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Abstract. The  problem is addressed of establishing the satisfiability of prenex formulas 
involving a single universal quantifier, in diversified axiomatic set theories. A rather general 
decision method for solving this problem is illustrated through the treatment of membership 
theories of increasing strength, ending with a subtheory of Zermelo-Fraenkel which is already 
complete with respect to the 3'V class of sentences. NP-hardness and NP-completeness 
results concerning the problems under study are achieved and a technique for restricting the 
universal quantifier is presented. 
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1 Introduction 

Investigations into the decision problem for"small axiomatic fragments of set theory" , 
to use TARSKI'S wording in [28], date back, at least, to [27] (see also the ensuing [8]), 
which stated the interpretability of ROBINSON'S Arithmetic Q into the theory of sets 
consisting of the following axioms: 

N (Vz)(. 9 0) (Null-set At iom),  
W (Vz)(Vy)(Vz)(z E y w  z H z E y v z = z) 
E (Vz)(Vy)((Vz)(z E z - z E y) - z = y) 

(With Aziom), 
(Eztensionaliiy Aziom), 

Weak membership theories like NWE (we will systematically denote a theory by 
naming its axioms) and decidable fragments of set theory as a whole, have recently 
attracted attention from the foundational point of view [18] as well as of the computer 
science community [6, 19, 11, 211. Under the stimulus of foundational issues the inter- 
pretability of Q into NWE has been improved to obtain the interpretability of Q into 
NW (see [la]). The above-mentioned results imply the essential undecidability of the 
theories NWE and NW (cf. also [31]), but are of little or no help to assess precisely 
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to which classes of sentences, classified according to syntactic criteria (e. g. quantifi- 
cational prefix) , the undecidability of such theories refers. Preliminary investigations 
in this sense have been carried out in [22, 5, 24, 31. The objective of developing a 
theorem prover embodying set-theoretic notions, as well as efforts in the automated 
programming area (cf. [20]) or aimed at obtaining extensions of logic programming 
with sets (cf. ,[9, 10, IS]), have spurred us to investigate the theory NWL where the 
new axiomis 

L (Vt)(Vy)(Vz)(z E t 1 y ++ z E 2 A z # y) (Less h i o m ) .  

In fact NWL is a “denominator” common to almost all of the theories for which 
decidability, unifiability, and constraint simplification results have been discovered to  
date. 

This paper introduces a decision method which is then uniformly employed to 
solve the satisfiability problem for prenex formulas with one universal quantifier, in 
the language containing = and E, with respect to  the theories NWL, NWLE, NWLR, 
and NWLER. Here the new axiom is 

R (Vt)(z # 0 - (3y)(y E t A (Vz)(z E y - z 4 z))) (Regularity Aziom). 
Furthermore it is shown that NWLER is complete with respect to  existential 

closures of such formulas (i. e. 3’V-sentences); a completeness result which remarkably 
improves the analogous result relative to ZFC was established in [14]. Thus, since V’3- 
sentences are dual to 3*V-sentencesl the undecidability of V‘ 3 in pure quantificational 
logic (see [17]) vanishes when one comes to the theory NWLER. 

As for the complexity of the proposed problems, it is shown in the last section that 
they are NP-hard w.r.t. all theories, even if strong restrictions are imposed on the 
syntactic form of the unquantified matrix. In particular, NP-hardness is proved also in 
the case in which the matrix is a conjunction of doubleton disjunctive clauses (2CIF). 
In the case of theories containing the Regularity Axiom, one proves NP-completeness 
through a reduction of 3’V-sentences to alike sentences where the universal quantifier 
is restricted, and by resorting then to an ad hoc satisfiability decision test drawn 
from [7]. 

The general decision method proposed here, as well as the technique for restricting 
the V-quantifier , has been successfully instantiated to a non-classical “kernel” set 
theory in [21] which systematically injures regularity as proposed in [l] . 

2 V-formulas 

D e f i n i t  i o n  2.1. A V-formula is a prenex formula with just one universal quan- 
tifier whose matrix contains only = and E. 

Under axiom N we can allow also 0 to appear in the matrix of a V-formula, since 
any occurrence of 0 can easily be eliminated. Any theory T extending NW proves 
the inequality of the numerals 11, inductively defined as follows: Q is 0, n+l is 11 w 11, 
i.e. for rn < n, 11 # 111, as is easily seen by induction. Thus every model of such 
theories is infinite. From that it follows that the satisfiability problem with respect 
to extensions of NW for the V-formulas is reducible to the problem of establishing 

‘ 
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whether they are satisfiable with distinct elements, all different from the interpreta- 
tion of 0 ,  interpreting different variables; a problem which we will designate as the 
1 - 1 # 0-satisfiability problem. 

P r o p o s i t i o n  2.1. For eztensions of the theory NW, the satisfiability problem for 
V-formulas with matriz in = and E is reducible i o  ihe 1 - 1 # 0-satisfiability problem 
for V-formulas with matriz in =, E and 0.  

In view of this proposition, the rest of the paper will deal almost entirely with the 
decision problem for 1 - 1 # 0-satisfiability of V-formulas with matrix in =, E and 0. 

