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Abstract: We deal with differential conditions for local optimality. The conditions we derive for inequality
constrained problems do not require constraint qualifications and are the broadest conditions based only on
first and second order derivatives. A similar result is proved for equality constrained problems, although
necessary conditions require regularity of the equality constraints.
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1. INTRODUCTION

In this paper we deal with the following problem:

max f0(x)

fi(x) ≥ 0 i = 1, . . . ,m
(1)

where fi : Rn → R, i = 0, . . . ,m, are twice differentiable maps and the maximization is local. In (1) only
inequality constraints are considered. We prefer to deal separately with the case in which equality constraints
are also included, and postpone this case to Section 4.

The characterization of the local maxima of (1) by differential conditions has been object of extensive
research starting from the pioneering paper by Kuhn and Tucker [11] and the earlier result by Karush
[10]. All results related to necessary and sufficient differential conditions require additional assumptions on
the constraint behavior near the optima. These assumptions have been generally referred to as constraint
qualifications (CQ). Although investigation on several types of constraint qualifications has started long ago
(we only mention the results by [2], [12], [1]) the subject is still focus of intense research as recent papers
show. Among many others, we mention in particular [4], [9], [13], [14]. Recently the attention has been also
devoted to extending the constraint qualifications to more complex problems. See [17], [8], [6]. We mention
in particular [14] in which the gap between necessary and sufficient conditions for optimality is closed in the
case of polynomial problems by resorting to an elaborate mathematical formulation.

If the optimality conditions are limited to the inspection of the first and second order derivatives there
is no way to prevent the gap, but there is a possibility to free the conditions from constraint qualifications.
The key is an old result by Wan [16] which was proved in the context of multi objective optimization.
Instead of building a Lagrangean function f0(x) +

∑
i λi fi(x), we reformulate (1) as an unconstrained

Pareto optimization problem with the (m + 1) criteria (f0, . . . , fm), where all functions play the same role
and there is no dichotomy between objective and constraints. We then apply the differential conditions
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for Pareto optimality stated in [16] and derive necessary and sufficient conditions which embed the known
results as particular cases.

We remark that also Ben Tal [3] obtained conditions without constraint qualifications but at the expense
of having multipliers which are functions of feasible directions and are not fixed. This makes the conditions
not easily manageable.

An important feature of the conditions derived in this paper is that they are the broadest conditions
one can state by using only first and second order derivatives. By this we mean that if a point is a local
maximum whose optimality can be detected by means of first and second order conditions, then optimality is
detected also from the conditions stated in this paper. Conversely if a point is not a local maximum and its
nonoptimality can be detected by means of first and second order conditions, then nonoptimality is detected
also from our conditions.

2. PARETO OPTIMALITY CONDITIONS

Let F (x) = (f0(x), . . . , fm(x))>. In the sequel we use the following notation for two vectors a and b:
a > b means ai > bi for each i; a ≥ b means ai ≥ bi for each i and a 6= b; a >= b means ai ≥ bi for each i. Let
us consider the following alternative definitions of Pareto optima:

Definition 1: A point x̂ ∈ Rn is weakly Pareto optimal (WP) if there exists a neighborhood N of x̂ such
that F (x) > F (x̂) for no x ∈ N .

Definition 2: A point x̂ ∈ Rn is Pareto optimal (P) if there exists a neighborhood N of x̂ such that
F (x) ≥ F (x̂) for no x ∈ N .

Definition 3: A point x̂ ∈ Rn is strongly Pareto optimal (SP) if there exists a neighborhood N of x̂ such
that F (x) >= F (x̂) for no x ∈ N , x 6= x̂.

The following implications hold trivially

x̂ is SP =⇒ x̂ is P =⇒ x̂ is WP (2)

Let us denote by DF (x) and D2F (x) respectively the first and second order derivatives of F at x. Let
p := m + 1− rank DF (x) = dim kerDF (x)>, Q(x) : Rm+1 → Rp be any linear surjective operator such that
Q(x) DF (x) = 0, and

K(x) :=
{
h ∈ Rn : DF (x) h >= 0

}
In the sequel we may occasionally drop in the notation the dependence on x of DF (x), D2F (x), Q(x) and
K(x) if the context makes it clear. Note that, by definition, the rows of Q are linearly independent and span
ker DF>. We may now state the following differential conditions proved in [16]:

Condition P1 (first order necessity): If x is WP, then there exists π ∈ Rm+1, π ≥ 0, such that π DF (x) = 0.

