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Hierarchical spectral clustering reveals brain 
size and shape changes in asymptomatic 
carriers of C9orf72

Rose Bruffaerts,1,2,3,∗ Dorothy Gors,4,5,∗ Alicia Bárcenas Gallardo,5 

Mathieu Vandenbulcke,6 Philip Van Damme,7,8 Paul Suetens,4,5 John C. van Swieten,9 

Barbara Borroni,10 Raquel Sanchez-Valle,11 Fermin Moreno,12 Robert LaforceJr,13 

Caroline Graff,14 Matthis Synofzik,15 Daniela Galimberti,16,17 James B. Rowe,18 

Mario Masellis,19 Maria Carmela Tartaglia,20 Elizabeth Finger,21 Alexandre de Mendonça,22 

Fabrizio Tagliavini,23 Chris R. Butler,24 Isabel Santana,25 Alexander Gerhard,26,27,28 

Simon Ducharme,29,30 Johannes Levin,31 Adrian Danek,31 Markus Otto,32 

Jonathan D. Rohrer,33 Patrick Dupont,1,34 Peter Claes,4,5,35,36  

and Rik Vandenberghe1,34,37 Genetic Frontotemporal dementia Initiative (GENFI)

∗ These authors contributed equally to this work.

Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer’s disease or frontotempor
al degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical vo
lumes of interest. Here, we apply a method based on hierarchical spectral clustering, a graph-based partitioning technique. Our method uses 
multiple levels of segmentation for detecting changes in a data-driven, unbiased, comprehensive manner within a standard statistical frame
work. Furthermore, spectral clustering allows for detection of changes in shape along with changes in size. We performed tensor-based 
morphometry to detect changes in the Genetic Frontotemporal dementia Initiative asymptomatic and symptomatic frontotemporal degen
eration mutation carriers using hierarchical spectral clustering and compared the outcome to that obtained with a more conventional voxel- 
wise tensor- and voxel-based morphometric analysis. In the symptomatic groups, the hierarchical spectral clustering-based method yielded 
results that were largely in line with those obtained with the voxel-wise approach. In asymptomatic C9orf72 expansion carriers, spectral 
clustering detected changes in size in medial temporal cortex that voxel-wise methods could only detect in the symptomatic phase. 
Furthermore, in the asymptomatic and the symptomatic phases, the spectral clustering approach detected changes in shape in the premotor 
cortex in C9orf72. In summary, the present study shows the merit of hierarchical spectral clustering for data-driven segmentation and de
tection of structural changes in the symptomatic and asymptomatic stages of monogenic frontotemporal degeneration.
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Introduction
In autosomal-dominant neurodegenerative disease, ana
tomical changes in brain structure occur years before symp
tom onset.1–4 In frontotemporal degeneration (FTD), the 
most common autosomal mutations are chromosome 9 
open reading frame 72 (C9orf72), progranulin (GRN), and 
microtubule-associated protein tau (MAPT). Large multicen
tre prospective cohorts such as the Genetic Frontotemporal 
dementia Initiative (GENFI) and the ARTFL-LEFFTDS 
Longitudinal Frontotemporal Lobar Degeneration study 
have led to the discovery of asymptomatic brain changes 
in autosomal-dominant FTD.3 This is important for the de
velopment of presymptomatic therapies to determine the 
optimal timing of a study intervention and to evaluate study 
drug effects.

In previous studies, structural changes were determined 
with either voxel-wise comparisons4–6 or an atlas-based ap
proach using regions of interest.3,7,8 In an atlas-based ap
proach, the extent of the volumes of interest is defined a 

priori, e.g. at the lobar level or at the level of individual re
gions of the atlas within a lobe. A landmark paper reported 
grey matter volumetric changes in the asymptomatic stage in 
monogenic FTD3 and related the volume-based morphomet
ric changes to the expected time of symptom onset. In that 
study, the segmentation was automated and based on atlas 
propagation and fusion.9 The volumes consisted of frontal, 
temporal, parietal, and occipital lobe, insula, as well as thal
amus, striatum, hippocampus, and amygdala. When all mu
tation carriers were grouped, 10 years before the expected 
symptom onset, the insula and the temporal lobe started to 
show volume decreases, and 5 years before symptom onset, 
the frontal and parietal lobe and all subcortical structures. 
The first changes were seen in C9orf72 expansion carriers 
in the thalamus, insula and posterior cortical regions 25 
years before the predicted time of onset.

Subsequent volumetric studies using a different method
ology yielded findings that were largely in line with the 
Rohrer et al.3 report. Two of these studies5,6 used voxel-based 
morphometry (VBM) with statistical parametric mapping 
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(SPM). Cash et al.6 reported a voxel-wise comparison be
tween asymptomatic and symptomatic carriers respectively, 
and non-carriers. In asymptomatic C9orf72 expansion car
riers, atrophy was documented in the thalamus, right super
ior posterior cerebellum, superior temporal and inferior 
frontal regions. Changes were subtle in the other asymptom
atic carriers: in GRN and MAPT carriers, no areas survived 
correction for multiple comparisons. In a small group of 
asymptomatic C9orf72 carriers, Lee et al.5 reported volume 
loss in the insula, anterior cingulate, striatum and the medial 
pulvinar of thalamus compared to controls. A fourth study 
was based on a region-based analysis of cortical thickness 
in C9orf72 carriers versus non-carriers from the same fam
ily.10 Thinning of the primary motor cortex was observed 
in patients with ALS but not in asymptomatic carriers. 
Cury et al.8 studied multivariate shape analysis using a differ
ent method, large diffeomorphic deformation metric map
ping. Longitudinal changes were studied in an a priori 
defined region, namely the thalamus. Shape changes in the an
terior portion of the thalamus were detected in asymptomatic 
mutation carriers. Finally, a recent study increased the reso
lution of subcortical anatomy using atlas propagation and fu
sion.7 Here, in the C9orf72 expansion carriers the earliest 
volume changes were in thalamic subnuclei (pulvinar and lat
eral geniculate), cerebellum and hippocampus (particularly 
presubiculum and CA1), amygdala and hypothalamus.