3 The decidability of V-formulas in NWL 

P r o p o s i t i o n  3.1. If q!~(zl,...,z,) is a V-formula, then $(z1, ..., 2,) is 
1 - 1 # 0-satisfiable with respeci to the theory NWL i f f  there ezists a finite structure 
G = (GI C O ,  c1 , . . . , C n  , R), with co, c1, . . . , c, in G and R c G x GI such thai 

1. c i # c ,  forall i , j  w i t h O s i <  j l n ,  
2. co has no R-predecessor in GI 
3. for all J 

(a) { C i  : Ci  R k j , , }  = J ,  
(b) k J , g  Rcg i f  and only if k J , g  R k ~ , g ,  
(c) G 

{CO, c l ,  . .  . , c,} and for all g (0  5 g 5 n), there ezists an element 
kJ , ,  E C \ {CO,  ~ 1 , .  . ., c,} such that: 

~ ( C I  I . . . I cn). 
P r o o f .  (e). Assume$(zl, . . . ,  z,)is 1-1#0satisfied i n a m o d e l M  ofNWL 

by the n-tuple c1 , . . . , c, of elements of the support of M that we will denote by M. 
Let co = O M .  Obviously co has no eM predecessors in M .  Since M /= NW, 
there are natural numbers ho, . . . , h,, h,+l such that for i = 0,. . . , n ,  hM # Ci  and 
(h&eMC). Given any J C {co, c1. . . , c,} and any g ,  0 5 g 5 n, let k~,, be 

- 

where we have used self explaining notations (for the operations of union and set- 
difference) as shorthand for iterated uses of the operations wM and l M .  Then i t  
suffices to let 

G = { c ~ , c I , .  . . ,cn}  U { k j , ,  : J { C O , C I , .  . ., cn}, 0 5 I n} 

and R %EM GI to obtain a finite structure fulfilling conditions 1. - 3. 
Conditions 1 and 2 are obvious. For condition 3 notice that - h y  E M  kj ; ,  if and 

only if h y  g M  ci , and hence k j , ,  ice,. . . , c,}. From - h y  # C i  it follows that once all 
the elements in J have been added to cg and all the elements in { C O ,  c1 , . . . , cn}\J have 
been removed, k~,, is possibly modified only by the insertion or removal of elements 
different from C O ,  . . . , c,, thus condition 3(a) holds. Since - hf+l is placed in k j , ,  to  
start with, and it is not subsequently removed, hz++,EMkJ,g. Therefore, since for all i ,  
0 5 i 5 n, (hF+lg M M  hi ), we have that k j , ,  # h r  for 0 5 i 5 n. Bence if L J , , E ~ C , ,  

then kJ, ,EMk,, , ,  since the elements which are removed from cg to obtain kJ,,  are 

- 
- - -  
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different from kj, Similarly the only way kj,, can possibly be an EM element of 
LJ,, is to be an E~ element of cg to start with. Thus condition 3(b) is also satisfied. 
Obviously Q + fl(c1 , . . . , c,), since $ is a universal formula. 
(a). Given 0, fulfilling the stated conditions, we show how to build a Herbrand 

model on co, c1, . . . , c,, w ,  1 in which c1 , . . . , c, satisfy $. Let t o ,  t i , .  . . , t,, . . . , ti+l , . . . 
be an enumeration without repetitions of all terms in the Herbrand universe H such 
that t o  is 0, i l l . .  . , t ,  are c l , . .  . , c,, respectively, and for any i > n the term ti is of 
the form f(th,tk) with h, k < i (and f is either w or 1). We call seed oft the term 
inductively defined as follows: 

t if t is a constant, 
seed(t) = { seed(t1) if t = tl wtz or t = 21 ltz. 

Let Hi = { t i  E H : j 5 n + i } .  Thus Ho is simply {CO, c1, . . . , c,}. Inductively 
on i ,  we define a binary relation R, on Hi so that Rj = R, r H j  for all j < i ,  and 
(Hi, CO, c!, . . . , c,,, R,) + fl(q,..  . , c,). The partial structure (Hi, co, wi ,  li, R,), where 
w' and 1' are the (partial) canonical interpretations of w and 1, will also model NWL 
to the following extent: 

(a) co has no %-predecessor in Hi, 
(b) if r ,  S, r w  s E Hi,.then 

(c) if r ,  s, r l s  E Hi, then 
for all t E Hi, (t R, r w s) iff t R, r or t 3 s, 

for all t  E Hi, ( tR ,r l s )  iff t R , r  and t f s. 

It is obvious that if the construction of such a sequence of partial structures succeeds, 
then (HI co, UiEw wi,  UiEw li, UiEw R,) provides the desired model of NWL in which 
fl is satisfied by c1 , . , . , c, . 

Ro is simply R {co, c1, . . . , c,} and woI 1' are totally undefined. 
Assume we have defined Hi and R,, and so also wi and 1'. If ti+l E r w s and 

r,  s E Hil then we let 

(ci : ciR,r} i f ~ 4 { c o l c l , . . . , c , } ,  
{Ci : ciR.,r} U {s} otherwise. J = {  

Let cg be the seed of ti+l,  and hj, ,  be an element in G satisfying conditions 1. - 3. 
%+I is obtained from R., by adding the following pairs. For t E Hi: if t E r w s we 
add the pair (1 ,  t i+ l )  if t R, r or t r 1 s  we add the pair (t,ti+l) if t R, r and 
t f s. Furthermore for t E Hi+l we add the pair (ti+l, t )  if LJ, ,  Riseed(t). It is easy 

s; if t 

to see that conditions (i) - (iii) are maintained. 0 

4 The decidability of V-formulas in NWLE 

When the Extensionality Axiom is added to NWL it is obvious that the conditions the 
finite structure 0 must satisfy includes also the extensionality of R on {CO, cl,  . . . , c,}, 
i.e., for 0 5 i < j 5 n there must be k E G such that k Rci if and only if k g c j .  

