
Annals of Mathematics and Artificial Intelligence 30: 93–118, 2000.
 2001 Kluwer Academic Publishers. Printed in the Netherlands.

A graph-theoretic approach to efficiently reason about
partially ordered events in (Modal) Event Calculus

M. Franceschet and A. Montanari
Dipartimento di Matematica e Informatica, Università di Udine, 33100 Udine, Italy

E-mail: {francesc;montana}@dimi.uniud.it

In this paper, we show how well-known graph-theoretic techniques can be successfully
exploited to efficiently reason about partially ordered events in Kowalski and Sergot’s Event
Calculus and in its skeptical and credulous modal variants. To overcome the computational
weakness of the traditional generate-and-test algorithm of (Modal) Event Calculus, we pro-
pose two alternative graph-traversal algorithms that operate on the underlying directed acyclic
graph of events representing ordering information. The first algorithm pairs breadth-first and
depth-first visits of such an event graph in a suitable way, while the second one operates on
its transitive closure and reduction. We prove the soundness and completeness of both algo-
rithms, and thoroughly analyze and compare their computational complexity.

1. Introduction

The problem of efficiently computing which facts must be or may possibly be true
over certain time periods, when only partial information about event ordering is avai-
lable, is fundamental in a variety of applications, including planning and plan valida-
tion [7,10,14]. In this paper, we show how well-known graph-theoretic techniques can
be successfully exploited to efficiently reason about partially ordered events in Kowalski
and Sergot’s Event Calculus [13], EC for short, and in its modal variants (in contrast
with the original purely syntactical EC presentation, we adopt a model-theoretical de-
scription of EC and of its skeptical and credulous modal variants [2–4,6]). Given a set of
events, EC is able to infer the largest intervals in which a property holds uninterruptedly
(maximal validity intervals, MVIs for short). Events can be temporally qualified in se-
veral ways. We consider the relevant case where either the occurrence time of an event
is totally unspecified or its relative temporal position with respect to (some of) the other
events is given. Partial ordering information about events can be naturally represented
by means of a directed acyclic graph G = 〈E, o〉, where the set of nodes E is the set of
events and, for every ei, ej ∈ E, there exists (ei, ej) ∈ o if and only if it is known that ei
occurs before ej .

EC updates are of an additive nature only and they just consist in the acquisition of
new atomic events and relative information about properties initiated and terminated by
them, and/or of further ordering information about the given events [12]. Hence, update
processing in EC reduces to the addition of such data, provided that they are consis-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53328962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

94 M. Franceschet, A. Montanari / A graph-theoretic approach

tent and non-redundant with the current stored information. The set of MVIs for any
given property p has been traditionally computed at query time according to a simple
(and expensive) generate-and-test algorithm [2]: EC first blindly picks up every candi-
date pair of events (ei, ej), where ei and ej respectively initiate and terminate p; then,
it checks whether or not ei precedes ej ; finally, it looks for possible events e that oc-
cur between ei and ej and interrupt the validity of p. Checking whether ei precedes
ej or not reduces to establish if the edge (ei, ej) belongs to the transitive closure o+
of o; checking if there exists an interrupting event e requires to verify if both (ei, e)

and (e, ej) belong to o+. Chittaro et al. [8] outline an alternative (and efficient) graph-
traversal algorithm for MVIs computation when all recorded events are concerned with
the same unique property p (single-property case). According to such an algorithm, the
graph G = 〈E, o〉 is replaced by its transitive reduction G− = 〈E, o−〉, which must
be maintained whenever a new consistent and non-redundant pair of events (ei, ej) is
entered (the addition of a new event e to E does not affect o−). Since any event e ∈ E
either initiates or terminates p, the set of MVIs for p can be obtained by searching
G− for edges (ei, ej) such that ei initiates p and ej terminates it. Being G− the tran-
sitive reduction of G ensures us that there are no interrupting events for p that occur
between ei and ej . It is not difficult to prove that such an algorithm properly works
also when all recorded events are concerned with a set of pairwise incompatible proper-
ties.

In this paper, we propose two efficient graph-traversal algorithms for MVIs com-
putation in the general multiple-property case1. The first algorithm represents and main-
tains temporal information as a binary acyclic relation o and, in order to compute the
current set of MVIs, it pairs breadth-first and depth-first visits of the graph G = 〈E, o〉
in a suitable way. The second algorithm stores and maintains the transitive closure
w = o+ of a knowledge state, and, for every property p, it stores the transitive reduc-
tion w−p of the subgraph wp induced by the set of events that are relevant to p. Such an
algorithm derives the set of MVIs for any property p by applying the procedure for the
single-property case devised in [8] to the transitive reduction w−p .

As pointed out in [6], when only partial information about the occurred events and
their exact order is available, the sets of MVIs derived by EC bear little relevance, since
the acquisition of additional knowledge about the set of events and/or their occurrence
times might both dismiss current MVIs and validate new MVIs. Cervesato and Monta-
nari [6] propose a modal variant of EC, called Modal Event Calculus (MEC), that allows
one to identify the set of MVIs that cannot be invalidated no matter how the ordering
information is updated, as far as it remains consistent (necessary MVIs), and the set
of event pairs that will possibly become MVIs, depending on which ordering data are
acquired (possible MVIs). They extend the generate-and-test algorithms for MVIs com-
putation in EC to MEC, without any rise in computational complexity. In this paper, we

1 The generalization to the multiple-property case sketched in [8] is not guaranteed to properly work when-
ever the transitive reduction of the current knowledge state contains two or more paths between an ordered
pair of events that respectively initiate and terminate a given property.

M. Franceschet, A. Montanari / A graph-theoretic approach 95

show that the proposed graph-traversal algorithms for MVIs computation in EC can be
easily adapted to MEC.

The paper is organized as follows. In section 2, we introduce some basic notions
about ordering relations, transitive closure, and transitive reduction. In section 3, we
briefly recall syntax and semantics of (Modal) Event Calculus. In sections 4 and 5, we
describe the two alternative graph-traversal algorithms for MVIs computation in EC. In
section 6 we show how to adapt them to cope with MEC. The increase in efficiency of
these algorithms with respect to the traditional generate-and-test one is demonstrated by
the complexity analysis of section 7.1 and a comparison between the two algorithms is
performed in section 7.2. In the conclusions we provide an assessment of the work done
and outline future research directions.

2. On ordering relations, transitive closure and reduction

In this section we recall some basic notions about ordering relations and ordered
sets upon which we will rely in the following.

Definition 1 (DAGs, generated DAGs, induced DAGs). Let E be a set and o a binary
relation onE. o is called a (strict) partial order if it is irreflexive and transitive (and, thus,
asymmetric), while it is called a reflexive partial order if it is reflexive, antisymmetric,
and transitive. The pair 〈E, o〉 is called a directed acyclic graph (DAG) if o is a binary
acyclic relation; a strictly ordered set if o is a partial order; a non-strictly ordered set if
o is a reflexive partial order. Moreover, given a DAG G = 〈E, o〉 and a node e ∈ E,
the subgraph G(e) of G consisting of all and only the nodes which are accessible from
e and of the edges that connect them is called the graph generated by e. Finally, given
a DAG G = 〈E, o〉 and a set T ⊆ E, the subgraph of G induced by T consists of the
nodes in T and the subset of edges in o that connect them.

When one is mainly interested in representing the path information of a DAG, two
extreme approaches can be followed [16]: (i) transitive reduction, or minimum storage
representation, and (ii) transitive closure, or minimum query-time representation. In this
paper, we will make a massive use of the notions of transitive reduction and closure of a
DAG. They are formally defined as follows.

Definition 2 (Transitive reduction and closure of DAGs). Let G = 〈E, o〉 be a DAG.
The transitive reduction of G is the (unique) graph G− = 〈E, o−〉, with the smallest
number of edges, such that, for any pair ei, ej ∈ E there is a directed path from ei to ej
in G if and only if there is a directed path from ei to ej in G−. The transitive closure of
G is the (unique) graph G+ = 〈E, o+〉 such that, for any pair of nodes ei, ej ∈ E there
is a directed path from ei to ej in G if and only if there is an edge (ei, ej) ∈ o+ in G+.

Aho et al. [1] show that every (directed) graph has a transitive reduction, which
can be computed in polynomial time. They also show that such a reduction is unique

96 M. Franceschet, A. Montanari / A graph-theoretic approach

in the case of directed acyclic graphs. Furthermore, they prove that the time needed to
compute the transitive reduction of a graph differs from the time needed to compute its
transitive closure by at most a constant factor.

