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Abstract. T -resolution is a binary rule, proposed by Policriti and Schwartz in 1995 for theorem
proving in first-order theories (T -theorem proving) that can be seen – at least at the ground level – as
a variant of Stickel’stheoryresolution. In this paper we consider refinements of this rule as well as
the model elimination variant of it. After a general discussion concerning our viewpoint on theorem
proving in first-order theories and a brief comparison withtheoryresolution, the power and generality
of T -resolution are emphasized by introducing suitable linear and ordered refinements, uniformly
and in strict analogy with the standard resolution approach. Then a model elimination variant ofT -
resolution is introduced and proved to be sound and complete; some experimental results are also
reported. In the last part of the paper we present two applications ofT -resolution: to constraint logic
programming and to modal logic.
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Introduction

In order to perform automated deduction in the context of a given finitely ax-
iomatizable first-order theoryT , the deduction theorem guarantees that one can
use a first-order theorem prover applied to sentences that are implications whose
antecedent is the conjunction of the axioms ofT . This technique has two obvious
disadvantages:

1. in general, very large sentences must be manipulated to prove even simple
theorems: the conjunction of the axioms ofT is always part of the sentence to
be proved; and

2. no specific knowledge relative toT is used in the process.

In order to overcome these disadvantages, thetheory resolutionrule was proposed
in [28]. This rule permits one to eliminate the axioms ofT from the theorem to
be tested, and exploits aT -decider at each step of the inference process. Stickel’s
proposal has been followed by many studies seeking to cut down the search space
generated by the use of theory resolution.
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434 ANDREA FORMISANO AND ALBERTO POLICRITI

More recently another rule,T -resolution, was proposed in [24], and theoretical
results were presented that enable one to express in a natural manner, for a specified
underlying theoryT , conditions under which it can be mechanized.

In this paper we discuss theorem proving in the general context of a first-
order theory, and, in particular, we consider linear and ordered refinements of
T -resolution as well as its model elimination variant.
T -resolution is a binary rule that can be seen – at least at the ground level – as a

variant of Stickel’s theory resolution. The rule is introduced and briefly discussed
in the first part of the paper; and the fact that it is abinary rule whose behavior
is very similar to that of (standard) resolution will be extensively used in what
follows. All of the proposed refinements allow us to avoid the explicit introduction
of the axioms ofT in proving a theorem ofT . Moreover, they make systematic
use of specific knowledge onT that takes the form of decision procedures for
sublanguages ofT .

Our main result involves a technique that corresponds to model elimination in
the context ofT -resolution, but before introducing it, we consider the standard
refinement strategies: linearity, ordering, and set of support.
T -resolution is a powerful rule, and this fact makes the problem of defining

suitable (T -)analogues of the refinements considered nontrivial. As we will see, for
example, under a straightforward definition of linearT -resolution,any deduction
can be viewed as being linear. In addition, we will show that an analogous situation
arises for Stickel’s rule, where trivial linearizations are also allowed. For each of the
refinements considered, a suitable version for the context in which we are interested
(namely, when a background first-order theory is present) is discussed and defined.
Then correctness and completeness results for the ground case are obtained.

As far as the proofs of completeness are concerned, the basic technique em-
ployed is the same in all the cases, but the complexity increases as we proceed.
Model elimination, the final case considered, is the most intricate; all the work
preceding its treatment can be seen as a preparation for it.

As we said before, variants and refinements of Stickel’s theory resolution have
been studied in depth by many researchers. For example, Baumgartner [1] con-
siders linear theory-resolution dealing with the case of model elimination, while
in [2] ordered theory-resolution is introduced and shown to be complete. Another
approach to theory reasoning, based on the connection method, is given in [22]
and [23]. Baumgartner et al. [3] offer a unified view of these approaches.

The main (obvious) difference between these approaches and ours is the fact
that we are working with a different rule. The fact that we begin with a binary
rule allows us to obtain a closer similarity between our results and the correspond-
ing results for standard resolution [9, 19]. A less obvious difference is the fact
that the nature of theT -resolution rule allows a complete separation between the
background level (theT -decider) of aT -theorem prover and its foreground rea-
soner, giving rise to further investigations of refinements, strategies, and heuristics
expressly designed forT -resolution such as validity freeness (see Definition 2.1).
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The paper is organized as follows. In the first section we briefly introduce the
basic definitions and a general discussion concerning theorem proving within the
context of a first-order theoryT . The rule ofT -resolution is then introduced, and
correctness and completeness results are stated.

In the second section we consider the problem of defining a suitable version of
linear T -resolution. Next, (T -)generalizations ofS-linear resolution [19] as well
as ordered resolution are introduced and shown to be complete. In the third sec-
tion, the model elimination variant ofT -resolution is introduced and proved to be
complete; some experimental results are also presented.

Finally, two applications ofT -resolution are briefly described. In the first place,
T -resolution is seen as providing a general and powerful deduction scheme frame-
work generalizing the approach of constraint logic programming. Then, the basic
structure of a modal theorem prover based onT -resolution is outlined.

1. T -Theorem Proving: A Brief Introduction

1.1. BASICS

In this section we briefly discuss our viewpoint on theorem proving in first-order
theories. What we consider most important is to establish criteria for classifying
first-order theories with respect to their suitability for automated theorem proving.
Missing proofs and details can be found in [24] and [25].

Let T be a universal theory, that is, a (consistent) recursively enumerable set of
sentences in purely universal form, closed under logical entailment.? Clearly, any
such theory is trivially axiomatized by the entire set of its sentences. Those theo-
ries that are axiomatizable by a proper subset of their theorems form a significant
special case. LetL(T ) be the smallest language in which all these sentences can
be written. An important feature of our approach is the fact that we assume neither
thatT is finitely axiomatizable nor thatL(T ) is finite.

By anextensionof a given languageL, we mean a languageL? ⊇ L such that
L? \ L contains new symbols. Unless otherwise specified, we always deal with
extensionsL? obtained adding toL only new function or constant symbols.

Given a ground formulaϕ, written in an extensionL? of L(T ), we will con-
sider theT -satisfiability problem forϕ, that is, the satisfiability problem ofϕ with
respect to the theoryT .

In what follows, unless otherwise specified, letters such asA,B,C,D will de-
note atoms, whereasH,L,N,M will usually be used for literals. IfL is a literal,
thenLc denotes its complement. A clause is the universal closure of a disjunction
of literals; it is convenient to view a clause as a set of literals. Given a formulaϕ,
the existential (resp. universal) closure ofϕ is denoted byE∃ϕ (resp.E∀ϕ).

? In this paper we treat only the case of universal theories.
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436 ANDREA FORMISANO AND ALBERTO POLICRITI

DEFINITION 1.1. A theoryT is said to beGROUND-DECIDABLE if, given an
unquantified formulaϕ of L(T ), it is decidable whether or not there exists a model
of T in which E∃ϕ is satisfied.

Remark.Note that ground-decidability for conjunctions of literals is a sufficient
condition for the ground-decidability of the entire theory.

As we will see, ground-decidability represents a minimal (albeit sufficient) re-
quirement onT to carry out some form of theorem proving withT as underlying
theory. We will always deal with ground-decidable theories. Moreover, without
loss of generality, we will assume thatL(T ) contains at least one constant symbol.

DEFINITION 1.2. LetT be a theory andϕ be a formula of an extensionL? of
the language ofT . A T -MODEL is a model of the theoryT ; ϕ is T -SATISFIABLE if
there exists an interpretation ofL? that is aT -model and a model forE∃ϕ; otherwise
ϕ is T -UNSATISFIABLE. Two formulasϕ andψ areT -EQUISATISFIABLE if we
have thatϕ isT -satisfiable if and only ifψ isT -satisfiable.ϕ is said to beT -VALID

if it is true in everyT -model.

The following result is a simple consequence of the Compactness theorem and
the Herbrand theorem [19].

THEOREM 1.1 (Herbrand theorem forT ). Given a universal theoryT and a
quantifier-free formulaϕ of L?, the universal closureE∀ϕ of ϕ is T -unsatisfiable if
and only if for some integerk there existk ground instancesϕθ1, . . . , ϕθk of ϕ, in
the languageL?, such thatϕθ1 ∧ · · · ∧ ϕθk is T -unsatisfiable.

Proof.(⇒) LetT be expressed as a set of clauses,? and letS be the set of clauses
obtained from the conjunctive normal form ofE∀ϕ. E∀ϕ is T -satisfiable if and only
if T ∧ S is satisfiable. Thus, by the Herbrand theorem there exist a finite setT ′ of
groundT -valid clauses and a finite setS′ = {α′1, . . . , α′k} of ground instances of
clauses ofS such thatT ′ ∧ S′ is unsatisfiable. Let (for alli = 1, . . . , k) S′i be a set
of ground clauses such thatα′i ∈ S′i = Sθi , whereθi is a ground substitution. We
have thatT ′ ∧ S′1 ∧ · · · ∧ S′k is unsatisfiable as well as

T ′ ∧ {ϕθ1 ∧ · · · ∧ ϕθk}. (1)

It follows that ϕθ1 ∧ · · · ∧ ϕθk has noT -model, since otherwise (1) would be
satisfiable.

(⇐) Let ϕθ1 ∧ · · · ∧ ϕθk beT -unsatisfiable. Suppose thatE∀ϕ is T -satisfiable.
Then there exists aT -modelM of E∀ϕ. For eachi = 1, . . . , k, M is aT -model of
ϕθi; this yields a contradiction. HenceE∀ϕ must beT -unsatisfiable. 2
? This is no restriction, sinceT is a set of purely universal sentences; hence, for any of them, we

can consider the corresponding clausal form.
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The previous theorem suggests a general instantiate/check (i/c from now on)
method for testing a given sentenceE∀ϕ for T -satisfiability. Clearly, such a method
would be computationally unsuitable for properly facing theT -satisfiability prob-
lem for the non-ground case; nevertheless it offers a good theoretical starting point.
The instantiation phase is easily designed provided we have an enumeration of
all terms in the Herbrand universeUL? . The subsequent check phase turns out to
depend critically on the underlying theoryT .

Supposing thatT is ground-decidable, the Substitution lemma below ensures
that there exists a suitable algorithm for performing the check phase, independently
of the particular extensionL? of L(T ) used.

Following [24] we introduce asubstitution functionSϕ (written simplyS if the
given formulaϕ is clear from the context) that maps (substitutes)L?-terms ofϕ
into L(T )-terms. This mapping acts like aprojectionof L?-terms onto (generally
open)L(T )-terms: intuitively speaking, the syntactical structure of anL?-term is
recursively scanned substituting subterms with leading functor not inL(T ) with
previously unused variables ofL(T ). More formally:

Sϕ(t) =


f (Sϕ(t1), . . . , Sϕ(tn)) if t is f (t1, . . . , tn) andf ∈ L(T ),
t if t is a constantc ∈ L(T ) or a variable,
xt otherwise (xt being a newly introduced

variable).

The subscript inxt above means that the choice of such variable is not com-
pletely independent of the termt ; that is, the mappingSϕ substitutes equal terms
with the same variable (see [24] for technical details).

Given an unquantified formula (term)X, let Sϕ(X) be the formula (term) ob-
tained fromX by replacing each termt occurring inX by Sϕ(t).

As mentioned, the following result links theT -satisfiability problem for un-
quantified formulas ofL? to the corresponding problem inL(T ). Observe that
Lemma 1.1 emphasizes the case of (ground-decidable) theories which include the
equality.

LEMMA 1.1 (Substitution lemma). Given an unquantified formulaϕ,

(1) if the theoryT does not contain the equality symbol, thenϕ and Sϕ(ϕ) are
T -equisatisfiable;

(2) if T is a theory including equality, then letξ be the conjunction of the clauses

Sϕ(t1) = Sϕ(s1) ∧ · · · ∧ Sϕ(tk) = Sϕ(sk)→
Sϕ(f (t1, . . . , tk)) = Sϕ(f (s1, . . . , sk)),

where one of these clauses is formed for each pairf (t1, . . . , tk), f (s1, . . . , sk)
of terms occurring inϕ, whose leading functorf is not a symbol of the
languageL(T ).
Then the formulasϕ andSϕ(ϕ) ∧ ξ areT -equisatisfiable.
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As a consequence, we have the following.

LEMMA 1.2. Given any ground-decidable theoryT , we can determine algorith-
mically whether or not a given ground formula, written in an extensionL? ofL(T ),
is T -satisfiable.

Lemma 1.2 guarantees the existence of a checking algorithm for our i/c method.
It is possible to insert, between the instantiate and the check phases, a trans-

formation step yielding the conjunctive normal form of the ground formula to be
checked.

The reader can easily check that, for example, the method presented in [15] can
be straightforwardly adapted to our context. This transformation has polynomial
time complexity but, in general, involves an extension of the language ofϕ (and
hence ofT ) that may introduce new predicate symbols. To deal with such kind of
extensions, Policriti and Tetali [25] proposed a generalization of the Substitution
lemma able to treat new uninterpreted predicate symbols. On this basis, it is easy
to prove the following generalization of Lemma 1.2.

COROLLARY 1.1. If T is ground-decidable, then it is algorithmically decidable
if any ground formula written in any extension ofL(T ) is or is notT -satisfiable.

An alternative approach works by converting uninterpreted predicate symbols
to new function symbols. For instance, assuming that the domain of discourse
contains at least two elements, we can extend the language with two new constants
– say t and f – and a new function symbolfP for each uninterpreted predicate
symbolP . Then, the generic literalP(t1, . . . , tk) can be replaced by the literal
fP (t1, . . . , tk) = t. This approach allow us to employ directly Lemma 1.2, but it
forces us to consider equality predicate as part of the theory; this is not the case for
the approach presented in [25].

Given a quantifier-free formulaϕ, our i/c procedure could work by repeating
the following steps:

– generate the ground instanceϕ′;
– obtain the CNF-form ofϕ′: cnf(ϕ′); and
– checkcnf(ϕ′) for T -satisfiability.

Methods for performing the final step of this loop will be treated in detail in the
following sections, where we will see how the results just stated can be employed
in theorem proving (mainly at the ground level) in ground-decidable first-order
theories. This application will be done in a very natural manner, showing how most
of the techniques developed for the standard case (e.g., Davis–Putnam procedure,
resolution procedure, refinements) can be properly “T -generalized”.
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1.2. GENERALIZED DAVIS–PUTNAM PROCEDURE

At this point a generalization of the Davis–Putnam procedure suitable for treating
the ground case of first-order theories can be proposed. The aim is to test theT -
satisfiability of a finite setS of ground clauses written in an extensionL? of L(T ).
Supposing, as usual,T to be ground-decidable, the above corollary guarantees that
the procedure defined below can be completed to obtain an algorithm for testing
T -satisfiability of conjunctions of ground clauses.