The construction of a model of NWLE satisfying fl is however much more involved. 
To obtain a model of NWLE once we have obtained a model of NWL according 
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to Proposition 3.1, it suffices to make a quotient with respect to the minimal co- 
bisimulation of the model; however the elements satisfying $ in the original structure 
may very well give rise to equivalence classes which do not satisfy $J in the quotient 
structure. In the following proposition we will show that nevertheless it is possible to 
obtain a model of NWLE satisfying $J as a quotient of the Herbrand universe, with 
respect to relations and operations which need to be defined inductively. 

P r o p o s i t i o n  4.1. If $(q ,..., 2,) is a V-formula, then $ ( x l ,  ..., 2,) is 
1 - 1 # 0-satisfiable with respect t o  the theory NWLE igthere ezists a finite structure 
G = (G, CO, c l ,  . . . , cn, R) such that 

1. ci # cj for all i, j with 0 5 i < j 5 n, 
2 .  co has no R-predecessor in G,  
3. for all J C_ { C O ,  c 1 , .  . . , c,} and for all g (0 5 g 5 n), there exists an element 

k j , g  E G \ { C O ,  c1,. . . , c,} such that: 
(a) {Cj : Ci RkJ,,}  = J, 
(b) k J , g  R c g  if and only if k J , g  R k J , g ,  

(c) G I= $ J ( c l I . . . , c n ) ,  

(d) R is ezlensional in G over { c o ,  c1, . . . , cn} .  

P r o o f .  (e). The proof is the same as for Proposition 3.1, with the addition to 
G of elements taken from the given model that witness the differences between the 
elements in {co,  c1, . . . , c n } .  By [25] at most n elements need to be added to fulfill 
that requirement. 

Given GI fulfilling the stated conditions, let H and H i  be defined 
as in the proof of Proposition 3.1. Inductively on i, we will define below a partition 
[ ]i : H i  - Pow(Hi) of H i ,  a binary relation R, on Mi = { [ t ] i  : t E Hi}, and two 
partial binary operations wi and 1' on M i ,  so that the following conditions are met: 

(3). 

(i) ( M i ,  R,) /= $ ( [ c l ] i , .  . . 1 [cnli) .  

(ii) Let Predi : H i + l  - Pow(Mi) be defined as follows: 
{ [s]i : s E Hi and [s]i  R, [ t ] i }  

{ [s ] i  : s E Hi and [ ~ ] i  R, [t']i or IS], = [ t"] i}  

i f f  E { c o , c i , .  . . ,~n}, 
if t = t ' ~ " ' ,  ' Predi(t) = 

Let, moreover, -i be the equivalence relation associated with [ ] i ,  that is r -i s iff 
[ r ] i  = [s ] i .  Then the following must hold: for r, s E H i ,  r mi s iff Predi(r) = Predi(s) 
and seed(r) is trapped with seed(s), in the sense that seed(r) and seed(s) have the 
same R-predecessors in G \ { co, c1, . . . , cn} .  

(iii) -i is a congruence with respect to  the canonical interpretations of w and 1 in H i ,  

and wi and 1' are the partial operations induced on H i  by them. 
(iv) The axioms W and L are modelled in ( M i ,  R,, w i ,  1') in the usual weak sense 

that whenever [ r ] i  wi [s]i is defined, 

and whenever [ r ] i  1' [s]i is defined, 

{ { [ ~ ] i  : s E Hi and [ ~ ] i  R, [t']i and [s ] i  # [ f 'q i}  if t = t' It". 

[ t l i  R, ( [ r ] i  wi [ s ] i )  iff [t]i  R, [r]i or [ t ] i  = [s]i; 

[ t ] i  R, ( [ r ] i  1' [ ~ ] i )  iff ' [ t ] i  R, [ r ] i  and [ t ] i  # [slim 
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Our inductive construction proceeds as follows: 
Base case: We put [ch]~  = {ch}, for 0 5 h 5 n. Furthermore for 0 5 h , k  5 n we 

define [ c h ] ~  Ra [c& iff Ch Rck and leave wo and 1' be totally undefined. Since 11 is a 
universal formula and it is satisfied by c1 , . . . , c,, in M , i t  is obvious that  condition 
(i) holds. Conditions (ii) - (iv) are trivially satisfied. 

Induction step: Assuming that [ ]i : Hi - PoW(Hi), &, wi and I' have been 
defined and satisfy the conditions (i) - (iv), we show how to  define the partition 
[ ]i+l : Hi+l - Pow(H,+l), & + I ,  wi+l and lit' so as to  maintain conditions 
(i) - (iv) and to  enforce the following: 

(a) for all t E Hi, [t]i C [t]i+l, 
(b) R, = &+I 1 Mi, 
(c) wi = wi+l t Mi x Mi, 
(d) I' = 1' 1 Mi x Mi. 

To define the new partition on Hi+l we rely on the one already given on Hi and, 
either we.enrich one of the classes [r]i by adding ti+l to it or else we create a new 
class [ti+l]i+l = {ti+l}. 

The former is the case whenever for some r E Hi we have 

(*) 
In that case we let [r]i+l = [r]i U {ti+1} for any r such that (*) holds, including ti+l 
(i.e. [ti+l] = [~ ] i+ l ) ,  and [s]i+l = [s]i for any other term s in Hi. Since condition 
(ii) holds for [ ]i and R,, i t  is clear that  in this way all the classes in the partition 
of Hi are left unchanged except one which is increased by the addition of titl to  it. 
Putting, for r,  s E Hi, 

Predi(ti+l) = Predi(r) and seed(ii+l) is trapped with seed(r). 