In the following, we will use the notations o ↑ (ei, ej) and o ↓ (ei, ej) as short-
hands for (o ∪ {(ei, ej)})+ and (o ∪ {(ei, ej)})−, respectively. Furthermore, we will
denote the sets of all binary acyclic relations and of all partial orders on E as OE and
WE , respectively. It is easy to show that, for any set E, WE ⊆ OE . We will use the let-
ters o and w, possibly subscripted, to denote binary acyclic relations and partial orders,
respectively. Clearly, if o is a binary acyclic relation, then o+ is a partial order. We say
that two binary acyclic relations oi, oj ∈ OE are equally informative if o+i = o+j . This
induces an equivalence relation ∼ on OE . It is easy to prove that, for any set E, OE/∼
(the quotient set of OE with respect to ∼) and WE are isomorphic.

3. Basic and Modal Event Calculus

A compact model-theoretic formalization of Kowalski and Sergot’s Event Calculus
has been provided by Cervesato and Montanari in [2]. It distinguishes between the time-
independent and time-dependent components of EC. The time-independent component
is captured by means of the notion of EC-structure.

Definition 3 (EC-structure). A structure for the Event Calculus (abbreviated EC-
structure) is a quintuple H = (E, P, [·〉, 〈·],]·,·[) such that:

• E = {e1, . . . , en} and P = {p1, . . . , pm} are finite sets of atomic events and proper-
ties, respectively;

• [·〉 : P → 2E and 〈·] : P → 2E are respectively the initiating and terminating map
of H. For every property p ∈ P , [p〉 and 〈p] represent the set of events that initiate
and terminate p, respectively;

•]·,·[⊆ P × P is an irreflexive and symmetric relation, called the exclusivity relation,
that models incompatibility among properties.

The time-dependent component is formalized by specifying a binary acyclic re-
lation o, called knowledge state, on the set of events E, which represents our current
knowledge about the time ordering between events. EC updates consist in the acquisition
of new atomic events and relative information about properties initiated and terminated
by them, and/or new ordering information about the given events [12]. Hence, update
processing in EC reduces to the addition of such data, provided that they are consistent
and non-redundant with respect to the already stored information.

Let H = (E, P, [·〉, 〈·],]·,·[) be a structure for EC and o be a knowledge state. The
query language L(EC) of EC is the set of property-labeled pairs of events of the form
p(e1, e2), for every property p in P and events e1 and e2 inE. Given a knowledge state o
or, equivalently, its transitive closure o+ of o (recall that path information stored in o and

M. Franceschet, A. Montanari / A graph-theoretic approach 97

o+ is the same), query processing in EC reduces to deciding which of the elements of
L(EC) are MVIs.

In order for p(e1, e2) to be an MVI relative to w = o+, (e1, e2) must belong
to w. Moreover, e1 and e2 must witness the validity of the property p at the ends of
this interval by initiating and terminating p, respectively. These requirements are en-
forced by conditions (i), (ii), and (iii), respectively, in the definition of valuation given
below. The maximality requirement is caught by the negation of the meta-predicate
broken(p, e1, e2, w) in condition (iv), which expresses the fact that the truth of an
MVI must not be broken by any interrupting event. Any event e which is known to have
happened between e1 and e2 in w and that initiates or terminates a property that is either
p or a property incompatible with p interrupts the truth of p(e1, e2).

Definition 4 (Intended model of EC). Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure
and w ∈ WE be the transitive closure of a knowledge state o. The intended EC-model of
H is the propositional valuation υH : WE → 2L(EC), where υH is defined in such a way
that p(e1, e2) ∈ υH(w) if and only if

(i) (e1, e2) ∈ w;

(ii) e1 ∈ [p〉;
(iii) e2 ∈ 〈p];
(iv) broken(p, e1, e2, w) does not hold, where broken(p, e1, e2, w) abbreviates

“there exists an event e ∈ E such that (e1, e) ∈ w and (e, e2) ∈ w, and there
exists a property q ∈ P such that e ∈ [q〉 or e ∈ 〈q], and either]p, q[or p = q”.

The previous definition adopts the so-called strong interpretation of the initiate and
terminate relations: given a pair of events e′ and e′′, with e′ occurring before e′′, that re-
spectively initiate and terminate a property p, we conclude that p does not hold over
(e′, e′′) if an event e which initiates or terminates p, or a property incompatible with p,
occurs during this interval, that is, (e′, e′′) is a candidate MVI for p, but e forces us to
reject it. The strong interpretation is needed when dealing with incomplete sequences
of events or incomplete information about their ordering. An alternative interpretation
of the initiate and terminate relations, called weak interpretation, is also possible. Ac-
cording to such an interpretation, a property p is initiated by an initiating event unless
it has been already initiated and not yet terminated (and dually for terminating events).
Further details about the strong/weak distinction can be found in [6].

In the case of partially ordered events, the set of MVIs derived by EC is not stable
with respect to the acquisition of new ordering information. Indeed, if we extend the
current knowledge state with new pairs of events, current MVIs might become invalid
and new MVIs can emerge. The Modal Event Calculus (MEC) [2] allows one to iden-
tify the set of MVIs that cannot be invalidated no matter how the ordering information
is updated, as far as it remains consistent, and the set of event pairs that will possibly
become MVIs depending on which ordering data are acquired. These two sets are called

98 M. Franceschet, A. Montanari / A graph-theoretic approach

necessary MVIs and possible MVIs, respectively, using ✷-MVIs and ✸-MVIs as ab-
breviations. The query language L(MEC) of MEC consists of formulas of the forms
p(e1, e2), ✷p(e1, e2), and ✸p(e1, e2), for every property p and events e1 and e2 defined
in H. The intended model of MEC is obtained by shifting the focus from the current
knowledge state to all knowledge states that are accessible from it. Since⊆ is a reflexive
partial order, (WE,⊆) can be naturally viewed as a finite, reflexive, transitive, and anti-
symmetric modal frame. This frame, together with the straightforward modal extension
of the valuation υH to the transitive closure of an arbitrary knowledge state, provides a
modal model for MEC.

Definition 5 (Intended model of MEC). Let H be an EC-structure and υH be the propo-
sitional valuation of definition 4. The MEC-frame FH of H is the frame (WE,⊆). The
intended MEC-model of H is the modal model IH = (WE,⊆, υH). Given w ∈ WE and
ϕ ∈ L(MEC), the truth of ϕ at w with respect to IH, denoted by IH;w |= ϕ, is defined
as follows:

IH;w |= p(e1, e2) iff p(e1, e2) ∈ υH(w);
IH;w |= ✷p(e1, e2) iff for every w′ ∈ WE,w ⊆ w′ implies IH;w′ |= p(e1, e2);
IH;w |= ✸p(e1, e2) iff there is w′ ∈ WE such that w ⊆ w′and

IH;w′ |= p(e1, e2).

The sets of MVIs that are necessarily and possibly true in w respectively corre-
spond to the ✷- and ✸-moded atomic formulas which are valid in w. We denote by
MVI(w), ✷MVI(w), and ✸MVI(w) the sets of MVIs, necessary MVIs, and possible
MVIs with respect to w, respectively. Computing necessary and possible MVIs is rele-
vant to many applications. As an example, verifying whether a particular subgoal of a
given goal is necessarily achieved is a central task in planning and plan validation ap-
plications [7,10,14]. Hence, the efficiency of procedures for computing necessary and
possible conditions is crucial. Cervesato and Montanari [2] show that the sets of ✷-
and ✸-MVIs can be computed by exploiting local conditions over w, thus avoiding a
complete and expensive search of all the consistent refinements of w. More precisely,
a property p necessarily holds between two events e1 and e2 if and only if the interval
(e1, e2) belongs to the current order, e1 initiates p, e2 terminates p, and no event that
either initiates or terminates p (or a property incompatible with p) will ever be consis-
tently located between e1 and e2. The last requirement is caught by the meta-predicate
posBroken(p, e1, e2, w) of proposition 6. Similarly, a property p may possibly hold
between e1 and e2 if and only if the interval (e1, e2) is consistent with the current order-
ing, e1 initiates p, e2 terminates p, and there are no already known interrupting events
between e1 and e2. Local conditions are formally captured by the following proposi-
tion [2].