In the present study, we implemented a recently proposed 
brain segmentation method based on hierarchical spectral 
clustering. Spectral clustering11 is a graph-partitioning tech
nique separating vertices into segments. We have applied it be
fore to study complex morphological changes, i.e. changes in 
brain shape and facial morphology as a function of complex 
genetic traits12,13 and to study structural MRI changes in 
Alzheimer’s disease.14 Hierarchical spectral clustering refers 
to spectral clustering at successive levels of granularity, from 
a global to a local level of segmentation. It may offer a number 
of advantages for the application at hand. A priori the level of 
segmentation that optimally captures the structural differ
ences between carriers and non-carriers is unknown. 
Hierarchical spectral clustering allows one to segment the 
brain in a data-driven manner at different levels of granularity. 
In the present study, this segmentation is performed in a binary 
manner from level to level for a total of eight levels. The 
global-to-local segmentation can be likened to a variation of 
the spatial zoom, however, with the important characteristic 
that the spatial zooming at each level is determined exclusively 
by the similarity of features within a segment. The first levels 
correspond to a global view and are sensitive to more distrib
uted general changes. The highest levels correspond to a multi- 
focal view optimally suited for more local changes. It is a priori 
unclear which degree of granularity would be optimal to de
tect the first changes. It may be that subtle changes are distrib
uted and best detected when analyzing larger structures, e.g. 
whole brain atrophy with widening of the CSF or entire lobes 
as in Rohrer et al.3 Alternatively, more specific anatomical re
gions such as medial pulvinar6 may be affected first in a select
ive manner. With hierarchical spectral clustering the brain is 

partitioned from a global-to-local spatial scale, without the 
need to define the scale a priori. This is then coupled with a 
comprehensive statistical approach that takes into account 
the amount and interdependence of the comparisons at the 
multiple levels, i.e. in the current report false discovery rate 
(FDR). Second, our approach incorporated an analysis of dif
ferent aspects of the segmental structural pattern, namely size 
and shape. Previous studies focused exclusively on the identi
fication of between-group differences in segmental size. 
However, size alone ignores local patterns of co-variation 
that do not change the total size in a segment.

We evaluated the merits of this processing pipeline in 
GENFI and investigated whether the recent method could 
provide additional information about structural changes in 
(a)symptomatic carriers of FTD mutations at different levels 
of granularity. We determined the significant differences be
tween the asymptomatic and symptomatic carriers, respect
ively, versus the non-carriers at the level of each segment 
from the global-to-local segmentation.

Material and methods
Participants
Data used in the preparation of this article were obtained from 
the GENFI (https://www.GENFI.org/). This large multicentre 
cohort focuses specifically on members of families where a 
known FTD gene mutation occurs, mainly C9orf72 expan
sions (presence of >30 repeats), MAPT mutations and GRN 
mutations. GENFI recruits controls and asymptomatic car
riers based on their genetic relation to the FTD patients, as 
well as FTD patients from (currently) 24 centres. By recruiting 
first-degree relatives, population stratification can be con
trolled for. The study was locally approved by the UZ/KU 
Leuven Ethics Committee for Research. After receiving a com
plete description of the study protocol, all participants or their 
legal representatives provided written informed consent in ac
cordance with the Declaration of Helsinki.

At the time of the third data freeze, a total of 690 partici
pants had been recruited across all centres. Scans from 55 
participants were excluded because of missing data (50) or 
imaging artefacts upon visual inspection (5). Volumetric 
T1-weighted MRI scans of 118 symptomatic carriers, 267 
asymptomatic carriers and 250 non-carriers were included 
for the present study. The baseline demographics of the 
635 participants are given in Table 1, and the clinical infor
mation of the patients is reported in Table 2. Two-way 
ANOVA’s with mutation and genetic status (non-carriers, 
asymptomatic, symptomatic) were performed to asses 
between-group differences in age, sex and education level. 
For age, main effects of mutation (F(2,630) = 7.21, P < 
0.001) and genetic status (F(2,630) = 95.1, P < 0.001) were 
observed, without interaction (Pinteraction: 0.67). Post hoc 
testing revealed that, as expected, the symptomatic carriers 
were older than the non-carriers and asymptomatic carriers 
(Tukey–Kramer P < 0.05). MAPT participants were younger 

https://www.GENFI.org/
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than other mutation groups. There was also a significant 
main effect of status when modelling education (F(2,630) = 
15.52, P < 0.001), with post hoc testing showing that the 
symptomatic carriers on average had fewer years of educa
tion than the asymptomatic carriers and non-carriers. 
There was also a main effect of status on sex in our cohort 
(F(2,630) = 5.62, P = 0.004), with more male participants 
in the symptomatic carrier group compared with the asymp
tomatic carriers and non-carriers groups. In all our analyses, 
age, sex, family membership and study site were included as 
covariates of no interest (analogous to Cash et al.6).