Let S be a set of ground clauses andconj be a conjunction of literals. The
Boolean functionT -Sat(·) tests forT -satisfiability a conjunction of literals (see
below).

procedureT -DPP(S, conj);

if T -Sat(conj) then

if S = ∅ then returnsatisfiable
elseif∅ ∈ S then returnunsatisfiable
else letL be an arbitrary literal occurring inS

S1 := {α \ Lc | α ∈ S andL 6∈ α}
conj1 := conj ∧ L; (L is set to TRUE)
S2 := {α \ L | α ∈ S andLc 6∈ α}
conj2 := conj ∧ Lc; (L is set to FALSE)
if T -DPP(S1, conj1) = unsatisfiableand
T -DPP(S2, conj2) = unsatisfiable

then returnunsatisfiable
else returnsatisfiable

endif;

endif;
else returnunsatisfiable

endif;

endT -DPP ;

The procedure should be initially called with the starting setS and an empty
conjunction as parameters.
T -DPP is obtained from the classical Davis–Putnam procedure by adding an

initial call to T -Sat(·) and eliminating the single-literal and the pure-literal rules
(as in propositional logic these rules can be viewed as instances of the splitting
rule). While the former rule could be actually added, the latter can be incorrect in
our context as the following example shows.

EXAMPLE. Let S = {{A}, {B}} andT = {{¬A,¬B}}. S is T -unsatisfiable, but
the setS′ = {{B}} obtained fromS by applying the pure-literal rule isT -satisfiable.

Assuming the polynomial time complexity ofT -Sat(·), the average case com-
plexity of T -DPP is shown to be polynomial (see [25]).
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Because of the generality of the extensionL?, the conjunctionconj (which is
a CNF formula) tested forT -satisfiability may contain conjuncts not belonging
to L(T ). In this case, Corollary 1.1 ensures that ground-decidability ofT is a
sufficient requirement to guarantee the existence of a suitableT -Sat(·).

1.3. RESOLUTIONT -THEOREM PROVING

In this section we briefly reviewT -resolution, a generalization of standard resolu-
tion, which turns out to be a refutationally sound and complete method suitable for
treating theT -satisfiability problem. The following is the groundT -resolution rule
as defined in [24].

DEFINITION 1.3 (GroundT -resolution). Letα = α1 ∪ α2 andβ = β1 ∪ β2 be
two ground clauses such that

T |= ¬
( ∨
l∈α1∪β1

l

)
→¬

( ∨
p∈α2

p

)
∨ ¬

( ∨
q∈β2

q

)
. (2)

Then the clauseα1∪β1 is said to be aT -RESOLVENTof α andβ (writtenα1∪β1 ∈
ResT (α, β)), andα andβ are calledPARENT CLAUSESof α1 ∪ β1.

The above expression could be written in a compact, perhaps more readable,
form, identifying clauses with disjunctions of literals

T |= α2 ∧ β2→ α1 ∨ β1. (3)

Remark.If α andβ contain a pair of complementary literals,L andLc respec-
tively, then(α\{L})∪(β\{Lc}) is a legalT -resolvent ofα andβ, since in any theory
T it is always the case thatT |= L ∨ Lc. ThusT -resolution properly generalizes
standard resolution.

Remark.We note that Definition 1.3 includes the case whereα1 = α andβ1 =
{L}. This T -resolution step, from now on referred to asloading, produces a sub-
sumed clause. We will show that loading is actually needed to ensure completeness
of T -resolution.

Note that our assumption of ground-decidability ofT guarantees that condi-
tion (2) in Definition 1.3 is always decidable, by Corollary 1.1.

DEFINITION 1.4. Given a setS of ground clauses, a (ground)T -DERIVATION

D of α from S is a finite sequence of clausesβ1, . . . , βr+n such that

– βr+n = α;
– β1, . . . , βr are clauses inS;

JARSMD10.tex; 5/03/1999; 13:23; p.8



T -RESOLUTION: REFINEMENTS AND MODEL ELIMINATION 441

– for all i, r+1≤ i ≤ r+n, βi is aT -resolvent ofβj andβk for somej, k < i;

β1, . . . , βr constitute thePREFIX of theT -derivationD (denoted asprefix(D)). A
T -REFUTATION of S is aT -derivation of aT -unsatisfiable clause fromS.

The prefix of a derivation, as introduced in [19], allows us to gather all needed
information (readknowledge) regarding the given set of clauses, in a restricted zone
of the deduction, simplifying the subsequent exposition, and guarantees a uniform
treatment.

THEOREM 1.2 (Soundness of groundT -resolution).If a T -unsatisfiable clause
is T -derivable from a given a setS of ground clauses, thenS is T -unsatisfiable.

Proof.Letα = α1∪α2 andβ = β1∪β2 be two clauses inS, and letγ = α1∪β1

be aT -resolvent ofα andβ. From

T |= α2 ∧ β2→ α1 ∨ β1

it follows that ifM is aT -model ofS (and therefore ofα andβ), then it is also a
T -model forγ = α1 ∪ β1. 2

Given a setS of ground clauses, the set

Se = S ∪ {{L,Lc} | L is a literal occurring inS}
is called thetautological extensionof S. Evidently,S is T -unsatisfiable if and only
if Se is T -unsatisfiable.

The next theorem states the completeness ofT -resolution [24].

THEOREM 1.3. Given a setS of ground clauses, ifS isT -unsatisfiable, then there
exists aT -refutation ofSe.

The example below shows that it is necessary to introduce the tautological ex-
tension of the given set of clauses and that loading is actually needed to ensure
completeness ofT -resolution.

The point is that loading can be exploited only on literals actually appearing
in the given set of clauses, rather than on arbitrary literals of the theory. This
restriction may seem unnatural, but, as we will see, it enables an advantageous
separation between the theorem provers based on theT -resolution rule and the
specific theories/T -deciders employed.

EXAMPLE. Let T = {{¬A1,¬A2,¬A3}} andS = {{A1}, {A2}, {A3}}. S is T -
unsatisfiable; but, following Definition 1.3, no useful clause is derivable from it
by T -resolution, since we cannot use clauses ofT . In fact, the only new clauses
obtainable from{A1} and{A2}would be{A1, A2} and2, but the former is obtained
by loading whereas the latter is not aT -resolvent of{A1} and {A2}, sinceT 6|=
A1 ∧ A2→ 2.
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Nevertheless, the following is aT -refutation ofSe. Notice that anyT -refutation
of Se must employ loading:

1) {A1,¬A1}
2) {A2,¬A2}
3) {A1}
4) {A2}
5) {A3}
6) {A3,¬A2} loading of¬A2 (from 2) in 5
7) {A3,¬A2,¬A1} loading of¬A1 (from 1) in 6
8) {¬A2,¬A1} T -resolvent of 7 and any other clause
9) {¬A1} resolvent of 8 and 4
10) 2 resolvent of 9 and 3

where deriving clause at line 8 is justified as follows:
From

T |= ¬A1 ∨ ¬A2 ∨ ¬A3.

Choosing an arbitrary clauseα, we have

T |= α ∧ A3→ ¬A1 ∨¬A2

and hence{¬A2,¬A1} ∈ ResT ({A3,¬A2,¬A1}, α).
To avoid dealing with tautological extensions of sets of clauses, we reformu-

late the definition ofT -resolution rule, giving more emphasis to the necessity of
loading.

DEFINITION 1.5. Letα = α1 ∪ α2 andβ = β1 ∪ β2 be ground clauses.γ is a
T -RESOLVENT of the twoPARENT CLAUSESα andβ (written γ ∈ ResT (α, β)) if
and only if

– γ = α1 ∪ β1 andT |= α2 ∧ β2→ α1 ∨ β1; or
– γ = α ∪ {L}, where eitherL ∈ β orLc ∈ β (loading).

Remark.Instead of defining loading as a binary rule, it could have been defined
as a unary rule that derivesα ∪ {L} from α and any literalL such thatL (or Lc)
occurs in a given set of clauses.

Remark.Several restrictions could be applied to loading. For example, we can
avoid consideringT -resolvents of two parent clauses both obtained by loading
steps. Other such restrictions and some open problems relative to this issue are
discussed in Section 2.4.
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From now on we adopt Definition 1.5 as the actual definition of groundT -
resolvent. We can then easily reformulate the definitions ofT -derivation andT -
refutation, as well as our soundness and completeness results in a simpler manner.

THEOREM 1.4. A given setS of ground clauses isT -unsatisfiable if and only if
there is aT -refutation ofS.

Proof. The soundness of the rule is essentially proved as was done in Theo-
rem 1.2. The completeness follows from the completeness of a linear refinement of
theT -resolution rule given by Corollary 2.1 in Section 2.2.2. 2

Although our exposition is focused on the ground case, we will give just a brief
description of the treatment of the general case. Definition 1.6 extendsT -resolution
to the non-ground case, following the approach outlined above (see also [24],
whereT -resolution was first introduced).

DEFINITION 1.6 (Non-groundT -resolution). Given two clausesα = α1∪α2 and
β = β1∪β2, γ is said to be aT -RESOLVENTof α andβ (writtenγ ∈ ResT (α, β))
if there exists a substitutionθ such that one of the following conditions holds:

– γ has the form(α1 ∪ β1)θ andT |= E∀(α2 ∧ β2→ α1 ∨ β1)θ ; or
– γ = (α ∪ {L}), where eitherL ∈ β orLc ∈ β.

It is easily shown that non-groundT -resolution properly generalizes both stan-
dard non-ground resolution and factoring.

Remark.Notice that in Definition 1.6, there is no restriction on the choice of the
substitutionθ . Considering the mechanizability issue for non-groundT -resolution,
it will be necessary to restrict such choice to a suitable set of substitutions, de-
pending on the properties ofT . In [24] an approach involving the concept ofL?-
covering (strictly related to the notion of complete set ofT -refuters, as introduced,
for example, in [3]) is proposed.

DEFINITION 1.7. Given a setS of clauses, a (non-ground)T -DERIVATION D
of α from S is a finite sequence of clausesβ1, . . . , βr+n such that

– βr+n = α;
– β1, . . . , βr are clauses inS;
– for all i, r + 1 ≤ i ≤ r + n, βi is a (non-ground)T -resolvent ofβj andβk

with j, k < i.

As before,β1, . . . , βr constitute thePREFIX(prefix(D)) of D. A T -REFUTATION

of S is aT -derivation of aT -unsatisfiable clause fromS.

Soundness in the general case follows from Theorem 1.5.

THEOREM 1.5 (Soundness of non-groundT -resolution).If a clauseγ whose
universal closureE∀γ is T -unsatisfiable is derivable byT -resolution fromS, thenS
is T -unsatisfiable.
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As happens with standard resolution, a completeness result is obtained from
ground completeness by using a lifting technique. We need a generalization of the
standard Lifting lemma; the following holds.

LEMMA 1.3 (Lifting lemma forT ). Let α′ andβ ′ be ground instances ofα and
β, respectively, and letγ ′ be a ground clause derivable byT -resolution fromα′
andβ ′. Thenγ ′ is derivable byT -resolution fromα andβ.

On this basis, using the Herbrand theorem forT , we can prove the following.

THEOREM 1.6 (Completeness of non-groundT -resolution).If S is a T -unsati-
sfiable set of clauses, then a clause admitting aT -unsatisfiable ground instance is
derivable fromS byT -resolution.

The treatment outlined above of the non-ground case is very natural but some-
how unsatisfactory because the condition to automatize non-groundT -resolution
places very strong conditions onT . Moreover, the above-mentioned condition
allowing the mechanizability of non-groundT -resolution is the existence of an
algorithm to determine theL?-covering for a givenL?-formulaϕ. In fact, such a
condition may depend on the particular extended languageL? and hence cannot be
considered as a (uniform) condition on the underlying theoryT .

1.4. T -RESOLUTION AND THEORY RESOLUTION

We will briefly recall Stickel’s theory resolution rule [28] and outline a comparison
of the two approaches.

DEFINITION 1.8. Letα1, . . . , αm (m > 1) bem non-empty clauses such that, for
eachi, αi = αi,1 ∪ αi,2 with αi,2 6= ∅. Let {M1}, . . . , {Mn} ben ≥ 0 unit clauses
such that{α1,2, . . . , αm,2, {M1}, . . . , {Mn}} is aT -unsatisfiable set. Then the clause
α1,1 ∪ · · · ∪ αm,1 ∪ {Mc

1, . . . ,M
c
n} is called aTHEORY RESOLVENTof α1, . . . , αm.

It is a TOTAL THEORY RESOLVENT if and only if n = 0 and aPARTIAL THE-
ORY RESOLVENT otherwise. The set{α1,2, . . . , αm,2} is the key set of the theory
resolution operation. The disjunctionMc

1 ∨ · · · ∨Mc
n is theRESIDUEof the theory

resolution operation. The theory resolvent is aNARROW THEORY RESOLVENTif
eachαi,2 is a unit, or aWIDE THEORY RESOLVENTotherwise.

At the ground level, the fact that Stickel’s rule isn-ary can be seen as an advan-
tage, being more general thanT -resolution, but it has an undesired side effect: it
forces dealing with minimality, requiring stronger properties of the decision pro-
cedure. Moreover, the generality of the rule has to be controlled by introducing
suitable tools, like criteria for key selections [28]. In our approach these phenom-
ena can be considered to have a counterpart in the loading operation. Restrictions
directly controlling loading are discussed in Section 2.4.
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As indicated, the main difference between our approach and Stickel’s is in the
background decidability property assumed. Ground-decidability permits the real-
ization of an inference system where the deduction activity is focused on the given
theorem to be proved, never explicitly dealing with entities extraneous to it. With
theory resolution this may not be the case, because the background reasoner may
have to explicitly introduce language entities not strictly related to the specific the-
orem being tested. This happens essentially because the theory decider employed
in theory resolution plays an “active” role in the deduction process: it provides
suitable conditions (in the form of a residue to be added to the resolvent) enabling
the theory resolution step. What the decider knows about the problem to be solved
is just the suppliedkeyof the theory resolution operation; hence it does not know
which part of the theory is strictly related to that problem.

In T -resolution there is no mechanism producing the entire residue in a single
step; the residue has to be constructed by using loading operations (which are
always restricted to literals taken from the given set of clauses).

Since in theorem provers based onT -resolution, the task of controlling load-
ing operations (i.e., residue generation) is performed at the foreground level, the
theory reasoner can be designed independently of the particular inferences, search
strategies, or heuristics employed by the theorem prover, considering only the char-
acteristics of the theory. The following example shows how, even at the ground
level, the introduction of symbols extraneous to the given set of input clauses
currently processed could generate undesired effects.

