
Electronic Notes in Theoretical Computer Science 48 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume48.html pp. 1 – 14

Modeling Concurrent systems specified in a
Temporal Concurrent Constraint language-I

Moreno Falaschi 1 Alberto Policriti 2 Alicia Villanueva 3

Dipartimento di Matematica e Informatica
Università di Udine

Udine, Italy

Abstract

In this paper we present an approach to model concurrent systems specified in a
temporal concurrent constraint language. Our goal is to construct a framework in
which it is possible to apply the Model Checking technique to programs specified in
such language.

This work is the first step to the framework construction. We present a forma-
lism to transform a specification into a tcc Structure. This structure is a graph
representation of the program behavior.

Our basic tool is the Timed Concurrent Constraint Programming (tcc) framework
defined by Saraswat et al. to describe reactive systems. With this language we take
advantage of both the natural properties of the declarative paradigm and of the fact
that the notion of time is built into the semantics of the programming language.
In fact, on this ground it becomes reasonable to introduce the idea of applying
the technique of Model Checking to a finite time interval (introduced by the user).
With this restriction we naturally force the space representing the behavior of the
program to be finite and hence Model Checking algorithms to be applicable. The
graph construction is a completely automatic process that takes as input the tcc
specification.

Key words: Timed Concurrent Constraint programming,
Reactive systems, Model checking

1 Introduction

Timed Concurrent Constraint Programming (see [6]) is an extension of the
Concurrent Constraint Programming paradigm obtained adding the time con-

1 Email: falaschi@dimi.uniud.it
2 Email: policrit@dimi.uniud.it
3 Email: alicia@dimi.uniud.it

c©2001 Published by Elsevier Science B. V.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Udine

https://core.ac.uk/display/53322169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Falaschi, Policriti and Villanueva

cept to the CCP model. The fundamental contribution of the tcc model is to
augment the ability of constraint programming to detect positive information
with the ability to detect negative information. Such a negative information
is crucial to model reactive and real-time computations [4]. tcc, in addition,
incorporates the idea that once a negative information is detected it is too late
to change the past. If some information has not been stored in that instant it
will not be stored.

The method of Model Checking is an extremely successful approach to
formal verification developed in the last two decades. With this method it is
possible to verify a determined behavioral property of a reactive system over
a model. It is an algorithmic method that makes an exhaustive enumeration
of all the states reachable by the system and analyzes all possible behaviors
[1,3,8,5].

Model Checking has two major advantages: it is fully automatic and its
application requires no user supervision or expertise in mathematical disci-
plines (as opposed to completely deductive techniques) and when the design
fails to satisfy a desired property it produces a counterexample.

Our final goal consists in describing an environment in which is possible
to apply Model Checking to a system specified in the tcc language. To apply
Model Checking with our approach it is necessary to perform four basic tasks:

• to convert the specification of the system into a formalism almost accepted
by a Model Checking tool,

• to use the concept of time and the initial value of variables to calculate
the variable domains in the time interval where the Model Checking will be
executed (we assume initial values and time interval provided by the user),

• to represent the properties that the design must satisfy in an appropriate
(logical) formalism,

• to adapt a standard automatic verification mechanism based on Model
Checking to the output of our previous steps. This may involve human
assistance for example to evaluate the results or localize the errors.

In this paper we discuss the first two tasks with particular attention to
the formalism for the representation of the model and to the restrictions for
guaranteeing its finiteness. In fact, one of the main features of our approach
consists in the fact that, working with a (declarative) constraint based lan-
guage, we can build abstract versions of collection of models directly from the
specification. Moreover, we also use the (explicit) notion of time present in
tcc to bound variables and obtain models in which Model Checking can be
performed classically. Indeed, the graph which we build is finite because in
a given time instant we consider programs which are essentially determinate
(terminating) ccp programs, while the evolution of graphs corresponding to
different time instants is forced to be finite by the restrictions we impose on
variable domains and time intervals.

