimodal data, and present preliminary clinically meaningful 
analyses.

Figure 1.   "Sonographer loop" is the process ultrasound sonographers undertake while acquiring standard 
planes: the sonographer gazes at the ultrasound screen, manipulates the hand to adjusts the transducer position 
which changes the displayed image, and back to sonographer looking at the monitor. Figure created using 
Inkscape version 0.92 (https://​inksc​ape.​org/).

https://inkscape.org/


3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14109  | https://doi.org/10.1038/s41598-021-92829-1

www.nature.com/scientificreports/

Routine care settings.  Recruitment began in May 2018. During the study period, as part of standard care, 
all women booked for maternity care in Oxfordshire, in the United Kingdom, are offered three routine ultra-
sound scans during pregnancy: in the first trimester at 11–13+6 weeks, which includes assessment for viability, 
gestational age assessment and an offer of aneuploidy screening by measurement of the nuchal translucency; a 
20-week anomaly scan; and assessment of fetal growth at 36 weeks19,20. Ultrasound examinations are carried out 
by accredited sonographers, supervised trainees or fetal medicine doctors using standard ultrasound equipment. 
For quality assurance purposes, the stored images and the reliability of measurements are regularly assessed by 
a senior accredited sonographer using established quality criteria21.

If an abnormality is suspected during a routine scan, the pregnant woman is referred for further evaluation 
at the Fetal Medicine Unit, Oxford University Hospitals National Health Services (NHS) Foundation Trust. Such 
scans are not included in the current study.

Pregnant women as participants.  Pregnant women attending routine obstetric scans are invited to par-
ticipate in the study by agreeing to have their ultrasound scan recorded by video. The inclusion criteria are 
age > 18 years old and the ability to provide verbal and written informed consent in English. Multiple gestations 
are not excluded. Following consent, each pregnant woman is given a unique study participant number to allow 
the anonymization of data.

The routine ultrasound scan is carried out without any modifications for the purpose of this study. Hence, 
ultrasound scans are performed according to national and unit guidelines. As for all women, scan results are given 
to the woman after the ultrasound examination and further management is performed according to national and 
local protocols by the appropriate healthcare professional. Women are not required to attend any follow-up or 
subsequent research scans. Women who consent to participate, but subsequently request to be withdrawn from 
the study, are excluded from the analysis.

Sonographers as participants.  Participating sonographers are accredited sonographers, trainees super-
vised by accredited sonographers, or fetal medicine doctors. For the purpose of this study, we refer to all ultra-
sound operators, sonographers and fetal medicine doctors, as sonographers. The sonographer inclusion criteria 
are practicing obstetric ultrasound, and willing and able to give informed consent in English for participation in 
the study. Following written informed consent, each sonographer is assigned a unique study number. All par-
ticipating sonographers are given an introduction about the purpose and aims of the study, followed by specific 
individual training as required.

Sonographers are requested to maintain the routine scanning procedures and are not required to alter their 
practice for the purpose of the study.

Data collection.  Ultrasound system.  All scans are performed using a commercial General Electric (GE) 
Healthcare Voluson E8 or E10 (Zipf, Austria) ultrasound machines equipped with standard curvilinear (C2-9-D, 
C1-6-D, C1-5-D) and 3D/4D transducers (RAB6-D, RC6M). The system is equipped with customized additions 
for recording scans, eye-tracking and transducer motion. Tracking of the vaginal transducer is not part of the 
study.

Video recording.  The secondary video output from the ultrasound machine is connected to a computer 
equipped with a video grabbing card (DVI2PCIe, epiphany video, Palo Alto, California) and purpose-built 
software to ensure real-time anonymization of the video. Hence, the saved videos include no personal details. 
Full-length ultrasound scans are recorded using the ultrasound machine full high-definition (HD) resolution 
(1920 × 1080 pixels) at 30 frames per second. Video files are recorded using lossless compression.