EXAMPLE. Suppose we are looking for linear refutation by binary theory resolu-
tion of the set

S = {{q(a)}, {q(b)}, {q(c)}}
with respect to the theory

T = {{¬q(a),¬q(b),¬q(c)}, {¬q(a),¬q(b),¬p(d)},
{p(x),¬p(f (x)),¬q(c)}}.

To resolveq(a) and q(b) there are (at least) two residues that the background
T -decider could return to the foreground reasoner:¬q(c) and¬p(d) (while with
T -resolution only¬q(c) can be built by using loading operations). If the former
is used, thenS is refuted with a further step (using{q(c)} ∈ S). Otherwise, using
¬p(d) (which does not occur inS) as residue could lead the prover into an infinite
branch of the search space consisting of the clauses:{¬p(d)}, {¬p(f (d))}, {¬p(f
(f (d)))}, . . . .

The decider used in theory resolution may not be compatible with all derivation
strategies because of its “active” nature. In other words, it is not the case that for
each restriction imposed on the kind of inferences allowed at the foreground level,
the decider is able to produce suitable residues. As we will see,T -resolution seems
to be better suited to refinements using standard or ad hoc techniques. Essentially,
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the reason is that the rule is binary and the decision algorithm it employs remains
the same in any of the cases considered.

2. Refinements ofT -Resolution

In this section we generalize toT -resolution the linear and ordered refinements
employed with resolution in pure predicate calculus (see, for example, [9, 19]).

2.1. BASICS

Let T be a theory andϕ be a ground formula ofL?. From Definition 1.2 we have
that ϕ is said to beT -VALID (or simply valid) if it is true in everyT -model.
T -validity generalizes, to the theory case, the concept of tautological formula.
The interesting case is whenT 6= ∅; otherwise tautologies are the onlyT -valid
formulas.

Some other simple concepts are given below.

DEFINITION 2.1. A set of clauses isTAUTOLOGY FREE(resp.VALIDITY FREE)
if it does not contain any tautological (resp.T -valid) clause. A derivationD is TAU-
TOLOGY FREE (resp.VALIDITY FREE) if any tautological (resp.T -valid) clause
occurs only in the prefix.

Since we will treat only the ground case ofT -resolution, we adopt the fol-
lowing conventions:T , as usual, will be a ground-decidable first-order theory;
T ′ will denote a set of non-tautological groundT -valid clauses such that each
predicate symbol occurring inT ′ is in L(T ); S will be a set of ground clauses
in L? and D (possibly subscripted or primed) will denote a derivation (unless
otherwise specified) byT -resolution. From now on, the prefixT - (of T -satisfiable,
T -derivation, . . . ) will often be omitted; ambiguities will be resolvable from the
context or explicitly clarified. Given a derivationD and a clauseα, D ◦ α will
denote the derivation obtained addingα at the end ofD, assuming thatD ◦ α is a
legal derivation, that is, thatα can be derived from clauses ofD.

Below are two immediate results that will be frequently employed in what
follows.

PROPOSITION 2.1.Letα = α1∪α2 andβ = β1∪β2 be two valid ground clauses.
If γ = α1 ∪ β1 ∈ ResT (α, β), thenγ is valid.

Proof.LetM be aT -model ofα andβ (M |= T ∧{α1 ∪ α2, β1 ∪ β2}). Suppose
M is not a model ofα1 ∪ β1 (i.e., bothα1 andβ1 are false inM). SinceM is a
model forT , from theT -resolution rule (Definition 1.3) it follows that at least one
of α2 andβ2 must be false inM. Hence, at least one ofα andβ must be false in
M. This yields a contradiction. Therefore,M is aT -model ofγ . 2
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We will never consider valid clauses containingextraneousliterals, that is, lit-
erals whose atoms do not occur in a given set of clauses; in fact, the following
holds.

PROPOSITION 2.2.Given aT -unsatisfiable set of ground clausesS, there exists
a tautology-free set of valid clausesT ′ such thatS ∪ T ′ is unsatisfiable, and every
atom of literals occurring inT ′ also occurs(possibly in a literal with different
polarity) in S. Moreover, each predicate symbol occurring inT ′ is a symbol of
L(T ).

Proof. Without loss of generality, we can assume thatS is finite andT is ex-
pressed in clausal form. SinceS is T -unsatisfiable it follows thatS ∪ T is an
unsatisfiable set of clauses. By the Herbrand theorem there exists a finite setT ′
of ground instances of clauses ofT such thatS ∪ T ′ is unsatisfiable. Obviously,
each literal inT ′ has a predicate symbol inL(T ) (note that this might not be the
case for the constant and the function symbols).

LetA1, . . . , An be all the atoms occurring inS. LetT be a binary semantic tree
[24, 27] such that all the edges of theith level are labeled by the literalAi or¬Ai ,
for i = 1, . . . , n. Given a nodem, let Context(m) be the conjunction of the literals
labeling the edges in the path from the root tom.

SinceS ∪ T ′ is unsatisfiable, each branchb of T contains a failure nodemb

belonging to a levelhb of T . Eachmb is a failure node either because it falsifies
a clause ofS (i.e.,Context(mb) contains the complement of each literal occurring
in that clause) or becauseContext(mb) is aT -unsatisfiable conjunction of literals
(i.e., it falsifies a clause ofT ′). Let us say thatmb is aC-failure node in the former
case, and aT -failure node in the latter. We can assume thatT ′ is such that each
atom occurring inT ′ also occurs inS. To verify this claim, observe that eachC-
failure node must belong to a levelj ≤ n; therefore, if there are two sibling nodes
m1 andm2 belonging to a leveli > n, then such nodes must beT -failure nodes.
Let α1 andα2 be the two clauses inT ′ falsified byContext(m1) andContext(m2)

respectively. An ancestorm′ of m1 can be made aT -failure node by simply adding
to T ′ the standard resolvent ofα1 andα2 obtained resolving on the literals labeling
the edges of leveli.

Since no atom occurs twice in any branch ofT , no clause inT ′ is tautological.2

2.2. LINEARITY AND T -RESOLUTION

In the context of standard resolution, linear derivations have a very natural and
readable format, and the restriction of the search space to such derivations produces
a significant saving.

Imposing some form of linearity surely guarantees some advantages in the con-
text ofT -resolution as well, since, after all, standard resolution is a special case of
T -resolution. However, we will show below that simple attempts to extend linear
restrictions toT -resolution encounter some pitfalls.

JARSMD10.tex; 5/03/1999; 13:23; p.15



448 ANDREA FORMISANO AND ALBERTO POLICRITI

δ1 δ2

D1 D2

�
�
�

@
@
@

α β

γ

δ1

D1

�
��

α
δ2

δ2

D2

�
��

β
α

γ
Figure 1. Trivial linearization.

We will first discuss the sort of linearity that it is reasonable to impose onT -
resolution; then, from the completeness ofSL-T -resolution (a generalization of
S-linear resolution), we will obtain the completeness of linearT -resolution as well
as the compatibility ofT -resolution with the set-of-support strategy.

Definition 1.5 ofT -resolution is too general and is not suitable to be employed,
for example, together with linear refinements. This situation is easily seen because,
for every pair of clausesα andβ, puttingα = α1, α2 = β1 = ∅ andβ = β2, α
turns out to be a legalT -resolvent ofα andβ. Hence, we can systematically map
everyT -derivation into a “linear” one in the following manner: supposeD is a
derivation ofγ ; let α andβ be its parent clauses having two “linear” derivations
D1 andD2 of α andβ, respectively. We could combine them to obtain a “linear”
derivation ofγ simply deriving the top clauseδ2 of D2 from α andδ2 (see Figure 1
where, for simplicity, prefixes are not displayed).

Remark.To see that an analogous situation arises in theory resolution, consider
the following two clauses (see Definition 1.8):α1 = α1,1∪α1,2 andα2 = α2,1∪α2,2;
supposen = 1, α1,1 = ∅ andα2,2 = {L} (for L ∈ α2 6= ∅). ChooseM1 = Lc; then
{α1,2, α2,2, {M1}} ⊇ {{L}, {Lc}} is T -unsatisfiable. Hence, we haveα2 = α1,1 ∪
α2,1 ∪ {Mc

1} as theory resolvent ofα1 andα2.

To avoid these trivially linear derivations, which are not in the spirit of what
is the primary purpose of linear refinements (i.e., to always proceedusingthe last
derived clause), we need to restrict the kind of inferences allowed.

A very natural way to avoid the above problem seems to be the introduction of
the following restriction? : for α = α1 ∪ α2 andβ = β1 ∪ β2, consider only those
γ = α1 ∪ β1 such that

? Actually, this is the restriction imposed by definition in Stickel’s rule.
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T |= α2 ∧ β2→ α1 ∨ β1 andα2 6= ∅ andβ2 6= ∅.
Unfortunately, this restriction does not solve the problem, since the same unde-

sired effect can be reached in a more subtle way by using the loading operation,
which, on the other hand, cannot be omitted (see the example in Section 1.3). The
critical situation is exhibited in the following fragment of a derivation:

δ1
...D1

α
...

α ∪ δ2

}
loading of the literals ofδ2 in α

δ2 becauseδ2 ∈ ResT (α ∪ δ2, δ2) even with the above restriction.
...D2

β

γ T -resolvent ofα andβ

In Definition 2.2, below, an inference rule is proposed that is strong enough to
avoid this phenomenon while still ensuring completeness,

DEFINITION 2.2 (Ground StrictT -resolvent).γ is aSTRICT T -RESOLVENT of
α andβ if and only if

R1 γ ∈ ResT (α, β) and neitherα norβ subsumesγ (that is, in the ground case:
α 6⊆ γ andβ 6⊆ γ ); or

R2 γ = α ∪ {L}, where eitherL ∈ β orLc ∈ β.

Rule R1 is still a generalization of standard ground resolution. From now on we
will consider Definition 2.2 as the actual definition ofT -resolvents.

In the trivial linearization just displayed, the linear derivation is constructed
by connectingD1 andD2 with a sequence of loading steps of the literals ofδ2,
followed by a single (nonstrict)T -resolution step that usesδ2 as parent clause. The
next example clarifies how the new definition avoids situations of this kind.

EXAMPLE. Let T = ∅ andS = {{A,B,C}, {¬A,B,D}, {¬B}}. Consider the
derivation depicted in Figure 2 whereα = {A,C}, β = {¬A,D}, δ1 = {A,B,C},
δ2 = {¬A,B,D}, andγ = {C,D}. If only strictT -resolvents are allowed, it is im-
possible to linearizeD ′ in the manner described above (i.e., deriving{¬A,B,D}
from {A,C}, by first loading literals fromδ2 and then performing aT -resolution
step withδ2 as parent clause).

2.2.1. LinearT -Resolution

After introducing the concept of linearT -derivation, we present a result (Lemma 2.1)
essential for the following exposition and representing a basic connection point
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between resolution andT -resolution. In complete analogy with the standard case
we have the following.

DEFINITION 2.3. A LINEAR DERIVATION (by T -resolution)D of α from S is a
finite sequenceβ1, . . . , βr+n of clauses such that

– βr+n = α;
– β1, . . . , βr are clauses inS;
– for all i, r + 1 ≤ i ≤ r + n, βi is a strictT -resolvent ofβi−1 andβj with

j < i; the clauseβi−1 is called theNEAR PARENT andβj is called theFAR

PARENT.

βr is called theTOP CLAUSE of D. prefix(D) is defined as usual. The clauses
βr+1, . . . , βr+n (DERIVED CLAUSES) constitute theSUFFIX (suffix(D)) of the deriva-
tion. A LINEAR REFUTATION of S is a linear derivation of aT -unsatisfiable clause.

The derivation shown in Section 1.3 is a linearT -derivation.
To prove the completeness of linearT -resolution, we will transform a (classical)

linear derivation fromT ′ ∪ S (whereT ′ is the set of ground instances of clauses of
T ) into a linear derivation fromS by T -resolution. The following lemma is relative
to the basic step of such a transformation.

LEMMA 2.1. Given a clauseα = α′ ∪ {L} in a tautology-free derivationD from
S, and a valid clauseβ = β ′ ∪ {Lc}, such thatγ = α′ ∪ β ′ is non-tautological,
there exists a tautology-free derivationD ′ of γ fromS.

Moreover,

• if D is a linear derivation ofα, thenD ′ is a linear derivation ofγ ;
• if γ is not valid, andD is validity-free, then so isD ′.

Proof.SinceT |= β, we haveT |= β ′ ∨ Lc ∨ α′. Choosing an arbitrary clause
δ occurring inD, we also haveT |= L ∧ δ → α′ ∨ β ′, from which it follows that
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γ = α′∪β ′ is aT -resolvent ofα′∪β ′∪{L} andδ. The clauseα′∪β ′∪{L} is derivable
from α = α′ ∪ {L} with | (β ′ \ α) | steps, loading every literal in(β ′ \ α) (this can
be done because, as mentioned in the preceding section, we assume all literals inβ

to have an atom occurring inS). Sinceγ does not contain complementary pairs of
literals,D ′ is tautology-free. Clearly, ifD is a linear derivation ofα, thenD ′ is a
linear derivation ofγ .

Let D be validity free, and letγ = α′ ∪ β ′ be not valid. SinceT |= β,
if α ∪ β ′ were valid, so should beγ (as the resolvent of two valid clauses, cf.
Proposition 2.1), which is a contradiction. Hence,α ∪ β ′ is not valid. Since, for all
β ′′ ⊆ β ′, α ∪β ′′ ⊆ α ∪β ′, it follows that no clause in the derivation ofα ∪β ′ from
α is valid. HenceD ′ is validity free. 2

Remark.If β contains only literals having predicate symbol inL(T ) (in general,
this does not follow from the validity ofβ), then in the proof of Lemma 2.1 we
always load literals having interpreted predicate symbol (i.e., a symbol inL(T );
cf. Proposition 2.2).

2.2.2. SL-T -Resolution

Following [19], we briefly recall the basic notions regarding groundS-linear res-
olution and generalize them to our case (notice that we are treating ground linear
refinements).

DEFINITION 2.4. A (ground)S-RESOLVENT(“ S” stands for subsumption) of the
near parentα and the far parentβ, is a resolventγ of α andβ such thatγ ⊆ α. An
S-LINEAR DERIVATION of a (ground) clauseα from the set of (ground) clausesS
is a tautology-free derivation ofα from S such that each clause not inS has a far
parent inS or is ans-resolvent.