Condition P2 (first order sufficiency): If ker DF (x) = {0} and there exists π > 0 such that π DF (x) = 0,
then x is SP.
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Condition P3 (second order necessity): If x is WP, then Q(x) D2F (x)(h, h) 6= Q(x) c for any h ∈ K(x),
c > 0.

Condition P4 (second order sufficiency): If there exists π ≥ 0 such that π DF (x) = 0 and

Q(x)D2F (x)(h, h) 6= Q(x) c for any h ∈ K(x), h 6= 0, c >= 0

then x is SP.

We note that, whenever p = 1 (rank DF (x) = (m + 1) − 1), then π may be identified with Q(x)
and Conditions P3 and P4 require the quadratic form π D2F (x) to be negative semidefinite and definite
respectively on K(x). Moreover, if π > 0, then K(x) = kerDF (x). Hence in these cases the stated
conditions become simpler. However, if p > 1 (rank DF (x) < (m+1)− 1) then there are alternative linearly
independent multipliers and, by using the operator Q, it is possible to take care of all of them simultaneously.
This provides a stronger condition than working with just the vector π (or any vector obtained as linear
combination of the rows of Q). Example 3 in Section 5 shows that working with just the vector π fails in
detecting the optimum while by using Q the optimum is identified.

If p = 0 then kerDF (x)> = {0} (obviously fulfilled only if n ≥ m + 1) and clearly x cannot be optimal
by P1. Note the existence of a first order sufficient condition (obviously fulfilled only if n ≤ m). We also
note that a stronger first order sufficiency condition is provided by K(x) = {0}. We omit the proof which
can be found in [15].

Corollary P2 (first order sufficiency): If K(x) = {0} then x is SP.

3. CONDITIONS FOR LOCAL MAXIMA

Now we link Conditions P1-P4 with problem (1). We assume without loss of generality that all con-
straints are active at x̂, i.e. fi(x̂) = 0, i = 1 . . . , m (we may always take neighborhoods feasible for the
nonactive constraints). Then a local maximum is defined as:

Definition 4: A point x̂ is a maximum (M) if there exists a neighborhood N of x̂ such that f0(x) > f0(x̂)
and fi(x) ≥ fi(x̂), i = 1, . . . ,m, for no x ∈ N .

Definition 5: A point x̂ is a strict maximum (SM) if there exists a neighborhood N of x̂ such that
fi(x) ≥ fi(x̂), i = 0, . . . ,m, for no x ∈ N , x 6= x̂.

Clearly the following implications hold:

x̂ is SP ⇐⇒ x̂ is SM =⇒ x̂ is M =⇒ x̂ is WP

and therefore we may simply derive from Conditions P1–P4 the following conditions:

Condition M1 (first order necessity): If x is M, then there exists π ∈ Rm+1, π ≥ 0, such that π DF (x) = 0.
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Condition M2 (first order sufficiency): If ker DF (x) = {0} and there exists π > 0 such that π DF (x) = 0,
then x is SM.

Corollary M2 (first order sufficiency): If K(x) = {0} then x is SM.

Condition M3 (second order necessity): If x is M, then Q(x) D2F (x)(h, h) 6= Q(x) c for any h ∈ K(x),
c > 0.

Condition M4 (second order sufficiency): If there exists π ≥ 0 such that π DF (x) = 0 and

Q(x)D2F (x)(h, h) 6= Q(x) c for any h ∈ K(x), h 6= 0, c >= 0

then x is SM.

We note that Condition M1 is the well known Fritz John optimality condition. We recall that if π0 = 0
this necessary condition gives little information because the point is candidate for optimality for any objective
function f0. Indeed CQ have been introduced in order to avoid this degeneracy. On the contrary our approach
needs no CQ since the degenerate cases can be handled by second order conditions. It is worth pointing out
that even if, in degenerate cases, the objective function disappears in Q(x) D2F (x), the dependence on f0

can still be found in K(x).
Condition M2 is a sufficient condition which does not rely on convexity properties of the functions fi. It is

essentially a linear programming complementarity condition with the additional requirement of kerDF (x) =
{0} to rule out second order terms in the solution neighborhood.