2

Falaschi, Policriti and Villanueva

In Section 2 we introduce the programming language tcc including a short
description of its semantics and its main features. In Section 3 we introduce
the definition of tcc Structure and present the basic definitions that allow us
to formalize the method. In Section 3.3 we describe how to perform the first
step in modeling the system producing a (finite) graph representation of an (a
collection of) infinite state model(s). Then, in Section 4 we (briefly) discuss the
introduction of the restrictions based on time parameters and values provided
by the user. Finally, we draw our conclusions and comment on the steps which
are necessary to complete the definition of our framework.

2 Timed Concurrent Constraint Programming

Timed Concurrent Constraint Programming was developed as a simple model
for determinate, timed, and reactive systems. Using this model the typical
advantages of the declarative paradigm are gained. For example, programming
in this model is more intuitive and reasoning with the derived languages is
easier than with imperative languages. Another important property is that
the specification is executable, that is what you prove is what you execute.

The language supports hierarchical and modular construction of specifi-
cations (programs). Because it is a determinate language, construction and
analysis of programs and specifications is easier.

In Figure 1 we can see the original syntax of tcc.

(Agents) A ::= c – Tell
| now c then A – Timed Positive Ask
| now c else A – Timed Negative Ask
| next A – Unit Delay
| abort – Abort
| skip – Skip
| A || A – Parallel composition
| X Â – Hiding
| g – Procedure call

(Procedure Calls) g ::= p(t1, . . . , tn)
(Declarations) D ::= g :: A – Definition

| D.D – Conjunction
(Programs) P ::= {D.A}

Fig. 1. Syntax for tcc programs

There are two kind of constructs in this language: CCP (Concurrent Cons-
traint Programming) constructs and Timing constructs. Tell, Parallel Com-
position and Timed Positive Ask are the CCP constructs inherited from CCP.
These operators do not cause “extension over time”. In particular, Parallel
Composition is the explicit representation of concurrence in the language and
Timed Positive Ask and Tell allow the processes synchronization and state

3

Falaschi, Policriti and Villanueva

evolution.

The other class of constructs are Timing constructs: Timed Negative Ask,
Unit Delay, and Abortion that cause extension over time. Unit delay forces a
process to start in the next time instant. Timed Negative Ask is a conditional
version of Unit Delay, based on detection of negative information: it causes a
process to be started in the next time instant if on the quiescence of the current
time instant, the store was not strong enough to entail some information.

The above operators do not allow us to pass information from one time
instant to the following one. The Parametric Ask operator is introduced for
this purpose. The syntax of this operator is defined as

X$(c → A)

where X is a set of variables, c is a condition and A an agent. Intuitively,
this operator works by searching a substitution with domain X that makes
syntactically identical some constraint a in the store and c. If there exists
such substitution (say γ), then the agent A[γ] 4 is executed. An additional
condition on the parametric ask is that all variables that appear in the guard
c and that are not in X must be instantiated. Otherwise the agent cannot be
executed.

We define the operational semantics of this operator as

∃γ/∃a∈σ(Γ) ∧ c[γ]≡a
(Γ,X$(c→B))−→(Γ,B[γ])

where Γ is a multiset of agents and σ(Γ) is the store contained in the
configuration Γ. We have defined this rule following the notation introduced
in [7].

In [6,9] the definition of other possible operators with respect to the basic
ones can be found. For example the always A, now c then A else B, mul-
tiple prioritized waits, whenever c do P , do P watching c, etc. are defined
using the operators showed in Figure 1. We could always transform a complex
program into a simpler one that uses only basic operators. This is an impor-
tant remark because, in principle, we only have to construct the mechanism
of modelization for the basic operators.

As a matter of fact, we will not proceed exactly in this way but we will
leave some operator (e.g. the always A) non translated. This is done in
order to obtain a finite representation of an infinite state model after the first
modelization step.

For example, in Figure 2 we can see a program written in tcc with the
“extra” operator always A and the parametric ask agent.

The above program calculates a serie of integers starting from Init. In
the first time instant it produces the Init value, in the next time instant it
obtains the following one, and so on.