Acquisition and preprocessing of the 
MRI data
Volumetric MRI acquisition
The GENFI imaging protocol comprises a set of standar
dized MRI sequences to be used across the different study 

sites. In the majority of participants baseline volumetric 
T1-weighted MRI were acquired using 3 T scanners (n = 
587) [GE (25), Philips (242), Siemens (320)]. In the remain
der, when there was no 3 T scanner available at the centre, 
scans were acquired on 1.5 T (n = 48) [GE (9), Siemens 
(39)] scanners.

Preprocessing
Tensor-based morphometry (TBM) maps were generated 
using the CAT12 toolbox (Structural brain mapping 
group, Jena, Germany, http://www.neuro.uni-jena.de/ 
cat), an extension of SPM12 (Wellcome Trust Centre for 
Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/ 
spm). Segmentation was performed in CAT12 using a de
fault tissue probability map. Local adaptive segmentation 
was used at default strength (medium) and Diffeomorphic 
Anatomical Registration Through Exponentiated Lie 
Algebra15 was used for registration to the default template 

Table 1 Baseline demographics of the participants of the GENFI cohort used in this study

Non-carriers Asymptomatic carriers Symptomatic carriers

C9orf72

N (M:F) 85 (37: 48) 90 (56: 34) 56 (35: 21)a

Age 46.9 (13.8) (23–76) 45 (12.4) (20–68) 64.9 (7.6) (47–78)a

Education 13.7 (3.1) (5–20) 14.1 (2.9) (5–20) 12.6 (4) (5–22)a

GRN
N (M:F) 125 (52: 73) 129 (45: 84) 42 (20: 22)a

Age 47.9 (14.3) (19–86) 46.6 (11.7) (20–76) 63.3 (9.1) (33–79)a

Education 14.1 (3.9) (5–24) 14.5 (3.5) (8–24) 10.8 (3.9) (5–18)a

MAPT

N (M:F) 40 (21: 19) 48 (19: 29) 20 (13: 7)a

Age 44.3 (12.6) (20–71)a 40.8 (10.6) (21–74)a 57.3 (7.7) (38–69)a

Education 13.9 (3.4) (5–24) 14 (3.2) (5–20) 13.1 (4.2) (5–20)a

number of subjects, N (M:F); age and education (years), mean (std) (min–max); N, number; M, males, F, females. 
asignificant difference from other groups with Tukey–Kramer P < 0.05.

Table 2 Clinical information of the patients of the GENFI cohort in this study

C9orf72 (n = 56) GRN (n = 42) MAPT (n = 20)

Clinical diagnosis
bvFTD 73.21% (41) 52.38% (22) 100% (20)
FTD-ALS 8.93% (5) — —
ALS 7.14% (4) — —
PPA 5.36% (3) 40.48% (17) —
CBS — 4.76% (2) —
PSP 1.79% (1) — —
Dementia-NOS 3.57% (2) 2.38% (1) —

Age at onset 59.3 (8.7) (40–74) 61.2 (7.8) (48–77) 52.3 (6.2) (37–66)
Disease duration 5.4 (4.2) (0.8–20.4) 2.8 (1.9) (0.1–10.1) 5.0 (4.8) (0.2–17.4)
MMSE (/30) 23.3 (6.2) (0–30) 20.0 (6.1) (7–29) 25.6 (4.1) (16–30)
CBI-R (/180) 65.7 (30.3) (5–129) 60.3 (32.3) (11–126) 59.0 (37.6) (4–120)
FRS (0-100%) 36.8% (26.6%) (0–97%) 40.5% (26.3%) (4–97%) 49.2% (30.1%) (7–100%)
ALSFRS-R (/48) 37.5 (8.5) (20–45) N/Aa N/Aa

Clinical diagnosis: phenotype: percentage within genetic group (N); mean age at onset and disease duration in years (std) (min–max); MMSE, Mini-Mental State Examination; CBI-R, 
Cambridge Behavioural Inventory—Revised, FRS, FTD Rating Scale; ALSFRS-R, ALS Functional Rating Scale-Revised, for MMSE, CBI-R, FRS and ALSFRS-R the mean score is reported 
and (std) (min–max). bvFTD, behavioural variant of frontotemporal degeneration; ALS, amyotrophic lateral sclerosis; PPA, primary progressive aphasia; NOS, not otherwise specified; 
PSP, progressive supranuclear palsy; CBS, corticobasal syndrome. 
aonly administered if a patient is diagnosed with (FTD-)ALS.

http://www.neuro.uni-jena.de/cat
http://www.neuro.uni-jena.de/cat
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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(IXI555 MNI152). The determinant of the gradients of the 
deformation field in every voxel resulted in the Jacobian 
maps, encoding the structural information that was used 
for tensor-based image segmentation. Voxel size was set at 
1.5 mm (isotropic) after internal resampling at 1 mm. 
Images were smoothed using a 6 × 6 × 6 mm3 Gaussian ker
nel (for comparison to Cash et al.6). Quality of the raw data 
was verified by means of the CAT12 Image Quality Ratio 
(IQR) combining measures of noise, inhomogeneity and 
resolution.16 Quality of the segmentation step was verified 
by estimating sample homogeneity of the Jacobian maps 
using the CAT12 toolbox, which was calculated by correlat
ing each individual map to the rest of the sample.

Segmental tensor-based 
morphometry
Global-to-local segmentation
Global-to-local tensor-based segmentation was performed 
using hierarchical spectral clustering12–14 based on the 
Jacobian maps derived from the scans of all participants 
(symptomatic and asymptomatic carriers, as well as non- 
carriers, Supplementary Figure 1). We included the scans 
of all participants, whether they were carriers or not. The 
segmentation of brain shape (estimated from Jacobian 
maps) in a population sample should be stable and reprodu
cible. Since the proposed segmentation was defined at the le
vel of a population (and not at the level of an individual 
image), the population sample size becomes crucial and 
therefore the segmentation was defined on the complete 
data available within the GENFI cohort. Importantly, in 
our case no categorical disease labels were used as the seg
mentation was unsupervised.