Since Conditions P3-P4 are the “broadest” ones based only on first and second order derivatives (as
stated in [16] Theorem 4), also Conditions M3-M4 are the broadest ones in the sense specified in the In-
troduction. This also means that the gap between necessary and sufficient conditions cannot be filled if we
limit ourselves to consider first and second order derivatives.

We shall see from some examples that Conditions M1-M4 can determine optimality or nonoptimality
even in cases where usual CQ do not hold. We briefly recall the most important CQ we shall refer to in
the examples. Let us assume that all constraints are active at x̂. Let F̃ (x) := (f1(x), . . . , fm(x))> and
K̃(x) :=

{
h : DF̃ (x) h >= 0

}
. Then we consider the following CQ:

– constraint regularity (RCQ): rank DF̃ (x̂) = m; in other words π DF (x̂) = 0 only if π0 6= 0;
– Kuhn-Tucker (KTCQ): for every h ∈ K̃(x̂) there exists a function τ ∈ [0, 1] → x(τ) ∈ Rn such that

x(τ) is feasible, x̂ = x(0), dx(τ)/dτ |τ=0 = α h, with α > 0;
– Mangasarian-Fromovitz (MFCQ): there exist h ∈ Rn such that DF̃ (x̄) h > 0. In other words K̃(x̂)

has nonempty interior and no row of DF̃ (x̂) is null;
– Abadie (ACQ): K̃(x̂) equals the Bouligand tangent cone Tx̂ to the feasible set at x̂. We recall that Tx̂

is the set of v ∈ Rn for which there exists a sequence of feasible points x(n) → x̂ and a sequence of positive
scalars λn such that λn(x(n) − x̂) → v.

If the RCQ is fulfilled, then the Conditions M1, M3 and M4 become the well known nonlinear program-
ming conditions with Lagrange multipliers λ such that π = (1, λ). From M2 we may state the following side
result:
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Proposition 1: If m > n, ker DF (x̂) = {0}, and there exist λi > 0 such that Df0(x̂) +
∑

i λi Dfi(x̂) = 0,
then x̂ is SM.

4. EQUALITY CONSTRAINTS

The main result of this paper consists in Conditions M1-M4. Now the obvious question is the extension
of the result to equality constraints. Therefore in this section we deal with the following problem:

max f0(x)

fi(x) ≥ 0 i = 1, . . . ,m

hj(x) = 0 j = 1, . . . , q

(3)

where the functions fi are as above and hj : Rn → R, j = 1, . . . , q, are twice differentiable maps and the
maximization is local. Let F (x) as above and H(x) = (h1(x), . . . , hq(x))>.

The conditions we may state in this case are not as neat as the ones with inequalities. Here regularity
of the equality constraints does play a role in the necessary conditions, and cannot be avoided, unless maybe
a thorough investigation with other tools is carried out, but this is out of the scope of this paper.

We consider the case of equality constraints in two different ways. In the first approach we embed
equalities into (1) by converting them in a standard way into pairs of opposite inequalities, so that we face
the inequality constrained problem:

max f0(x)

fi(x) ≥ 0 i = 1, . . . ,m

hj(x) ≥ 0 j = 1, . . . , q

− hj(x) ≥ 0 j = 1, . . . , q

(4)

However, this approach has the drawback that all feasible points are trivially WP. So the necessary conditions
M1 and M3 are automatically satisfied by all points and no information on candidates to optimality is
provided. Indeed it is immediate to see that condition P1 is always verified. We will return to the necessary
conditions in the second part of this section.

Let us now examine the sufficient conditions. It is useful to keep split in the notation the functions F

and H. By applying condition M2 we ask for

ker

 DF
DH

−DH

 = ker
(

DF
DH

)
= {0}

and multipliers π > 0, µ+ > 0 and µ− > 0 such that π DF + (µ+ − µ−)DH = 0. This is equivalent to ask
for multipliers π > 0 and µ (unrestricted in sign) such that π DF + µDH = 0.