Proposition 6 (Local conditions). Let H = (E, P, [·〉, 〈·],]·,·[) be a EC-structure. For
any atomic formula p(e1, e2) on H and any w ∈ WE ,

M. Franceschet, A. Montanari / A graph-theoretic approach 99

• IH;w |= ✷p(e1, e2) if and only if

(i) (e1, e2) ∈ w;

(ii) e1 ∈ [p〉;
(iii) e2 ∈ 〈p];
(iv) posBroken(p, e1, e2, w) does not hold, where posBroken(p, e1, e2, w) ab-

breviates “there exists an event e ∈ E such that (e, e1) /∈ w, e �= e1, (e2, e) /∈ w,
e �= e2, and there exists a property q ∈ P such that e ∈ [q〉 or e ∈ 〈q], and either
]p, q[or p = q”.

• IH;w |= ✸p(e1, e2) if and only if

(i) (e2, e1) /∈ w;

(ii) e1 ∈ [p〉;
(iii) e2 ∈ 〈p];
(iv) broken(p, e1, e2, w) does not hold.

Local conditions above resemble Chapman’s modal truth criterion [7] and Nebel’s
and Bäckström’s definition of the predicate Maybe [14]. Proposition 6 also allows us
to give an alternative definition of the sets ✷MVI(w) and ✸MVI(w). Given w ∈ WE

and p ∈ P , let S(w) be the set of atomic formulas p(e1, e2) such that all other events
in E that initiate or terminate p, or a property incompatible with p, are ordered with
respect to e1 and e2 in w, and let C(w) be the set of atomic formulas p(e1, e2) such that
e1 initiates p, e2 terminates p, and e1 and e2 are unordered in w. Formally,

S(w) = {
p(e1, e2) | ∀e ∈ E((∃q ∈ P((e ∈ [q〉 ∨ e ∈ 〈q]) ∧ (q = p∨]p, q[)))
→ (((e, e1) ∈ w ∨ (e1, e) ∈ w)∧ ((e, e2) ∈ w ∨ (e2, e) ∈ w)))

}
,

C(w)= {
p(e1, e2) | e1 ∈ [p〉 ∧ e2 ∈ 〈p] ∧ (e1, e2) /∈ w ∧ (e2, e1) /∈ w

}
.

The set ✷MVI(w) (respectively ✸MVI(w)) can be alternatively defined as the intersec-
tion (respectively union) of the sets MVI(w) and S(w) (respectively C(w)), as stated by
the following corollary.

Corollary 7. Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure and w ∈ WE be a partial
order. It holds that ✷MVI(w) = MVI(w) ∩ S(w) and ✸MVI(w) = MVI(w) ∪ C(w).

Proof. We prove that ✸MVI(w) = MVI(w) ∪ C(w). The proof for necessary MVIs
is similar, and thus omitted. We first prove the ⊆ inclusion. Let p(e1, e2) ∈ ✸MVI(w).
If (e1, e2) ∈ w, then p(e1, e2) ∈ MVI(w), and thus the thesis. Hence, suppose that
(e1, e2) /∈ w. Since p(e1, e2) ∈ ✸MVI(w), we have that e1 ∈ [p〉, e2 ∈ 〈p],
and (e2, e1) /∈ w. Hence p(e1, e2) ∈ C(w). We now prove the ⊇ inclusion. Let
p(e1, e2) ∈ MVI(w) ∪ C(w). If p(e1, e2) ∈ MVI(w), then p(e1, e2) ∈ ✸MVI(w).
Now, suppose p(e1, e2) ∈ C(w). It follows that e1 ∈ [p〉, e2 ∈ 〈p], and e1 and e2 are
unordered in w. To obtain the thesis, it remains to prove that broken(p, e1, e2, w) does

100 M. Franceschet, A. Montanari / A graph-theoretic approach

not holds. By contradiction, suppose broken(p, e1, e2, w). This means that there ex-
ists an interrupting event e such that (e1, e) ∈ w and (e, e2) ∈ w. Since w is transitive, it
follows that (e1, e2) ∈ w, which is a contradiction, since e1 and e2 are unordered in w. �

In section 6, we will exploit corollary 7 to devise an algorithm for MVIs com-
putation in MEC. Furthermore, from corollary 7 it is immediate to conclude that the
sets of necessary MVIs, MVIs, and possible MVIs, with respect to the current state of
knowledge, form an inclusion chain, as formally stated by the following proposition.

Proposition 8 (Necessary MVIs and possible MVIs enclose MVIs). LetH = (E, P, [·〉,
〈·],]·,·[) be an EC-structure and w ∈ WE be a partial order. It holds that

✷MVI(w) ⊆ MVI(w) ⊆ ✸MVI(w).

Notice that if w is a total order, then S(w) = L(EC) and C(w) = ∅, and thus✷MVI(w) = ✸MVI(w) = MVI(w).
In sections 4 and 5, we will propose two graph-traversal algorithms for computing

MVIs in EC and MEC. For each of them, we will describe (i) the form in which the
algorithm stores the ordering information, (ii) the update processing, that is, the compu-
tation steps executed by the algorithm to update the current knowledge state with a new
pair of events (update time), and (iii) the query processing, that is, the computation steps
executed by the algorithm to determine the current set of MVIs (query time). We will not
directly consider the case of updates consisting of the addition of single atomic events,
but we will briefly explain how to extend the algorithms to cope with such a case.

4. A first graph-traversal algorithm for MVIs computation

In this section, we describe a first graph-traversal algorithm that computes the set
of MVIs by pairing a depth-first and a breadth-first visit of the event graph representing
ordering information. We provide a high-level description of the algorithm and prove its
soundness and completeness with respect to the semantics of EC.

The algorithm stores ordering information in the form of an acyclic binary rela-
tion o. The addition of a new pair of events (e1, e2) to o is dealt with as follows (update
processing). First, (e1, e2) is checked for consistency and non redundancy with respect
to o. If (e1, e2) is consistent ((e2, e1) /∈ o+) and non-redundant ((e1, e2) /∈ o+), then
(e1, e2) is added to o. Testing whether a pair of events (e′, e′′) is in o+ or not can be
performed by visiting depth-first the subgraph of (E, o) generated by e′, searching for
the node e′′.

Query processing is more involved. Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-
structure and o ∈ OE be an acyclic binary relation. We define an algorithm for MVIs
computation that combines a breadth-first and a depth-first visit of the graph (E, o),
which is directed and acyclic, but not necessarily connected (background knowledge on
elementary graph algorithms can be found in [9]). In the following, whenever it does

M. Franceschet, A. Montanari / A graph-theoretic approach 101

not lead to ambiguities, we denote the graph (E, o) by G and the subgraph of (E, o)
generated by e (cf. definition 1) by G(e).

The algorithm behaves as follows: for every property p ∈ P and every event
e1 ∈ E initiating p, it searches the graph G(e1) for all events e2 such that the interval
(e1, e2) is an MVI for p. Given a property p and an event e1, the algorithm associates
the following labels with the nodes of G(e1):

• unmarked: it denotes nodes (events) to be visited;

• visited: it denotes nodes (events) already visited;

• marked: it denotes nodes (events) that initiate or terminate either p or a property
incompatible with p;

• cutoff: it denotes nodes (events) which are cut off from the search space, because
they cannot terminate any MVI for p initiated by e1.

The set of events e2 such that p(e1, e2) is an MVI is computed as follows. Initially,
all nodes in G(e1) are labeled with unmarked; then, the graph G(e1) is visited breadth-
first. The breadth-first visit of G(e1) starts from the successors of e1 (first layer) and
proceeds, layer by layer, until the last layer is reached. The last layer is a layer followed
by an empty layer; since G(e1) is acyclic, such a layer always exists and it is unique.
At each layer, only unmarked events are processed. Let e be an unmarked event
belonging to the current layer. The algorithm labels e as visited and checks whether
or not it initiates or terminates either p or a property incompatible with p. If the outcome
of the test is positive, then the following operations are executed before processing the
next event in the layer:

1. e is labeled as marked;

2. the label cutoff is assigned to all nodes of G(e) different from e;

3. if e terminates p, then the node e is saved.

Once the whole graph G(e1) has been visited, all the saved nodes, which are still labeled
as marked, are returned; they are all and only the events that terminate an MVI for p
initiated by e1.

A pseudo-code description of such an algorithm for MVIs computation can be
given as follows.

