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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 56, Number 4, Dec. 1991 

EXPRESSING INFINITY WITHOUT FOUNDATION 

FRANCO PARLAMENTO AND ALBERTO POLICRITI 

Abstract. The axiom of infinity can be expressed by stating the existence of sets satisfying a formula 
which involves restricted universal quantifiers only, even if the axiom of foundation is not assumed. 

The problem of expressing the existence of infinite sets in the first order set- 
theoretic language by means of formulae of low logical complexity has been 
addressed in [PP88] and [PP9Ob]. While the usual formulations of the infinity 
axiom (Inf) make use of formulae involving (at least) alternations of universal and 
existential restricted quantifiers, [PP88] provided the first example of a formula 
involving only restricted universal quantifiers, whose satisfiability entails the ex- 
istence of infinite sets, provided the foundation axiom (FA) is assumed together 
with the usual axioms of Zermelo-Fraenkel except, of course, the infinity axiom. It 
was then observed in [PP9Ob] that an even shorter formula had the same property. 
As explained in [PP88], the above problem is related to the so-called decision 
problem for fragments of set theory (see [CFO90]). 

Set theories not assuming FA but rather contradicting it in various forms have 
come to attract considerable interest (see [Acz88]), and the corresponding decision 
problem has begun to be investigated (see [PP9Oa]). It is therefore of particular 
interest to ask whether there are restricted purely universal formulae which are 
satisfiable but not finitely satisfiable, even when FA is dropped. 

In this note we show that a positive answer can be obtained through an ap- 
propriate merging of the two formulae in [PP88] and [PP9Ob], although neither 
of them suffices alone. 

Let SE be the first order set-theoretic language with identity, based on the mem- 
bership relation e. A formula of Ad is restricted if it does not contain quantifiers 
except for the restricted quantifiers (Vx e y) and (3x e y). 

Let ZF- denote ZF - Inf and ZF-- denote ZF - FA. In ZF-- one can define 
the ordinals as transitive sets well-ordered by e and the nonzero natural numbers as 
successor ordinals with zero and successor ordinals only, as elements. Finiteness is 
taken to stand for equinumerousity with a natural number, and Inf can be stated as 
the existence of a set containing all the natural numbers. 
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In ZF-, but not in ZF--, Inf is equivalent to any of the other formulations of 
the infinity axiom in use. Note that Inf states the satisfiability of a formula that, 
besides restricted quantifiers of both types, involves also an unrestricted universal 
quantifier needed to express well-foundedness. 

Let (1 and P2 be the following formulae from [PP88] and [PP9Ob]: 

a=Ab A a b A b a 
A (Vx e a)(Vu e x)(u e b) A (Vx e b)(Vu e x)(u e a) A (Vx e a)(x X b) 
A (Vx,yea)(Vz,web)(zex A XeW A Wey --zey) 

A (Vx, y e b)(Vz, w e a)(z e X A X e w A w e y - z ey), 

and 

a hb A aob A boa 
A (Vx e a)(Vu e x)(u e b) A (Vx e b)(Vu e x)(u e a) 
A (Vxea)(Vyeb)(xey v yex). 

From [PP88] and [PP9Ob] we have the following property: 
PROPOSITION 1. 1) ZF H (3a, b) p1(a, b) -* Inf. 
2) ZF - (3a, b)p2(a, b) -* Inf. 
Actually 2) follows immediately from 1) since ZF- H p2(a, b) -* p1(a, b). [PP9Ob] 

provides specific examples which show that ZF- /L p1(a, b) -* p2(a, b). 
PROPOSITION 2. ZF /-- (3a, b) p1(a, b) -* Inf. 
PROOF. Consider the following graph G1: 

12~~~~~~~~~~~3 

a3~~~~~~~~~~~3 

By making use of a suitable permutation of the universe it is easy to define a model 
JI of ZF-- + -lnf in which there are elements a, a,, a2, a3, a4 and b, bl, b2, b3 
such that 

a =aa2,a3,a4l 
b = jbjb2,b31} , 
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a. eIE b. -ai3 for 1 < i<4, 1 <j< 3, 

bi e' aj fli aj for 1 < i < 3, 1 < j < 4. 