DEFINITION 2.5. Given two ground clauses,α andβ, α T -SUBSUMESβ if and
only if T |= α→ β. A T -S-RESOLVENT of the near parentα and the far parentβ,
is aT -resolventγ of α andβ such thatγ T -subsumesα. A SL-T -DERIVATION

of a clauseα from S is a linear and tautology-freeT -derivation ofα from S such
that each clause not inS has a far parent inS or is aT -s-resolvent.

Given two ground clausesα andβ, if α subsumesβ, thenα T -subsumesβ.
Hence, anyS-linear derivation is anSL-T -derivation.

Using Lemma 2.1, we can prove the following.

LEMMA 2.2. Given anS-linear derivationD of γ fromS ∪ T ′ with top clause in
S, there exists anSL-T -derivationD ′ of γ from S such that each clause derived
in D occurs inD ′.

Proof.By induction on the lengthn of suffix(D).

Base case.n = 0. There is nothing to prove becauseγ ∈ S is the top clause ofD.
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Inductive step. Assume the lemma holds for each derivation with suffix shorter
than n > 0. Let D = D1 ◦ γ , with D1 S-linear derivation ofα, and let
γ = α′ ∪ β ′ be the resolvent ofα = α′ ∪ {L} andβ = β ′ ∪ {Lc}.
By the induction hypothesis onD1 there exists anSL-T -derivationD ′1 of α
from S. There are two possible cases:

1. If β ∈ S ∪ suffix(D1), thenD ′ = D ′1 ◦ γ is anSL-T -derivation.
2. Otherwise,β ∈ T ′ \ suffix(D1). By hypothesis,α is non-tautological,

and therefore, sinceβ is valid, the derivationD is obtained fromD ′1 by
Lemma 2.1.

Using Lemma 2.1 is correct because, without loss of generality, we can sup-
pose that in eachT -resolution step it introduces, it is always possible to choose
an appropriate far parent clause from the given setS (this is because each literal
introduced with loading operations has an atom occurring inS; in each loading step
the clause containing that atom will be chosen as far parent). Hence, the derivation
obtained fulfills the requirements of Definition 2.5. 2

As a consequence, Theorem 2.1 below gives the completeness ofSL-T -resolu-
tion.

THEOREM 2.1 (Completeness ofSL-T -resolution).Let there be given a setS of
ground clauses. IfS is T -unsatisfiable, then there exist anSL-T -refutation ofS.

Proof. Immediate ifS contains aT -unsatisfiable clause.
Otherwise, there exist a finite subsetS′ of S and a finite setT ′ of ground valid

clauses such thatS′ ∪ T ′ is minimally unsatisfiable.
From the completeness ofS-linear resolution [9, 19], it follows that there exists

an S-linear refutation ofS′ ∪ T ′ for each top clause inS′ ∪ T ′, and then for each
top clause inS′ (which must be nonempty, sinceT ′ is satisfiable).

By Lemma 2.2 we can conclude the proof. 2
From Theorem 2.1 the completeness of linearT -resolution follows.

COROLLARY 2.1 (Completeness of linearT -resolution). Let there be given a set
S of ground clauses. IfS isT -unsatisfiable, then there exists a linear and tautology-
freeT -refutation ofS.

Proof.From Theorem 2.1, observing that eachSL-T -refutation ofS is a linear
and tautology-freeT -refutation ofS. 2

Remark.The refutations whose existence is ensured by Theorem 2.1 and Corol-
lary 2.1 exist for each top clauseα in S, providedα belongs to aT -unsatisfiable
subset ofS.
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An immediate consequence of Corollary 2.1 is the completeness of the set of
support strategy applied toT -resolution, as the following theorem indicates.

THEOREM 2.2 (Completeness ofT -resolution with set of support).LetS be aT -
unsatisfiable set of ground clauses, and letR ⊆ S be such thatS\R isT -satisfiable.
Then there exists aT -refutation ofS with set of supportR.

Proof.There must exist a clauseα ∈ R belonging to a minimallyT -unsatisfiable
subset ofS. By Corollary 2.1 (see also the remark following it) there exists a linear
T -refutation ofS with top clauseα ∈ R. Such aT -refutation has set of support
{α}, and hence it has set of supportR. 2

2.3. ORDEREDT -RESOLUTION

As with linearity, theT -resolution rule can be combined with standard ordering
techniques, properly generalizingOA-resolution in a very natural manner. More-
over, the completeness of the new calculus is proved following the same approach
adopted for the linear refinements.

In this section we apply to groundT -resolution a simple technique based on
a fixed ordering of predicate symbols (see, for example [18], or [19] for a more
exhaustive treatment of ordered refinements of standard resolution). A different
approach, based on ordering rules that require that the ordering of literals in parent
clauses be inherited in resolvents, will be adopted in Section 3.

Let us identify the kind of orderings we are interested in.

DEFINITION 2.6. LetS be a set of ground clauses. AnA-ORDERING≤A over
S is a (partial) ordering over the set of atoms occurring in clauses ofS. If L1 and
L2 are two literals inS and l1 and l2 are the corresponding atoms, then we extend
theA-ordering to the literals assuming thatL1≤AL2 if and only if l1≤Al2.

An OA-clauseis an ordered sequence of distinct literalsL1, . . . , Ln such that
∀i, j = 1, . . . , n, i 6= j , Li≤ALj → i ≤ j . An A-ordering ruleOA is a rule
which assigns to each clause at least oneOA-clause.

Given a clauseγ , max(γ ) is the set of maximal literals inγ . If α is anOA-
clause, thencl(α) denotes the corresponding clause.

Some preliminary concepts related to the ordered refinement of standard reso-
lution (OA-resolution) follow.

DEFINITION 2.7. Given two groundOA-clauses,α and β, with L ∈ α and
Lc ∈ β, their RESOLVENT is defined as the conventional resolvent, provided that
L andLc are rightmost literals inα andβ, respectively.

DEFINITION 2.8. LetS be a set of ground clauses and≤A anA-ordering over
S. AnOA-DERIVATION of α from S, is a sequence of non-tautologicalOA-clauses
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β1, . . . , βr+n such that

– βr+n = α;
– β1, . . . , βr areOA-clauses of clauses inS;
– for all i, r + 1 ≤ i ≤ r + n, βi is anOA-clause of the resolvent ofβj andβk

for j, k < i.

AnOA-REFUTATION is anOA-derivation of the empty clause.

The completeness of the ordered refinement of resolution can be shown (see,
for example, [18]).

Let us introduce our (T -)generalization ofOA-resolution.

DEFINITION 2.9. Given twoOA-clauses,α = α1 ∪ α2 andβ = β1 ∪ β2, their
T -RESOLVENT α1 ∪ β1 is defined as the conventionalT -resolvent, provided that
either

– α (β) isL1, . . . , Ln andα2 (resp.β2) isLs, . . . , Ln, for a suitable 1≤ s ≤ n;
or

– the step is a loading operation.

DEFINITION 2.10. LetS be a set of ground clauses and≤A anA-ordering over
S. AnOA-T -DERIVATION of α from S, is a finite sequence of nonvalidOA-clauses
β1, . . . , βr+n such that

– βr+n = α;
– β1, . . . , βr areOA-clauses of clauses inS;
– for all i, r + 1≤ i ≤ r + n, βi is anOA-clause of aT -resolvent ofβj andβk

for j, k < i.

The prefix and suffix of theOA-T -derivation are defined as before. AnOA-T -
REFUTATION is anOA-T -derivation of aT -unsatisfiable clause.

By Definition 2.10, anOA-T -derivation is always validity free and hence tau-
tology free.

EXAMPLE. LetT = {{¬P,¬Q,R}, {¬P,Q,¬R}, {P,R}} and

S = {{Q,R}, {¬L,¬R}, {L,P }, {L,¬P¬Q}}.
Let us choose the following ordering for atoms:L≤AP≤AQ≤AR (notice thatL
does not belong toL(T )).

The following is anOA-T -refutation ofS; the prefix lists theOA-clauses of
clauses ofS.

1) R,Q

2) ¬R,¬L
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3) P,L

4) ¬Q,¬P,L
5) ¬R,P OA-clause of the resolvent of 2, 3
6) ¬R,¬Q,¬P OA-clause of the resolvent of 2, 4
7) ¬R,¬Q OA-clause of the resolvent of 5, 6
8) ¬R,Q,P by loading ofQ in 5
9) ¬R,Q from 8 and an auxiliaryOA-clause

becauseT |= ¬R ∨Q ∨ ¬P
10) ¬R OA-clause of the resolvent of 7, 9
11) R from 1 and an auxiliaryOA-clause becauseT |= ¬Q ∨ R
12) 2 OA-clause of the resolvent of 10, 11

Using Lemma 2.1, we can prove the following.

LEMMA 2.3. Given anOA-derivation D of a nonvalid clauseγ from S ∪ T ′,
there exists anOA-T -derivationD ′ of γ from S, such that every nonvalid derived
clause inD also occurs inD ′.

Proof.By induction on the lengthn of suffix(D).

Base case.n = 0. There is nothing to prove because, by hypothesis,cl(γ ) ∈ S.

Inductive step. Assume the lemma holds for allOA-derivations with suffix shorter
thann > 0. It is easy to see that there must be a nonvalidOA-clause preceding
γ in D. Let δ be the last nonvalidOA-clause inD, different fromγ , and let
D1 be the initial part ofD ending withδ.
By the induction hypothesis onD1 (whose suffix is shorter thann) there exists
anOA-T -derivationD ′1 of δ from S. Letcl(γ ) be the resolvent ofα = α′∪{L}
andβ = β ′ ∪ {Lc}, whereα andβ are twoOA-clauses inD havingL andLc

as rightmost literal, respectively.
Eitherα or β must be nonvalid (becauseγ is); suppose without loss of gen-
erality thatα is nonvalid. By induction hypothesisα occurs inD ′1. There are
two possible cases:

1. β nonvalid. Then, likeα, β also occurs inD ′1. A furtherOA-T -resolution
step allows one to obtainγ . To finish putD ′ = D ′1 ◦ γ .

2. β is valid. We can finish by applying Lemma 2.1 toD ′1.

It remains to be shown that no application of Lemma 2.1 violates theA-ordering
rule. At point 2 above, the literalsL andLc are rightmost inα andβ, respec-
tively. By the definition ofA-ordered resolvent we have that for every literalL′ ∈
max(α′ ∪ β ′), L′ 6>AL (Lc). It follows that to every clause introduced in the proof
of Lemma 2.1 there corresponds a suitableOA-clause, withL as rightmost literal,
which will be used in the finalOA-T -derivation. 2
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THEOREM 2.3 (Completeness ofOA-T -resolution). Given a setS of clauses and
an A-ordering ≤A, if S is T -unsatisfiable, then there exists anOA-T -refutation
of S.

Proof. Immediate ifS contains aT -unsatisfiable clause.
Otherwise, there exist a finite subsetS′ of S and a finite setT ′ of ground valid

clauses such thatS′ ∪ T ′ is minimally unsatisfiable.
From the completeness ofOA-resolution, it follows that there is anOA-refutation

of S′ ∪ T ′. By Lemma 2.3 we can obtain the desired result. 2
As with linear refinement, completeness is preserved if loading is restricted to

literals having predicate symbol inL(T ) (see the remark after Lemma 2.1).
A further step can be employed in controlling loading operations. If theA-

ordering is such that all literals inL(T ) are>A-smaller than those not inL(T )
(remember that clauses inS may be written in a languageL? that is an extension
of L(T )), then the refutation obtained has the property that loading operations are
never performed on clauses containing literals not inL(T ). Let us consider how the
OA-T -refutationD ′ of S′ is built using Lemma 2.1, starting from theOA-refutation
D of S′∪T ′. Each application of this lemma introduces inD ′ a sequence of loading
steps of literals ofβ ′ corresponding to an ordered resolution step employing the
OA-clausesα = α′ ∪ {L} andβ = β ′ ∪ {Lc} ∈ T , and resolving onL andLc. If
≤A has the mentioned property (remember that theA-ordering is the same for both
derivations), then, sinceL ∈ max(α), α contains only literals inL(T ) (otherwise
L could not be maximal inα). It follows that all loading operations needed to reach
completeness are those performed onOA-clauses consisting of literals inL(T ).

Remark.Even ifOA-T -resolution is restricted in a narrow fashion (i.e., resolv-
ing out just one literal from each clause), it remains complete and never employs
T -valid clauses. The analogous refinement proposed for narrow theory resolution
(cf. [2]) has to call into play even tautological clauses in order to guarantee com-
pleteness; this happens even for simple cases, as the following example (taken
from [2]) illustrates.

EXAMPLE. Let S = {A ∨ B,¬A ∨ ¬B} where the maximal literals are under-
lined, and supposeT implies the logical equivalence ofA andB. S is T -unsatisfia-
ble and the following is a (“narrow”)OA-T -refutation ofS.

1) B,A

2) ¬B,¬A
3) B from 1 and an arbitraryOA-clause sinceT |= ¬A ∨ B
4) ¬B from 2 and an arbitraryOA-clause sinceT |= A ∨ ¬B
5) 2 OA-clause of the resolvent of 3, 4
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2.4. LOADING

As mentioned in the preceding sections, loading plays a fundamental role in the
use of theT -resolution rule. It is needed to ensure completeness (Section 1.3), and
it is one of the features that guarantee the complete separation of the background
reasoner from the foreground reasoner in our approach toT -theorem proving (Sec-
tion 1.4). Unfortunately however, it introduces some inefficiency in the derivation
process, preventing any full application of subsumption techniques; nevertheless,
such techniques can actually be applied “locally” (this is effectively done below in
ourT -generalization (T -ME) of model elimination), considering only the sections
of T -derivation not involving loading steps.

Some simple restriction strategies on loading that are easily shown to preserve
completeness are available. For example:

– loading can be restricted to a preprocessing phase, where a new input setS ′ is
obtained from the given setS of clauses, through loading steps only.

The main disadvantage of this heuristic is that, in general, even starting with a
minimally T -unsatisfiable setS, the setS′ is not necessarily minimallyT -unsatis-
fiable. Moreover, sinceS ⊆ S′, the number of input clauses may increase.

In the case of nonlinear refinements, an equivalent approach that does not di-
rectly modify the given set of clauses is as follows: Allow loading only on clauses
that either are input clauses or are obtained by loading steps.

Other possibilities, which preserve completeness, have been noted in preceding
sections, namely:

– we can avoid resolving two clauses each of which results from loading steps;

– we can load only literals whose atoms occur in the givenT -unsatisfiable set
of clauses (Proposition 2.2);

– from Lemma 2.1 (see also the remark following Lemma 2.1) it follows that,
even if the given set of clauses is written in a languageL? (extension of
L(T )), loading can be restricted to those literals having predicate symbol in
L(T ).