The first step necessary to replace the always A by basic operators can

4 By σ[γ] we denote the application of the substitution γ to the syntactic object σ

4

Falaschi, Policriti and Villanueva

counter(Init,I) ::
({I:Init} ||
always (X,X1)$((I:X, X1 is X + 1) −→ next {I:X1}))

Fig. 2. Example: Counter Program.

be seen in Figure 3. We show only the first transformation step because the
complete transformation would produce an infinite specification.

counter(Init,I) ::
({I:Init} ||

(X,X1)$((I:X, X1 is X + 1) → next {I:X1}) ||
always (X,X1)$((I:X, X1 is X + 1) → next {I:X1}))

Fig. 3. Example: Counter Program transformed.

In the following we assume to use the tcc language enriched with the Para-
metric Ask and always operators. The operational semantics of the constructs
in Figure 1 is defined in [7]. For giving the semantics for the always A ope-
rator we add to the transition system in [7] the following rule:

(Γ, always A)
alwaysA−→ (Γ, A, next always A)

Again we have followed the notation used in [7] in order to define this rule.

3 Modeling

One of the first activities in verifying properties of a system is to construct a
formal model for the system. This model should capture those properties that
will be verified. Reactive systems cannot be modeled by their input-output
behavior: it is necessary to capture the state of the system, i.e. a description of
the system that contains the values of the variables in a specific time instant.
We have to model how the state of the system changes when an action occurs
(transition of the system). In our case the state transition graph must be built
starting from the tcc formalism introduced above and will eventually contain
an explicit notion of time.

3.1 Basics

In order to start with our modeling task we use the classical notion of Kripke
Structure. This kind of structures are able to capture the behavior of reactive
systems and, as we will show below, it is possible to construct automatically
one structure that represents the behavior of the system from the tcc speci-
fication of the program.

Variables. The set Var represents the universal set of variables. V ⊆ Var
is the set of variables that appears in the program clauses specifying the

5

Falaschi, Policriti and Villanueva

system properties and describe the state of the program in each time instant.
Variables in Var are typed, where the type of a variable, such as boolean,
integer, etc., indicates the domain D over which the variable ranges.

We can describe sets of states and transitions by first-order formulas es-
sentially as usual (cf. [5,2]). The only difference in our case, is the fact that
now our first-order formula representing the transition (R(V, V ′, T)) has an
extra parameter T expressing whether the transition corresponds to a passage
to the next time instant or not.

A state of our graph (structure) is a set of constraints, that define the value
of variables, and a set of labels, that represent the point of execution of the
system. The labels are introduced in the original program and can be active
or disabled, depending upon the store of the system at each time instant. If
the store allows to execute the operation associated with a specific label, then
this label is active, otherwise it is disabled. All labels representing a temporal
operation are disabled while there exists a normal label active in the whole
system (perhaps in another state).

Definition 3.1 Let C be the set of constraints in the tcc syntax and L be
the set of all possible labels generated to label the original specification of the
system. We define the set of states as S ⊆ 2C∪L

Now we can define formally our graph (structure) capable of representing
the system behavior.

Definition 3.2 Let AP be a set of atomic propositions. A tcc Structure M
over AP is a 5-tuple M = (S, S0, T, R, L), where

(i) S is a finite set of states.

(ii) S0 ⊆ S is the set of initial states.

(iii) T = {t, n} is the set of possible type of transitions. t denotes a temporal
transition while n denotes a normal transition.

(iv) R ⊆ S × S × T is a transition relation that must be total, that is, for
every state s ∈ S there is a state s′ ∈ S such that R(s, s′, t) or R(s, s′, n).

(v) L : S → 2AP is a function that labels each state with the set of atomic
propositions true in that state.

A path in M from the state s is defined as an (infinite) sequence of states
π = s0s1s2 . . . such that s0 = s and R(si, si+1, X) holds for all i ≥ 0.

Now we show how to derive a tcc structure M = (S, S0, T, R, L) from the
tcc program specification of the system.

We cannot apply directly the method of [2] to model the system behavior
because they assume that the domains for the variables are finite and hence
the number of possible valuations for the variables is finite. We define the
set of states as the set of all combinations of restrictions that appear in the
system and we construct them while analyzing the specification. In each state

6

Falaschi, Policriti and Villanueva

a collection of constraints that represent the possible values of the variables
in that time instant will appear.