Spectral clustering aims to organize voxels into clusters 
with high within-cluster and low between-cluster data rela
tions. Specifically, this was done using the (spectral) eigen- 
decomposition of a square affinity matrix A (number vox
els × number voxels) expressing all pair-wise data rela
tions.11 In this work (and following Gors et al.14), based 
on all 635 MRI scans, the pair-wise relationship between 
two voxels i and j was set equal to: A(i,j) = 0.5(corr(Ji, Jj) + 
1), with Ji the Jacobian vector over each subject’s Jacobian 
map at the ith voxel. Negative/positive correlations generated 
a low/high affinity between voxel pairs. Pairs with high affin
ity are likely to cluster together, and pairs with low affinity 
are likely to cluster differently. Subsequently, the matrix A 
was transformed into a Laplacian matrix L=D-1/2 AD-1/2, 
from which the eigenvectors associated with the k (k = 2, 
for a split into two clusters) highest eigenvalues were taken. 
D is a diagonal matrix, where di, i represents the sum of the ith 

column of the matrix A. This transformation of A into L fol
lowed by an eigen-decomposition enhances the (dis)similar
ities of voxel pairs in A, and therefore simplifies the 
partitioning problem of voxels into clusters. In the eigen
vector space, the Euclidean distance, serves as a proxy for 

the affinity, and drives a k-means clustering to partition the 
vertices into two clusters. Computationally, these operations 
are not straightforward since the construction of the matri
ces A and L was not possible due to memory constraints 
when working with over 5 × 105 voxels. This was solved 
using Nyström17 which is a technique that simultaneously 
estimates the Laplacian and the eigenvectors of a large-scaled 
matrix using only a random subset of its columns. Finally, 
due to the random behaviour in k-means and Nyström, a 
two step-robustness procedure was implemented. The first 
step averaged multiple Nyström estimations (n = 50) result
ing from randomly different voxel subsets. In the second 
step, k-means was repeated 50 times and the produced clus
ters are merged into a single partitioning with a normalized 
vote-weighting scheme.18

A hierarchical spectral clustering was obtained by sequen
tially splitting a segment into two disjoint segments, whereby 
each new segment independently of the other is further parti
tioned into two and so on. From one level to the next, a bin
ary segmentation was performed, i.e. two segments in the 
lower level for every parent segment, for a total of eight le
vels. The first level contained the entire intracranial volume. 
The second level consisted of two segments, going up to 27 

segments at the highest eighth level (Fig. 1A).

Statistical analyses
Jacobians within each segment of the global-to-local segmenta
tion were summarized as segmental size features and segmental 
shape coefficients. Segmental size was computed as the average 
Jacobian across all voxels within a segment. Segmental shape 
coefficients were calculated as follows: first, we corrected for 
segmental size by dividing the Jacobian values of a segment 
by its size (i.e. the average Jacobian). After this division, the 
shape space was computed using principal component analysis 
(PCA, singular value decomposition). Besides the resulting di
mensionality reduction, PCA has the advantage that linear 
combinations of the principal components enable a recon
struction of the original space. Parallel analysis19 was used 
to determine the significant principal components.

Within each segment structural differences between the 
asymptomatic FTD mutation carriers versus non-carriers, 
and symptomatic FTD mutation carriers versus non-carriers 
were determined to study the potential of the new method 
(Fig. 1B). Hierarchical spectral clustering is then coupled 
with a comprehensive statistical approach that takes into ac
count the amount and interdependence of the comparisons. 
Between-group differences in size were analyzed using 
Student’s t tests (assuming equal variance). Differences in 
shape, which is a multivariate feature, were tested using ca
nonical correlation analysis (CCA). Testing was performed 
separately on all 255 segments (of the eight levels) of the hier
archical segmentation. The FDR-adjusted significance thresh
old was computed at P = 0.0007 (‘dep’,20 (α< 0.05)). The 
threshold considers the number of contrasts (n = 6), the num
ber of form features (size and shape, n = 2), as well as the 
number of segments (n = 255). It means that 12 tests on 

http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac182#supplementary-data
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255 segments are performed simultaneously corresponding 
to the abovementioned P threshold. Age, sex, image acquisi
tion site and family membership were added to all analyses as 
covariates of no interest.6 Local deformations were estimated 

using the Jacobian determinant, whereas ignoring the affine 
part of the deformation field. Thus, additional correction 
for total intracranial volume was not required because only 
non-linear deformation was taken into account.21
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with circular dendrograms (3th to 8th level is visualized in Supplementary Figure 2 for completeness and 3D images were uploaded as 
Supplementary data). Intra-segment voxels are randomly coloured according to their position in hierarchical diagrams. For each segment, the 
transversal plane with the highest number of intra-segment voxels is visualized. (B) Statistical analysis of size and shape components per segment, 
calculated respectively by means of a Student’s t test comparing the average Jacobians and CCA comparing the principal components (PCs), and 
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http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac182#supplementary-data
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Univariate morphometric analysis
The global-to-local segment results were compared with 
those obtained for the same contrasts using well-established 
(univariate) VBM and TBM to compare the sensitivity of 
our method to the standard procedure. Using SPM12, symp
tomatic carriers and asymptomatic carriers of every genetic 
group were compared with non-carriers using a one-way 
between-subject ANOVA. The same covariates (age, sex, 
acquisition site and family membership) were used as in 
the multivariate approach. Total intracranial volume was 
added as a covariate for VBM. The FDR-adjusted signifi
cance threshold was computed at P = 0.0003 (‘dep’,20 (α< 
0.05)), considering the number of contrasts (n = 6), the num
ber of form features (size and shape, n = 2), as well as the 
number of segments (n = 255). For comparison to the hier
archical spectral clustering analysis, we only report clusters 
larger than 500 voxels because the smallest segment in the 
eighth level of segmentation contained 563 voxels.