It is then straightforward to check that a and b satisfy 91 in X 
PROPOSITION 3. ZF /-- (]a,b) p2(a, b) - Inf. 
PROOF. Use the same kind of argument as for the previous property, starting 

with the following graph G2: 

a2 / / 

// 

REMARK. Since G1 and G2 are extensional graphs, i.e. two different nodes have 
different sets of predecessors, the consistency results following from Proposition 2 
and Proposition 3 can be improved to claim that the existence of finite sets satisfying 
1 and P2 is actually a theorem of ZF-- + BA1, where BA1 stands for the weak 
form of Boffa's antifoundation axiom discussed in [Acz88]. 

The transitive closures of the finite sets a and b described by G1 and G2 contain a 
loop of the form a1 e b1 e a1 and a1 e be E a2 e b2 E a1 respectively. That is no 
exception. Let us begin by noticing that because the two conjuncts 

(Vx e a)(Vu e x)(u e b) 
and 

(Vx e b)(Vu e x)(u e a) 

are in both qo and P2, if a and b satisfy either p1 or P2 then a u b contains both the 
transitive closure of a and the transitive closure of b. Thus if a and b satisfy either p1 
or P2 and are finite, then they are actually hereditarily finite, by which, in absence of 
FA, it is meant that they have finite pictures (like G1 and G2 in the above examples) 
(see [Acz88]). 

PROPOSITION 4 (In ZF--). If a and b are finite and p1(a, b) holds, then there is a1 in 
a and b1 in b such that a1 e b1 and b1 e a1. 

PROOF. From the proof in [PP88] it follows that if a and b are finite and p1(a, b) 
holds, then a u b cannot be well-founded. Hence a u b must contain a cycle with 
respect to membership, say c1 e c2 e e cn e c1. 

From p1(a, b) it follows that an element of an element of a cannot be itself an 
element of a, since otherwise a r- b =# 0. Similarly an element of an element of b 
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cannot be itself an element of b. From that it follows that cl,..., cn, contains 
alternatively an element of a and an element of b, and furthermore that n is even. 
Then by induction on n, using the condition 

(Vx1, x2 E a)(Vy1, Y2 e b)(xe E Yi A Y1 E x2 A x2 E Y2 x1 E Y2), 

when c1 e a, or the condition 

(Vx1, x2 E b)(Vy1, Y2 e a)(x1 E Yi A Y1 E x2 A x2 E Y2 x1 E Y2) 

when c1 e b, it follows immediately that in any such cycle we must have c1 E cn, and 
our claim is proved by taking c1 for a1 and cn for b1. U 

As a straightforward consequence of the previous proposition we have that if we 
add the conjunct 

(Vx e a)(Vy e b)(x e y -* y 0 x) 

then we obtain a formula P'i involving only restricted universal quantifiers whose 
satisfiability entails the existence of infinite sets even if FA is dropped. 

COROLLARY 1. ZF - I- (]a, b)((p1(a, b) A (Vx e a)(Vy e b)(x e y -* y 0 x) -* Inf. 
PROOF. By Proposition 4, the existence of a and b satisfying '1 entails the 

existence of nonfinite sets. By a well-known argument (see [Lev79]), using the 
power set axiom, the existence of a nonfinite set implies Inf in ZF--. U 

A proof entirely similar to the one given for Proposition 4 shows that: 
PROPOSITION 5 (In ZF--). If a and b are finite and (p2(a, b) holds and a n b = 0, 

then there are a,, a2 in a and b1, b2 in b such that a1 e be e a2 e b2 e a1 or be e a1 e 
b2 e a2 e bl. 

Therefore the addition to p2 of (Vx e a)(x 0 b) and the two further conditions 

(Vx1, x2 E a)(Vy1, Y2 e b)(x1 E Y1 A Yi E x2 A x2 E Y2 Y2 0 x1) 

and 

(Vx1, x2 E a)(Vy1, Y2 e b)(x1 e Yi A Y1 e x2 A x2 E Y2 Y2 0 x1) 

also yields a formula '2 which satisfies Corollary 1. 
It follows immediately from [PP88] that p'1 and '2 are irredundant, in the sense 

that if one drops one of the conjuncts then this property fails. We can however 
provide an even simpler formula whose satisfiability entails Inf in ZF--. Such a 
formula is of particular interest also in connection with the decision problem since, 
unlike '1 and (' , it does not introduce conjuncts which are implications whose 
consequent is a negative literal. 