By applying condition M4 we first verify the existence of multipliers π >= 0, µ+ >= 0 and µ− >= 0 (not
all zero) such that π DF + (µ+ − µ−) DH = 0 is satisfied. However, this condition is always verified by the
multipliers π = 0, µ+ = µ− > 0. Let us call trivial the multipliers π >= 0, µ = µ+−µ−, such that (π, µ) = 0.
We shall see shortly that if the condition is satisfied only by the trivial multipliers the second order sufficient
condition gives no information. Let p such that

rank

 DF
DH

−DH

 = rank
(

DF
DH

)
= (m + 1 + 2 q)− (q + p)
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i.e. p = dim ker(DF>, DH>). According to Condition M4 we define a linear surjective operator Q :
Rm+1+2 q → Rq+p such that

Q

 DF
DH

−DH

 = 0 as Q =
(

Q R+ R−

O Iq Iq

)
and this is equivalent to have QDF + R DH = 0, with R = R+ −R−.

We briefly discuss the case when only the trivial multipliers exist. In this case the rows of DF and DH

are together linearly independent (moreover, p = 0 and the matrix Q consists only of the lower part), and
by applying the inverse function theorem the point is not optimal, so Condition M4 cannot hold.

The cone K is defined by K =
{
h : DF h >= 0, DH h = 0

}
. Then M4 is verified if, for no h 6= 0, h ∈ K,

and for no triple of vectors c = (c(1), c(2), c(3)) >= 0 of suitable dimensions, we have

Q

 D2F
D2H

−D2H

 (h, h) = Q

 c(1)

c(2)

c(3)

 (5)

i.e.
(QD2F + R D2H)(h, h) = Qc(1) + R (c(2) − c(3)) (6)

and
0 = c(2) + c(3) (7)

Conditions (7) and c(2), c(3) >= 0 imply c(2) = c(3) = 0, so we ask for

(QD2F + R D2H)(h, h) 6= Qc for any c >= 0 and h 6= 0, h ∈ K (8)

In the second approach, in order to get more meaningful necessary conditions, we use the result that
in a neighborhood of a feasible point x, the set {x : H(x) = 0} is diffeomorphic to an open set in Rn−q if
rank DH = q. Note that we are just assuming the RCQ for the equalities. We implicitly take care of the
equality constraints by considering a diffeomorphism C : Rn−q → Rn such that H ◦ C is identically zero.
Therefore we have D(H ◦ C) = DH DC = 0 and also D2(H ◦ C) = 0, i.e.

D2(H ◦ C)(h′, h′) = D2H (DC h′, DC h′) + DH D2C(h′, h′) = 0 ∀h′ ∈ Rn−q (9)

Note that DH DC = 0 together with rankDH = q imply that the rows of DH span ker DC>.
Then the maximization problem with inequality constraints only is reformulated for the functions

F : Rn−q → Rn → Rm+1, F = F ◦ C

for which DF = DF DC. The optimality conditions are now defined for F . The existence of π ≥ 0 such
that π DF = 0 is equivalent to π DF DC = 0, i.e. (π DF )> ∈ ker DC>, which, by the previous observation,
is in turn equivalent to π DF + µDH = 0, for some µ (unrestricted in sign).

As for the second order conditions, let p := (m+1)− rank DF = dim kerDF> (clearly p is independent
of the diffeomorphism), and Q : Rm+1 → Rp surjective such that QDF = 0, i.e. QDF DC = 0. Again this
is equivalent to (Q, R) : Rm+1+q → Rp surjective such that

QDF + R DH = 0 (10)

The cone K has to be redefined on Rn−q and becomes K =
{
h′ ∈ Rn−q : DF DC h′ >= 0

}
. Note that

DC K = {h ∈ Rn : DH h = 0, DF h ≥ 0}. From (9) and (10) we derive that the evaluation of QD2F(h′, h′)
for h′ ∈ K, is equivalent to the evaluation of (QD2F + R D2H) (h, h) for h such that DF h ≥ 0, DH h = 0.
Summarizing we have the following conditions if equality constraints are present:
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Condition M1’ (first order necessity with equality constraints): If x is M, and the equality constraints
satisfy the RCQ, then there exists π ∈ Rm+1, π ≥ 0, and µ ∈ Rq, such that π DF (x) + µDH(x) = 0.

Condition M2’ (first order sufficiency with equality constraints): If

ker
(

DF (x)
DH(x)

)
= {0}

and there exists π > 0 and µ such that π DF (x) + µDH(x) = 0, then x is SM.