In the following we define a construction that will return a graph represen-
tation of a tcc structure associate to a given tcc specification. Such a graph
can simply be seen as a pictorial counterpart of a tcc structure, with nodes
representing the states and arcs representing the transition. To render the fact
that we have two kind of transitions (depending upon the value of the third
parameter in R) we will use two kind of arcs. The quiescence points can be
identified in the graph because are those that preceded a temporal transition.

3.2 Labeling

The notion of label allows to represent the point of execution in a state.
We introduce this information by translating the original specification into a
labeled version. This transformation consists in introducing a different label
associated to each instance of a constructor in the specification. In Figure 4 we
show the labeled version of a program that calculates a serie of integers. Our
approach in labeling the program is similar to the approach used in [5,2]: we
only adapt classical approaches to our specific operators. A simple algorithm
translates the original program in the labeled one.

Below we show the details of this transformation. Let P be a statement,
the labeled version Pl of it is defined as follows:

• if P = c then Pl = {l} c.

• if P = now c then A then Pl = {l} now c then Al.

• if P = now c else A then Pl = {l} now c else Al.

• if P = next A then Pl = {l} next Al.

• if P = abort (skip) then Pl = {l} abort (skip)

• if P = A || B then Pl = {l} (Al || Bl).

• if P = X̂A then Pl = {l} X̂Al.

• if P = g and g is a procedure call then Pl = {l}g.
• if P = always A then Pl = {l} always Al.

• if P = X$(c → A) then Pl = {l} X$(c → Al).

The result of applying this transformation to the Counter example is
showed in Figure 4.

{l0} counter(Init,I) ::
{l1} ({l2} {I:Init} ||
{l3} always {l4} (X,X1)$((I:X, X1 is X + 1) → {l5} next {l6} {I:X1})).

Fig. 4. Example: Counter Program labeled

7

Falaschi, Policriti and Villanueva

3.3 Graph construction

In this section we explain how we construct the tcc structure in an automatic
way. A program is composed of a set of clauses and a goal. We start the
construction from an initial node labeled with the label representing the goal
of the program. Then we repeat a sequence of steps since the construction
is completed. We define a series of actions associated with each operator
defined in the language syntax that will produce the graph while analyzing
the specification.

In each state we represent the point of execution of the program by pro-
viding the labels of the instructions that can be executed in the next step.
Each label corresponds to a different parallel process and can be active (which
means that the conditions to execute the operator associated to this label are
satisfied) or disabled (which means that the operator represented by this la-
bel cannot be executed in that moment because the store does not entail the
necessary conditions).

It is important to notice that a temporal operation (next, now c else P ,
etc.) cannot be executed before all the “normal” operations are executed.
This is motivated by the fact that we have to arrive to the quiescence state
(where no more information can be produced in the present time instant)
before moving to the subsequent instant of time. Only in quiescence we will
be sure that we have all the information necessary in the next time instant.

Roughly, our procedure consists of the repetition of the following steps
(while there exists an active label):

• to localize the agent A that will be executed (let l be the label associated
to it),

• to perform the actions associated with such agent,

• to determine the set of agents (and its labels) that follows A in the specifi-
cation,

• to add the new labels obtained in the previous step to the set of labels and
remove the label l,

• to revise the set of labels defined in the previous step setting each one as
active or disabled depending on the store

When we reach a state s where there is no active label, then we are in a
quiescent point. Then we have to pass to the next time instant. In order to
make this passage we have to analyze the labels in the labeling function of
the quiescent state. First of all we analyze the Next agents, then the Negative
Asks and finally the Always operators. In the graph construction it means that
we create a new node t related with s by a temporal transition. In such node
we introduce the labels associated to the body of the temporal agents present
in the quiescence point. The store is set to the empty store and the execution
proceeds as explained in the sketch of the procedure. Note the special case of
the temporal labels associated to the always agents. For such labels we have

8

Falaschi, Policriti and Villanueva

to make an extra verification. We search in the graph a previous quiescent
node equal to t and, if we find it, then we relate t to such node and finish the
construction. If there is no equivalent node, then we introduce in the set of
labels of the node t the label associated to the always operator.