[r]i+l %+I [s]i+l iff [r]i & [s]i 
clearly defines &+I over Mi+l. It is rather straightforward to  check that conditions 
(i) - (iv) are maintained. 

If, on the other hand, there is no r E Hi such that (*) holds, we let 

[s]i+l = [s]i for s E Hi, and [ti+l]i+l = {ti+l}. 

&+I is obtained by extending R, in the following way: Let 

Ji,+l = {cm : [cmli E Predi(ti+i)} 

and cg = seed(ti+l). Pick k, E G \ {co, cl,  . .  . , c,} such that 

{cm : cm Rk,} = if k, 41cg, 
Jt.+l U { k,} otherwise. 
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and for t E Hi+l  \ { c o , c i , .  . . , c , } ,  

[ t i + l ] i + ~  &+I [ t ] i + ~  iff kg Rseed(Q 
Note that the last clause in the definition of &+I is independent of the representative t 
of the class [ t ] i+ l ,  since by induction hypothesis all terms in [t]i+l have seeds trapped 
with seed(t). In order to prove condition (i) let us first notice that ( M i , & )  + 
$( [c l ] i ,  . . . , [cn]i)  and G $(cl , . . . , c,) .  Moreover notice that [ti+l]i+l has, with 
respect to  &+I and [ ~ l ] i + l , .  . . , [c,]i+ll the same relationship as k, with respect t o  
R and c1 , . .  . , c,, from which it is clear that condition (i) holds for M,+l, as 
well, namely (Mi+l , & + I )  /= $([cl]i+l . . . , [c,,]i+l). It is also straightforward to  check 
that the remaining conditions (ii) - (iv) are maintained. This ends our inductive 
construct ion. 

Since conditions (i) - (iv) as well as conditions 1. - 3. in the statement of the 
proposition are maintained throughout the construction, we can build an interpreta- 
tion of E, 0, w,  I as follows: For all t E H ,  let [ t ]  = U,zi[ t ] j l  where i is such that  
1 3 t i ;  moreover let M = { [t]  : t E H }  and IM = [co]. Given [ t ] ,  [r] E M ,  let j be large 
enough so that  [ t l j ,  [ r ] ,  E M are defined; then we let: [t]EM[r] iff [ t ] j  Rj [rlj.  Finally 
we let [ t ]  wM [r] = [t w r] and [ t ]  l M  [r] = [t 1 r ] .  

It is quite straightforward to see that M = (M,EMIOM,wM,IM) j= NWL, and 
furthermore that  M + $([c1], . . . , [c,,]). But one is not guaranteed that  M + E. 

To complete the proof, we just are to refine the above inductive construction so as 
to model the extensionality axiom. Our construction prescribes that two terms take 
different values when their seeds are not trapped, even if at the stage in which they 
are treated they have the same set of predecessors. The way to ensure that  in the final 
model M they will have different E‘-members is to  force, as our construction goes 
on, an infinite difference between their seeds. This can be obtained by specializing 
the choice of the element k, used as template in defining &+I when there is no j 5 i 
such that Pred,(ti+l) = Predj ( t j )  and seed(ti+l) is trapped with seed(tj). 

Let { k l  , . . . , kd} C C \ {co ,  . . . , c , )  be a differentiating set for the relation “ci is 
trapped with c,”,  namely if ci is not trapped with C j  there is 1 5 h 5 d such that  
k h  Rci if and only if kh Bc, .  By results in [25] ,  d can be taken to be smaller than 
the number of equivalence classes induced on { C O ,  . . . , c,,} by the relation Ci is trapped 
with c, . As is is easy to  see, the numerals give rise to  different classes as our construc- 
tion goes on; that  is, if m # m‘, then [ml # and the €*-predecessors of are 
precisely w, M I . .  . , [ m - 11. Furthermore for m > [GI and 0 5 i n, [ml # [ ~ i ] .  To 
see this note that  if there is k E G \ { C O ,  .. . , c,,} such that  k Rci ,  then seed(m) = co 
is not trapped with seed(ci) = ci, therefore 111 is not made equivalent with Ci when it  
is treated. On the other hand if the R-predecessors of C i  are among cot . .  . , C , ,  then 
the only EM-members of [ci] are among [ c o ] , . .  . , [c , ] .  So there are at most n + 1 
EM-members of [ t i ] ,  while for m > ICl, h has more than n + 1 EM-members, thus 
for any such m’s, # [c i ] .  It may happen however that  m is not the first term to 
be encountered in the enumeration of H that  gives rise to the class M. On the other 
hand it is plain to check, by inspecting the structure ( { c o , .  . . , C n } ,  R r {co ,  . . . , c , , ) ) ,  
whether a term t is the first one in the enumeration which originates the class w. 
So we may assume that the definition of m is such that  m is actually the first term 
in the enumeration of H which generates @. 
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On the ground of the above observations we now build an infinite supply of terms 
that will differentiate non-trapped ti's. For 1 5 j 5 d and p > 0, let hi = j -I- p . IGl. 
If kj  P k j  we determine a countably infinite sequence of terms di  by letting 

d i  = ({cm : Cm R k j }  \ {Cm : cm P k j } )  U { h i } .  - 
Due to our assumption on the definition of the numerals, d i  is not forced to be 
equivalent to any preceding term and is amenable to be treated using k j .  

At this point, in order to guarantee that at the end of our construction any two 
non trapped ci% will differ for infinitely many elements, as an additional feature of 
our construction we impose that when the term is encountered, among the various 
possibilities to treat d i ,  the one which uses kj is chosen. The final outcome of this 
proviso is that the classes [$I will turn out to be all distinct, as there will be infinitely 
many members of each class [ci] such that kj  R cj .  