Exploratory analysis of global-to-local 
segment results
The patients presented with different clinical phenotypes de
pending on their mutation (Table 2). To determine whether 
all clinical phenotypes contributed equally to the 
global-to-local segment results in the symptomatic groups, 
we calculated thresholded maps for size and shape. The thre
sholded maps were calculated as follows: a binary voxel-wise 
map was generated for every level indicating which segments 
passed the preset FDR-corrected threshold. Maps were 
summed across all 8 levels, resulting a pattern for size and a 
pattern for shape for every mutation. The thresholded maps 
were used to weight the Jacobian values per voxel resulting 
in an average weighted Jacobian value for each individual. 
Within the symptomatic carriers, ANOVA’s were conducted 
for the C9orf72 and GRN group to determine the effect of 
clinical phenotype (in the MAPT group, all symptomatic in
dividuals exhibited the same phenotype, bvFTD).

Finally, we determined the relationship between the size 
and shape changes. The pair-wise Dice coefficient was calcu
lated between every mutation group per genetic status 
(asymptomatic, symptomatic) to compare the overlap of 
the thresholded maps for size and shape. For the purpose 
of this comparison, the voxel-wise maps generated for every 
level were concatenated instead of summed to serve as binary 
input for calculation of the dice coefficients.

Data and code availability
The input data can be requested as the third data freeze from 
the GENFI (http://www.GENFI.org/). SPM12 (https://www. 
fil.ion.ucl.ac.uk/spm/software/spm12/) and the CAT12 tool
box (http://www.neuro.uni-jena.de/cat/) are freely available 
online. The in- house Matlab routine to perform hierarchical 
spectral clustering can be downloaded from https://gitlab. 
kuleuven.be/u0064036/hierarchical-spectral-clustering.

Results
Data quality
Mean image quality was assessed as ‘good’ using the CAT12 
IQR16 (mean IQR: 2.15, s.d. 0.31). A two-way ANOVA 
with mutation and genetic status (non-carriers, asymptomat
ic, symptomatic) to assess between-group differences in IQR 
showed differences for genetic status (F(2,630) = 29.6, P < 
0.001). Post hoc testing revealed that the symptomatic indi
viduals had lower image quality, but this effect disappeared 
when age was added as a covariate (genetic status: P = 0.213, 
age: P = 0.005).

Sample homogeneity for the Jacobian maps was on aver
age 0.85 (s.d. 0.02). A two-way ANOVA with mutation 
and genetic status to assess between-group differences in 
homogeneity showed differences for mutation group 
(F(2,630) = 7.96, P < 0.001). Post hoc testing demonstrated 
that the MAPT group had higher sample homogeneity, but 
this effect disappeared when age was added as a covariate 
(mutation: P = 0.710, age: P = 0.288) (recall that the 
MAPT group was younger).

Global-to-local segmentation
The hierarchical spectral clustering algorithm resulted into 
255 segments across the eight hierarchical levels. Fig. 1A dis
plays the first six levels of the segmentation as orbits of a den
drogram: the level of granularity increases when moving 
towards the outer orbits. The first level corresponds to the 
entire intracranial compartment. The second level results 
from a binary segmentation into a compartment largely 
made up of the CSF and a brain compartment. The projec
tion of the segments of the levels 3–8 onto the normalized 
brain is shown in Supplementary Figure 2.

Hypothesis testing
For each of the 255 segments, the statistical significance of a 
segmental size and shape difference between the asymp
tomatic or the symptomatic carriers of the FTD mutations 
respectively versus non-carriers was determined. The re
sults are projected on the dendrograms of Figs. 2–5. 
These overlays represent the same segmentation as shown 
in Fig. 1A but now the colours at each position in the den
drogram depict the segmental P-value, when statistically 
significant. Only results surviving FDR correction 
(‘dep’20) are reported. These representations allow us to 
examine if the genetic mutation has a relatively global or 
relatively local impact on brain structure depending on 
the position of the effect on the dendrogram. Because of 
the hierarchical organization of the segmentation, the re
sults found in parent and child segments are derived on ei
ther the ensemble (parents) or a partition (children) of the 
same data. The dendrograms on the right-hand side aid in 
identifying the level of optimal granularity, i.e. the level 
at which the result is the strongest. Evidently, significant 

http://www.GENFI.org/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.neuro.uni-jena.de/cat/
https://gitlab.kuleuven.be/u0064036/hierarchical-spectral-clustering
https://gitlab.kuleuven.be/u0064036/hierarchical-spectral-clustering
http://academic.oup.com/braincomms/article-lookup/doi/10.1093/braincomms/fcac182#supplementary-data
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results may sometimes occur in parent or child segments of 
the segment with optimal granularity, caused by these 
shared datapoints.

C9orf72 asymptomatic carriers versus non-carriers
Using spectral clustering, significant size differences were 
found in the posteromedial thalamus but also in the medial 
temporal cortex, the striatum, the insula and orbitofrontal 
cortex (Fig. 2A). In asymptomatic carriers of C9orf72 ex
pansions versus non-carriers, shape changes were observed 
in the motor cortices, inferior frontal gyri and in the white 
matter of the occipital lobes (Fig. 2B). A univariate voxel- 
wise VBM and TBM analysis showed posterior thalamic at
rophy but no other abnormalities in C9orf72 asymptomatic 
carriers (Fig. 2C).

