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Abstract: in this work we address the question of asymptotic stability of linear
delay differential equations (DDEs) with time periodic coefficients, a class which
is recognized to be fundamental in machining tool.
Since the dynamics of such a class of delay systems is governed by the dominant
eigenvalues (multipliers) of the monodromy operator associated to the system of
DDEs, i.e. the solution operator over the period of the coefficients, we discretize
it by using pseudospectral differencing techniques based on collocation and
approximate the dominant multipliers by the eigenvalues of the resulting matrix.
The use of pseudospectral methods has already been proposed in the context
of simpler DDEs. Here we fully generalize the method to the class of linear
time periodic coefficients DDEs with arbitrary period and multiple discrete and
distributed delays.
The scheme is shown to have spectral accuracy by means of several numerical
examples.

Keywords: delay differential equations, periodic coefficients, characteristic
multipliers, monodromy operator, pseudospectral methods

1. INTRODUCTION

Nowadays many phenomena arising from engi-
neering as well as from physical and biological
sciences are modeled with systems of differential
equations involving delay terms. The presence of
the delay makes models better suit real dynamics
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di Matematica, Università degli Studi di Trento, Italy

and permits a deeper understanding of phenom-
ena behavior. In spite of this, the introduction of
past-dependence in the evolution of a system in-
creases its complexity since, opposite to ordinary
differential equations, delay models are infinite
dimensional systems and their integration and/or
study of their stability properties require much
more effort. Moreover, delay terms are important
since they may change the system dynamics dras-
tically, inducing dangerous instability and lost of
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performance as well as improving stability. The
asymptotic stability of constant coefficients de-
lay systems has been treated extensively in sev-
eral monographs (Niculescu, 2001; Stepan, 1989;
Bellen and Zennaro, 2003) either from the an-
alytical and from the numerical point of view,
giving raise to a collection of techniques for the
computation of the stability boundaries.

With respect to the constant coefficients case,
the situation is even more complicated when time
periodic coefficients occur as system parameters.
Such cases are fundamental for instance in ma-
chine tool vibrations (Butcher et al , 2004), but
also in other engineering fields such as parametric
control of robotic systems (Insperger and Stepan,
2000), neural networks (Hagan et al , 1996) and
optimal control (Deshmukh et al , 2004). The
question of asymptotic stability for this class of
systems is more challenging than for time peri-
odic systems without delay, for which the well-
established Floquet theory allows one to deter-
mine stability from the eigenvalues of the Floquet
transition matrix. An extension of this theory has
been shown (Hale and Verduyn Lunel, 1993) to
be suitable for delay systems with periodically
varying parameters, where a monodromy opera-
tor can be defined playing the role of an infinite
dimensional Floquet transition matrix.

In the last decade, a few numerical methods have
been proposed to address the study of the as-
ymptotic stability of time periodic delay systems
including time finite element analysis (Bayly et al ,
2001), numerical simulation (Zhao and Balachan-
dran, 2001), statistical signal variance (Schmitz
et al , 2002), harmonic balance and infinite deter-
minants (Budak and Altintas, 1998), approxima-
tion of the delay by weighted integrals (Insperger
and Stepan, 2000) and semi-discretization method
(Insperger and Stepan, 2004). Other interesting
papers are (Szalai et al , 2006; Verheyden et
al , 2005).

More recently, pseudospectral differencing tech-
niques (Trefethen, 2000) have been applied in
(Breda et al , 2005) for the computation of the
characteristic roots of systems of linear DDEs
with constant coefficients by discretizing the infin-
itesimal generator of the semigroup of solution op-
erators associated to the system. The discretiza-
tion of the solution operator with similar tech-
niques has been presented first in (Breda, 2004)
for the constant coefficients case with multiple dis-
crete and distributed delays. This work represents
a natural extension of the above techniques to the
discretization of the monodromy operator, i.e. the
idea is therefore to compute the eigenvalues of the
resulting discretization matrix as approximations
to the exact Floquet multipliers, i.e. the eigen-
values of the monodromy operator. Also Beuler

(2004) proposed to compute approximations to
the monodromy operator by means of pseudospec-
tral differencing methods for systems with integer
delays. Here the method is presented for the most
general class of linear time periodic DDEs with no
restriction between period and maximum delay or
between the delays themselves.