Eye tracking.  Eye tracking is achieved using a remote eye-tracker (Tobii Eyetracking Eye Tracker 4C, Dan-
deryd, Sweden) mounted below the ultrasound machine display monitor. For each ultrasound frame, we record 
the exact point of sonographer gaze. The accuracy of the eye-tracking method in our setting was previously 
validated22. Sonographers do not have any visual or other signal to know that the eye-tracking device is func-
tioning.

Transducer tracking.  Transducer motion tracking is achieved using an Inertial Measurement Unit (IMU), a 
motion sensor, (NGIMU, X-IO Technologies, Bristol, UK) attached to the ultrasound transducer (Fig. 2). The 
three-axis accelerometer information is recorded at 100 Hz.

Audio recording.  Sonographer voice recording is carried out using two microphones (PCC160, Crown HAR-
MAN, Northridge, California). One microphone is located in proximity to the operator, next to the ultrasound 
machine display screen, to best capture the operator’s voice. The second microphone is located away from the 
operator, next to the pregnant woman and any accompanying persons. This setup allows to isolate the sonogra-
pher’s voice from that of others present in the scanning room. Differentiation of the operator’s voice from that of 
others is carried out using the VoxSort Diarization software (Integrated Wave Technologies) and transcription is 
performed using the ELAN23 annotation tool.

Sonographer interaction with ultrasound machine.  Ultrasound machine keystrokes and cursor movement 
result in visual cues. Detection of the bidirectional sonographer-ultrasound machine communication is car-
ried out with a custom-designed software. The software automatically processes the ultrasound video to deter-
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mine sonographer manipulation of the ultrasound controls and machine-displayed values, allowing detection 
of events like “freeze”, “save”, or “clip save”, and machine-displayed values such as thermal safety indices, or 
measurement values. The purpose-built software, which performs a frame-by-frame analysis, was implemented 
in Python (http://​www.​python.​org, version 3.7.0) using OpenCV (http://​www.​opencv.​org, version 3.4) and 
Tesseract (http://​www.​github.​com/​tesse​ract-​ocr, version 3.05) libraries. Extracting the machine parameters dis-
played in the graphical user interface was achieved through pattern recognition and optical character recogni-
tion (OCR).

Sample size.  Owing to the observational nature of the study, calculating a meaningful clinical sample size 
is challenging. For machine learning, it has been previously suggested that “the more the better”24. Based on 
logistical and clinical considerations, including an aim to achieve an adequate sample across different sonogra-
phers and across fetal gestational age, we prospectively chose to recruit a total of 3000 routine scans, with up to 
20 sonographers performing these scans, to provide approximately 1000 scans for each gestational age group.

Data analysis.  The data collected present holistic and very rich information about obstetric sonography. In 
order to analyze the data, the following strategies were used:

(1)	 Second-trimester workflow analysis using video understanding (Fig. 3). Since the second-trimester anomaly 
scan represents the most widely conducted obstetric ultrasound scan, we chose to analyze the workflow 
of these scans. Partitioning—initially, we automatically extracted 5-s clips from the videos that represent 

Figure 2.   Inertial Measurement Unit (IMU) device attached to a curvilinear ultrasound transducer, acting as 
the sonographer hand tracking device. Figure created using Microsoft Office version 365 (https://​office.​micro​
soft.​com/).

http://www.python.org
http://www.opencv.org
http://www.github.com/tesseract-ocr
https://office.microsoft.com/
https://office.microsoft.com/
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important events by automatic detection of video freeze, image save, or clip save. We defined these as impor-
tant scan events because sonographers freeze the screen when concentrating on an acquisition and image/
clip save is carried out when the sonographer is satisfied with the acquisition displayed on the monitor.