MVI← ∅
for each p ∈ P do

for each e1 ∈ [p〉 do
S ← ∅
for each e ∈ G(e1) do

set(e, unmarked)
L← nextlayer({e1})
while L �= ∅ do

for each e ∈ L do

102 M. Franceschet, A. Montanari / A graph-theoretic approach

if is_relevant_to(e,p) then
set(e, marked)
cutoff(e)
if e ∈ 〈p] then
S ← S ∪ {e}

L← nextlayer(L)
for each e2 ∈ S do

if label(e2, marked) then
MVI←MVI ∪{p(e1, e2)}

return MVI

The procedure set(e, l) assigns a unique label l to the event e, possibly overwriting
the previous one. The boolean function label(e, l) checks whether label l is asso-
ciated with the event e or not, and the boolean function is_relevant_to(e, p) tests
whether or not e initiates or terminates either p or a property incompatible with p.
The procedure nextlayer(L) computes the next layer in the breadth-first visit of the
graph G(e1):

nextlayer(L)
L′ ← ∅
for each e ∈ L do

if label(e, unmarked) or label(e, visited) then
for each successor e′ of e do

if label(e′, unmarked) then
set(e′, visited)
L′ ← L′ ∪ {e′}

return L′

Finally, the procedure cutoff(e) visits depth-first the subgraph generated by the
event e and labels as cutoff all its nodes:

cutoff(e)
for each successor e′ of e do

if not label(e′, cutoff) then
set(e′, cutoff)
cutoff(e′)

Before proving that such an algorithm in sound and complete with respect to the
semantics of EC, we illustrate its behaviour by means of two simple examples. Let
e1, e2, and e3 be three event occurrences, p and q be two incompatible properties, and
o = {(e1, e2), (e1, e3), (e2, e3)} be the current knowledge state depicted in figure 1, left
side. It is worth noticing that the event graph of the example contains a transitive edge
(e1 → e3). Suppose that e1 initiates p, e2 initiates q, and e3 terminates p. The set of
MVIs for p, which are initiated by e1, is computed as follows. The algorithm first labels
as unmarked all nodes of G(e1), and then it visits breadth-first G(e1). The first layer

M. Franceschet, A. Montanari / A graph-theoretic approach 103

Figure 1. Two graphs representing two ordering relations.

contains both e2 and e3. Suppose that the algorithm first processes e3 and then e2. The
node e3 is labeled as marked and saved, because it terminates p. The propagation of the
label cutoff has no effect, since e3 has no successors. Hence, the node e2 is processed
and labeled as marked, because it initiates a property q which is incompatible with p.
The effect of propagating the label cutoff is that of replacing the label marked of
e3 by the label cutoff. Then, the visit of G(e1) terminates (all nodes have already
been visited) and the algorithm returns no MVIs for p initiated by e1, because the label
associated with e2 (the only saved event) is cutoff and not marked.

The above example clarifies the role of the label cutoff: some events may be
labeled as marked along a “short” path (e1 → e3 in the example) and saved as candidate
ending points of an MVI for the considered property. However, an interval is an MVI
for a property if and only if all paths leading from the initiating event to the terminating
one do not contain interrupting events, that is, events that initiate or terminate either
the considered property or a property incompatible with it. If there exists a longer path
(e1 → e2 → e3 in the example) which contains an interrupting event, then the candidate
node is cut off during the propagation of the label cutoff.

The next example shows that cutoff labels are needed also for reasoning about
event graphs devoid of transitive edges, that is, even in the case in which we store and
maintain the transitive reduction of the current knowledge state the cutoff procedure
is necessary. Consider a scenario consisting of six event occurrences e1, e2, e3, e4, e5, and
e6, two incompatible properties p and q, and the knowledge state o depicted in figure 1,
right side, which has no transitive edges. Suppose that e1 initiates p, e5 initiates q, e6

terminates p, and e2, e3, and e4 affect neither p nor a property incompatible with p. The
interval (e1, e6) is not an MVI for p, because there exists an interrupting event, namely
e5, which occurs between e1 and e6. The algorithm removes the node e6 from the set of
candidate terminating events associated with initiating event e1 when it propagates the
label cutoff during the processing of e5.

The following theorem proves that the proposed algorithm computes exactly the
set of MVIs as defined in definition 4.

Theorem 9. The proposed graph-traversal algorithm is sound and complete.

Proof. By definition, p(e1, e2) is an MVI with respect to the current knowledge state if
and only if e1 initiates p, e2 terminates p, e2 belongs to G(e1), and every path e1 ❀ e2

from e1 to e2 in G(e1) does not contain events relevant to p, that is, events that affect

104 M. Franceschet, A. Montanari / A graph-theoretic approach

(initiate or terminate) either p or a property incompatible with p and differ from both e1

and e2.
We first prove that the algorithm is sound, that is, if p(e1, e2) is generated by the

algorithm, then p(e1, e2) is an MVI. Given a property p and an event e1, the algorithm
searches the acyclic graph G(e1) for terminating events e2. Since the visit is breadth-
first, each node is reached along the shortest path on G(e1) starting from e1. Given a
node e, we denote by D(e) the length of the shortest path on G(e1) connecting e1 to e.

We proceed by contradiction. Suppose that p(e1, e2) is returned by the algorithm,
but it is not an MVI. If e1 does not initiate p or e2 does not terminate p, then p(e1, e2)

cannot be retrieved. Moreover, if e2 does not belong to G(e1), then the visit of G(e1)

does not retrieve e2, and hence p(e1, e2) cannot be generated. Finally, suppose that
there exists at least one path e1 ❀ e2 in G(e1) that contains at least one node z which
affects either p or a property incompatible with p and is different from e1 and e2. If
D(z) < D(e2), then the node z is visited before e1, it is labeled as marked, and the
label cutoff is propagated to the nodes of G(z) different from z. In particular, e2

is labeled as cutoff during such a propagation and thus it cannot be chosen as the
terminating event of an MVI for p initiated by e1. Hence, p(e1, e2) cannot be generated
by the algorithm. If D(z) > D(e2) (notice that D(z) �= D(e2), since z �= e2 and
there are not simultaneous events), then the node e2 is visited before z, it is labeled as
marked, and the label cutoff is propagated to the nodes of G(e2) different from e2.
Since the graph G(e1) is acyclic and there exists a path from z to e2, there are no paths
from e2 to z; hence the propagation of the label cutoff does not reach the node z.
The node z is processed at some later stage, it is labeled as marked, and the label
cutoff is propagated to the nodes of G(z) different from z. In particular, the label of
e2 is changed from marked to cutoff, and thus p(e1, e2) cannot be generated by the
algorithm.

We now prove that the algorithm is complete, that is, if p(e1, e2) in an MVI, then
p(e1, e2) is generated by the algorithm. Since (e1, e2) is an interval, e2 is reachable from
e1 in the graph G(e1). Since p(e1, e2) is an MVI, every path e1 ❀ e2 from e1 to e2 in
G(e1) does not contain interrupting events for p different from e1 and e2. Hence, the
node e2 is not cut off and, since it terminates p, it is labeled as marked and retrieved
as the terminating event of an MVI for p initiated by e1. Thus, p(e1, e2) is generated by
the algorithm. �

Notice that the proposed algorithm is based on a forward strategy: given a property
p and an initiating event e1, it visits the graph G(e1), looking for a terminating event e2

such that p(e1, e2) is an MVI. Nothing prevents us to define an equivalent backward al-
gorithm as follows. Given a directed graph G, let us denote by Ĝ the converse of G, i.e.,
the graph in which each edge (ei, ej) of G has been replaced by the edge (ej , ei). Given
a property p and a terminating event e2, we visit the graph Ĝ(e2) as before, looking for
initiating events e1 such that p(e1, e2) is an MVI.

M. Franceschet, A. Montanari / A graph-theoretic approach 105

5. A second graph-traversal algorithm for MVIs computation

In this section, we first propose a sound (respectively complete) graph-traversal
algorithm for MVIs computation in EC that exploits the notion of transitive reduction
(respectively closure) of the ordering graph; then, we show how to pair transitive reduc-
tion and closure to devise a sound and complete algorithm.