The remaining case, namely when kj R kj  , requires a bit more elaborated determi- 
nation of the corresponding [di]’s. Let ci be such that k j  Rc; .  When the construction 
reaches the stage gp in which hi is taken into account, the following term d i  is deter- 
mined: 

- 

((ci U {ern : cfn R k j } )  \ {cm : cm P k j } )  \ {hi}  - 
( (c i  U {Cm : em R k j } )  \ {Cm : cm $ € k j } )  U { h i }  

if [hi]g,Rg,[~i]g,I - 
otherwise. ( - 

d i  = 

The proviso is taken that di  be treated, when its turn comes, by choosing k j .  

We can now show that if this two further requirements concerning the way the 
terms d$ are treated are fulfilled, then the resulting structure M satisfies also the 
Extensionality Axiom. 

Assume that [ t h ]  # [ t k ] .  Without loss of generality we may also assume that h c k. 
If Predt(th) # Predk(tk), let r be such that [r]k R k  [ t h ] k  and [ r ] k  & [ I&.  It is 

clear that [r] E M  [ t h ]  and [r] g M  [ t k ] ;  therefore, [ t h ]  and [ t t ]  have different sets of 
@‘-members. 

On the other hand if Predk(th) = Predk(tk), then the seeds cth and ctk of t h  
and t k  are not trapped, otherwise [ th] l :  = [ t k ] i .  In this case since M WL the 
set of @-members of [ t h ]  and [ t k ]  have a finite difference with respect to the set of 
E’-members of [ctJ and [c tk] ,  respectively. Moreover, since ctr and cth are not 
trapped, there is kj  E { k l ,  . . , , kd} differentiating them in G. We can assume with- 
out loss of generality that kj  Rc t ,  and kj $€c tk .  Our construction ensures that [ct,] 
receives all the infinitely many classes [d;] as EM-members and that none of them is 
an EM-member of [ct ,] .  Thus the differences between the sets of the EM-members of 
[ctJ and of [c t , ]  is infinite. It follows that the set of r?-members of [th] is different 
from the set of @‘“‘‘‘predecessors of [ t i ] .  

This argument takes care of all the cases except the one in which t h  and t i  are, 
say, ch and ck and different, but trapped. In this case we resort to the requirement 
that R is extensional on {co ,  c l ,  . . . , cn}:  among co, c1, .. . , cn there is a cj such that 
cj R C h  iff ci @ Ch , and from that it follows that [cj]  is an EM-member of [ch] iff [ C j ]  is 
an EM-member of [ c h ] .  0 
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5 The decidability of V- formulas  in NWLR 

As opposed to the addition of the Extensionality Axiom to NWL, the addition of the 
Regularity Axiom makes the proof of the analog of Proposition 3.1 easier, and even 
a stronger result can be obtained. 

P r o p o s i t i o n  5.1. If $(q, ..., 2,) is a V-formula, then $(q ,..., 2,) is  
1 - 1 # 0-satisfiable with respect to  the theory NWLR iff there ezists a finite structure 
E = (G,  C O ,  ~ 1 , .  . . , Cn, R)  such that 

1. ci # c, for all i ,  j with 0 5 i < j 5 n, 
2 .  co has no R-predecessor in G ,  
3. for  all J 

(a) {ci  : ci R k j }  = J ,  
(b) kj $c, for a// j with 1 5 j 5 n, 
(c) E k $ ~ ( c l , . . . , c n ) ,  
(d) R is well-founded on G .  

{co, c1, . . . , c,}  there ezists an element kj E G \ { C O ,  c 1 , .  . . , e n )  such 
that: 

P r o o f .  (e). The proof is essentially the same as for Proposition 3.1 except that 
given J C {co ,  c1, . . . , c,} now it suffices to let 

(*). It suffices to modify the construction in the corresponding part of the proof 
of Proposition 3.1 in the following way: In extending R, to Hi+l simply do not add 
any pair of the form ( t i + l , t ) ,  for t E Hi .  Since there is no R-cycle in G to start with, 
it is obvious that in this way no infinite descending chain with respect to  UiEw R, is 
introduced in the Herbrand model eventually built, which is therefore a model of the 

Even though in the above proposition we stated the decidability of the class of 
V-formulas, it is very easy to check that the previous proof works in fact for the 
decidability (with respect to  NWLR) of the larger class of V'-formulas. The class 
of the tl'-formulas corresponds to the well-known Bernays-Schonfinkel class of first- 
order logic (see [12]). It is interesting to notice that even though the decidability of 
the Bernays-Schonfinkel class is trivial, the decision problem for the V-formulas with 
respect to theories such as NWL or extensions of NWLE is still open. 

Regularity Axiom. 0 

In the context of NWLR, we can also state the following 
P r o p o s i  t i o n  5.2. There is a Herbrand model M such that if $ is a V-formula 

P r o o f .  For every satisfiable V-formula $(z1, . . . , zn), let 
satisfiable with respect to  the theory NWLR, then $ is satisfied in M .  