	   Labeling—The very large number of 5-s clips makes it impractical to manually label all of them. There-
fore, we developed a deep learning model to automate this process. We first carried out manual labeling of 
approximately 20% of the available video clips according to the anatomy/organ/standard plane: head–brain, 
face (axial, coronal, or sagittal), arms, hands, situs, thorax–heart, abdomen, umbilical cord abdominal 
insertion, genitalia, bladder, legs, femur, feet, spine, kidneys, full-body fetal sagittal view, placenta-amni-
otic fluid, maternal anatomy (like uterine artery), 3D/4D mode, mixed, and unidentified. Thereafter, we 
labeled approximately 300 s-trimester scans, using machine learning method25,26. In brief, we developed 
and trained deep spatiotemporal networks, after an exploratory analysis of several deep architectures such 
as 2D ConvNets, 3D ConvNets, Recurrent Neural Networks, model fusion and initialization techniques25. 
We comparatively evaluated the optimally-learned spatiotemporal deep neural network, used it to classify 
sequential events in unseen full-length ultrasound scan videos, and temporally regularized the predicted 
result.

	   At the final step, each second-trimester scan was represented as a continuous line of fetal standard plane 
(anatomy/organ) versus time. This chosen layout allows easy visualization and interpretation of the type, 
duration and order of the anatomy being evaluated.

(2)	 Motion: The inertial measurement unit (IMU), which is attached to the ultrasound transducer, was used 
to record the rotational rate and linear acceleration for each axis of the sensor. The rotational rate fused 
with additional sensory information (gravity, magnetic field) is fed into an attitude and heading reference 
system (AHRS) that computes the absolute orientation in 3D space. We analyzed the transducer move-
ment to compute the three-dimensional orientation and linear acceleration of the transducer throughout 
full-length scans.

(3)	 Natural language of ultrasound: audio recordings were transcribed into text to build machine learning 
models for image captioning. These textual captions allowed studying the language sonographers use while 

Figure 3.   Outline of the clinical workflow analysis pipeline. Stepwise approach to second-trimester workflow 
analysis: (1) partitioning—automatically extraction of 5-s clips from the videos that represent important events; 
(2) manual labeling of the training dataset; (3) training a spatiotemporal deep network; (4) automatic labelling 
of the entire dataset; and (5) analysis of second-trimester scans as a sequence of organs being scanned. Figure 
created using Microsoft Office version 365 (https://​office.​micro​soft.​com/).

https://office.microsoft.com/
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performing a scan. Breakdown of the speech from a representative sample of scans determined that the dis-
tribution of adjectives, determiners, nouns, and verbs was 12.7%, 22.2%, 28.0%, and 16.0%, respectively27. 
The remaining 21.1% were prepositions, pronouns, adverbs, and other parts-of-speech.

(4)	 Eye-tracking: Using eye tracking we were able to determine the objects that a sonographer looks at. For 
instance, in the video clip 1 (Video S1), initially, it appears that the fetal profile is being examined; but the 
second part of the clip shows, by displaying the eye-tracking point on the video, that in fact the fetal brain 
is being studied (note that the green dot is added to the video to facilitate the presentation of our findings, 
and is not visible to a sonographer in the study).

	   Episodes of interest: For each scan video, the customized software detected episodes (periods of time) 
where a defined screen area was being looked at (such as the "measurement box" or the “bioeffect box”). 
The software detected uninterrupted fixations, defined as uninterrupted sonographer gaze toward the 
area of interest, lasting ≥100ms. If the fixation is interrupted, this was considered as a single episode of eye 
fixation if this interruption was 400 ms or less; or as a separate fixation if it is more than 400 ms28,29. We 
verified this choice of threshold by randomly looking at more than 50 detected fixations and making sure 
that the threshold resulted in no false positives.

Ethics approval.  Ethics approval was granted by the West of Scotland Research Ethics Service, UK Research 
Ethics Committee (Reference 18/WS/0051). All methods were carried out in accordance with relevant guidelines 
and regulations. Written informed consent was obtained from all participants.