5.1. Two partial graph-traversal algorithms

We start by describing a sound (but incomplete) and a complete (but unsound)
graph-traversal algorithm for MVIs computation in EC. The first algorithm stores and
maintains the transitive reduction of a knowledge state. Let H = (E, P, [·〉, 〈·],]·,·[) be
an EC-structure, o− be the transitive reduction of a knowledge state o, and (e1, e2) be
an ordered pair of events. The addition of (e1, e2) to o− is dealt with as follows (update
processing). First, (e1, e2) is checked for consistency and redundancy with respect to o−.
If (e1, e2) is neither inconsistent ((e2, e1) /∈ o+) nor redundant ((e1, e2) /∈ o+), then o− is
replaced by o− ↓ (e1, e2). The set o− ↓ (e1, e2), which can be proved to be the transitive
reduction of o∪ {(e1, e2)}, is obtained as follows: first, the ordered pair (e1, e2) is added
to o−; then, the set of nodes from which e1 is accessible (Pred(e1)) and the set of nodes
which are accessible from e2 (Succ(e2)) are computed; finally, any pair (e′, e′′) ∈ o−
such that e′ ∈ Pred(e1) and e′′ ∈ Succ(e2) is deleted from o− ∪ {(e1, e2)}.
if (e1, e2) /∈ o+ and (e2, e1) /∈ o+ then
o− ← o− ∪ {(e1, e2)}
put in Pred(e1) the nodes from which e1 is accessible
put in Succ(e2) the nodes accessible from e2

for each e′ ∈ Pred(e1) do
for each e′′ ∈ Succ(e2) do

if (e′, e′′) ∈ o− then o− ← o− \ {(e′, e′′)}
Given two events e′ and e′′, testing whether (e′, e′′) ∈ o+ or not can be performed by
visiting depth-first the subgraph of (E, o−) generated by e′, searching for the node e′′.
The set Succ(e2) can be computed by executing a depth-first visit of the subgraph of
(E, o− ↓ (e1, e2)) generated by e2 and retrieving all the visited nodes. Similarly, in
order to compute the set Pred(e1), we visit depth-first the subgraph generated by e1

with respect to the converse graph Ĝ of the graph G = o− ↓ (e1, e2) (the notion of
converse graph has been given in the previous section).

At query time, for every property p, the algorithm selects as MVIs for p the
p-edges of the transitive reduction o−, i.e. the edges (e1, e2) ∈ o− such that e1 initi-
ates p and e2 terminates p.

MVI← ∅
for each p ∈ P do

for each (e1, e2) ∈ o− do
if e1 ∈ [p〉 and e2 ∈ 〈p] then MVI← MVI ∪ {p(e1, e2)}

return MVI

106 M. Franceschet, A. Montanari / A graph-theoretic approach

Figure 2. An example of incompleteness.

Figure 3. An example of unsoundness.

Such an algorithm is sound: (e1, e2) is selected as an MVI for p if e1 initiates p,
e2 terminates p, e1 precedes e2, and there are no events between e1 and e2 (the truth
of this last condition immediately follows from the fact that (e1, e2) is an edge of the
transitive reduction o−); hence, by definition, p(e1, e2) is an MVI. As shown in [8], this
algorithm is also complete in the single-property case. Unfortunately, it is incomplete
in the general multiple-property case. Consider the simple scenario depicted in figure 2,
where p and q are two compatible properties. Since e does not interrupt the validity
of p, p(e1, e2) is an MVI for p; however, since there is not an edge from e1 to e2, the
proposed algorithm does not return p(e1, e2).

Let us now describe a complete (but not sound) graph-traversal algorithm for MVIs
computation. The idea is to store and maintain the transitive closure of the knowledge
state, instead of its transitive reduction. Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure,
w ∈ WE be the transitive closure of a knowledge state o, and (e1, e2) be an ordered pair
of events. The addition of (e1, e2) to w is dealt with as follows (update processing).
Whenever both (e1, e2) /∈ w and (e2, e1) /∈ w, the update procedure determines w ↑
(e1, e2) by executing the following steps: first, the edge (e1, e2) is added to w; then, for
every pair of events e′, e′′ ∈ E such that (e′, e1) ∈ w, (e2, e

′′) ∈ w, and (e′, e′′) /∈ w, the
edge (e′, e′′) is added to w ∪ (e1, e2). It is worth noting that, since w is transitive, the set
of predecessors (respectively successors) of e1 (respectively e2) coincides with the set of
nodes from which e1 is accessible (respectively accessible from e2).

if (e1, e2) /∈ w and (e2, e1) /∈ w then
w← w ∪ {(e1, e2)}
for each predecessor e′ of e1 do

for each successor e′′ of e2 do
if (e′, e′′) /∈ w then w← w ∪ {(e′, e′′)}

At query time, for every property p, the algorithm retrieves as MVIs for p the p-edges
of w as before.

The proposed algorithm is complete: if p(e1, e2) is an MVI, then, by definition, e1

initiates p, e2 terminates p, and e1 precedes e2; hence, the interval (e1, e2) is selected
as an MVI for the property p. Unfortunately, it is immediate to show that such an
algorithm is not sound. Consider the scenario of figure 3, where p and q are incompatible

M. Franceschet, A. Montanari / A graph-theoretic approach 107

properties. The interval p(e1, e2) is not an MVI for p, since e interrupts the validity of
p over (e1, e2). However, since there is an edge from e1 to e2, p(e1, e2) is retrieved as
an MVI for p.

5.2. Pairing transitive closure and reduction

In this section, we pair the notions of transitive closure and reduction to obtain a
sound and complete graph-traversal algorithm for MVIs computation in EC. The algo-
rithm stores and maintains the transitive closure w of a knowledge state and, for every
property p, it stores the transitive reduction of the subgraph wp induced by the set of
events that are relevant to p. Let H be an EC-structure, w be the transitive closure of a
knowledge state o, and (e1, e2) be an ordered pair of events. The addition of (e1, e2) to
w is dealt with as follows (update processing):

1. if (e1, e2) /∈ w and (e2, e1) /∈ w, then w is replaced by w ↑ (e1, e2);

2. for every property p ∈ P , the subgraph wp induced by the set of events that are
relevant to p, that is, the events that initiate or terminate either p or a property in-
compatible with p, is extracted from w ↑ (e1, e2);

3. for every property p ∈ P , the transitive reduction w−p of the graph wp is computed
by using one of the standard algorithms, e.g., [11,15].

// computing w ↑ (e1, e2)

if (e1, e2) /∈ w and (e2, e1) /∈ w then
w← w ∪ {(e1, e2)}
for each predecessor e′ of e1 do

for each successor e′′ of e2 do
if (e′, e′′) /∈ w then w← w ∪ {(e′, e′′)}

// computing wp for every property p
for each p ∈ P do

wp ← ∅
for each (e′, e′′) ∈ w do

if is_relevant_to(e′ ,p) and is_relevant_to(e′′ ,p)
then wp ← wp ∪ {(e′, e′′)}

// computing w−p for every property p
for each p ∈ P do

compute the transitive reduction w−p
Notice that computing the transitive closure of the knowledge state (item 1 above) is
necessary since neither the transitive reduction of the subgraph induced by p, nor the
subgraph of the transitive reduction induced by p would work, as shown by the example
depicted in figure 2.

108 M. Franceschet, A. Montanari / A graph-theoretic approach

Figure 4. MVIs computation using the proposed graph-traversal algorithm.

The set of MVIs for p includes all and only the p-edges of w−p . Hence, for every
property p, query processing reduces to the retrieval of the p-edges of w−p .

MVI← ∅
for each p ∈ P do

for each (e1, e2) ∈ w−p do
if e1 ∈ [p〉 and e2 ∈ 〈p] then MVI← MVI ∪ {p(e1, e2)}

return MVI

An example of MVIs computation using the proposed graph-traversal algorithm is
given in figure 4. Let the initial situation be that depicted in figure 4(A), where p and
q are two compatible properties. Once the edge (e2, e3) is entered, the transitive closure
of the resulting graph is computed (cf. figure 4(B)). Then, the subgraphs induced by the
events that respectively are relevant to q and p are extracted from the original graph (the
two resulting subgraphs are described in figure 4(C)). Finally, the transitive reductions
w−q and w−p are computed (cf. figure 4(D)). At query time, q(e1, e3) and p(e2, e3) are
returned as MVIs for q and p, respectively.

Theorem 10. The proposed graph-traversal algorithm for MVIs computation is sound
and complete with respect to the given semantics of EC.