Some further heuristics that we are currently studying to handle loading are as
follows:

– load each literal at most once;

– load only literals that do not occur in the given set of clauses, but whose
complements do (i.e., allow loading ofL if and only if Lc occurs inS butL
does not);
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– perform all loading steps considered to be useful on a single input clause
α ∈ S (namely, obtainα′ by loading enough literals onα so that each atom
will occur with both polarities in the setS ∪ {α′}).

A more specific heuristic, not directly related to loading, is employed in our
implementation ofT -ME. There we made intensive use of the (unit) lemmas
obtained in searching for the refutation, to simplify the given set of clauses. This
technique actually broadens the class of problems solvable byT -resolution without
performing loading (see Section 3.3 for technical details).

3. T -Resolution and Model Elimination

In this section we illustrate ourT -generalization of ground model elimination.
Beginning with a suitable set of inference rules, we follow the same approach
we used with the previous refinements. However, there is a significant increase
of complexity.

3.1. THE T -ME CALCULUS

Model elimination, as proposed in [19], is essentially a calculus ensuring soundness
and completeness even dealing with input derivations only (i.e., linear derivations
where in each inference step one of the parent clauses comes from the given input
set). This feature is realized by storing information about the inference steps in
particular literals (the so-called A-literals) in clauses being derived.

In this context the concept of clause is replaced by that ofchain that is an
ordered sequence of literals. The literals can be of two kinds: A-literals and B-
literals. The A-literals are bracketed (as in[A]) to distinguish them from B-literals.
Not all literal sequences are legitimate chains: A chain isacceptableif and only
if no two literals, of any kind, are identical or complementary and the rightmost
literal is a B-literal.

In what follows, we borrow from [19] (refer to it for the technical details) the
concept ofaccepting transformationT , which can be viewed as a mapping from
chains to chains. The basic actions of the accepting transformations on a given
chain are merging left for identical B-literals; deletion of the rightmost literal in
the chain, whenever it is an A-literal; and removal of those B-literals occurring
to the right of a complementary A-literal (ground reductionstep). Since we deal
with the ground case only, the last kind of action is the mechanism that allows
the calculus to simulate the inference steps involving previously derived chains
(namely, the removal of a B-literal corresponds to a resolution step involving a
previously derived chain).

Given a set of clausesS, let T (S) be{T (α) | α is a chain of a clause inS}.
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For the ground case, a single inference rule is employed:

Extension rule. Given two acceptable chains,α1 (parent chain) andα2 (input chain),
if their rightmost literals are complementary, then this rule yields a chain
T (α3), whereα3 is formed by making the rightmost literal inα1 an A-literal,
and placing all literals inα2, except the rightmost, to the right ofα1 according
to the specified ordering rule.

In this section, unless otherwise specified, we will useA,B, perhaps with sub-
scripts, to denote A-literals, B-literals, respectively. As above,L,N,M, . . . will be
used for generic literals. Since chains are ordered sequences of literals, given two
chainsα andβ, α ◦ β is the chain obtained by their concatenation.

Given a chainα, with B1, . . . , Bq as B-literals and[A1], . . . , [Ap] as A-literals
(in the order shown), we writeB(α) andA(α) for B1, . . . , Bq andA1, . . . , Ap,
respectively, and writēA(α) for Ac1, . . . , A

c
p. AlthoughB(α), A(α), andĀ(α) are

defined as chains, we will, if need be, regard them as sets or as disjunctions of
literals.

The key point in adapting the framing mechanism to theT -case is that we are
forced to permit the framing of literals in arbitrary positions in the chain, when
justified by the theory. These steps are guaranteed by the loading and unloading
rules introduced below. However, in order to keep such “T -framing” under control
(and to preserve soundness), the ordering in which these steps take place must be
kept track of while the derivation is being constructed. For this reason we define
T -chains as pairs whose second component encodes this ordering; thus the framing
process is regulated by using an ordered list of B-literals that serve as witnesses to
the framings.

DEFINITION 3.1. A chainα is a B-CHAIN if A(α) = ∅. A T -CHAIN ᾱ is a
pair (α; τα) of (possibly empty) chains (referred to asfirst andsecond partof the
T -chain, respectively).

Givenᾱ = (α; τα), a B-literal inα is said to bepairedif there exists an identical
(pairing) B-literal in τα. A paired B-literalB may be made into an A-literal[B]
(framing), which will still be said to bepaired.

We now introduce the(T )-generalizations of the concepts ofacceptable chain
andaccepting transformation:

DEFINITION 3.2. AT -chainᾱ is ACCEPTABLE if and only if

– α is an acceptable chain and each A-literal inα is paired;
– τα is a B-chain such that for each B-literalB in τα , eitherB or [B] occurs inα.

An INPUT T -CHAIN is aT -chainᾱ = (α; τα), whereα is an input chain andτα is
empty. AT -chain(2;2) is called aREFUTING or EMPTY T -chain.
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In what follows,B(ᾱ) will stand forB(α).

DEFINITION 3.3. AT -TRANSFORMATION TT mapsᾱ into TT (ᾱ) according to
the following rules:

R0 merge left for identical B-literals inα;
R1 if a paired A-literal[A] occurs to the left of a B-literalAc in α, then remove

Ac from α;
R2 if an A-literal [A] is the rightmost literal inα, then remove it and the corre-

sponding B-literalA in τα.

The resultingT -chain is produced only if it is acceptable.

From now on we assume as given anME-ordering ruleO (see [19]), which
determines the inputT -chains and the ordering of literals inT -extension steps.

We next introduce the inference rules of ourT -ME-calculus. Note that since
TT is employed in those rules, the resultingT -chain (if any) is always acceptable.

T -Extension rule. Let ᾱ = (α; τα) be aT -chain such thatα = α1 ◦ α2 with
α1 = (L1, . . . , Ln) andα2 = (Bq), and letβ̄ = (β;2) be an inputT -chain
such thatβ = β1 ◦ β2 with β1 = (H1, . . . , Hr−1) andβ2 = (Hr, . . . ,Ht).
Moreover, let us assume that

T |= α2 ∧ β2→ B(α1) ∨ Ā(α1) ∨ β1 (4)

and letγ̄ = TT (γ̄ ′)with γ̄ ′ = (L1, . . . , Ln, [Bq ],H1, . . . , Hr−1; τγ ) andτγ =
τα if Bq is paired inᾱ, or τγ = Bq ◦ τα otherwise. Then, we say that̄γ
is DERIVED from ᾱ and β̄ provided that neitherB(ᾱ) nor B(β̄) subsumes
B(γ̄ ).

Compare (4) with

T |= α2 ∧ β2→ α1 ∨ β1, (5)

which is the general condition to perform aT -resolution step, introduced in Sec-
tion 1.3. The only significant difference is the presence ofĀ(α1), namely, the
disjunction of negations of A-literals that have been produced in previous deduc-
tion steps. These A-literals (let us call them[A′1], . . . , [A′m]) testify that in building
the derivation yieldingᾱ we have generatedm T -chains (̄δ1, . . . , δ̄m), such that,
for eachi = 1, . . . ,m, A′i ∈ B(δ̄i) andB(δ̄i) \ {A′i} T -subsumesB(ᾱ). The
T -extension step (which is binary) makes use of information obtained from these
T -chains. This is a generalization of a simpler situation existing in model elimina-
tion. In that case, the presence of an A-literal[A] in a chainγ ensures that there
exists a previous derived chainγ ′ (calledA-ancestorchain) such that the B-literal
A is rightmost inγ ′ and each B-literal inγ ′ occurs to the left of[A] in γ . Hence, if a
B-literalAc occurs to the right of[A] in γ , its removal (reduction step) corresponds
to a resolution step betweenγ ′ andγ , on the literalsA andAc, respectively.
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The subsumption requirement on the resultingT -chain, in the above rule, comes
from the same argument already exploited for linearT -resolution (cf. Section 2.2).

Let us consider a particular case of theT -resolution rule: Whenα = β = α1 ∪
{L}, α1 = β1, andα2 = β2 = {L}. Condition (5) then becomesT |= L→ α1. In
this case the theoryT permits the discarding ofL from the clauseα, thus obtaining
α1 ∈ ResT (α, α) (or more generallyα1 ∈ ResT (α, δ), for each clauseδ, so we can
see this kind of step as an unary step).

In T -ME a similar kind of step is a particular case of theT -extension rule:
whenL is rightmost in the first partα of aT -chainᾱ, β̄ is arbitrary,α2 = {L}, and
β1 = 2.

The following rule generalizes this idea.

Unloading rule. Let ᾱ = (α; τα) be aT -chain such thatα = α′ ◦ α′′, L ∈ α′ is
a B-literal followed (inα′) by nonpaired B-literals only, andα′′ is empty or
starts with a paired literal (A-literal or B-literal). If

T |= L→ B(α′ \ {L}) ∨ Ā(α′), (6)

then letᾱ1 be obtained from̄α in the following manner:

– if L is paired with the leftmost literal inτα andα′′ = ∅, then replaceL
with [L] in α,

– if L is not paired, then remove it fromα.

We say thatγ̄ = TT (ᾱ1) is DERIVED (by unloadingL) from ᾱ.

Remark.WhenL is paired but not with the leftmost literal inτα, removing it
would yield a non-acceptableT -chain; so, in this case, noT -chain is produced.

To ensure the completeness of the calculus (see Lemma 3.4 below), we need
to allow unloading of B-literals even if they are not rightmost, provided that the
step is justified by condition (6) using only literals occurring to the left ofα′′.
Using literals inα′′ would introduce unsound steps into the derivation. This is
intuitively clear recalling the intuitive idea behind theT -extension step outlined
above: if we unload literals by means ofα′′, then we cannot ensure the existence
of the mentionedT -chainsδ̄1, . . . , δ̄m in the previous part of the derivation (cf.
Lemma 3.1).

From another point of view, the unloading rule is aT -generalization of the
model elimination reduction rule: Following the philosophy of theT -resolution
approach, syntactical identity is replaced by logical consequence inT .

The following rule introduces loading in our calculus.

Loading rule. Let ᾱ = (α; τα) with B the rightmost literal inα, and letB ′ be a
B-literal. TheT -chain γ̄ = TT ((α ◦ B ′; τ )), with τ = τα if B is paired inᾱ
or τ ∈ {τα, B ◦ τα} otherwise, isDERIVED (by loadingB ′) from ᾱ.
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Remark.The nondeterminism of the loading rule could be avoided admitting
loading of a sequence of literals in a single step. In this case takingτ = B ◦ τα
whenB is not paired inᾱ is sufficient to ensure completeness (see Lemma 3.4).

Given a set of nontautological input chainsS, thenS̄ = TT (S) contains theT -
chain(α;2) for eachα ∈ S. Moreover, ifR is a set of clauses, thenα ∈ T (R)
implies that(α;2) ∈ TT (R), because the ordering rule is the same. These facts
will be implicitly used below.

We now give a formal definition of derivation inT -ME.

DEFINITION 3.4. AT -ME-DERIVATION of aT -chainᾱr+n from the set of input
T -chainsS̄ is a finite sequencēα1, . . . , ᾱr+n of acceptableT -chains such that

– ᾱ1, . . . , ᾱr are inputT -chains;
– for all i, r + 1≤ i ≤ r + n, ᾱi is obtained fromᾱi−1 by:

– T -extension rule, using an inputT -chainᾱj for j ≤ r; or
– unloading rule; or
– loading rule, loading a literal whose atom occurs inS̄.

The chainᾱr is the TOP CHAIN of the T -ME-derivation. Prefix and suffix are
defined as usual. AT -ME-refutation is aT -ME-derivation of an emptyT -chain.

EXAMPLE. Consider the set of clauses:S = {{P,Q}, {¬Q,R}, {¬P,R}}, and
let T be defined as follows:T = {{¬Q,¬R}, {¬P¬R}}. Suppose the ordering
adopted allows the set of inputT -chainS̄ listed in the prefix. Then the following is
aT -ME-refutation ofS̄:

1) (P,Q;2)
2) (R,¬Q;2)
3) (R,¬P ;2)
4) (P, [Q], R;Q) by T -extension of 1 with 2

5) (P ;2) by unloading ofR (sinceT |= P ∨¬Q ∨ ¬R) and

application ofTT

6) ([P ], R;P) by T -extension of 5 with 3

7) (2;2) by unloading ofR (sinceT |= ¬P ∨ ¬R) and application ofTT

Given aT -chainᾱ and a modelM, we writeM |= ᾱ if there is a B-literal inα
true inM (i.e., ᾱ is satisfied inM); moreover, given a set̄S of T -chains, we write
M |= S̄ for ∀ᾱ ∈ S̄ M |= ᾱ.
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3.2. SOUNDNESS AND COMPLETENESS OFT -ME

Formally,T -ME is not a refinement ofT -resolution. Hence, as occurs also with
model elimination in the classical setting, we have to prove the soundness of its
inference rules. The following technical lemma, exploiting the peculiarities of our
inference rules, guarantees that the characteristic property of anME-calculus holds
for theT -ME-calculus.

LEMMA 3.1. Given aT -ME-derivationD of aT -chain ᾱ = (α′ ◦ [A] ◦ α′′; τα)
from S̄, there exists aT -ME-derivationD ′ of γ̄ = (α′ ◦ A; τγ ) from S̄, shorter
thanD.

Proof.The occurrence of[A] in ᾱ could have been introduced in two ways:
(1) By an unloading step on aT -chainᾱ1 = (α′1 ◦A ◦ α′′1;A ◦ τα1)whereA◦α′′1

is made of B-literals only, and the occurrence ofA in the second part of̄α1 has been
introduced by a previous loading step on aT -chain ᾱ2 = (α′2 ◦ A; τα2), yielding
ᾱ3 = (α′2 ◦ A,B;A ◦ τα2) (whereB is a B-literal).