Let (p(a, b) be the following formula: 

a 4b A a b A b a 
A (Vxea)(Vyex)(yeb) A (Vxea)(Vyex)(yeb) 
A (Vx1, x2 e a)(Vy1, Y2 e b)(x1 e Yi A Y1 e x2 A X2 e Y2 )_ X1 e Y2) 

A (Vxea)(Vyeb)(xey v yex). 

PROPOSITION 6. ZF H (3a, b) p(a, b) -* Inf. 
PROOF. Working in ZF--, we show that if a and b satisfy p then a u b cannot be 

finite. The conclusion follows as in Proposition 5. 
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Assuming that a and b satisfy (, we show that if X is a finite nonempty subset 
of a u b then there is an element cx e X such that either cx e a and X r- b c cx, 
or cx e b and X r- a c cx. That is proved by induction on the cardinality of X. 

If X is a singleton the claim is clear, since a r- b = 0. So assume X has more 
than one element. If X r- a = 0 then every element in X can be taken as cx; other- 
wise pick ai e X r- a and let X' = X\{ai}. 

By the induction hypothesis there is cx' in X' satisfying our claim. If cX' E a and 
X' r) b c cx' then, since a r) b = 0, X r- b = X' r b; hence X r- b c cx and we 
can take cx to be cX' itself. On the other hand, if cx' E b and X' n a c cxs, we have 
two cases: 

Case 1. ai e cxs. Then it still suffices to let cx = cxs. 
Case 2. ai 0 cxs. Then, since (Vx E a)(Vy E b)(x E y v y e x), cx' e ai. If b rn 

X c ai, then of course it suffices to let cx = ai. Otherwise there must be a bi E 
b r- X such that bi 0 ai. Then, as above, ai e bi. In this case it suffices to let cx = bi. 
In fact since 

(Vx1, x2 E a)(Vy1, Y2 e b)(x1 E Yi A Y1 E x2 A x2 E Y2 X1 E Y2), 

from X' r- a c cxs, cx' e ai and ai e bi it follows that X' r- a c bi and therefore that 
X r- a c bi. 

We can now prove that a u b cannot be finite. 
First of all, a u b =# 0, since otherwise a = b = 0 and (p(a, b) would fail. 
If a u b were finite and nonempty, then we could take a u b for X in the 

above claim and conclude that there is c e a u b such that either c e a and (a u b) r- 
b = b c c, or c e b and (a u b) r a = a c c. In the former case it would follow 
that c = b, since from c e a it follows that c c b, because of the condition 
(Vx e a)(Vy e x)(y e b). But then b e a, contradicting b 0 a as required by p. 
Similarly in the latter case we would get a e b, contrary to a 0 b. O 

Obviously Proposition 6 still holds if we exchange a with b. 
As for (1, in [PP88] it is easy to see that if any of the conjunct in p is dropped 

then the resulting formula turns out to be satisfiable by finite (although not 
necessarily well-founded) sets. 

REMARK. It would be interesting to prove Proposition 6 without using the power 
set axiom. 

Note that the implication in Proposition 1, Corollary 1, and Proposition 6 can 
be reversed since p, 91, P2, 

' as well as '2 are all satisfied by w)' = {f0,1,} 
and )" = {g0, g1,...}, where fo = 0, g, = I A * * sfnbfn+1 = {g0,.,.,g}, and the 
existence of wo' and wo" is ensured in ZF-- provided Inf is assumed. Thus the 
existential closures of 9, 91, 22, q4 and P2 can all be used to express the axiom of 
infinity in ZF--. To that end the presence of nesting of quantified variables, as in 
(Vx e a)(Vy e x)(y e b) is in general unavoidable; in fact it is unavoidable in any 
restricted universal formula which is satisfiable but not finitely satisfiable (see 
[PP88]). Furthermore the presence of at least two free variables is necessary-in 
fact, if a restricted universal formula with just one free variable is satisfied by a set a 
and there is a finite descending chain of memberships starting with a and ending 
with the empty set, its Mostowski's collapse provides an hereditarily finite set 
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satisfying the same formula, whereas on the other hand if no such chain exists, then, 
under Aczel's antifoundation axiom AFA, a is just the finite set Q. 
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