Proof. Let H = (E, P, [·〉, 〈·],]·,·[) be an EC-structure and w be the transitive closure
of a knowledge state o. To prove that the proposed algorithm is sound, we must show
that if (e1, e2) is a p-edge of w−p , then p(e1, e2) is an MVI for p with respect to w and
H. The proof is by contradiction. If p(e1, e2) is not an MVI, then one of the following
propositions must hold: e1 does not initiate p, e2 does not terminate p, (e1, e2) /∈ w, or
there exists an interrupting event e for p that occurs between e1 and e2. If e1 does not
initiate p or e2 does not terminate p, then (e1, e2) is not a p-edge. If (e1, e2) /∈ w, then
(e1, e2) /∈ w−p , since w−p ⊆ w, and thus (e1, e2) is not a p-edge of w−p . Finally, if there

M. Franceschet, A. Montanari / A graph-theoretic approach 109

exists an interrupting event e for p such that both (e1, e) ∈ w and (e, e2) ∈ w, then there
exist a path e1 ❀ e and a path e ❀ e2 in w−p . Hence, the edge (e1, e2) is a transitive
one, and thus it does not belong to w−p . This allows us to conclude that (e1, e2) is not a
p-edge of w−p .

To prove that the proposed algorithm is complete, we must show that if p(e1, e2) is
an MVI for p with respect to w and H, then (e1, e2) is a p-edge of w−p . By hypothesis,
e1 initiates p, e2 terminates p, and (e1, e2) ∈ w. It follows that (e1, e2) is a p-edge of
wp. Moreover, since there are no interrupting events for p that occur between e1 and
e2, the edge (e1, e2) is the unique path from e1 to e2 in wp. This implies that the edge
(e1, e2) is not transitive, and thus it is a p-edge of w−p . �

6. Adapting the algorithms to the Modal Event Calculus

Two efficient algorithms, that respectively compute necessary and possible MVIs
of MEC, can be obtained from corollary 7 taking advantage of the algorithms for MVIs
computation in EC described in sections 4 and 5. Let o be a knowledge state and w = o+
be its transitive closure. In order to compute the sets C(w) and S(w) (cf. section 3), we
proceed as follows. C(w) is obtained by selecting all property-labeled pairs of events
p(e1, e2) such that e1 initiates p, e2 terminates p, and e1 and e2 are unordered in w:

compute w = o+
sort w
C ← ∅
for each p ∈ P do

for each (e1, e2) ∈ E × E do
if e1 ∈ [p〉 and e2 ∈ 〈p] and
(e1, e2) /∈ w and (e2, e1) /∈ w then
C ← C ∪ {p(e1, e2)}

return C

The computation of S(w) is more involved. First, we compute the set U(w) con-
taining all pairs (e, p) ∈ E × P such that there exists another event e′, which affects
either p or a property incompatible with p and is unordered with respect to e in w. It is
easy to see that if (e, p) ∈ U(w), then e neither initiates nor terminates a ✷-MVI for p.
The set S(w) is obtained by selecting those atomic formulas p(e1, e2) such that neither
(e1, p) nor (e2, p) belong to U(w):

// compute U(w)
compute w = o+
sort w
U ← ∅
S ← ∅
for each p ∈ P do

for each e ∈ E do

110 M. Franceschet, A. Montanari / A graph-theoretic approach

Found← False
V ← E

while not Found and V �= ∅ do
let e′ ∈ V
if (e, e′) /∈ w and
(e′, e) /∈ w and
is_relevant_to(e′ , p) then
Found← True
U ← U ∪ {(e, p)}

else
V ← V \ {e′}

// compute S(w) taking advantage of U(w)
for each p ∈ P do

for each (e1, e2) ∈ E × E do
if (e1, p) /∈ U and
(e2, p) /∈ U then
S ← S ∪ {p(e1, e2)}

return S

Let us first consider the algorithm for MVIs computation in MEC obtained by
exploiting the procedure for MVIs computation in EC described in section 4. Update
processing in MEC consists in checking whether the new pair of events is consistent
and non-redundant with respect to the current knowledge state, as in EC. As for query
processing, the set MVI(w) is obtained as shown in section 4 and, in addition, it is
sorted. The sets C(w) and S(w) are computed by the above described algorithms. The
set ✷MVI(w) is obtained by intersecting MVI(w) and S(w), while the set ✸MVI(w) is
computed by taking the union of MVI(w) and C(w).

We now describe the algorithm for MVIs computation in MEC obtained by using
the procedure for MVIs computation in EC described in section 5. Update processing
first determines w ↑ (e1, e2) and then, for every property p, derives w−p as shown in
section 5. In addition, w−p is sorted. The sets C(w) and S(w) are obtained as in the
previous case (notice that in such a case the computation of the transitive closure of
the current knowledge state is actually not necessary). Query processing reduces to the
computation of the sets MVI(w), by means of the procedure for MVIs computation in
EC shown in section 5, ✷MVI(w), by intersecting MVI(w) and S(w), and ✸MVI(w),
by taking the union of MVI(w) and C(w).

It is worth noting that the proposed algorithms can be easily extended to cope with
updates consisting of the addition of new events. It is easy to see that the addition of a
new event to the structure does not affect the set of MVIs derived by EC. On the contrary,
when a new event is added, the sets C(w) and S(w) grows and shrinks, respectively. It
follows that, in order to cope with such updates, it is sufficient to recompute the sets
C(w) and S(w), while the set MVI(w) remains unchanged.

M. Franceschet, A. Montanari / A graph-theoretic approach 111

7. Complexity analysis

In this section, we first analyze and then compare the computational complexity of
the proposed algorithms for MVIs computation.

Given an EC-structure H = (E, P, [·〉, 〈·],]·,·[) and an acyclic binary relation
o ∈ OE, we determine the complexity of computing the set of MVIs with respect to o
and H, i.e., the set of formulas p(e1, e2) (respectively ✷p(e1, e2) and ✸p(e1, e2)) such
that o+ |= p(e1, e2) (respectively o+ |= ✷p(e1, e2) and o+ |= ✸p(e1, e2)), by using the
proposed algorithms. We measure the complexity in terms of the size n of the structure
H (where n is the number of recorded events in E) and the size m of the relation o,
or the size m− of its transitive reduction o−. This choice can be explained as follows.
Given an EC-structure H, the set E of events can be arbitrarily large, while the set P of
properties is fixed once and for all, since it is an invariant characteristic of the considered
domain. Since the cardinality of P does not change from one problem instance to another
one (unless we change the application domain), while the cardinality of E may grow
arbitrarily, we choose the cardinality of E as the size of H and consider the number of
properties as a constant. Moreover, when analyzing the complexity of graph algorithms,
it is standard to consider the number m of edges as a relevant complexity parameter,
albeit it is known that m = O(n2).

7.1. The complexity of query and update processing

We assume P and E to be sorted. Furthermore, we assume that the knowledge
state o as well as the sets [p〉 and 〈p], for every property p ∈ P , are maintained sorted.
Under such assumptions, given an event e and a property p, the tests e ∈ [p〉 and
e ∈ 〈p] can be performed, by using a binary search, in time O(log n). Similarly, given
two distinct events e1 and e2, the test (e1, e2) ∈ o costs O(logm). These logarithmic
factors can actually be eliminated by using suitable hashing techniques. Finally, the
test (e1, e2) ∈ o+ can be performed in O(m + n) by executing a depth-first visit of the
subgraph of (E, o) generated by e1.

In the following, we will denote by GO0 the traditional generate-and-test algorithm
for MVIs computation in EC [2], by GO1 the graph-traversal algorithm proposed in sec-
tion 4, and by GO2 the graph-traversal algorithm described in section 5. We first recall
complexities of GO0 during update and query processing [3,4].

Theorem 11 (Complexities of update and query processing in GO0). The comple-
xity of update processing is O(n + m), while the complexity of query processing is
O(n3(n+m)).

The algorithm GO0 can be extended to compute necessary and possible MVIs in
MEC without any increase in computational complexity [3,4].

We now analyze the complexity of the algorithm GO1.

112 M. Franceschet, A. Montanari / A graph-theoretic approach

Theorem 12 (Complexities of update and query processing in GO1). The complexity of
update processing is O(n + m), while the complexity of query processing is O(nm +
n2 log n).

Proof. Update processing consists in checking whether or not a pair of events (e1, e2)

is consistent with o, i.e., whether (e2, e1) ∈ o+ or not, and whether it is non-redundant
with respect to o, i.e., whether (e1, e2) ∈ o+ or not. This can be performed by visiting
depth-first the subgraph generated by e2 (respectively e1) and looking for e1 (respec-
tively e2). Since a depth-first visit of a graph costs O(n + m), this is also the cost of
update processing.