Results
Workflow analysis.  A total of 341 full-length second trimester anomaly scans, performed by ten sonog-
raphers, with an average duration of 36.2 ± 11.6 min per scan, were available for analysis (65 K frames/anomaly 
scan), representing a total of approximately 205 h of video. Figure 4 shows the automatically extracted machine 
settings and sonographer actions in one typical full-length anomaly scan. In this representative anomaly scan, 
the overall duration was 44 min, of which 77% was in live-scanning, and a total of 35 images and clips were saved.

Out of the 341 scans, 62 anomaly scans were randomly selected and manually labeled (annotated) as the 
training dataset by a clinical obstetric ultrasound expert and seven image analysis scientists with knowledge of 
obstetric scanning. A high inter-annotator agreement (76.1%) was found between the annotators and a confusion 
matrix comparing the primary annotator and other annotators is displayed in Fig. 5A. We note that for a few 
labels, representing structures often seen together, the confusion was high—for example hands and face—as the 
fetal hands are often in proximity to the face, making both visible in the same image (Fig. 5A). To train a deep 
neural network, the 12 most commonly used labels were selected, representing 88% of the 5-s clips (Table 1). A 
supervised deep learning network architecture for automatic temporal semantic labelling performed the labelling 
of the 279 remaining un-labeled full-length anomaly scans. A sample of 28 scans (10%) from the automatically 
labelled dataset was randomly selected and manually labeled. Figure 5B presents a confusion matrix comparing 
the agreement between manual and automatic labeling which overall was found to be 76.4%. Statistical analysis 
of the manual and automatically labelled scans showed a high Pearson’s correlation ρ = 0.98 (p < 0.0001). Also, 
there was relatively high disagreement between labels that often display more than one structure at the same 
time: placenta and maternal structures as well as kidneys and abdomen (Fig. 5B).

With all scans labelled, we ended up with 1,158,782 labelled video frames. This allowed the anomaly scans to 
be visualized by organ as a function of time (25 representative scans are shown in Fig. 6). From the time-based 

Figure 4.   Anomaly scan machine parameters and sonographer actions according to time in one representative 
anomaly scan. A representative second-trimester anomaly scan. The overall duration of the scan was 
approximately 45 min, of which the majority of time was live scanning with the C2-9D probe. A large 
proportion of the scan was dedicated toward cardiac scanning and 35 episodes of image same were detected. 
Figure created using Python’s Matplotlib library53 and Microsoft Office version 365 (https://​office.​micro​soft.​
com/).

https://office.microsoft.com/
https://office.microsoft.com/
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visualizations, on average, 21.5% (20.4–22.6%) of the scan length was dedicated to cardiac imaging, and 11.4% 
(10.8–12.0%) to the fetal head and brain (Table 2). It is also evident that on several scans, such as scan #25, the 
sonographer dedicated multiple episodes to scan the fetal heart.

Figure 5.   Confusion matrices for the comparison of scans labeling. (A) Scans labeled by different human 
annotators and (B) Scans manually labeled vs. those automatically labeled by a deep neural network. Figure 
created using the Python programming language (Python Software Foundation, https://​www.​python.​org/).

Table 1.   Prevalence of the 12 most common anatomical labels in 62 full-length second-trimester anomaly 
scans.

Anatomical label Prevalence (%)

Thorax–heart 19.6

Head–brain 11.5

3D/4D mode 11.2

Unidentified 11.0

Spine 6.1

Abdomen 5.5

Maternal anatomy 5.5

Coronal face 4.4

Placenta-amniotic fluid 4.2

Sagittal face (profile) 3.3

Kidneys 2.9

Femur 2.7

Figure 6.   Anatomic plane being evaluated according to time (normalized to percent) in 25 representative 
anomaly scans. Figure created using MATLAB version 9.6 (https://​www.​mathw​orks.​com/).

https://www.python.org/
https://www.mathworks.com/
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Transducer motion.  Figure 7 shows frames from a representative 5-s acquisition of the head trans-ventric-
ular standard biometry plane and corresponding ultrasound transducer motion information in 1-s intervals. It 
is evident that the sonographer continuously manipulated the transducer position in order to acquire the desired 
imaging plane. The example shows the link between transducer orientation and linear acceleration and the ultra-
sound image. This motion information revealed how the sonographer arrived at the desired view, which is not 
implicitly seen from the video data by itself.