C9orf72 symptomatic carriers versus non-carriers
The global-to-local segment results were topographically 
similar to those found in the asymptomatic group, but 
more pronounced size changes were observed when compar
ing the symptomatic carriers to the non-carriers (Fig. 3A). 
Similarly, shape changes in the motor cortex were highly sig
nificant in the group of symptomatic carriers (Fig. 3B), ac
companied by widespread changes predominantly in the 

frontal lobes (compared with non-carriers) but extending 
to other regions as well. A univariate voxel-wise VBM and 
TBM analysis demonstrated extensive atrophy in the frontal 
and anterior temporal lobes, as well as the basal ganglia com
pared with the non-carriers (Fig. 3C).

GRN carriers versus non-carriers
In the asymptomatic GRN carriers, univariate analysis and 
global-to-local segment results did not reveal any differences 
with the non-carriers. Using spectral clustering, widespread 
size differences were found at all segmental levels when com
paring symptomatic carriers to non-carriers, with a predom
inance in the prefrontal grey and white matter (Fig. 4A). The 
spectral clustering analysis showed that symptomatic GRN 
mutation carriers displayed widespread shape changes in 
the frontal and parietal regions (including the precuneus), 
as well as the cerebellum (Fig. 4B). The changes in symptom
atic carriers versus non-carriers were already detected at the 
2nd global level of segmentation and persisted at higher le
vels. By means of univariate analysis, GRN symptomatic car
riers demonstrated extensive atrophy in the frontal and 
anterior temporal lobes, as well as the basal ganglia com
pared with non-carriers (Fig. 4C).
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Microtubule-associated protein tau carriers versus 
non-carriers
Univariate analysis and spectral clustering did not reveal any 
difference in the asymptomatic MAPT carriers versus the non- 
carriers. The size analysis in the symptomatic carriers revealed 
changes at all segmental levels compared with non-carriers, 
with prominent atrophy in the anterior temporal lobe, fronto
basal region and basal ganglia (Fig. 5A). Symptomatic carriers 
displayed shape changes in the motor cortices, as well as in the 
white matter compared with non-carriers (Fig. 5B). Changes 
were identified across all levels of segmentation and focused 
on the white matter. The VBM and TBM atrophy pattern in 
MAPT symptomatic carriers compared with non-carriers 
was slightly different compared with the C9orf72 and GRN 
groups with the most pronounced atrophy in the anterior tem
poral lobes, frontobasal region and basal ganglia (Fig. 5C).

Effect of clinical phenotype and 
comparison across size and shape 
results
Within the thresholded maps for symptomatic partici
pants, we tested whether the distinct clinical phenotypes 

differentially contributed to the size and shape differences 
(Fig. 6A). For the symptomatic c9orf72 carriers, where size 
changes were found in the thalamus and frontotemporal 
cortex, differences were observed between the clinical phe
notypes (F(2,53) = 6.58, P = 0.003). Post hoc testing re
vealed that the size changes were more pronounced in the 
bvFTD phenotype compared to the (FTD-)ALS phenotype 
(Tukey–Kramer P < 0.05). For shape changes, no differ
ences were found between the different C9orf72 pheno
types (F(2,53) = 0.66, P = 0.521). No differences between 
phenotypes were found for size or shape changes in the 
GRN group (P > 0.242).

Dice coefficients were calculated to compare the overlap 
between global-to-local segment results in the asymptom
atic and symptomatic C9orf72 carriers, and the symptom
atic GRN and MAPT carriers (Fig. 6B). The overlap of the 
thresholded maps of asymptomatic C9orf72 carriers was 
consistently highest with the symptomatic C9orf72 car
riers. Between all symptomatic groups, substantial overlap 
was found between the thresholded maps for size differ
ences. We also calculated the overlap between thresholded 
maps of size and thresholded maps of shape differences: on 
average, their overlap was low (Fig. 6B, mean dice coeffi
cient: 0.18).
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Discussion
We applied a recent method based on hierarchical spectral 
clustering to analyze a large multicentric data set of struc
tural MRI scans obtained in symptomatic and asymptomatic 
autosomal-dominant FTD mutation carriers and non- 

carriers. In particular, in asymptomatic C9orf72 expansion 
carriers, spectral clustering revealed changes in segmental 
size that more conventional methods detected only at the 
symptomatic stage. Furthermore, the method allows for ana
lysis of shape and this demonstrated significant changes in re
gions known to be involved in C9orf72 pathophysiology but 
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not seen with the conventional methods. Third, spectral clus
tering revealed a large number of significant changes in the 
symptomatic phase of FTD mutations that closely corre
sponded to those seen also with the univariate approaches, 
thus suggesting that spectral clustering is sensitive to pick 
up these known effects as well as additional changes.

Size and shape changes in 
asymptomatic individuals
In the asymptomatic phase of C9orf72, the novel method 
had a higher sensitivity than voxel-wise methods. These con
ventional methods only revealed abnormalities in the poster
omedial thalamus (or medial pulvinar), in line with a number 
of previous reports,5,6,23 while our method additionally 
showed highly significant size changes in medial temporal, 
orbitofrontal and medial frontal cortex and insula. 
Atrophy in the pulvinar, which is part of the limbic system, 
has been linked to attentional deficits5 as well as altered 
pain perception24 in C9orf72 carriers. Disrupted connectiv
ity of the posteromedial thalamus has been correlated with 
more severe behavioural symptoms.25 Atrophy of the orbito
frontal cortex and insula was previously associated with im
paired social cognition in C9orf72 carriers.26 Atrophy of the 
medial temporal lobe has been observed in C9orf72 carriers 
with the ALS-FTD phenotype, whereas it was absent in car
riers presenting with ALS.27 Here, the size differences were 
most prominent in symptomatic C9orf72 carriers presenting 
with bvFTD compared with other phenotypes. This is con
sistent with early size changes occurring in regions related 
to the bvFTD phenotype in asymptomatic individuals.