Let us callD1 the segment ofD starting fromᾱ3 and yieldingᾱ. In D1 no
framing of paired B-literals to the left ofA can be performed by using the unloading
rule, because the corresponding pairing literal would not be leftmost. Moreover,
neitherT -extension steps nor loading steps can alter the sequence of literals to
the left ofA in the first components ofT -chains inD1. Hence, the transformation
performed on the prefixα′2 (of ᾱ2) to obtainα′1 (and thenα′) are independent from
literals of the suffix “A . . .” (resp. “[A] . . .”). This is true because beingA (resp.
[A]) paired, each removal of B-literals caused by the unloading rule (see (6)) has
to be justified by using only literals to the left ofA (resp.[A]). Therefore, starting
from ᾱ2, just mimickingD1, it is possible to derive theT -chainγ̄ = (α′ ◦ A; τγ ).
TheT -ME-derivationD ′ obtained is shorter thanD because we can ignore all the
steps inD1 not modifying literals to the left ofA; obviously, the first step inD1

(loading ofB) is one of them.
(2) By a T -extension step on theT -chain ᾱ1 = (α′1 ◦A; τα1) with the input

T -chainᾱ2 = (α′2 ◦ α′′2;2) obtainingᾱ3 = (α′1 ◦ [A] ◦ α′2;A ◦ τα1). Afterwards,γ̄
is produced by processinḡα3; let us callD1 the part ofT -ME-derivation yielding
γ̄ from ᾱ1. Since in eachT -chain ofD1 the literal[A] is paired (every A-literal is
paired), we can conclude the proof as in the previous case. In this caseD ′ is shorter
thanD because at least the extension step producingᾱ3 can be skipped inD ′. 2

LEMMA 3.2. Let S̄ be a set of inputT -chains. For eachT -chainᾱ T -ME-derived
from S̄ and for eachT -modelM, we have thatM |= S̄ →M |= ᾱ.

Proof.Let D denote theT -ME-derivation ofᾱ, and letM be aT -model ofS̄.
The proof is by induction on the length ofD.

Base case.̄α ∈ S̄: M |= S̄; thenM |= ᾱ.
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Inductive step. Let ᾱ1 be TT (ᾱ), and supposeM |= ᾱ. Clearly, merging left of
identical B-literals (rule R0), as well as rule R2, is sound. Let us show that so
is rule R1.

Let ᾱ = (α′ ◦ [A] ◦ α′′ ◦ Ac ◦ α′′′; τα) andᾱ1 be obtained removingAc from
ᾱ. From Lemma 3.1 it follows that there exists aT -ME-derivationD of the
T -chain γ̄ = (α′ ◦A; τγ ) from S̄ shorter thanD. Hence,M |= γ̄ . Since
M |= ᾱ andM |= γ̄ , it follows thatM |= B(α′)∨Ac ∨B(α′′)∨B(α′′′) and
M |= B(α′)∨A, hence, we haveM |= B(α′ ◦ α′′ ◦ α′′′). ThereforeM |= ᾱ1.

This proves that the transformationTT is sound.

It remains to prove the soundness of the inference rules. This is immediate for
loading. Let us considerT -extension and unloading rules:

– let γ̄ ′ be obtained as indicated in the definition of theT -extension rule;? let
M |= ᾱ andM |= β̄.
From (4) it follows that

M |= B(α1) ∨ Ā(α1) ∨ β1 ∨¬α2 ∨ ¬β2. (7)

Let A(α1) = (A1, . . . , Ap), and letα(i) be the prefix ofᾱ1 to the left of[Ai]
(i = 1, . . . , p). By Lemma 3.1 there exists aT -ME-derivation of ᾱ(i) =
(α(i) ◦Ai; τα(i) ) from S̄ such thatM |= ᾱ(i) for eachi = 1, . . . , p. Hence,
M |= B(α(i)) ∨ Ai (i = 1, . . . , p), from which we have

M |= B(α1) ∨Ai ∨ β1 ∨ ¬β2 ∨ ¬α2 (8)

for eachi = 1, . . . , p.
From (7) and (8) it follows that

M |= B(α1) ∨ β1 ∨¬β2 ∨ ¬α2. (9)

Now we use the hypothesis onᾱ andβ̄: the fact thatM |= B(ᾱ) andM |= β̄,
together with (9), givesM |= B(α1) ∨ β1. ThereforeM |= γ ′.

– Let ᾱ1 be obtained as indicated in the definition of the unloading rule,?? and let
M |= ᾱ. From (6) it follows thatM |= B(α′ \ L)∨ Ā(α′)∨Lc. Similar to the
previous case, supposing thatA(α′) = (A1, . . . , Ap), for eachi = 1, . . . , p,
it is the case thatM |= B(α′ \ L)∨Ai . It follows thatM |= B(α′ \ L)∨ Lc.
By the hypothesis on̄α we haveM |= B(α′)∨B(α′′). So,M |= B(α′ \ L)∨
B(α′′), and henceM |= ᾱ1. 2

? Refer to it for symbolism.
?? Refer to it for symbolism.
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The following proposition gives the soundness ofT -ME.

PROPOSITION 3.1 (Soundness ofT -ME). AnyT -chain ᾱ T -ME-derived from
a T -satisfiable set ofT -chainsS̄ is T -satisfiable.

Proof.LetM be aT -model ofS̄ that must exist becausēS isT -satisfiable. From
Lemma 3.2 it follows thatM |= ᾱ; hence there must exist at least one B-literal in
α true inM. 2

To prove the completeness, we translate a standard derivation of a chainα into
aT -ME-derivation of theT -chain(α;2).
LEMMA 3.3. Givenα, β acceptable chains(β input chain) such thatγ is ob-
tained by the extension rule from them, and aT -ME-derivationD ′1 of ᾱ = (α; τα),
there exists aT -ME-derivationD ′ of γ̄ = (γ ; τγ ).

Proof.Let α = L1, . . . , Ln, B andβ = H1, . . . , Ht−1, B
c. D ′ will be obtained

with a further step ofT -extension fromD ′1. Sinceβ is an input chain, there exists
an inputT -chain β̄ = (β;2). The extension step produces a chainγ ′ framing
B and appendingH1, . . . , Ht−1 (possibly reordered byO) to its right; γ ′ is then
transformed byT , which (modulo merging of B-literals) may

1. delete a B-literalL because of a complementary A-literal[Lc] to its left (ground
reduction step);

2. remove the rightmost literal if it is an A-literal.

In a T -extension step we can produce theT -chain (γ ′;B ◦ τα), which will be
transformed byTT . Rules R0–R2 allowTT to mimicT . It is then possible to derive
γ̄ = (γ ; τγ ). 2

The role played by Lemma 2.1 for the refinements described in the preceding
sections is here exploited by Lemma 3.4, which relates model elimination steps
andT -ME steps.

LEMMA 3.4. Givenα, β acceptable chains(β valid input chain) such thatγ
is obtained by the extension rule from them, and aT -ME-derivationD ′1 of ᾱ =
(α; τα), there is aT -ME-derivationD ′ of γ̄ = (γ ; τγ ).

Proof.Let α = L1, . . . , Ln, B andβ = H1, . . . , Ht−1, B
c. As with Lemma 3.3

the extension step producesγ ′ = L1, . . . , Ln, [B],H1, . . . , Ht−1 (moduloO and
merging of B-literals) and transforms it usingT , which performs the two usual
kinds of actions. We can derive(L1, . . . , Ln, B,H1, . . . , Ht−1;B ◦ τα), by t − 1
loading steps, from̄α; then the unloading rule is applied to makeB an A-literal
([B]), using the fact thatT |= ¬(H1∨· · ·∨Ht−1)→¬B holds. Now, as was done
in the proof of Lemma 3.3, letTT simulateT yielding γ̄ . 2
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Lemma 3.5 and the subsequent theorem guarantee the completeness ofT -ME.

LEMMA 3.5. If there exists aME-derivationD of γ from T (S) ∪ T (T ′) with
top chain inT (S), then there exists aT -ME-derivationD ′ of γ̄ = (γ ; τγ ) from
TT (S).

Proof.By induction on the lengthn of suffix(D).

Base case.n = 0. There is nothing to prove because, by hypothesis,γ̄ ∈ TT (S).

Inductive step. Assume the lemma holds for allME-derivations with suffix shorter
thann > 0. Let D = D1 ◦ γ , let D1 be aME-derivation ofα, and letγ
obtained by extension fromα and an input chainβ ∈ T (S) ∪ T (T ′).
By induction hypothesis onD1, there exists aT -ME-derivationD ′1 of ᾱ =
(α; τα) from TT (S). There are two possibilities:

1. If β ∈ T (S) thenβ̄ = (β;2) ∈ TT (S), α andβ are acceptable, andD ′1
is aT -ME-derivation ofᾱ, then by Lemma 3.3 we are through.

2. If β ∈ T (T ′), then sinceα andβ are acceptable,β is valid, andD ′1 is a
T -ME-derivation ofᾱ, then by Lemma 3.4 we are through. 2

Lemma 3.5 is employed in proving our main result.

THEOREM 3.1 (Completeness ofT -ME). LetO be anME-ordering rule. Given
a T -unsatisfiable setS of clauses, there exists aT -ME-refutation ofS̄′ = TT (S

′)
for S′ ⊆ S.

Proof. Immediate ifS contains aT -unsatisfiable clauseα. In fact, starting from
anyT -chain ofα, a sequence of unloading steps will give an emptyT -chain.

Otherwise, there exist a finite subsetS ′ of S and a finite setT ′ of ground valid
clauses such thatS′ ∪T ′ is minimally unsatisfiable. Obviously, ifS′ isT -unsatisfia-
ble, so isT (S′), and thenT (S′) ∪ T (T ′) is an unsatisfiable set of chains such that
at least one chain inT (S′) is essential for unsatisfiability. By the completeness of
ME, it follows that there exists anME-refutation ofT (S ′)∪T (T ′) with top chain
in T (S′).

By Lemma 3.5 we can obtain the desired result, since for each acceptableT -
chainᾱ it is the case that| τα | ≤ | α |, considering theT -chainγ̄ whose existence
is ensured by Lemma 3.5; ifγ = 2, thenγ̄ = (2; τγ ) = (2;2). 2

3.3. IMPLEMENTATION AND EXPERIMENTAL RESULTS: A CASE STUDY

In this section we briefly describe an implementation ofT -ME written in SETL2
[26] and run on a Sun SPARC 10, and we present some of our experimental results.
Since our implementation is just a prototype, we have been mainly interested in the
number of steps performed for a given example, rather than with CPU time or other
technical details.
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As is the case with model elimination, a number of optimizations and features
can be added to the original calculus. Most of them have analogues used with
model elimination (see, for example, [12]), although some do take advantage of
the specific properties of theT -resolution rule.

Search strategy.The search space can be viewed simply as a tree (possibly, with
multiple occurrences of equal subtrees) whose nodes areT -chains and such that
each child of a node can be obtained from its parent byT -extension, loading, or
unloading.

The fact that theT -ME procedure (as model elimination does) essentially deals
with input derivations suggests an immediate optimization: the procedure can avoid
processing the sameT -chain more than once (i.e., visiting equal subtrees).

The search strategy used is a depth-first iterative deepening combined with a
best-first heuristic search. Basically, the algorithm proceeds by performing a se-
quence of bounded depth-first searches, with increasing bounds. The bound is not
placed on the depth reached in the search tree but rather on the total cost of a path,
the cost of a path taking into account the distance from the root (i.e., the node
corresponding to the topT -chain) to the currently visited noden and the length of
the path fromn to a leaf-node (possibly corresponding to a refutingT -chain). This
length has to be heuristically estimated, and the simple heuristic employed is the
number of B-literals in the first part of the currentT -chain, which is in fact a lower
bound to the length of the remaining part of the path. At each iteration a depth-
first search is performed cutting off each branch whose total cost exceeds some
given value. The value employed in the subsequent iteration will be the lowest cost
among those exceeding the bound in the current search.

The algorithm is initially provided with a list of inputT -chains. The selection
of the topT -chains is made following the given order. Unloading is attempted
beforeT -extension, which precedes loading operations. For each inputT -chainᾱ
(suppose its first part containsh B-literals); then, at mosth contrapositives can be
used as sideT -chains inT -extension steps. These are obtained fromᾱ by moving
each B-literal to the right end of the first part. This process fulfills Loveland’s re-
quirement that each literal should occur in the rightmost position somewhere in the
input set (see [19]). Control parameters (see below) usually prevent the exploration
of all h alternatives.

Control parameters and rejection rules. A set of control parameters can be
employed to reduce the number of derivableT -chains:

– bounds are imposed on the number of A-literals and B-literals occurring in
the first part of a derivedT -chain;

– a bound is imposed on the length of the first part of a derivedT -chain;

– for each inputT -chainᾱ, there is a bound on the number ofT -extension steps
that can employ a contrapositive ofᾱ as sideT -chain in the same derivation;
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– the set of inputT -chains is partitioned in classes (a similar strategy is em-
ployed in the implementation of model elimination described in [12]) accord-
ing to the length of the first parts. There are four classes, for inputT -chains
made of 2, 3, 4, and more than 4 B-literals. Units are treated in a special way,
as will be explained below.
It is possible to impose a bound on the total number of sideT -chains used in
the same derivation and coming from the same class.

Rejection rules are employed to eliminate useless branches of the search space:

– acceptability of derivedT -chains is imposed, so tautologies are always avoided;
– anyT -chain whose first part has the first part of an inputT -chain, or of a

previously derivedT -chain (in the current derivation), as prefix is rejected;
– T -chains already derived are rejected;
– rejection of validT -chains can be optionally imposed.

Lemmas and units.Note that inT -ME the (ground) reduction operation is incor-
porated in theT -extension step. In fact, it can be viewed as a special case of the
unloading operation. However, obtaining lemmas from reduction steps as is pos-
sible in model elimination is not very useful inT -ME because the characteristics
of theT -resolution rule force one to considereachB-literal in the first part of the
T -chains as part of the lemmas.

Actions produced by theT -extension and unloading rules on B-literals are justi-
fied in general by the presence of several B-literals (see (4) and (6)) in the first parts
of the T -chains. Extending the “scope-mechanism” (see [19]) to
T -ME would require the capability to determine which literals in theT -chains
are sufficient to perform theT -derivation step (in order to obtain short lemmas).
Obviously, handling this “minimality” requirement would make lemma production
not so advantageous. On the other hand, if this requirement is ignored, each lit-
eral (the A-literals complemented) of the first part of aT -chain would have to be
included in each lemma produced from it, making lemmas substantially useless.

Nevertheless, each derivedT -chain generates a lemma consisting of the B-
literals occurring in its first part. Lemmas of this kind are actually used in our
implementation with some restrictions:

– only lemmas with less than a predefined number of literals are retained;
– a nonunit lemma is retained only if it subsumes at least one inputT -chain, in

which case the subsumedT -chains are replaced by the new lemma;
– unit lemmas are intensively employed. Together with unit inputT -chains,

they form a conjunction of literals that will be always considered in eachT -
satisfiability test performed by the procedure (in general this technique tends
to reduce the number ofT -models to be considered by theT -decider). More-
over, whenever a new unit is obtained, a step similar to the Davis–Putnam’s
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unit rule is applied to the inputT -chains: those subsumed are removed (they
will not be used anymore), whereas each occurrence of literals complementary
to the derived unit is deleted from theT -chains (this process can generate new
units that will be employed in the same manner to simplify the given set of
T -chains). Clearly, if aT -unsatisfiable conjunction of literals is obtained, the
initial set ofT -chains is declaredT -unsatisfiable. We note that the procedure
may find aT -satisfiable conjunction of literals satisfying each inputT -chain,
in which case the set is declaredT -satisfiable.
The strategy just outlined takes advantage of previously derivedT -chains and
the use of units corresponds to permitting implicit nonbinary steps (as in the
case of total theory resolution) but only when all but one of the sideT -chains
are units and complementary to a literal occurring in the other two parent
T -chains.
From another point of view, the conjunction of units gives theT -decider sup-
plementary knowledge about the entire problem faced by the theorem prover,
making theT -satisfiability tests more restrictive, “simplifying” the work of
theT -decider and increasing global efficiency.