As for query processing, GO1 behaves as follows. For every property p and every
event e1 initiating p, the algorithm visits the graph G(e1) and retrieve all the events e2

such that p(e1, e2) is an MVI. Since the number of properties is constant, the complexity
is O(n ·f (n,m)), where f (n,m) is the complexity of the procedure that visits the graph
G(e1) and retrieves the nodes that terminate the MVIs for p initiated by e1. It holds that
f (n,m) is the sum of the costs of the visit of G(e1) and of the processing of the nodes
of G(e1).

The graph G(e1) is visited breadth-first to construct the layers and to retrieve the
terminating events, while it is visited depth-first to propagate the labels cutoff. Each
edge of the graph G(e1) is visited at least once (depth-first or breadth-first) and at most
twice (first breadth-first, and then depth-first). Indeed, if an edge (e1, e2) is depth-
first visited, then e1 is labeled as marked or cutoff. Hence, neither a breadth-first
visit nor a depth-first one will later reconsider it. However, edges which have been al-
ready breadth-first visited can also be visited depth-first in order to propagate the label
cutoff. It follows that the cost of visiting G(e1) is O(m).

Similarly, each node of the graph G(e1) is processed at least once (depth-first
or breadth-first) and at most twice (first breadth-first, and then depth-first). Indeed, if
the depth-first visit cuts off a node, then it will not be processed anymore. However,
nodes labeled as marked or visited, which have been already processed during
the breadth-first visit, can also be processed during a depth-first visit and labeled as
cutoff. The processing of a node consists of the operations of labeling and testing for
relevant events. Both these operations cost O(log n). Therefore, processing all nodes of
G(e1) costs O(n log n).

Putting together the above results, we conclude that f (n,m) = O(m)+O(n logn)
= O(m + n log n). This allows us to conclude that the cost of the algorithm is
O(n · f (n,m)) = O(nm+ n2 log n). �

A bit surprisingly, the complexity of query processing in GO1 does not increase
when moving from the computation of MVIs in EC to the (more significant) computation
of possible and necessary MVIs in MEC (the complexity of update processing for EC
and MEC in GO1 is exactly the same). Let o be the current knowledge state and w = o+
be its transitive closure. The set ✷MVI(w) is obtained by intersecting the sets MVI(w)
and S(w), while the set ✸MVI(w) can be obtained by taking the union of MVI(w) and

M. Franceschet, A. Montanari / A graph-theoretic approach 113

C(w). It is easy to see that computing the sets C(w) and S(w) costs O(m−n+n2 log n),
where m− is the size of o−. Indeed, computing the transitive closure w = o+ costs
O(m−n), and sorting w costs O(n2 log n). Computing the set C(w), whenever w is
sorted, costs O(n2 log n). The same for the set S(w). Hence, obtaining C(w) and S(w)
costs O(m−n + n2 log n). Since, by hypothesis, E and P are sorted, the resulting sets
C(w) and S(w) are sorted too. Moreover, MVI(w) can be sorted in O(n2 log n). Finally,
taking the intersection or the union of two sorted sets of size O(n2) can be performed
in time O(n2) by using a simple variant of the algorithm for merging sorted vectors. It
follows that ✷MVI(w) and ✸MVI(w) can be computed in O(m−n+ n2 log n), which is
not worse than the time needed to compute MVI(w).

We conclude the analysis by determining the computational complexity of the al-
gorithm GO2.

Theorem 13 (Complexities of update and query processing in GO2). The complexity of
update processing is O(nm− + n2 log n), while the complexity of query processing is
O(m− log n).

Proof. Update processing in GO2 is performed in three steps. At the first step, EC
verifies that neither (e1, e2) nor (e2, e1) belong to w. If this is the case, it determines the
set ŵ = w ↑ (e1, e2). Let m = |w|, m− = |w−|, m̂ = |ŵ|, and m̂− = |ŵ−|. The tests
(e1, e2) /∈ w and (e2, e1) /∈ w cost O(logm) = O(log n). The set ŵ is computed as
follows: first, the edge (e1, e2) is added to w; then, for every pair of events e′, e′′ ∈ E
such that (e′, e1) ∈ w, (e2, e

′′) ∈ w, and (e′, e′′) /∈ w, the edge (e′, e′′) is added to
w ∪ (e1, e2). The sets of predecessors and successors of a given node can be computed
in O(n) and have cardinality O(n), and the addition of (e′, e′′) to w ∪ (e1, e2) (checking
whether or not (e′, e′′) ∈ w) costs O(log m̂) = O(log n); hence, the complexity of
computing ŵ is O(n2 log n).

The second step consists in the extraction of ŵp from ŵ, for every property p.
Since ŵp contains the edges (e′, e′′) of ŵ such that both e′ and e′′ are relevant to p and
since each test costs O(log n), this step has complexity O(m̂ log n).

The last step is the computation of the transitive reduction ŵ−p , for every property p.
Since ŵp is acyclic, ŵ−p can be computed in O(nm̂−). The resulting cost of update
processing is thus O(nm̂− + m̂ log n + n2 log n) = O(nm̂− + n2 log n). Since m̂− is
O(m−), update processing is O(nm− + n2 log n).

Given the transitive closure w of a knowledge state, query processing consists in
picking up, for every property p, the p-edges of w−p . Since the cardinality of w−p is
O(m−) and verifying whether or not an edge is a p-edge costs O(log n), the complexity
of query processing is O(m− log n). �

Moving from EC to MEC does not change the complexity of update processing.
Indeed, computing the sets C(w) and S(w) costs O(n2 log n) (note that in this case we
do not need to compute and sort the transitive closure of the current knowledge state,
because we store it and maintain it sorted). Since, by hypothesis, E and P are sorted,

114 M. Franceschet, A. Montanari / A graph-theoretic approach

Table 1

EC-update EC-query MEC-update MEC-query

GO0 O(n+m) O(n3(n+m)) O(n+m) O(n3(n+m))
GO1 O(n+m) O(nm+ n2 log n) O(n+m) O(nm+ n2 log n)
GO2 O(nm− + n2 logn) O(m− logn) O(nm− + n2 log n) O(m− log n+ n2)

the resulting sets C(w) and S(w) are sorted too. Moreover, for every property p, the set
w−p can be sorted in O(n2 log n).

As for query processing in MEC, there is a little increase in complexity. The set
MVI(w) can be computed in O(m− log n). Notice that, since both P and w−p , for every
property p, are sorted, the resulting set MVI(w) is sorted without any additional cost.
The set ✷MVI(w) is obtained by intersecting the ordered sets MVI(w) and S(w) by
using a simple variant of the algorithm for merging sorted vectors. In a similar way,
the set ✸MVI(w) can be obtained by taking the union of MVI(w) and C(w). Since the
intersection or the union of two sorted sets of size O(n2) can be determined in O(n2),
query processing costs O(m− log n+ n2).

7.2. A comparison of GO0, GO1, and GO2

In this section, we compare the complexities of query and update processing in
GO0, GO1, and GO2. Table 1 summarizes the complexity results that have been proved
in the previous section. First, notice that the complexity bounds for EC and MEC may
differ only in the case of query processing in GO2, when O(m−) is strictly less than
O(n2). For this reason, we will confine our analysis to EC. In order to properly compare
the proposed algorithms, we must take into account that algorithms GO0 and GO1 are
query-driven, that is, they perform most of their computation at query time, whereas
GO2 is update-driven, that is, it mostly works at update time. As a consequence, GO0

and GO1 are easily comparable: query processing in GO1 is more efficient than query
processing in GO0, while the complexity of update processing in GO0 and GO1 is the
same. Comparing GO0 and GO1 with GO2 is a more difficult task, because (i) GO2 is an
update-driven algorithm, whereas GO0 and GO1 are query-driven algorithms, and (ii) the
complexity bounds for GO2 are expressed in terms of the number m− of edges of the
transitive reduction of the knowledge state, whereas those for GO0 and GO1 refer to the
number m of edges of the knowledge state. To cope with these problems, we execute a
case-based analysis, that distinguishes among the following alternative possibilities (cf.
figure 5):

A1 both the current knowledge state and its transitive reduction are dense graphs, i.e.,
both m and m− are "(n2);

A2 both the current knowledge state and its transitive reduction are sparse graphs, i.e.,
both m and m− are "(n);

A3 the current knowledge state is a dense graph, while its transitive reduction is a
sparse graph, i.e., m = "(n2) and m− = "(n).

M. Franceschet, A. Montanari / A graph-theoretic approach 115

Figure 5. Examples of scenarios A1, A2, and A3 (left to right).