The location of changes detected in asymptomatic C9orf72 
expansion group corresponded to the location of most 
changes found with conventional TBM/VBM in the symp
tomatic group and in the literature.3,6,26 This colocalization 
of changes in the asymptomatic group with changes in the 
symptomatic group increases the likelihood that the method 
identifies the earliest FTD-related changes, although longitu
dinal data is needed to confirm this hypothesis. Interestingly, 
highest significance in medial temporal cortex is reached at 
the sixth level of segmentation and decreases at the eight level. 
This may explain why it remains below the detection thresh
old of voxel-based analyses and demonstrates the value of 
varying levels of granularity in the analysis as some changes 
may be more readily detectable at a lower level of resolution. 
Our findings, which replicate results obtained using a recent 
detailed atlas-based method,7 may reflect the fact that the 
medial temporal cortex is affected relatively early. The iden
tification of the spatial extent of hippocampal involvement 
exemplifies an important advantage of our method which ex
amines brain changes at different levels of granularity based 
on a data-driven partitioning algorithm.

There was also a clear advantage of analyzing changes in 
shape, which resulted an atrophy pattern distinct from the 
size changes. In asymptomatic as well as symptomatic 
C9orf72 carriers, changes in shape were detected in pre
motor cortex. There is a known vulnerability of motor 

cortex in this disease which may cause either FTD or 
ALS.28 Using fluorine 18-labeled fluorodeoxyglucose posi
tron emission tomographic imaging, hypermetabolism was 
observed in this region in the majority of asymptomatic 
C9orf72 expansion carriers compared to controls,29 possibly 
reflecting neuroinflammation. Given the location near the pri
mary motor cortex and the vulnerability of the upper motor 
neuron system in C9orf72, there are strong neurobiological 
arguments to consider this difference in shape in the asymp
tomatic and the symptomatic C9orf72 expansion carriers 
versus non-carriers as a true-positive effect. Furthermore, 
significant changes in shape were present in asymptomatic 
carriers in the lateral prefrontal cortex. These widespread 
prefrontal changes were more prominent at the sixth level 
of segmentation than at the eighth. An interesting next 
step would be to derive the segments from this analysis 
with the highest significance for detecting presymptomatic 
changes (which may be either the sixth or eighth level) and 
determine in an independent dataset how well asymptomat
ic individual cases can be discriminated from non-carriers 
based on the values obtained in these segments. More gener
ally, a classifier could be trained on a training data set so that 
the best segments for classification are defined and then used 
in a test set.30 Such individual-level analyses could be used 
for early diagnosis, disease progression monitoring31 or to 
study the effect of new drugs.

In the asymptomatic MAPT and GRN mutation carriers 
no changes were found with the conventional or the novel 
methods. Cash et al.6 reported changes in these groups 
with VBM in the medial and anterior temporal lobe and 
the posterior insula, respectively, but these were limited in 
extent and were only present at a low significance threshold. 
Bocchetta et al.7 reported discrete abnormalities in these gen
etic groups at a lower significance threshold (FDR correction 
using ‘pdep’32), which were also present in our data set at this 
threshold: we observed size changes in the precuneus in 
MAPT asymptomatic carriers and shape changes in the stri
atum of GRN asymptomatic carriers. One can only speculate 
about the reasons why presymptomatic changes are much 
harder to detect in these two mutation groups than in 
C9orf72 expansion carriers. In MAPT, the phase preceding 
the symptomatic phase may be relatively rapidly progres
sive33 so that asymptomatic carriers who are farther re
moved from symptom onset do not yet show detectable 
structural changes. In MAPT, grey matter atrophy was ob
served in a subset of asymptomatic carriers.34 Our statistical 
analyses, which test between-group differences, may not be 
sensitive to atrophy existing only in a small number of parti
cipants. In GRN the changes may be more asymmetrical and 
the method as it is currently implemented would not be able 
to detect these asymmetries.

Size and shape changes in 
symptomatic individuals
In symptomatic GRN mutation carriers the pattern obtained 
with hierarchical spectral clustering matched that seen with 
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the conventional methods. Furthermore, we found more ex
tensive white matter size differences in the symptomatic 
GRN mutation carriers with spectral clustering than with 
conventional methods, most significantly so in frontal white 
matter. An increased volume of white matter hyperintensi
ties has been reported before in symptomatic GRN muta
tion carriers mainly in the frontal and occipital lobe.35,36

In the asymptomatic GRN mutation carriers, a correlation 
has been found between white matter hyperintensity vo
lumes and time to expected disease onset.36 These hyperin
tensities are associated with grey matter atrophy and 
biomarker changes (GFAP and NfL).37 In symptomatic 
MAPT mutation carriers, the well-known prominent involve
ment of the anterior temporal pole seen with conventional 
analyses4,33 was also observed with the hierarchical spectral 
clustering approach.