(G$, c$', c f , .  . . , c f ,  R$) 
be a finite structure satisfying the conditions 1. - 3. of Proposition 5.1. Let Ho 
be an infinite set of constants, with a superimposed well-founded binary relation 
Ro such that for every V-formula $(zl, . . . , 2,) a subgraph of & isomorphic to 
R$ I {cf, . . . , c f }  can be found. It is straightforward to check, that the Herbrand 
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model built over Ho, w, 1 with the interpretation of E induced, starting from Ro by 
the axioms W and L fulfills the statement. 0 

6 The decidability of V-formulas in NWLER 

As for the decidability problem we are concerned with, the effect of adding to NWLE 
the Regularity Axiom is the strongest possible, in the sense that it yields a theory 
which is complete with respect to existential closures of V-formulas. Hence our decision 
problem has a positive answer for every extension of NWLER, in particular for every 
classical theory of sets which assumes the Regularity Axiom. The simplifying effect of 
the addition of the Axiom of Regularity on the proof of Proposition 4.1 is also quite 
remarkable. 

is a V-formula, then $(zl, ..., zn) is 
1 - 1 # @-satisfiable with respect to the theory NWLER iff there exists a finite siruc- 
fure 0 = (G ,  C O ,  c 1 , .  . . , c n ,  R) such that 

1. Ci # C j  for all i ,  j with 0 5 i < j 5 n, 
2 .  co has no R-predecessor in G ,  
3. for all J C_ { C O ,  c1, . . . , Cn} fhere exists an element kj E G \ { C O ,  c1, . . . , Cn}  such 

(a) {ci : ci R ~ J }  = J ,  
(b) kj $cj for all j wi fh  15 j 5 n, 
(c) 4 I= + ( ~ l , - . - , ~ n ) ,  

(d) R i s  eztensional in G over {co, ~ 1 , .  . . , C n } ,  

(e) R i s  well-founded on G .  

P r o p o s i t i o n  6.1. If $ ( X I ,  ..., zn) 

that: 

Furthermore NWLER is complete with respect to  existential closures of V-formulas. 
P r o o f .  (c). The proof is the same as for Proposition 1.3. 
(+). Given a finite structure 0 satisfying the stated conditions, we show that 

II, is satisfiable in the ordinary structure 'HF of the hereditarily finite sets with the 
obvious interpretation of 0, a wHF b = a U { b }  and a l H F  b = a \ { a } .  Since (G ,  R) is 
well-founded we can define recursively a map : G - HF satisfying the following 
conditions: 

(i) for i = 1, . . . , n, c: = {k* : k E G and k R c i } ;  
(ii) letting G\ { c o , .  . . , c n }  = { k l , .  . . , k i } ,  for i = 1,. . . , I ,  

kf = {k' : k R k i }  U { { i ,  n + 1 + 1)). 
Since rank({i, n + 1 + 1)) = n + 1 + 2, rank(k:) > n + 1 + 3. On the other hand, for 
i = 0 , .  . . , n, rank(cf) 5 n + 1 + 1, therefore for k E G, i = 1,. . . , I, k' # (i, n + 1 +I}. 
From this it follows that * is 1 - 1 on { c l ,  . . . , en} and in turn that ' is an isomorphism 
between ( { c l ,  . . . , c n } ,  R )  and ( { c i , .  . . , c:} ,  E). Since 0 Vz$J(cl, .  . . , Cn, z) it is then 
obvious that if a is among ci , .. . , c:, then 'HF I= + ( c i ,  . . . , c:, a ) .  

If a E 'HF \ { c; , . . . , c:}, we distinguish two C ~ S ~ S :  

1. For all i ,  a c;: Because of condition 3(c) on 0 it follows immediately that 
XF $J(c;, . . . , c:, a ) .  
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2. a E c: for some i = 1 , .  . . , n: Then by the defining conditions on * ,  there must 
be k E C such that a = L'. From that it follows that a bears with respect to E and 
{c:,. . . ,c;} the same relationship that k bears with respect to R and { c l , . .  .,c,}; 
therefore 317 + rl,(cT , . . . , c;). Hence 31F + Vzrl,(c; , . . . , c;, z). 

The completeness follows immediately since 317 is isomorphically embedded as 
an €-initial part into every model of NW. 0 

R e m a r k  . Let G = (G, CO, . .  . , c,, R) be a finite structure of the kind considered 
so far, with G = { c o I . .  . , c,, c,+l , .  . . , cn+,}. The relevant properties of Q ensuring 
that G rl,(cl, . . . , cn), for a V-formula ?I, G Vzcp(z, 21, . . . , zn), are all expressed by 
the following V-formula - y ~ ,  which we call the V-diagram of c1, . . . , cn in G: 

V+ (Ao<i<j<,(zi - -  # zj) A /\;j=o(zi Eij zj) A z 4 20 
n+l # z j )  + Vk=,+l(Z E k , k  2 A AY=o(z E k , i  zi t i  Ei,k 2)))). 

Here u ~ i j  u stands for u E u if ci R cj , and for u 4 u otherwise. Indeed if rl,(zl , . . . , z,) 
is satisfiable in G by c1 I . . . , c, , then ' y ~  + rl,(z1 ,iim2az,,) is logically valid. It is also 
clear that, given n, there are at most 2"'+" . (2 - 1) inequivalent V-diagrams; 
moreover Propositions 3.1, 4.1,5.1, and 6.1 provide an effective test to  determine, for 
any of the theories we have taken into account, whether a V-diagram is satisfiable or 
not. Given a V-formula $(+I , .. . , 2,) and a theory T among NWL, NWLE, NWLR, 
NWLER, if yc, , . .  . , - y ~ ,  are the V-diagrams with n free variables satisfiable with 
respect to T, we have that -ycl v . + .  v - y ~ ,  + rl, is logically valid. Conversely in 
every model of T in which rl, is satisfied by an n-tuple of elements, at least one of 
ycl , . . . , - y ~ ,  is satisfied by the same n-tuple; therefore rl, - 7G1 V . .  .VYG, is a logical 
consequence of T. Therefore every V-formula is equivalent, with respect to TI to a 
disjunction of V-diagrams, which is empty just in case rl, is unsatisfiable with respect 
to T. For details on these issues, cf. [20]. 