Image captioning.  We empirically observe that operators use sentences that are up to 83 words long when 
describing ultrasound video with a vocabulary consisting of approximately 344 unique words. The small num-
ber of unique words in this sonographer vocabulary demonstrates that sonographers tend to speak in a very 
particular way to describe the content of ultrasound scans. Using this real-world sonographer vocabularies, we 
were able to build image captioning models to generate relevant captions for anatomical structures of interest 
that appear in routine fetal ultrasound scans27. Figure 8 compares a caption spoken by a sonographer with one 
generated by our automatic natural language processing (NLP) based image captioning method that models 
the vocabulary commonly used by operators. It is notable that the generated caption is similar to the operator 
spoken word in terms of sonographer linguistic style.

Safety of ultrasound.  The Thermal Index is an indicator of the risk of tissue heating, displayed by standard 
ultrasound machines. To ensure safety, ultrasound sonographers are required to adhere to recommended ultra-

Table 2.   Proportion of scan duration dedicated toward each of the 12 most common anatomical labels in 341 
full-length second-trimester anomaly scans. Data is percent (95% confidence interval).

Anatomical label Average (95% CI) duration dedicated to anatomy

Thorax–heart 21.5% (20.4–22.6%)

Head–brain 11.4% (10.8–12.0%)

3D/4D mode 3.1% (2.6–3.6%)

Unidentified 17.7% (16.7–18.7%)

Spine 8.8% (8.0–9.5%)

Abdomen 5.9% (5.4–6.4%)

Maternal anatomy 10.5% (9.8–11.1%)

Coronal face 4.1% (3.7–4.4%)

Placenta-amniotic fluid 4.3% (3.9–4.8%)

Sagittal face (profile) 5.2% (4.7–5.8%)

Kidneys 1.6% (1.3–1.8%)

Femur 3.0% (2.7–3.3%)

Other organ 3.1% (2.4–3.8%)

Figure 7.   Example of transducer motion data. The figure displays the transducer motion data during the 
acquisition of the trans-ventricular (TV) standard biometry head and brain plane. The first row shows the 
ultrasound machine displayed frames (in 1-s intervals) before freezing (time = 0 s). The second row shows the 
corresponding transducer orientation and acceleration vector for each frame. Figure created using Python’s 
Matplotlib library53 and Inkscape version 0.92 (https://​inksc​ape.​org/).

https://inkscape.org/
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sound thermal safety indices exposure times30. Using PULSE video and eye tracking data we can study how well 
sonographers adhere to the recommendations in practice. Specifically, software was implemented to automati-
cally monitor the values displayed and gaze toward the “bioeffect box” displayed by the ultrasound machine. 17 
sonographers performed 178, 216, and 243 ultrasound scans at the first, second and third trimesters, respec-
tively. Gaze tracking showed that the displayed “bioeffect box” was looked at in only 27 of the 637 routine scans 
(4.2%). Despite the infrequent assessment of the thermal safety indices, the machine presets allowed for the rec-
ommended thermal safety indices to be kept during all routine scans and using the different ultrasound modes: 
B-mode, Color/Power Doppler, and Pulsed Wave Doppler31.

Bias in biometric measurements.  Fetal biometry is an essential part of the majority of pregnancy scans. 
It is the focus of the examination in the third trimester, and variability in fetal measurements is also higher at this 
gestation. Therefore, we analyzed a total of 272 third-trimester scans performed by 16 sonographers with associ-
ated gaze data that were available for analysis of the standard biometric measurements. During these scans, we 
automatically identified 1409 biometric measurements: 354 head circumference, 703 abdominal circumference, 
and 352 femur length. During biometry, ultrasound machines display the “measurement box” that displays the 
measurement result. Eye-tracking demonstrated that sonographers look at the ultrasound machine displayed 
values in > 90% of standard fetal biometric measurements. This bias causes the sonographers to "correct" the 
measurement by adjusting the caliper placement toward the expected measurement for the actual gestational 
age32.