Let K(x) =
{
h ∈ Rn : DF (x) h >= 0, DH(x) h = 0

}
and (Q(x), R(x)) : Rm+1+q → Rp linear surjective

such that Q(x) DF (x) + R(x) DH(x) = 0. An argument similar to the one used to prove Corollary P2 leads
to

Corollary M2’ (first order sufficiency with equality constraints): If K(x) = {0} then x is SM.

Condition M3’ (second order necessity with equality constraints): If x is M and the equality constraints
satisfy the RCQ, then (Q(x)D2F (x) + R(x) D2H(x))(h, h) 6= Q(x) c for any h ∈ K(x), c > 0.

Condition M4’ (second order sufficiency with equality constraints)): If there exists π ≥ 0 and µ such that
π DF (x) + µDH(x) = 0 and

(Q(x) D2F (x) + R(x) D2H(x))(h, h) 6= Q(x) c for any h ∈ K(x), h 6= 0, c >= 0

then x is SM.

5. EXAMPLES

The following examples may give a good idea of the scope of the stated conditions. In all examples the point
to which the conditions are applied is the origin and we drop in the notation the dependence on the point.

In the first example the optimality is detected by first order sufficiency conditions. Examples 2–4
show the application of second order conditions when none of the quoted constraint qualifications holds: in
Examples 2 and 3 optimality is detected by Condition M4, and in Example 4 nonoptimality follows from
Condition M3. Example 5 discusses the unavoidable gap between second order necessary and sufficient
conditions, and Example 6 deals with the maximization of a generic function over a nonconvex set (the
union of two cones). The last two examples consider equality constraints (nonregular in Example 7).

Example 1: Let f1(x1, x2) = −x1, f2(x1, x2) = x2, f3(x1, x2) = x2
1 − x2 and f0(x1, x2) a generic function

with ∂f0/∂x1 > 0. Then K = {0} and optimality is verified by Corollary M2. Note that RCQ and MFCQ
are not satisfied; KTCQ and ACQ are satisfied.
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Example 2: Let f1(x1, x2) = −x3
1 − x2, f2(x1, x2) = x4

1 + x2 and f0(x1, x2) a generic function with
∂f0/∂x1 = 0 and ∂2f0/∂x2

1 < 0. Then K = {h : h2 = 0} and

Q =
(

0 1 1
1 ∂f0/∂x2 0

)
so that

QD2F (h, h) =
(

0
∂2f0/∂x2

1 · h2
1

)
6= Qc =

(
c2 + c3

c1 + c2 ∂f0/∂x2

)
and Condition M4 is satisfied and the origin is optimal. Note that RCQ, KTCQ, MFCQ and ACQ are not
satisfied.

Example 3: this example can be found in [3] and reported also in [5]. In [3] necessary and sufficient
conditions are successfully applied to this example. Their application is more complex than the derivation
below. The functions are the quadratic forms

f0(x1, x2, x3) = −2 x2 x3 −
1
2

x2
1, f1(x1, x2, x3) = −2 x1 x3 −

1
2

x2
2, f2(x1, x2, x3) = −2 x1 x2 −

1
2

x2
3

Then DF = O3×3, K = R3, Q = I3. Hence

QD2F (h, h) =

−4 h2 h3 − h2
1

−4 h1 h3 − h2
2

−4 h1 h2 − h2
3


If QD2F (h, h) ≥ 0 for some h 6= 0, and wlog h1 6= 0, then h2 h3 < 0, i.e. h2 6= 0 and h3 6= 0. Hence also
h1 h2 < 0 and h1 h3 < 0. But the three strict inequalities are incompatible. Therefore Condition M4 is
satisfied and the origin is optimal. None of the quoted CQ holds because the first derivatives vanish at the
origin.

We want to show the role played by Q with respect to the vector π. Given any vector π = {π1, π2, π3} ≥ 0
(“any” because DF = O3×3), the usual second order sufficiency condition calls for negative definiteness of
the matrix

π D2F = −

 π1 2 π3 2 π2

2 π3 π2 2 π1

2 π2 2π1 π3


An analysis of π D2F shows that there is always a positive eigenvalue λ ≥ minπi and so the usual second
order sufficiency condition does not detect optimality. Apparently, requiring all components of QD2F (h, h)
to be nonpositive is stronger than requiring a positive combination of the components to be nonpositive.
Note that the usual second order necessary condition (requiring negative semidefiniteness of π D2F ) cannot
be applied due to the missing CQ.