The existence of this cyclic behavior of the system is not guaranteed, it
depends on the system itself. Thus, in order to ensure the finiteness of the
graph construction we use the concept of (finite) time interval. This is the
interval over which the verification will be executed, then we take an upper
bound of such interval and, if we reaching such time instant whereas the
construction is being performed, then we stop and obtain a model that is
valid only for this specific verification. Otherwise, if we finish the construction
before reach such time instant, we construct a generic model valid for whatever
verification of the system. We describe now the construction of the graph for
each syntactic construct.

• Tell. tell c adds some information to the store in the current time instant.
In our graph construction it is translated as a new node s′ related with the
node s from which it is executed. We define the labeling function L(s′) as
follows: the part representing the store is defined as the store of s plus the
constraint c; the part representing the new point of execution is calculated
removing the label representing the tell operator and obtaining the labels
for the following agents in the specification. Finally we revise the active
and disabled labels.

• Positive Ask. if c then P verifies if the guard is satisfied in the present
store and, if it is satisfied, then the program execution can continue with the
body specification. In our graph representation we construct a new node
where the part representing the store of the labeling function is defined as
the union of the store in the previous state and the constraint specified in the
guard of the agent. Note that it is necessary to introduce the information of
the guard because the variables present in the condition could be parameters
of a procedure. Then, the part of the labeling function representing the new
execution point is calculated as in the previous case.

• Skip. skip does no operation, which means that in the graph representation
we will create a new node s and will define the labeling function L(s) as the
labeling function of the predecessor by removing the label representing the
skip agent and performing the revision of active and disabled labels.

• Parallel. (A || B) represents a concurrent agent where A and B are exe-
cuted in parallel. It will generate different branches of execution. In our
graph construction we introduce a new node related with the previous one
that inherits from it the part of the labeling function representing the store.
The part of the labeling function representing the new execution point will
be calculated as it was explained in the previous cases. It is important
to remark that for one node there will be as many direct descendants as
activated labels contained in it.

9

Falaschi, Policriti and Villanueva

• Hiding. This operator represents the concealment of the variable to the
rest of the system. It will be useful in the subprogram associated with the
Hiding operator. In the graph representation it is expressed as a new node
where the variables in the hiding operator are renamed apart. We apply the
usual method to calculate the part of the labeling function that represents
the point of execution.

• Procedure Call. This operator refers to another procedure in the specifi-
cation. All procedures will have different labels and variables. In our graph
construction it is created a new node where the substitution affecting the
parameters of the procedure p is applied and the label of the first agent of
p is introduced. Finally we revise the active and disabled labels.

• Parametric Ask. X$(c → A) allows to pass some information from one
time instant to the following one. If all variables in the condition c that
are not included in X are instantiated, then it is calculated the substitution
γ that unifies c and some constraint in the store and then the agent A[γ]
is executed. In our graph construction, a label representing an agent of
this kind will be active only when the condition about the instantiation
of variables is satisfied. Then we will introduce a new node related with
the previous one with a normal transition and whose labeling function is
calculated as follows: first of all the substitution Γ is calculated; then a new
agent is created as the result of the application of the substitution Γ to the
body A of the Parametric Ask. New labels are associated to such agent
and introduced in the labeling function of the node. The labeling function
is completed with the same items of the labeling function of the previous
node except for the label representing the parametric ask executed. As in
previous cases it is checked if labels are active or disabled.

• Always. always A allows us to model a cycle in the system behavior. In
the graph construction we proceed by creating a new node s where the part
of its labeling function representing the store is inherited from the ancestor
node and the part of the execution point is calculated using our two pro-
cedures follow and revision. These procedures will produce a temporal
label associated to the always operator (again) and the label associated to
the body of the always A agent.

Note that we do not introduce any action for the temporal agents because
all actions that those agents will cause will be executed when we reach a
quiescent point. The labels representing its body will be introduced in the
first node of the following time instant.

The following theorem proves the correctness of our graph construction.