7 Computational complexity 

Let 3'V-CNF be the class of all prenex sentences in our membership language whose 
prefix has the 3'V format and whose matrix is in conjunctive normal form. If each 
clause in the matrix has fewer than k disjuncts, then we speak of 3'V-kCNF. 

In this section we show that the satisfiability problem for 3'V-CIVF sentences is 
always NP-hard, and is in NP (and therefore is NP-complete) with respect to  NWLR, 
NWLER or stronger theories. 

We begin by showing the NP-hardness of two subclasses of the class 3'V-CNF. 
D e f i n i t i o n  7.1. We will say that a sentence 19 belongs to  the class BT (Boolean 

Terms) if 19 is of the form 321,. . . , Z , ( P ( Z ~ , . .  . , zn), where p(z1 , . .  . , 2,) is a conjunc- 
tion of literals of one of the following forms: 

z = y n ~ ,  Z = Y U Z ,  t = 0 ,  
with x ,  y, and z variables. 

R e  m a r  k . A formula in BT is in fact a formula in the class 3'v-3CNF if the set- 
theoretic functional symbols appearing in 19 are eliminated via their (usual) definition 
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in the language without functional symbols, and the formula obtained is brought to 
prenex conjunctive normal form. For example, the formula 

~ z , ~ , z ( z = ~ u z  A Z = ~ ~ Z )  

becomes 

3 t , y , z V w ( ( w E z  * w E y V w E z ) A ( w E +  w w E y A w E z ) ) ,  

which is easily seen to be equivalent to an 33V-3CNF sentence. 
Let 3CIOFSAT be the satisfiability problem for propositional logic formulas in con- 

junctive normal form, where each clause is a disjunction of exactly 3 literals. We 
allow the logical constant I (false) to occur as a literal. 

L e m m a  7.1. 3CMFSAT is polynomially reducible t o  the BT satisfiability problem 
with respect t o  NWL, NWLE, NWLR, and NWLER. 

P r o o f .  Consider the following propositional formula in conjunctive normal form: 

= (L1,1 V L I , Z  V L1,3) A . . . A ( L , l  V L,,z V L m , 3 ) ~  

and let PI . . , Pk be all the propositional variables appearing in 'p. To define the 
formula 'pet to which 'p will reduce, we will associate with each literal L that can 
appear in 'p (namely Pi or -Pi or I) a distinct set-theoretic variable denoted by 
X ( L ) .  'pset is defined as follows: 

AiL,i(X(Pi) n X ( 7 P i )  = 0) A X ( I )  = 0 
A ( X ( L 1 , l )  u x(L1,Z)  u X(L1,3)) n ' * * n ( X ( L m , l )  u X(Lm,2)  u X(Lm,3)) # 0. 

The above 'pser can easily be formulated in BT (by recourse to additional variables to 
represent subterms); hence pseL can be expressed as a V-3CNF formula. 

We show that if 'p is propositionally satisfiable, then pset is satisfiable within the 
model 'HT of hereditarily finite sets, which is a model of NWLER and hence of all of 
our theories. 

If 'p is propositionally satisfiable, then consider a truth assignment V which satis- 
fies 'p. For any propositional variable Pil if V ( P i )  = T (true), then let 

h ( X ( P i ) )  = { 0 }  a d  h ( X ( 7 P i ) )  = 0, 
otherwise let 

h ( X ( P i ) )  = 0 and h ( X ( 7 P i ) )  = (0). 
It is immediate to see that 

For the converse, assuming that M is a model of the weakest of our theories, 
namely NWL, in which 'pet is true when ml , . . . , m2k are substituted for the set 
variables X ( P l ) , .  . . , X(Pk) ,X(-P1) ,  . . . ,X (+k) ,  respectively, consider an element 
u in the domain of M such that 

YP1) ml ,..., mk , m + l  ,..., m2t , OM I I * * . I X ( P k )  I X(-P1) 1 ' . * I X(+) I X ( I )  
EM 

where Pet denotes the term nY==,(X(Lj , l )  U X(Lj ,2)  U X ( L j , 3 ) ) .  Notice that such an 
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element exists since the fact that pSet is true in M guarantees that 

It is now straightforward to  check that the assignment V which sets Pi to T if and 
0 

Notice that the reduction technique that led us to the above result produced a 
V-3CNF formula involving no equality literals. By a more sophisticated coding that 
exploits equality along with membership, we will now obtain the following stronger 
reduction result. 

L e m m  a 7.2. 3CliFSAT is polynomially reducible t o  the saf isf iabi l i ty  problem for 
the class 3V-2CNF w i f h  respecf t o  NWL, NWLE, NWLR, and NWLER. 

P r o o f .  We maintain the same notation used in the preceding proof concerning 
the 3CNF input formula, the propositional atoms occurring in it, and the existential set 
variables to be exploited in the reduction. The formula (p"' has the quantificational 
prefix 

only if v E~ mi will satisfy 'p. 