After a brief recall of the extended Floquet theory
in Section 2, the discretization scheme is presented
in detail in Section 3 and 4 and spectral accuracy
(Trefethen, 2000) of the method is shown by
means of numerical examples in Section 5.

2. MODEL AND ASYMPTOTIC STABILITY

In this section we briefly recall from (Hale and
Verduyn Lunel, 1993, §8.1) the extended Floquet
theory for linear time periodic DDEs. We consider
the most general class of linear DDEs described by

y′(t) =

0
∫

−τ

[dθη(t, θ)]y(t + θ), t ∈ R, (1)

where τ is the maximum delay and η(t, θ) is an
m × m matrix function of bounded variation in
θ ∈ [−τ, 0] for each t ∈ R and periodic in the
argument t with period ω > 0, i.e. η(t + ω, θ) =
η(t, θ).

Let X be the Banach space C ([−τ, 0], Cm) equip-
ped with the supremum norm. For any s ≥ 0
and ϕ ∈ X there is a solution y = y(·; s, ϕ)
of (1) defined on [s, +∞) with initial function
ϕ ∈ X . The solution operator is defined as the
linear bounded operator on X given by

T (t, s)ϕ = yt(s, ϕ), ϕ ∈ X, (2)

for all t ≥ s where yt(θ; s, ϕ) = y(t + θ; s, ϕ),
θ ∈ [−τ, 0], is the state of (1) at time t. Now, let
the monodromy operator U : X → X be defined
by

Uϕ = T (ω, 0)ϕ = yω.

Since ω > 0, there exists an integer q > 0
such that qω ≥ τ and hence U q = T (qω, 0)
is compact. By the polynomial spectral theorem
and the theory of compact operators it can be
shown that the spectrum σ(U) of U is an at
most countable compact set of C with the only
possible accumulation point being zero. Moreover
any element µ in σ(U) \ {0} is an eigenvalue of U
and is called a characteristic or Floquet multiplier
of (1).

It can be shown that the zero solution of (1) is
uniformly asymptotically stable if and only if all
characteristic multipliers of (1) have moduli less
than 1. Therefore the idea is to get approxima-
tions to the dominant multipliers by computing
the eigenvalues of a matrix discretization of the



infinite dimensional operator U which is obtained
by a collocation technique based on pseudospec-
tral differencing methods (Trefethen, 2000).

3. NUMERICAL DISCRETIZATION OF THE
SOLUTION OPERATOR

Goal of this section is to find out a matrix dis-
cretizing the solution operator T (s+∆, s) defined
in (2) and this can be scored by building discrete
approximations to the initial state ϕ ∈ X and to
the state ys+∆(s, ϕ) ∈ X . We assume that ∆ := τ

k

where k is a positive integer.

For fixed N , N positive integer, let θi, i =
0, . . . , N , be the Chebyshev nodes on the interval
[−1, 0] given by

θi =
1

2

(

cos

(

iπ

N

)

− 1

)

and tn,i, n = 0, . . . , k, i = 0, . . . , N , the points in
[s − τ, s + ∆] defined as (Figure 1)

tn,i = s + ∆(1 − n + θi). (3)

Observe that tn,0 = tn−1,N for all n = 1, . . . , k.
Among these points, select those in the delay
interval [s − τ, s] which define the mesh

ΩN = {tn,i, n = 1, . . . , k, i = 0, . . . , N} .

and replace the continuous space X by the dis-
crete space XN = (Cm)ΩN ∼= Cm(1+kN).

p
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Figure 1. Discretization points in [s − τ, s + ∆].