Theorem 3.3 Let T be the tcc structure constructed by the above method
from the tcc specification S. Then the construction T is correct since

δ(T) ⊆ [[S]]

where δ is the function that represents the traces given by the sequences, star-

10

Falaschi, Policriti and Villanueva

ting from the root, of program stores in each tcc node in a path of T and [[S]]
represents the operational semantic of the tcc specification S in [7] enriched
by the rules discussed in Section 1.

3.4 An illustrative example

To illustrate the actions explained in the previous section, we show a tcc

structure and graph construction for a programming example. The system
specified computes a sequence of integers (see Figure 4). We add the goal
{lg} counter(1, Sal) to this specification and we impose the time interval
[1, 3].

In Figure 5 rectangular boxes show the piece of code which is generated
by each execution of the parametric ask, which is labeled by l4.

4 Graph Restrictions

Up to this point we have introduced a method to construct a tcc structure
starting from the specification of the system. We have obtained a finite graph
but that cannot be handled by classical algorithms of Model Checking: it is
in fact an abstract representation for an infinite collection of models.

The reason for which this structure cannot be used with classical ap-
proaches is that we have not restricted the variable domains to be finite.
Moreover, it is necessary to have all variable values in each state, whereas in
our graph representation there are variables that do not have a specific as-
signed value (for example, because it depends on the value of other variables).
The solution to this problem is to introduce some kind of restriction to the
representation forcing the variable domains to be finite.

The main idea is that we do this transformation taking into consideration
information from the user that will be required to specify in which interval
of time she wants to do the verification and what are the initial values of the
variables. Then we analyze the program and give an interval of values on the
variable domain over which this variable can be in that time interval. Those
values are a limit for the possible values that are calculated by considering
the structure of the program clauses. We consider all variable modifications
and taking into consideration all increment and decrement actions and data
dependencies we obtain the maximum and minimum values. Of course, per-
haps those values are not necessarily reached. Finite domains are treated in
a different manner because it is not necessary to restrict them.

Definition 4.1 [Domain Restriction]

Let V ∈ V ar the set of variables of the program P and Vinf ∈ V the set
of variables with an infinite domain. Let tI , tF ∈ N , tI , tF ≥ 0 an initial and
final time instant tI ≤ tF , then we define:

• valt(V) as the set of variable values at the instant of time t.

11

Falaschi, Policriti and Villanueva

Init : 1

Init : 1

al3 l4

a1l5 next a1l6 {I : 2} Init : 1

al3 a1l5

l1

Init : 1

Sol : I

Init : 1

l2 l3

Sol : I

l3I : 1

Sol : I

Init : 1

al3 l4

l2Sol : I

Sol : I I : 1

Sol : I I : 1

X1 : 2X : 1

l3 a1l6

a1l6
l4al3

SSol : I

l3

Sol : I

I : 2

al3 l4

I : 2
X1 : 3 a2l5

X : 2
Sol : I

al3

a2l6l3

Sol : I

Sol : I

a2l6

al3 l4
S

l3

Sol : I

al3 l4

I : 3

Sol : I

X : 3al3

a3l5
X1 : 4 I :3

Fig. 5. tcc Structure of the Counter Program

• valtI (V) as the set of initial variable values defined by the user.

• valmax(V) as the set of the maximum values that variables can reach.

• valmin(V) as the set of the minimum values that variables can reach.

• analyze(S, valtI (V), tI , tF , valmin, valmax) as the function that calculates the
valmax(V) and valmin(V) in such a time interval where S is the tcc Structure
obtained from the specification P

With these new values we will transform the graph representation obtai-
ning a finite representation of the system behavior during the time interval
introduced by the user and starting by the initial values of the variables defined
by her.

12

Falaschi, Policriti and Villanueva

The main difference between the classical approach and our method is that
in classical approaches the restriction over the variable domains is introduced
in the definition of the system while in our framework we can specify a system
with infinite variable domains and construct the corresponding graph struc-
ture. Then we have a basic structure and we only have to make the graph res-
triction every time the user wants to make an execution of the Model Checker
and introduces the necessary information.

5 Conclusions

We have defined an automatic transformation which takes a tcc program as
input and returns a representation of the system behavior as a graph structure.