Further features and heuristics.A few strategies and heuristics were employed
mainly to increase efficiency and to reduce the number of calls to theT -satisfiabi-
lity decider:

– ground-reduction and merging left of identical B-literals are handled automat-
ically;

– unloading is always tried first;
– each rejection test is done as soon as possible, possibly before invoking the

T -satisfiability decider;
– standard resolution steps are intercepted without invoking theT -satisfiability

decider;
– the set of sideT -chains (their contrapositives) is heuristically ordered before

trying T -extension, using an estimate for the number of B-literals of each po-
tential resolvent. Moreover, resolution steps may be attempted before proper
T -extension steps;

– loading operations can be restricted in one of the following ways:

– completely avoided;
– allowed only if the loaded literal does not occur in the initial set ofT -

chains, but its complement does.

Remark.Even if loading is avoided, the use of units as described above actu-
ally increases the power of the procedure. For example, theT -unsatisfiable set of
clauses of the example in Section 1.3 is found to beT -refutable by our implemen-
tation even without loading operations.
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Remark.Although we restrict our treatment to the ground case ofT -ME, our
implementation is able to deal with with certain nonground problems. This capa-
bility arises from the presence of theT -decider: an appropriate modeling of the
problem and a convenient choice of the theoryT may enable one to incorporate
the nonground part of the problem inT .

An example. We applied our procedure to Lewis Carroll’s “Salt and Mustard
Problem” [8].

The problem is about five friends (Barry, Cole, Dix, Lang, and Mill) that agreed
to have lunch together. They devised the following rules, to be observed whenever
beef appeared on the table:
1. If Barry takes salt, then either Cole or Lang takes one only of the two condi-

ments, salt and mustard; if he (Barry) takes mustard, then either Dix takes
neither condiment, or Mill takes both.

2. If Cole takes salt, then either Barry takes only one condiment, or Mill takes
neither; if he takes mustard, then either Dix or Lang takes both.

3. If Dix takes salt, then either Barry takes neither condiment, or Cole takes both;
if he takes mustard, then either Lang or Mill takes neither.

4. If Lang takes salt, then either Barry or Dix takes only one condiment; if he
takes mustard, then either Cole or Mill takes neither.

5. If Mill takes salt, then either Barry or Lang takes both condiments; if he takes
mustard, then either Cole or Dix takes only one condiment.

Moreover, it is assumed that

– phrases like “Barry takes salt” leave open two possibilities: “Barry takes salt
only” or “Barry takes both condiments”;

– phrases like “either Cole or Lang takes one only” allow three possible cases:
“Cole takes one only; Lang takes both or neither”, “Lang takes one only; Cole
takes both or neither”, and “Cole takes one only; Lang takes one only”;

– every rule is to be understood as implying the words “and vice versa” (i.e.,
the first rule should be completed by “and, if either Cole or Lang takes only
one condiment, then Barry takes salt”, and so on).

The original problem was to discover whether these rules are compatible (i.e.,
satisfiable). A (nonground) clause formulation of the problem is used in [20] to
shown that the conditions are in fact satisfiable as follows:

Barry takes both condiments.

Cole and Dix take neither salt nor mustard.

Lang takes mustard but not salt.

Mill takes salt but not mustard.
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Let us see how to deal with this problem in the context ofT -ME. By employ-
ing a theoryT , which is essentially a finite axiomatic set theory modeling only
membership, union, intersection, and symmetric difference of sets, it is possible to
formulate the Salt and Mustard Problem at the ground level.

The languageL(T ), is 2LS [13]. It is a simplified case ofMLS (Multi Level
Syllogistic), which is known to be decidable [14]. A 2LS-decider has actually been
implemented.

We haveL(T ) ⊇ {in,union, inter, sdiff}. In this particular problem we will
model the five friends as individuals, while sets will identify who takes which
condiment. Thus, if the friends are represented by the lettersa, b, c, l,m, and if
S andM represent the set of those who take salt or mustard, respectively, then
the set of those who take both condiments is given byS ∩ M. We use the atom
inter(interMS, S,M) to represent the assertion thatinterMS is the intersection
of S andM.

The following three unitT -chains define, respectively, the sets of those who
take only one, at least one, and both condiments:

1) (< sdiff(deltaMS,M, S) >;<>)
2) (< union(unionMS,M, S) >;<>)
3) (< inter(interMS,M, S) >;<>)

The five rules describing the problem can be reformulated as the following set
of T -chains:

4) (< ¬in(b,M),¬in(d, unionMS), in(m, interMS) >;<>)
5) (< in(d, unionMS), in(b,M) >;<>)
6) (< ¬in(l, deltaMS), in(b, S) >;<>)
7) (< ¬in(b, S), in(c, deltaMS), in(l, deltaMS) >;<>)
8) (< in(b, S),¬in(c, deltaMS) >;<>)
9) (< in(b,M),¬in(m, interMS) >;<>)
10) (< ¬in(c, S),¬in(m, unionMS), in(b, deltaMS) >;<>)
11) (< ¬in(b, deltaMS), in(c, S) >;<>)
12) (< in(c, S), in(m, unionMS) >;<>)
13) (< ¬in(c,M), in(l, interMS), in(d, interMS) >;<>)
14) (< ¬in(d, interMS), in(c,M) >;<>)
15) (< ¬in(l, interMS), in(c,M) >;<>)
16) (< ¬in(d, S), in(c, interMS),¬in(b, unionMS) >;<>)
17) (< in(d, S), in(b, unionMS) >;<>)
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18) (< ¬in(c, interMS), in(d, S) >;<>)
19) (< ¬in(d,M),¬in(m, unionMS),¬in(l, unionMS) >;<>)
20) (< in(d,M), in(l, unionMS) >;<>)
21) (< in(m, unionMS), in(d,M) >;<>)
22) (< ¬in(l, S), in(b, deltaMS), in(d, deltaMS) >;<>)
23) (< ¬in(b, deltaMS), in(l, S) >;<>)
24) (< ¬in(d, deltaMS), in(l, S) >;<>)
25) (< ¬in(l,M),¬in(c, unionMS),¬in(m, unionMS) >;<>)
26) (< in(c, unionMS), in(l,M) >;<>)
27) (< in(m, unionMS), in(l,M) >;<>)
28) (< ¬in(m, S), in(b, interMS), in(l, interMS) >;<>)
29) (< ¬in(b, interMS), in(m, S) >;<>)
30) (< ¬in(l, interMS), in(m, S) >;<>)
31) (< ¬in(m,M), in(d, deltaMS), in(c, deltaMS) >;<>)
32) (< ¬in(c, deltaMS), in(m,M) >;<>)
33) (< ¬in(d, deltaMS), in(m,M) >;<>)

To build aT -unsatisfiable set of clauses, we need a furtherT -chain, expressing
the negation of the answer (i.e., eliminating the only model of the given set of
clauses):

34) (< ¬in(m, S), in(m,M),¬in(l,M),¬in(b, interMS),

in(d, unionMS), in(c, unionMS), in(l, S) >;<>)
Our implementation ofT -ME was able to find aT -refutation of the given set

of T -chains with various settings of the control parameters, in particular when the
parameters were defined as follows:

– bound on the number of A-literals: 6;
– bound on the number of B-literals: 2;
– bound on the length of the first part: 7;
– at most one contrapositive for each input clause in the same derivation;
– no loading operation is allowed, and no retention of lemmas;
– forced rejection of valid resolvents

The procedure derived aT -unsatisfiable conjunction of unitT -chains, declaring
the conjunction of the 34 input clauses to beT -unsatisfiable. This was done produc-
ing 150 newT -chains and tryingT -extension on 91 of them. TheT -decider was
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called 6263 times on 2097 different conjunction of literals (further optimization
could have been realized by intercepting repeated calls).

It should be noticed that the choice of the topT -chains along with the retention
of valid T -chains considerably influences the search for the refutation. The most
useful parameters for reducing the portion of the search space explored seem to be
the bounds on length and number of literals as well as an appropriate choice of the
initial cost bound.

4. Applications of T -Resolution

This section illustrates how an approach based onT -resolution can be profitably
adopted in various situations. In particular, we show how the features of theT -
resolution rule can be exploited to define a deduction framework which generalizes
theCLP approach to logic programming. A second application is a theorem prover
for modal logic employing an implementation of theT -ME calculus to realize a
(semi-)decision procedure for a wide class of modal logics.

4.1. T -RESOLUTION AS A DEDUCTION SCHEME

A general deduction scheme based onT -resolution was proposed in [10]. The
starting points are the previously illustrated features of theT -resolution rule:

• the existence of nontrivial linear refinements;
• the capability of integrating domain specific knowledge;
• the clear distinction and a strong separation between the background and the

foreground reasoners.

These features are in strict analogy with similar properties ofCLP [16, 17], arising
from the integration of logic programming and (independently developed) con-
straint solvers from which its usefulness derives. In this context the background
and the foreground reasoners realize the calculation level (i.e., constraint solving)
and the deduction level of the system, respectively.

The generality of the theoriesT allowed in our development is very advan-
tageous. Ordinarily, to formalize a real problem in terms of a set of clauses to
be processed by an automated deduction system, it is necessary to design a the-
ory suitable to express the characteristics of the specific domain of knowledge of
interest.

If the system is based on a pure logic programming approach (e.g., Prolog), the
axioms of that theory have to be added to the description of the problem. This step
considerably increases the number of the clauses to be taken into account.

In the systems based on theCLP -schemes, where an equational theory is built
in, we do not need to consider the standard equality axioms as part of the problem
description. This can substantially simplify the set of clauses and provide higher
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efficiency. However, not every problem can easily be expressed in an equational
theory, and even when this is the case, it might be more appropriate to employ a
theory more directly related to the specific domain of knowledge from which the
problem is taken.

Usually, in schemes based onCLP the only way to share/exchange information
between the theory and the program is via the equality relation. TheT -resolution
approach allows a better and more useful cooperation between the foreground
reasoner and theT -decider, which, in general, can handle a nonequational theory.

The deduction scheme we propose has the standardCLP -scheme as a special
case and offers several improvements that arise from the possibility of using inter-
preted predicate symbols (i.e., symbols ofL(T )) in the head of the clauses (this
feature is ordinarily not present inCLP -schemes).

4.1.1. T Logic Programming

In this subsection we introduce the syntax and semantics of our deduction scheme,
T Logic Programming (T LP for short). We adopt notation taken from [16] (which
may be consulted for a detailed description ofCLP ).

Let6 = 6C ∪6P be a first-order signature.6C is theCONSTRAINT signature
and6P is thePROGRAM signature. We require6C ∩ 6P = ∅, 6C = 5C ∪ FC,
and6P = 5P ∪ FP , where5 denotes a set of predicate symbols andF a set
of function (and constant) symbols. A5-ATOM is an atomp(t1, . . . , tn), where
p ∈ 5 and t1, . . . , tn are terms built fromFC ∪ FP and a denumerable set of
variables. A5-LITERAL is either a5-atom or the negation of a5-atom. There are
cases in whichT deals with all possible functional symbols (e.g., standard Clark
equality theory); in such cases, clearly,FP = ∅.

The general form of aT Logic ProgrammingPROGRAM CLAUSE is B0 ←
B1, . . . , Bn, whereBi can be either a5P -atom or a5C-literal.? If B0 is a5C-
literal, then the clause is said to be aT -HEADED CLAUSE (such clauses are not
allowed inCLP -schemes). IfB0, B1, . . . , Bn all are5C-literals, then the clause is
said to be aCONSTRAINT CLAUSE. A GOAL is a clause with empty head.

Unlike predicate symbols of5P , predicates in5C can be (partially) defined
in T , which can be any first-order theory. Moreover, they can occur in a negative
literal either in the head or in the body of aTLP -program clause.

In CLP there is no way to act on the theoryT by modifying semantics of the
predicate and function symbols of6C and ofFP . For instance, having aCLP(R)
system, for two uninterpreted functional symbolsf, g ∈ FP , we have no means of
requiring thatg(X,X) < f (X) when 0< X < 1.

The possibility of writingT LP -clauses with interpreted head makes it possible
to overcome such restrictions. There are three types of program clauses of this kind:

? Hence, negative5P -literals cannot occur in any clause.
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1. Clauses that add known (entailed) information toT ; for instance, ifT is a
theory of natural numbers and the symbol ‘<’ belongs to5C: (0 < X) ←
(1< X).

2. Clauses that cause the inconsistency ofT ∪P ; with respect to the above theory
T , for instance,(x ∗ x < 0)← (0< x).

3. Clauses that contain the functional symbols inFP or FC and consistently
extendT , such as(f (X) < f (Y ))← (X < Y).

Clearly, situations of the type 2 should be avoided. This task is left to the
programmer.

Considering constraint clauses only, we can characterize these three kinds of
clauses in model-theoretic terms: clauses of type 1 have, as models, all the models
of T ; none of the models of clauses of type 2 is model ofT ; only a proper subset
of the models ofT are models of clauses of kind 3. Clauses of type 1 could be
introduced in order to give a higher priority to some theorems of the theoryT in
the inference process.

An issue offered byTLP is the possibility of using program-defined predicates,
to provide a semantics to new constants.

EXAMPLE. Consider a program containing theTLP -clause:

X ∈ c← X ∈ a, r(X),
wherer(X) is a program defined atom (i.e., a5P -atom). The aboveTLP -clause
characterizes the constantc by requiring that in eachT -model of the programP it
is the case that

{X ∈ a | r(X)} ⊆ c.
By means of this feature it is possible, for instance, to force the semantics of a

constant (ω in the following example) in a such a way that in every model of the
program it is interpreted as the set of answers to certain goals (← num(X)).

EXAMPLE. LetT be a fragment of set theory, and consider the following program:

num(∅)←
num(X ∪ {X})← num(X)
(X ∈ ω)← num(X)

The (minimal) semantics for the constant symbolω is exactly the (infinite) set
of all numerals intendedà la Von Neumann.