Given the vector in XN

x(0) =
(

xT
1,0, x

T
1,1, . . . , x

T
1,N , xT

2,1, . . . , x
T
k,N

)T
,

where xn,i = x(0)(tn,i), n = 1, . . . , k, i = 0, . . . , N ,
consider the piecewise polynomial p defined on
[s − τ, s + ∆] as

p(t) = pn(t), t ∈ [tn,0, tn,N ], n = 0, . . . , k,

where pn, n = 1, . . . , k, is the unique N -degree
polynomial interpolating the values xn,i on the
nodes tn,i, i = 0, . . . , N , while, for n = 0, p0 is
the N -degree polynomial obtained by collocation
of (1) on the nodes t0,i, i = 0, . . . , N − 1, and by
continuity with p1 in t0,N = t1,0 = s:


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

p′0(t0,i) =

0
∫

−τ

[dθη(t0,i, θ)]p(t0,i + θ)

p0(s) = p1(s)

or

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p′0(t0,i) =

tk,0
∫

−τ+t0,i

[dση(t0,i, σ − t0,i)]pk(σ)+

+
k−1
∑

n=1

tn,0
∫

tn+1,0

[dση(t0,i, σ − t0,i)]pn(σ)+

+

t0,i
∫

s

[dση(t0,i, σ − t0,i)]p0(σ)

p0(s) = p1(s).

Now, by setting

x0,i = p(t0,i), i = 0, . . . , N,

and by using the Lagrange representation of pn:

pn(t) =

N
∑

j=0

ln,j(t)xn,j

for t ∈ [tn,N , tn,0], n = 0, . . . , k, where

ln,j(t) =

N
∏

i=0, i6=j

t − tn,i

tn,j − tn,i

are the Lagrange basis polynomials relevant to the
nodes (3), one obtains:

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N
∑

j=0

{

l′0,j(t0,i)Im−

−
t0,i
∫

s

[dση(t0,i, σ − t0,i)]l0,j(σ)

}

x0,j =

=

N
∑

j=0

{ tk,0
∫

−τ+t0,i

[dση(t0,i, σ − t0,i)]lk,j(σ)xk,j+

+

k−1
∑

n=1

tn,0
∫

tn+1,0

[dση(t0,i, σ − t0,i)]ln,j(σ)xn,j

}

,

x0,N = x1,0,
(4)

where i = 0, . . . , N−1 and Im is the m×m identity
matrix.

By considering the vector x(0) as a discrete version
of the initial state ϕ in (2), the vector in XN

x(∆) =
(

xT
0,0, x

T
0,1, . . . , x

T
0,N , xT

1,1, . . . , x
T
k−1,N

)T

turns out to be a discrete version of the state
yt(s, ϕ). We can write

x(∆) = TN (s + ∆, s)x(0) (5)

and the matrix TN (s + ∆, s) has the form

TN (s + ∆, s) =

(

AN

BN

)

,

BN =

















0 ImN 0 · · · · · · 0 0
0 0 ImN 0 · · · · · · 0

. . .

. . .

0 0 · · · · · · 0 ImN 0



















where the zeros in BN are matrices, AN can be
obtained by (4) and BN corresponds to the part
of x(0) shifted to x(∆).

It is now evident that (5) is the discrete counter-
part of (2). Note that when ∆ = τ , i.e. k = 1,
TN(s + ∆, s) is made only of the matrix AN .

4. NUMERICAL DISCRETIZATION OF THE
MONODROMY OPERATOR

The cases ω ≤ τ and ω > τ are treated separately.

In the case ω ≤ τ , let us set

τ ′ = kω, k =
⌈ τ

ω

⌉

,

where ⌈z⌉ is the smallest integer ≥ z and consider
τ ′ ≥ τ as the new maximum delay for (1).
As a discrete approximation of the monodromy
operator U = T (ω, 0) we take UN = TN(ω, 0).
Note that if ω = τ , then k = 1 and τ ′ = τ .

In the case ω > τ , let us set

τ ′ =
ω

h
, h =

⌊ω

τ

⌋

,

where ⌊z⌋ is the greatest integer ≤ z and use
τ ′ ≥ τ as the new maximum delay for (1). Since

U = T (ω, 0) = T (hτ ′, (h − 1)τ ′) · · ·T (τ ′, 0),

the operator U is then approximated by

UN = TN(ω, 0) = TN (hτ ′, (h − 1)τ ′) · · ·TN (τ ′, 0).