Comparison to other segment-based 
methods
Image segmentation is important to help clinicians and re
searchers to focus on specific regions of the brain.38 In that 
sense, our hierarchical segmentation presents a global-to-local 
definition of regions to be analyzed statistically. This is a ‘div
ide and conquer’ strategy keeping the multiple testing burden 
into account in comparison to voxel-by-voxel-based analyses. 
Besides the hierarchical implementation the proposed segmen
tation is also different to related literature in two main aspects. 
First, related voxel-based clustering techniques operate at the 
level of an individual image, considering the voxels as a collec
tion of datapoints to be grouped based on intensity.38 In con
trast, the proposed clustering is defined at the level of a 
population, in which similarity between voxels is expressed 
by correlated variance or covariance of voxel features (shape 
coded by Jacobians) within the population sample. To the 
best of our knowledge, this is the first such population-based 
approach, for which some technical challenges related to 
data size and complexity were solved in Gors et al.14 Second, 
related voxel-based clustering techniques aim at segmenting 
anatomically or functionally defined regions, typically evalu
ated against manual expert segmentations. In contrast, the pro
posed segmentation does not aim to segment the brain into 
specifically known regions but instead the aim is to group 
into population correlated regions. The idea is to provide an 
ensemble of correlated datapoints within a single segment as 
input to statistical testing paradigms.12,13 Therefore, the seg
mentation proposed is not to be evaluated against expert seg
mentations but tested based on statistical power as illustrated 
in this work.

As expected, our results show a significant overlap with prior 
findings based on atlas-based methods.3,7,8 Furthermore, our 
approach shows how the use of different atlases containing re
gions of interests of different sizes, may lead to conflicting re
sults. The fact that we offer a hierarchical overview of the 
significance levels in the form of the dendrogram, increases 
the insight into the spatial extent of structural changes irre
spective of a predefined extent based on a particular atlas.

Strengths and future directions
A benefit of a global-to-local segmentation is that it relaxes 
the strong dimensionality reduction burden at the global le
vels, which in isolation may lead to loss of information. 
Local volumetric patterns are representatively described 
(and analyzed) at the local levels. It is therefore not needed 
that the local variations are expressed in the form features 
of the global levels as well. Furthermore, complete form fea
tures at the global levels would introduce redundancy be
tween the levels and actually counters the analyses of the 
global form effects that are equally of interest.

Further extensions and modifications to the hierarchical 
spectral clustering method can be foreseen. For instance, 
the choice of eight (fixed) levels was based on pragmatic rea
sons, allowing for sufficiently fine-grained analysis, on the 
one hand, and, on the other hand, avoiding an inflation of 
number of segments and therefore controlling the multiple 
testing burden. Importantly, this choice was made a priori. 
Conceivably, the number of levels can also be adapted to 
the features of the segments themselves, such as homogen
eity. For some segments, such as CSF, the binary subdivision 
could stop already at a relatively early level when the seg
ments exhibit homogeneity. Other segments, such as medial 
temporal cortex or thalamus, have such an intricate inherent 
structure that further segmentation beyond the eighth level 
when this is warranted by the homogeneity measure. A re
lated matter is the binary nature of the division of the seg
ments per level. Based on the segmental homogeneity one 
could easily imagine a division in multiple segments.

Limitations
To date, we have demonstrated the merit of global-to-local 
segmentation in Alzheimer’s disease14 and here in FTD. The 
segments in which structural changes were linked to mono
genic FTD, will require further out-of-sample validation in 
other genetic FTD cohorts before clinical translation is in or
der. In its current implementation, our technique (including 
segmentation, feature extraction and evaluated hypothesis) 
is not designed to detect asymmetry, which is typically present 
in the brains of the GRN carriers.23 Asymmetry detection 
asks for identification of group changes in intra-individual 
differences between the left and right hemispheres. A first 
step in making the approach adequate for this contrast is 
introducing a symmetric segmentation. The second step is de
fining size and shape features that measure the amount of 
asymmetry as differences between left and right. In the con
ventional shape space, the symmetric variations explain the 
major variability within the Jacobian maps, while the asym
metric variations have only minor contribution to it. 
Therefore, parallel analyses retain mainly the symmetrical- 
related PCA coefficients. An alternative is to subtract the 
Jacobian values of the left part of a segment from the corre
sponding right part of the segment before PCA training. 
The resulting shape coefficients represent the pattern of asym
metrical variability within the segment.
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The current report evaluates the merits of the novel meth
od at the group level. In clinical research, detection of change 
at the individual level is of increasing importance as it may in
form selection of individuals for therapeutic trials. Hence, a 
relatively straightforward extension will be the application 
of a classifier based on segments derived based on hierarchical 
spectral clustering on single patient data. A consideration is 
that more study is needed on the relation between participant 
characteristics such as age (included as covariate here), educa
tion, disease severity, … and the structural changes observed 
in this report. Previous reports indicated that higher educa
tional attainment relates to slower loss of grey matter over 
time in carriers of FTD mutations.39 Further investigation is 
not straightforward in the current data set because of multi
collinearity between for instance age, education and disease 
severity (measured using CBI-R and FRS). It is possible that 
a single-case approach can not only rely on neuroimaging 
data but should also consider other individual characteristics.

Finally, even though the asymptomatic group of mono
genetic FTD offers a unique insight into the early stages of 
the disease, the comparisons made here between the asymp
tomatic and symptomatic groups are cross-sectional and re
main to be confirmed through longitudinal follow-up.

Conclusions
To summarize, the merits of the hierarchical spectral cluster
ing versus the conventional methods was most evident in the 
asymptomatic C9orf72 carriers. This demonstrates the ad
vantage of data-driven segments at varying degrees of granu
larity in their entirety rather than at a voxel level in this 
disease. In MAPT and GRN groups, global-to-local segment 
results converged with the focal changes also seen with the 
conventional univariate method.
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