Discussion
In this paper, we demonstrate that ultrasound data science can offer fresh new clinical insights to understand 
routine real-world obstetric ultrasound screening imaging. We explain how, using multi-modal scanning data, 
we can build deep learning models of clinical sonography and image analysis. To be able to describe how expert 
sonographers perform a diagnostic study of a subject, we present a novel multi-cue data capture system that 
records the scan concurrently with tracking the actions of the sonographer, including interaction with the 
machine, sonographer eye and transducer movements. By measuring different sonographer actions or tasks, we 
further aim to understand better several topics such as how to effectively and efficiently initially train sonogra-
phers, monitor learning progress, and enhance scanning workflow. Our data can also help design deep learning 
applications for assistive automation technology as described elsewhere33–36.

Understanding sonography in quantitative detail allows us to show clinically meaningful examples such as 
workflow analysis, image captioning, bias identification and thermal safety indices monitoring. The workflow 
of obstetric ultrasound is a serial task of non-ordered standard planes acquisition and interpretation. For each 
standard plane, the process starts with the detection of the main anatomical region, fine-tuning to the target 
structure followed by an optimal acquisition in the correct plane, verifying normal appearance, measuring as 
required and ultimately storing. We have presented a novel system that records an entire ultrasound scan and 
partitions it according to the standard plane/organ being temporally studied, which results in a quantitative 
visualization of plane/organ vs time. This allows us to study ultrasound workflow as information science. For 
example, we observe that sonographers spend a large proportion of the scan undertaking fetal cardiac assessment, 
yet there is a large variation between sonographers. This could potentially mean that a specific sonographer may 
be struggling with this part of the scan and might, therefore, benefit from further training. Thus, analysis and 
quantification of ultrasound scans can allow monitoring of learning, identification of weaknesses, auditing, and 
verifying scan completeness. Ultimately, this should improve the cost-effectiveness of scans. Previous work in 
ultrasound learning and workflow in non-obstetric ultrasound fields has resulted in the creation of automated 
algorithms to aid transducer guidance, automatic scanning, and image analysis37,38. In obstetrics, real-time 
automatic identification of standard planes may aid diagnosis and quality assurance33,36,39–46.

Eye-tracking has revealed important sonographer behaviors, including the tendency to bias fetal biometry 
measurements. Such operator bias is important for research and clinical settings and require further prospective 
assessment to understand its source and impact. Another important lesson learned from eye-tracking is that 
sonographers do not adequately monitor ultrasound thermal safety indices. This means that algorithms should 
be specifically designed to adhere to safety recommendations and not just “learn” how to scan from sonogra-
phers. Additionally, automated assistance to sonographers in monitoring of thermal safety indices should be 

Figure 8.   Image captioning: the ground truth and a generated caption are shown for the fetal spine. The darker 
the green color, the higher probability of the associated with a generated word (Softmax probability). Figure 
created using Python’s Matplotlib library53 and Microsoft Office version 365 (https://​office.​micro​soft.​com/).

https://office.microsoft.com/
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implemented; ultrasound machines should not just report the safety parameters, but also be designed to actively 
avoid exceeding exposure times or alert the sonographer if the safety parameters are breeched.

Planned analyses.  In our study, in addition to ultrasound video, we store real-time information of trans-
ducer motion and eye-tracking. This additional sensory data is particularly interesting as it has the potential to 
improve machine learning algorithms for obstetric ultrasound related tasks using expert knowledge that is not 
available from ultrasound video alone.