Example 4: Let f0(x1, x2) = x1, f1(x1, x2) = −x4
1 +x2

1−x2
2. Then K = {h : h1 ≥ 0}, π = Q = ( 0 1 ) and

there exists h ∈ K, h 6= 0, such that π D2F (h, h) = 2 (h2
1 − h2

2) > 0. In this case nonoptimality is detected
by condition M3. Note that π0 = 0 and RCQ, KTCQ, MFCQ, ACQ are not satisfied.
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Example 5: this example (derived from [5] Example 4.2) supports the statement that these are the broadest
conditions using first and second order derivatives. Let f0(x1, x2) = x1 − x2

2 and f1(x1, x2) = −x2
2. Then

K = {h : h1 ≥ 0}, Q = π = (0, 1), π D2F (h, h) = −2 h2
2. Condition M3 is verified but the point is not

optimal. Note that if we change f1 into −x4
1−x2

2, the point is optimal (it is the only feasible point) and DF

and D2F are unchanged. Hence it is impossible to get a certificate of nonoptimality for the example based
only on first and second order derivatives. None of the quoted CQ holds.

Example 6: this example (derived from a similar example in [4]) considers the nonconvex feasible set defined
by two linearly independent row vectors a1 and a2, f1(x1, x2) = (a1 x) (a2 x) ≥ 0, and a generic objective
function f0(x1, x2). Being K = {h : Df0 h >= 0} the condition Df0 6= 0 implies Q = π = ( 0 1 ) and for
h ∈ K, c1, c2 > 0 we have to check

π D2F (h, h) = 2 (a1 h) (a2 h) = π c = c2

Since there exists h ∈ K such that (a1 h) (a2 h) > 0 the necessary condition M3 cannot be satisfied and the
origin is not optimal. If Df0 = 0 then K = R2, Q = I2 and we have to check

QD2F (h, h) =
(

D2f0(h, h)
2 (a1 h) (a2 h)

)
= Qc =

(
c1

c2

)

If the Hessian D2f0 is negative definite we have a proof of optimality by M4. However, the origin can be
optimal even if D2f0 is not negative definite. We have to consider the two cones C1 :=

{
h : D2f0(h, h) > 0

}
and C2 := {h : (a1 h) (a2 h) > 0}. If C1 ∩C2 6= ∅, then the origin cannot be optimal by M3 and if C̄1 ∩ C̄2 =
{0} then it is optimal by M4.

Example 7: this is Example 7.5 in [4] with objective function f0(x1, x2) = −x2
1 − x2

2 + a x1 x2, with a any
real number. The inequality constraints are given by f1(x1, x2) = x1, f2(x1, x2) = x2, and the nonregular
equality constraint by h(x1, x2) = x1 x2. Then K is the nonnegative orthant,

DF =

 0 0
1 0
0 1

 , DH = ( 0 0 ) , (Q R ) =
(

1 0 0 0
0 0 0 1

)

If (QD2F + R D2H)(h, h) = Qc, i.e. −h2
1 − h2

2 + a h1 h2 = c1 and h1 h2 = 0, then the first expression
becomes −h2

1 − h2
2 < 0. Therefore Condition M4’ is satisfied and the point is optimal.

Example 8: this is Example 4.4 of [14] after a translation of x̂ = (48, 36, 72)> to the origin.
f0(x1, x2, x3) = −(x1 + 48)2 − (x3 + 72)2, f1(x1, x2, x3) = x1 + x2 + x3,
f2(x1, x2, x3) = (x1 + 48)2 + (x2 − 64)2 − 6400, f3(x1, x2, x3) = (x1 − 27)2 + (x2 + 36)2 − 2025,
and the (regular) equality constraint h(x1, x2, x3) = (x1 + 48)2 − 32(x3 + 72). The RCQ, MFCQ are not
satisfied (but KTCQ, ACQ, and a CQ introduced in [14] are). Optimality can be simply established by
Corollary M2’ since K = {0}.
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