Table 2

EC-update EC-query

GO0 O(n2) O(n5)

GO1 O(n2) O(n3)

GO2 O(n3) O(n2 log n)

Let #q and q (respectively #u and u = 1 − q) be the number of queries and the query
frequency (respectively the number of updates and the update frequency) of the EC-
system. We will consider the following cases:

B1 #q " #u (we can assume q = 1 and u = 0);

B2 #u" #q (we can assume q = 0 and u = 1);

B3 neither #q " #u nor #u" #q, and n" 0;

B4 neither #q " #u nor #u" #q, and n is small.

The complexity bounds (EC only) in case A1 are given in table 2. The global (i.e., update
plus query) computational cost is G(q, n) = (1 − q) · Cu(n)+ q · Cq(n), where Cu(n)

and Cq(n) are the complexities of update and query processing, respectively (figure 6,
left side). As for the global cost, in case B1, GO2 is better than GO1, which, in its turn, is
better than GO0, while, in case B2, GO0 and GO1 are equivalent and better than GO2. In
case B3, the actual value of q and u does not matter, since q and u are comparable and
n is large. Hence, the global cost is Cu(n) + Cq(n), that is, O(n5) for GO0, and O(n3)

for GO1 and GO2. It follows that, in this case, GO1 and GO2 are equivalent and both of
them are more efficient than GO0. On the contrary, in case B4, the actual value of q and
u must be taken into account, because n is small. However, if we do not know the actual
value of q or u, we can compute the average value µ(n) of the function G(q, n) varying
q over the interval [0, 1]. It holds that

µ(n) =
∫ 1

0
G(q, n) dq.

We have that µ(n) = 1
2n

2(n3 + 1) for GO0, µ(n) = 1
2n

2(n + 1) for GO1, and µ(n) =
1
2n

2(n + log n) for GO2. Hence, regarding to the average value of G(q, n), GO1 is the
best solution.

The complexity bounds in case A2 are given in table 3. This case is similar to the
previous one, and the outcomes of the comparison are exactly the same (cf. figure 6,
middle).

116 M. Franceschet, A. Montanari / A graph-theoretic approach

Table 3

EC-update EC-query

GO0 O(n) O(n4)

GO1 O(n) O(n2 log n)
GO2 O(n2 log n) O(n log n)

Table 4

EC-update EC-query

GO0 O(n2) O(n5)

GO1 O(n2) O(n3)

GO2 O(n2 log n) O(n log n)

Figure 6. The behaviour of the global cost function G(q, n) in cases A1 (left), A2 (middle), and A3 (right).

Finally, in case A3, the complexity bounds are given in table 4. The global com-
putational cost G(q, n) = (1 − q) · Cu(n) + q · Cq(n) is illustrated in figure 6, right
side. Cases B1 and B2 are as above, while cases B3 and B4 are different. In case B3, the
global cost of GO2 (O(n2 log n)) is less than the global cost of GO1 (O(n3)). The same
in case B4. Indeed, µ(n) = 1

2n
2(n+ 1) for GO1 and µ(n) = 1

2n log n(n+ 1) for GO2.

8. Conclusions and future work

In this paper, we have shown how well-known graph-theoretic techniques can be
successfully exploited to efficiently reason about partially ordered events in EC and
MEC. Even though we developed our solution in the context of (Modal) Event Calcu-
lus, we expect it to be applicable to any formalism for reasoning about partially ordered
events.

Whenever the system is regularly queried and updated, i.e., the frequencies of
queries and updates are comparable, and the number of recorded events is quite large
(the usual case), both the alternative graph-traversal algorithms GO1 and GO2 are much

M. Franceschet, A. Montanari / A graph-theoretic approach 117

more efficient than the standard generate-and-test one GO0. Moreover, GO2 is better than
GO1 whenever the transitive reduction of the current knowledge state is sparse and the
current knowledge state is dense (this was conjectured by Chittaro et al. [8]). In the
other relevant cases, the two algorithms are equivalent.

As for future work, we are mainly interested in the following two research direc-
tions. On the one hand, we are looking for meaningful lower bounds to the (tractable
instances of the) problem of reasoning about partially ordered events. On the other
hand, we would like to apply the proposed graph-traversal algorithms to other (polyno-
mial) extensions of EC [4,5]. As an example, Cervesato et al. [4] studied the effects of
the addition of preconditions to (Modal) Event Calculus. The resulting Event Calculus
with Preconditions (PEC) and its modal variant (MPEC) aim at modeling situations that
consist of a set of events, whose occurrences over time have the effect of initiating or ter-
minating the validity of properties when given preconditions are met. Computing MVIs
in PEC remains a polynomial task, albeit the polynomial degree depends on the nesting
level of preconditions. On the contrary, as already pointed out by Dean and Boddy [10],
an unconstrained use of preconditions makes the problem of deriving the set of neces-
sary and possible MVIs intractable. To overcome this negative complexity outcome,
Cervesato et al. [4] developed polynomial approximate procedures for the computation
of necessary and possible MVIs in MPEC, that are in general either sound (but not com-
plete) or complete (but not sound) with respect to the semantics of the corresponding
modal event calculi. We believe that the graph-traversal algorithms we have proposed in
this paper can be successfully exploited in order to speed up the computation of MVIs
in PEC and of the approximations of MVIs in MPEC.

Acknowledgements

The authors were supported by the MURST Project SALADIN (Software Archi-
tectures and LAnguages to coordinate DIstributed mobile compoNents).

References

[1] A.V. Aho, M.R. Garey and J.D. Ullman, The transitive reduction of a directed graph, SIAM Journal
on Computing 1(2) (1972) 131–137.

[2] I. Cervesato, L. Chittaro and A. Montanari, A modal calculus of partially ordered events in a logic
programming framework, in: Proceedings of the Twelfth International Conference on Logic Pro-
gramming – ICLP’95, ed. L. Sterling, Kanagawa, Japan, 13–16 June 1995 (MIT Press, 1995) pp.
299–313.

[3] I. Cervesato, M. Franceschet and A. Montanari, The complexity of model checking in modal event
calculi with quantifiers, Electronic Transactions on Artificial Intelligence 2 (1998) 1–23.

[4] I. Cervesato, M. Franceschet and A. Montanari, A guided tour through some extensions of the event
calculus, Computational Intelligence 16(2) (2000) 307–347.

[5] I. Cervesato, M. Franceschet and A. Montanari, A hierarchy of modal event calculi: Expressiveness
and complexity, in: Advances in Temporal Logic, eds. H. Barringer, M. Fisher, D. Gabbay and
G. Gough, Applied Logic Series (Kluwer Academic, 2000) pp. 1–20.

118 M. Franceschet, A. Montanari / A graph-theoretic approach

[6] I. Cervesato and A. Montanari, A general modal framework for the event calculus and its skeptical
and credulous variants, Journal of Logic Programming 38(2) (1999) 111–164.

[7] D. Chapman, Planning for conjunctive goals, Artificial Intelligence 32 (1987) 333–377.
[8] L. Chittaro, A. Montanari and I. Cervesato, Speeding up temporal reasoning by exploiting the notion

of kernel of an ordering relation, in: Proc. of the 2nd International Workshop on Temporal Represen-
tation and Reasoning – TIME’95, Melbourne Beach, FL (26 April 1995) pp. 73–80.

[9] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to Algorithms (MIT Press, 1989).
[10] T. Dean and M. Boddy, Reasoning about partially ordered events, Artificial Intelligence 36 (1988)

375–399.
[11] A. Goralcikova and V. Koubek, A reduct and closure algorithm for graphs, in: Proc. of the 8th Sympo-

sium on Mathematical Foundations of Computer Science, Olomouc, CZ, Lecture Notes in Computer
Science Vol. 74 (Springer, 1979) pp. 301–307.

[12] R. Kowalski, Database updates in the event calculus, Journal of Logic Programming 12 (1992)
121–146.

[13] R. Kowalski and M. Sergot, A logic-based calculus of events, New Generation Computing 4 (1986)
67–95.

[14] B. Nebel and C. Bäckström, On the computational complexity of temporal projection, planning, and
plan validation, Artificial Intelligence 66 (1994) 125–160.

[15] K. Simon, An improved algorithm for transitive closure on acyclic digraphs, Theoretical Computer
Science 58(1–3) (1988) 325–346.

[16] J. van Leeuwen, Graph algorithms, in: Handbook of Theoretical Computer Science. Vol. A: Algo-
rithms and Complexity, ed. J. van Leeuwen (Elsevier, 1990) pp. 525–632.