Classical Model Checking approaches cannot be applied to the graph struc-
ture constructed in this work because there exist some differences between the
Kripke Structure constructed in classical works and our tcc Structure. The
main difference is that we introduce two kinds of state transitions. In classi-
cal approaches transitions between states represent the increase of time while
in our framework normal transitions change state in the same time instant.
There is an increment of time only when a timed transition is executed. This
introduces a synchronization primitive because a process that would execute
a timed operation has to wait until all other processes have finished their
normal operations. Classical approaches are asynchronous because they as-
sume that all parallel processes are independent from each other, thus they
can be executed without waiting for any information calculated by the other
processes.

We ensure the finiteness of our construction by the following facts. In
each time instant our language is similar to (terminating) determinate CCP,
so each graph is finite. Moreover, for different time instants, we ensure finite-
ness by imposing a restriction on the variable domains, by considering time
intervals. Note a similarity with the work of Clarke et al. [2] in the fact that
they introduce some synchronization when they impose that all processes of
a parallel operation may finish at the same time instant.

The main contribution of this work is the introduction of a method to verify
properties of reactive systems specified in tcc. This language is a declarative
language but has the notion of time built-in its semantics and this is the
reason why we can define a Model Checker for a given time interval provided
by the user. The resulting methodology is quite powerful since it exploits
the fact of using a constraint language for programming, and hence ensuring
finiteness, does not require to impose severe limitations on the expressivity of
the language. The second part of this project will deal with representing the
property that the user wants to verify. We plan to carry out the formalization
at the ground of this step in a way similar to Clark et al. [2].

Subsequently our goal will be to process structures such as the ones des-
cribed in this paper, in order to produce standard (equivalent) finite Kripke

13

Falaschi, Policriti and Villanueva

Structures to be given as input to Model Checkers. The main problems to
be solved to this end are the (finite) unfolding of cycles and the reduction of
timed transitions to untimed (standard) ones.

References

[1] Clarke, E., O. Grumberg and D. E. Long, Model checking, Springer-Verlag Nato
ASI Series F 152 (1996).

[2] Clarke, E., O. Grumberg and D. Peled, “Model Checking,” MIT Press, 1999.

[3] Clarke, E. M., E. A. Emerson and A. P. Sistla, Automatic verification of finite-
state concurrent systems using temporal logic specifications, toplas 8 (1986),
pp. 244–263.

[4] Henzinger, T., Z. Manna and A. Pnueli, Timed transition systems, in:
J. de Bakker, K. Huizing, W.-P. de Roever and G. Rozenberg, editors, Real
Time: Theory in Practice, Lecture Notes in Computer Science 600, Springer-
Verlag, 1992 pp. 226–251.

[5] Manna, Z. and A. Pnueli, “Temporal Verification of Reactive Systems. Safety,”
Springer Verlag, 1995.

[6] Saraswat, V. A., R. Jagadeesan and V. Gupta, Foundations of timed concurrent
constraint programming, in: S. Abramsky, editor, Proceedings of the Ninth Annual
IEEE Symposium on Logic in Computer Science (1994), pp. 71–80.

[7] Saraswat, V. A., R. Jagadeesan and V. Gupta, Programming in timed concurrent
constraint programming, in: B. Mayoh, E. Tyugu and J. Penjaam, editors,
Constraint Programming: Proceedings 1993 NATO ASI Parnu, Estonia, Springer
Verlag, 1994, pp. 361–410.

[8] Sipma, H. B., T. E. Uribe and Z. Manna, Deductive model checking, in: R. Alur
and T. Henzinger, editors, Computer-Aided Verification, 8th International
Conference (CAV’96), Lecture Notes in Computer Science 1102, Springer-
Verlag, 1996 pp. 209–219.

[9] V.A.Saraswat, R.Jagadeesan and V.Gupta, Timed default concurrent constraint
programming, Journal of Symbolic Computation 22 (1996), pp. 475–520,
extended abstract appeared in the Proceedings of the 22nd ACM Symposium
on Principles of Programming Languages, San Francisco, January 1995.

14