Ultrasound transducer guidance is already available commercially for adult echocardiography47, and image-
based guidance solutions have been proposed for instance for ultrasound-guided regional anesthesia37. The 
transducer tracking data captured in this study will lead to an understanding of how to best maneuver a trans-
ducer to acquire the appropriate planes, and in turn, allow the development of “guidance” of the transducer to 
the correct scan plane. Due to the highly variable anatomy that is dependent on fetal position, acquiring these 
skills usually requires years of training. An algorithm that guides the transducer to the correct position in real-
time potentially has an enormous advantage over the current one-on-one teaching that includes a lot of human 
trial-and-error. An early report on our work on this topic is described in48.

The tasks captured by sonographers during a routine fetal anomaly ultrasound scan are characterized by prop-
erties such as their order and their duration, which are not strictly constrained in the scanning protocol. Using 
deep learning on ultrasound video, we comprehensively analyze and quantify sonographer clinical workflow in 
terms of the type, duration and sequence of the tasks constituting a full-length scan. Next, we plan to attempt 
improving the accuracy of the sonographer and automatically generated image description. Thereafter, we aim 
to evaluate the utility of the sonographer tracking in improving the workflow assessment model.

Research and clinical potential.  In this study, we explore how the latest ideas from deep learning can be 
combined with clinical sonography big data to develop deep models and understanding to inform the develop-
ment of the next generation of ultrasound imaging capabilities and make medical ultrasound more accessible to 
non-expert clinical professionals.

Despite half of a century of ultrasound usage, most advances have been in sensors and electronic systems, 
leaving the sonographer behavior field largely unexplored. We attempt to bridge the gap between an ultrasound 
device and the user by employing machine learning solutions that embed clinical expert knowledge to add 
interpretation power. The hope is that taking this approach may provide a major step towards making ultra-
sound a more accessible technology to less-expert users across the world. It is widely known that a shortage of 
sonographers and radiologists are a major bottleneck to ultrasound access worldwide49,50 and that ultrasound 
sonographers are at risk for burn-out, and musculoskeletal injuries that potentially limit their professional work. 
Sonographers who have been clinically active for decades probably scan in a manner that poses minimal risk for 
injury. By capturing the actions of such experts, we may determine important characteristics of scanning that 
may prevent sonographer injury.

Strengths.  The novel design that allows us to understand human perceptual information by recording the 
sonographer eye and transducer movements during real-life scans, while recording the resulting ultrasound 
video, are major strengths of the study. We have already shown robust constant findings from capture and analy-
sis of multiple scans and sonographer. This includes verification of the ability to detect important scan events, to 
extract data from the ultrasound image, and to accurately identify the sonographer gaze. Also, in light of emerg-
ing adoption of artificial intelligence in radiology51,52, the ability to implement related methods into obstetric 
ultrasound is likely to progress the field of clinical obstetric sonography.

Limitations.  Our study is not without limitations. Mainly, we present the study design and preliminary find-
ings that require further in-the-field clinical validation. Also, before such an algorithm could be implemented in 
clinical practice, we aim to improve the inter-annotator and manual to automatic agreement accuracy. Currently, 
the relatively high agreement allows interpretation of data, but an algorithm to fit clinical settings, the agreement 
should be improved. Additionally, the limited number of sonographers in our ultrasound unit make it difficult 
to convincingly assess the differences between novice and expert sonographers. However, the need for thorough 
clinical validation is expected with any novel idea and we were able to show the preliminary findings are easily 
interpretable.

Conclusion
In conclusion, we have applied the latest ideas from deep learning to a vast amount of real-world clinical data 
from multiple perceptual cues, to describe and understand how sonographers scan and ultrasound images are 
acquired. We are currently using the derived deep learning models to design new assistive tools for ultrasound 
acquisition and image interpretation. These tools aim to maximize the diagnostic capabilities of ultrasound as 
well as improve the accuracy and reproducibility of sonography to contribute to advancing its use in the devel-
oped and developing world.

Data availability
The datasets analysed during the current study are not publicly available due to patient data governance policy. 
Analyses performed during the current study are available from the corresponding author on reasonable request.
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