The eigenvalues of UN approximate (a finite num-
ber of) the characteristic multipliers of (1) as it
will be shown in Section 5.

5. NUMERICAL RESULTS

We first investigate the so-called damped delayed
Mathieu equation (Insperger and Stepan, 2004):

y′′(t)+κy′(t)+

(

δ + ε cos

(

2πt

ω

))

y(t) = by(t−τ).

(6)
In Figure 2 we show the first dominant eigenvalues
of (6) approximated with the proposed technique
using N = 100. It can be seen that the dominant
multiplier is outside the unit disk, hence the sys-
tem is asymptotically unstable. Moreover it can be
noticed how the multipliers with smaller modulus
accumulate at zero. As to show the spectral accu-
racy behavior (Trefethen, 2000) of the numerical
scheme, i.e. the error between an exact multiplier
and its approximation is O

(

N−N
)

, we compute
approximations to the dominant multiplier for
N = 1, . . . , 50 and compare the results with a
much more accurate value (more than 13 digits)
obtained with a larger number of discretization
points (N = 100). Results are depicted in Figure
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−3
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ℜ (µ)

ℑ(
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max|µ|

Figure 2. Approximated eigenvalues for (6) with
b = −1.5, κ = 0.2, ε = 2, τ = ω = 2π and
δ = 1.

3 for the case ω = τ = 2π and can be compared
with the results in (Insperger and Stepan, 2004).
Moreover, to show the correctness of the method
also for the cases ω 6= τ , we present some results
in Figure 4 for τ = 2π and ω =

√
2π = τ/

√
2 (top

row) and ω = 2
√

2π =
√

2τ (bottom row).
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Figure 3. Absolute value (left column), error (cen-
ter column) and CPU time (seconds, right
column) of dominant eigenvalue for (6) with
b = −1.5, κ = 0.2, ε = 2, τ = ω = 2π and
δ = 0 (top row), δ = 1 (bottom row).

Given the rapid convergence, the method is suit-
able to compute stability charts, i.e. the set of
stable/unstable regions in the plane of two uncer-
tain system parameters. This is done using the
algorithm presented in (Breda et al , 2005). In
particular, the autonomous case ε = 0 for equa-
tion (6), the so-called Hsu-Bhatt-Vyshnegradskii
stability chart, is shown in Figure 5 (green regions
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Figure 4. Absolute value (left column), error (cen-
ter column) and CPU time (seconds, right
column) of dominant eigenvalue for (6) with
b = −1.5, κ = 0.2, ε = 1, τ = 2π and δ = 1,
ω =

√
2π = τ/

√
2 (top row) and δ = 2,
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are stable). Other stability charts for the general
equation (6) with ε = 1 are presented in Figure 6
for different choices of the ratio ω

τ
. Compare all the

results with those in (Insperger and Stepan, 2004).

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

δ

b

k=0 

k=0.2 

k=0.1 

Figure 5. Hsu-Bhatt-Vyshnegradskii stability
chart of equation (6) with ε = 0 and τ = 2π.

A more general form of the delayed damped Math-
ieu equation concerning a distributed delay term
is the following (Insperger and Stepan, 2004):

y′′(t) + κy′(t) + c0(t)y(t) = c1

0
∫

−1

w(θ)y(t + θ)dθ

(7)
where

c0(t) = c0δ + c0ε cos

(

2πt

ω

)

, w(θ) = −π

2
sin (πθ).

Results about the approximation of the dominant
multiplier are shown in Figure 7 for ω = 1/2,
κ = 0, c0δ = 10π2 and c1 = −π2 (top row) and
c1 = π2 (bottom row) and it can be seen that
spectral accuracy holds even for the distributed
delay case.

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

δ

b

k=0 
k=0.1 

k=0.2 

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

δ

b

k=0 k=0.1 

k=0.2 

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

δ
b

k=0 
k=0.1 

k=0.2 

−1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

δ

b

k=0 
k=0.1 

k=0.2 
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