The following definition introduces the rules ofTLP , each of them being an
instance of the generalT -resolution rule (see Definition 1.6). In particular, R1 is a
generalization of the standard Prolog-like inference rule, and it is sufficient to sim-
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ulate theCLP inference rule, provided the satisfiability checker is implemented
(hence,T LP hasCLP as a special case).

DEFINITION 4.1. Letµ be a substitution and← H1, . . . , Hk be a goal.?

R1: If B0← B1, . . . , Bn is aT LP -clause, andB0 andH1 are5P -atoms,
B0← B1, . . . , Bn ← H1, . . . , Hk

← (B1, . . . , Bn,H2, . . . , Hk)µ

T |= E∀(((B0 ∧ ¬H1)→ (¬B1 ∨ · · · ∨ ¬Bn) ∨ (¬H2 ∨ · · · ∨ ¬Hk))µ).
R2: If← B0, . . . , Bn is aT -headed clause (i.e.,¬Bi ← B0, . . . , Bi−1, Bi+1, . . . ,

Bn) or a previously derived goal,
← B0, . . . , Bn ← H1, . . . , Hk

← (B0, . . . , Bs,H1, . . . , Hr)µ

T |= E∀(((¬Bs+1 ∨ · · · ∨ ¬Bn) ∧ (¬Hr+1 ∨ · · · ∨ ¬Hk)→
(¬B0 ∨ · · · ∨ ¬Bs) ∨ (¬H1 ∨ · · · ∨ ¬Hr))µ),

whereHr+1, . . . , Hk, Bs+1, . . . , Bn are all5C-literals.

Loading: Let α be program clause andL be a5C-literal,

α ← H1, . . . , Hk

(← H1, . . . , Hk, L)µ
L in α or¬L in α.

Rules R1 and R2 constitute a proper refinement of the generalT -resolution
rule. R1 operates on pairs of5P -literals in a classical fashion; however, the rule
generalizes the standard Prolog inference step, since it uses knowledge embedded
in the theory and in the whole parent-clauses. Rule R2, on the other hand, uses the
full power ofT -resolution and deals only with the “T -part” of theTLP -program.

Notice that the parts of aTLP -derivation (see below) built by using rule R1 ac-
tually have a linear-input character (just as Horn clauses – pure Prolog – derivations
have). This is the main factor justifying the introduction of two different instances
(i.e., R1 and R2) of the generalT -resolution rule.

Observe that strictness condition – never derive a clause including a variant of
the parent clauses (this restriction is analogous to that imposed on ground linear
T -resolution, see Section 2.2) – holds for rule R1. Moreover, we require that only
strict applications of R2 are allowed. This constraint does not affect completeness
and guarantees a proper linearity of the derivation.

DEFINITION 4.2. Given a programP and a goalG, a TLP -DERIVATION is
a sequence of goalsG = G0, . . . ,Gn such that, for eachi ∈ {1, . . . , n}, Gi is
obtained fromGi−1 and

• a program clause using rule R1 orLoading,
? For the sake of simplicity, we assume the body of a clause to be a multiset of literals. This

assumption guarantees that selectingH1 will be like considering a generic elementHi of the multiset.
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• aT -headed program clause, or a goalGk, k < i, using rule R2.

A TLP -REFUTATION is a derivation of a goal← H1, . . . , Hk, with Hi a 5C-
literal (for all i ∈ {1, . . . , k}), such thatH1 ∧ · · · ∧ Hk is T -satisfiable. For each
i ∈ {1, . . . , n}, let µi be the substitution employed to obtainGi from Gi−1. The
pair consisting ofµ1 ◦ · · · ◦ µn andH1 ∧ · · · ∧Hk is theCOMPUTED ANSWER.

EXAMPLE. Let T be a theory over the reals dealing with≤ and∈. Consider the
simple programP defined by the following clauses:

X ∈ a ← 2≤ X
p(X) ← X ∈ a,X ≤ 2.

The first clause provides semantics for the constant symbola in terms of∈, stating
that it must be interpreted as a set containing at least all numbers greater than or
equal to 2. The second clause defines a5P -literal (namely,p(X)) in terms of the
new constraintX ∈ a. Submitting the goal:← p(X), a few inference steps yield
the goal← 2≤ X,X ≤ 2.

The following theorems give soundness and completeness ofTLP .

THEOREM 4.1 (Soundness).RulesR1, R2, andLoading preserveT -satisfiabili-
ty.

Proof. It is immediate that the three rules are instances of the generalT -resolu-
tion inference rule. Therefore, the soundness follows from Theorem 1.5. 2
THEOREM 4.2. (Completeness).Let P be aT LP -program andG be a goal. If
P ∪ {G} is a T -unsatisfiable set of clauses, then there exists aTLP -refutation of
P ∪ {G}.

Proof. The proof will follow the classical pattern of proving ground complete-
ness and then lifting the result to the general case. Ground completeness follows
easily from the completeness of groundSL-T -resolution (see [10] for a detailed
proof). 2

Even though the above result is a direct consequence of the completeness of
SL-T -resolution, the restrictions imposed on theT -resolution rule and on the kind
of program clauses allowed in the context ofT LP , make Theorem 4.2 rather
significant. As a matter of fact, the two main differences betweenT LP andSL-
T -resolution are the following: (1)TLP deals with sets of clauses built from
two different (disjoint) sets of symbols (namely,6C and6P ); (2) the part of
the derivation relative to5P -literals is in fact a linear-input derivation. In other
words, the inference process relative to5P -literals proceeds in a “Prolog-like
fashion”. Neither of these characteristics is achievable in the general context of
SL-T -resolution.
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4.2. A MODAL THEOREM PROVER

The main problem addressed here is to determine the derivability of a modal for-
mula from a given set of modal axioms. Most of the methods proposed in the past
have followed one of two different approaches.

• DIRECT METHODS work directly on the modal formula in analogy with the
methods developed for classical logic;

• INDIRECT METHODS solve the problem by translating it into an equivalent
problem in classical logic and then applying usual deduction algorithms.

The key point in the approach outlined below is a new translation technique
introduced in [11] (and subsequently studied in [4, 5]) that enables one to express
modal formulas in set-theoretic terms. In this manner the problem of deciding the
validity of a (propositional) modal formula is solved by deciding the validity of
a first-order formula with respect to a suitable ground-decidable set theory (i.e.,
MM, see below).

We first recall some basics about modal logic (for a detailed description, see [6]).
In the following we use a fairly standard syntax for propositional modal logic,

consisting of propositional variables (or letters)P1,P2, . . .; logical connectives
∧,¬; and the modal operator2. Derived symbols, to be used as abbreviations,
are∨ and3 (defined as¬2¬). Well-formed formulas are defined as usual with the2 as a unary operator.

The starting point for the set-theoretic translation is the notion ofKripke frame
semantics: aFRAME F is a pair(W,R) in whichW represents the set of (possi-
ble) WORLDS andR is a binary relation onW calledACCESSIBILITY RELATION.
A VALUATION of a propositional variable is a subset ofW . Relative to a valuation
of all variables, one defines, for allw ∈ W , the notionw |= ϕ by induction on the
structural complexity of the modal formulaϕ (see [6]).

A formulaϕ is

• VALID IN A FRAME (W,R) if and only if, for allw ∈ W and for any valuation
|=, w |= ϕ holds;

• VALID if it is valid in all frames;
• a FRAME LOGICAL-CONSEQUENCEof a formulaψ (ψ |=f ϕ) if and only if,

for all framesF , if ψ is valid inF , thenϕ is valid inF .

The minimal modal logicKs consists of a set of propositional axioms complete
for classical logic, the modal axiom

2(P1→ P2)→ (2P1→ 2P2),

and the rules of modus ponens, substitution (i.e., inferϕ
Pi
ψ from ϕ), and necessi-

tation (infer2ϕ from ϕ). Derivability of ϕ from ψ in Ks is defined as usual and
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denoted byψ `Ks ϕ. A formulaψ is said to beCOMPLETE if and only if, for allϕ,

ψ `Ks ϕ ⇔ ψ |=f ϕ.
Other modal logics can be obtained considering a setH of modal axioms ex-

tending the minimal systemKs . For instance, here are some common modal axiom
schemes:

T : 2P → P

4 : 2P → 22P
B : P → 23P
5 : 3P → 23P

The basic idea of the set-theoretic translation is to replace the accessibility
relation (R) by the membership relation (∈). On this basis, a worldv accessible
from w becomes anelementof w; a further step fromv using the accessibility
relationR will be like looking intov in order to reach one of its elements.

This straightforward encoding of the relationR as membership has a number of
interesting consequences:

1. worlds and frames, as well as valuations of propositional variables, are simply
sets(of worlds);

2. a frameF can be identified with its supportW , being the accessibility relation
implicitly defined as the membership relation onW ;

3. since we clearly want that all worldsv accessible from a given worldw in a
frameW are themselves elements ofW , it is natural to require that all frames
aretransitivesets.?

Since a valuation for a propositional variable is but a set of worlds, the standard
definition of |= will allow us to associate a set of worlds with each propositional
formula. This will be the collection of those worlds in the frame in which the
formula holds true. At this point the relation|= can be entirely replaced by the
membership relation∈.

The translation involves a specific theory,MM, which is defined by the follow-
ing set of axiom schemes:

x ∈ y ∪ z↔ x ∈ y ∨ x ∈ z
x ∈ y \ z↔ x ∈ y ∧ x 6∈ z
x ⊆ y ↔ ∀z(z ∈ x → z ∈ y)
Pow(x) ∩ Pow(y) ⊆ Pow(x ∩ y)
x ⊆ y → Pow(x) ⊆ Pow(y)

whereϕ1 ∩ ϕ2 stands forϕ1 \ (ϕ1 \ ϕ2).
The theoryMM has been shown to be ground-decidable (see [29], where a

decision algorithm forMM is given). The following result holds.

THEOREM 4.3. Given any unquantified formulaϕ of L(MM), it is decidable
whether or not there exists a model ofMM in whichE∃ϕ is satisfied.
? A set istransitiveif it contains the members of all of its members.
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A given modal formulaϕ(P1, . . . , Pn) is translated into a formulaϕ∗(x, x1, . . . ,

xn) of L(MM) using the so called2-AS-Pow TRANSLATION, which acts follow-
ing these rules:

• P ∗i = xi ;• >∗ = x;
• (ϕ1 ∨ ϕ2)

∗ = ϕ∗1 ∪ ϕ∗2;
• (ϕ1 ∧ ϕ2)

∗ = ϕ∗1 ∩ ϕ∗2;
• (¬ϕ)∗ = x \ ϕ∗;
• (ϕ1→ ϕ2)

∗ = (x \ ϕ∗1) ∪ ϕ∗2;
• (2ϕ)∗ = Pow(ϕ∗).

Moreover,3 is translated as¬2¬, andϕ∗1 ∩ ϕ∗2 stands forϕ∗1 \ (ϕ∗1 \ ϕ∗2).
If ψ(x1, . . . , xm) is the conjunction of the modal axioms defining the modal

theoryH , andϕ(P1, . . . , Pn) is a modal formula, then the problemψ |=f ϕ is
faced in solving the corresponding problem obtained by means of the2-as-Pow
translation:

MM |= (∀x(x ⊆ Pow(x) ∧ AxiomH (x)→ ∀Ez(x ⊆ ϕ∗(x, Ez)))),
whereAxiomH (x) corresponds to the formula∀x1, . . . , xm(x ⊆ ψ∗(x, x1, . . . , xm)).

The following result ensures soundness and completeness of the above approach
(see [29]).

THEOREM 4.4. Let (ψ, ϕ)∗ = ∀x(x ⊆ Pow(x) ∧ AxiomH (x)→ ∀Ez(x ⊆ ϕ∗(x,
Ez))), then

• ψ `Ks ϕ ⇒ MM |= (ψ, ϕ)∗;
• MM |= (ψ, ϕ)∗ ⇒ ψ |=f ϕ.

Moreover, ifH is complete, then the following holds:MM |= (ψ, ϕ)∗ ⇔ ψ `Ks ϕ.
The (prototypal) modal theorem prover described in [29] consists of three dif-

ferent modules combined to constitute a semi-decider for modal logic. Notice that
the modal logic can be viewed as a parameter of the modal theorem prover. The
modules are (see Figure 3):

• a translator exploiting the2-as-Pow translation outlined above;
• a decider for the theoryMM;
• an implementation of the model elimination refinement of linearT -resolution

(T -ME).

The interaction between these modules is rather simple: given a modal formula
ψ (representing the setH of modal axiom-schemes defining a modal theory),
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2-as-Pow
translator

T -ME MM-decider

6
?

-
�

Figure 3. The MTP architecture.

and a modal formulaϕ, the translator generates a first-order formula ofL(MM)
in CNF . In general, the formula obtained is nonground; therefore, an instanti-
ate/check method is employed to generate a sequence of ground instances of the
problem. The check phase is exploited byT -ME, using theMM-decider, to decide
theMM-satisfiability of each generated ground instance until aMM-unsatisfiable
set of clauses is found (if any).

5. Future Work and Open Problems

The results presented in this paper suggest several open problems and research
directions. For example, the relationship betweenT -resolution and other important
theory-reasoning methods (e.g., theory connection calculus or theory consolution)
and different approaches to theorem proving such asPT T P , which have not been
addressed here.

Refinements expressly designed forT -resolution offer interesting research start-
ing points; they involveT -validity freeness,T -subsumption,T -factoring, etc. Fur-
ther efforts should be done in controlling loading operations, following the ideas
outlined in Section 2.4, and exploring their compatibility with such techniques and
linearity.

As mentioned at the end of Section 1.3, the problem of liftingT -derivations is
still not settled in a satisfactory manner: given a theory, every extensionL? of L(T )
must be considered in order to guarantee a (rather standard) lifting ofT -derivations.
A most important problem in this area is the reach of deductive methods based
onT -resolution allowing the statement of (uniform) conditions on the theoryT to
guarantee the lifting. Other important classes of open problems arise from attempts
to lift all the presented results to the non-ground case; consider, for example, the
problem of maintainingT -validity properties .

Section 3.3 describes a first attempt at implementing and testing a theorem
prover based onT -resolution. Further experimentation withT -resolution should
include the design of a new implementation ofT -ME taking advantage from the
experience previously gained, in particular regarding heuristics on the treatment of
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T -validity, lemmas, and loading. Hence, in the context of this task we have in mind
two goals among others:

• realization of a foreground reasoner using a more efficient programming lan-
guage (e.g., for instance, C++) ensuring a greater and easier integrability with
other languages; this is strictly connected with the following point:

• integration of the main foreground reasoner with background reasoners al-
ready available, and design of a greater number ofT -deciders for different
theories in order to build a larger set of scenarios for testingT -resolution.
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