3X(P1), . . . , X ( P k ) ,  X(-P1) ,  . . . , X(+k),  X ( I )  vv. 
The matrix of pSer consists of the following doubleton clauses, where i = 1, . . . , k and 
j= l , . . . , m :  

(a) V 6 X ( J - ) ,  V E X ( P i )  -+ V $ X ( T p i ) ,  

(c) X ( L j , l )  # X ( L j , 2 )  V X ( L j , l )  # X(Lj ,3 ) .  
(b) X ( I )  @ X ( P i )  4 X ( P i )  = X ( I ) ,  X ( I )  6 X ( - P i )  - X ( 1 P i )  = X ( I ) ,  

To obtain a set assignment h satisfying (pSer in 'HF from a truth assignment V 
satisfying 'p, we put h ( X ( I ) )  = 0 and furthermore, for any atom Pi,  

h (X(P i ) )  = {0,i} and h(X(1Pi) )  = 8 
if V(P, )  = T, and 

h ( X ( ( P i ) )  = 0 and h ( X ( ( 1 P i ) )  = {0,1}, 
otherwise. 

It is straightforward to see that 

Conversely, to obtain a truth assignment V satisfying (p from an assignment h 
satisfying pSet in any model M of NWL, we put for any atom Pil 

V ( P i )  = T iff OM'@ h ( X ( P i ) ) .  

Assuming, by contradiction, that V sets to I each of L j , l ,  Lj,2, and Lj,3 for some 
j E {I , . .  . , m } ,  we argue as follows: F'rom the clauses (a) we draw that 

h ( X ( 1 ) )  eM h(X(Lj ,b ) )  for 6 = 1,2,3, 

and from the clauses (b) we get h(X(Lj , , ) )  = PI SO that h ( X ( L j , l ) )  = h ( X ( L j , 2 ) )  = 
0 h ( X ( L j , 3 ) ) .  This obviously conflicts wlth the clauses (c). 
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R e  m a r k . An alternative method for reducing CNFSAT to the 3'V-CNF satisfiabil- 
ity problem can be found in [9], where cp gets translated into 

{{X(Pl), X(+l) 1, * 3 * I  { X ( 4 ) ,  X(+d11 
{x(L:), * * * , X ( L : J ,  0}, * .  ., {X(LT)l - * .  IX(KJ1 0 11 = ((0, t0111 ' 

Still other approaches can be found in [15] and in [29], [30]. 

respect l o  NWL, NWLE, NWLR, NWLER is  NP-hard. 
C o r o l l a r y  7.1. Each of the satisjiability problems for the class 3'V-2cn with 

P r o o f .  The result follows directly from the NP-hardness of 3CNFSAT (cf. [13]) 

One might wonder whether the satisfiability problem for 3'V-lCNF is already NP- 
hard. The answer is presumably no, since from results in [4, 221 it easily follows that 
the problem at hand has deterministic polynomial time complexity. 

We have seen in Sections 5 and 6 that the addition of the Regularity Axiom had 
a simplifying effect on our decidability proofs. This is the case also from the point 
of view of computational complexity, and in the following we prove the existence of 
algorithms for testing the satisfiability of formulas in the class 3*V-CBF with respect 
to NWLR and NWLER, which run in polynomial time on a non-deterministic Turing 
Machine. The above mentioned algorithms start with a preliminary reduction of the 
input formula to a formula containing restricted universal quantifiers only: consider 
a formula 

and the previous lemma. 0 

\E = 321,.. . , 2,Vy p ,  

with p in conjunctive normal form. We can assume that there are no occurrences of 
the constant symbol 0 in p since any such occurrence could be eliminated by passing 
to the following (equisatisfiable) sentence 

3201 211. . . I znVY(Y $? 20 A P[ 8/20]). 
Let D1,.  . . , Dd be the conjuncts in p ,  where each of the Di's is deleted if it contains 
a complementary pair of literals. In general 0; is assumed to have form 

e: v . . . v !A, v eAi+, v . . . v eAi +ri  , 
where y does not appear in e l , .  . . , t& and appears in e ~ , , , ,  . . . l e i i + a i .  The case 
mi = 0 corresponds to the case in which y is present in every one of the literals in D;, 
whereas if there are no occurrences of y in Dil then Si  = 0. 

We can also assume that there are no literals of the form z # z ,  since such literals 
are always unsatisfiable and therefore they can be safely deleted from the clauses 
(declaring the entire formula Q to be unsatisfiable in case no other literal is left). At 
this point we can distribute the universal quantifier obtaining the following form for 
our formula: 

3+1,. . . , 2, A:=, (e; v . . . v t;, v vy (e;,+l v . . . v e;s+,i))l 
where any 1; with mi + 1 5 h mi + si  is of one of the following forms: 

+ j € y ,  y ~ ~ j j  Z j = y ,  ~ = z j ,  2 j $ ? ~ I  Y4zj,  Z j Z Y ,  Y#zj- 
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In Proposition 5.1 we essentially showed that the following is a theorem of NWLR 
(and therefore of any stronger theory): For all 21,. . . , ZN and for 1 5 K 5 N, there 
always exists a y different from and not belonging to any of the zi's for i E { 1 , .  . . , N}, 
and, moreover, having exactly 21, . . . , z~ as only elements among 21 , . . . , ZN; in for- 
mulas, for 1 < K < N ,  

vz1,. 
+ 3~ (AiK,l(Y # zi A Y 4 zi A zi E Y) A Ay=K+I(Y # zj A Y 4 zj A zj 4 Y)). 

This implies that  any formula of the form Vy (tA,+, V . . . V .!A,+,,) in which there 
is no 4; of either the forms y # zj , zj # y, or y 4 zj, can be rewritten as 

, ZN (AlSi<j<Nzi # zj 

- 
V(jl,ja)EE, 'ji - z j o ,  

where Ei = {(jl, j2) : the literals zjl E y and zj, $2 y are among 
In other words, when no literals of the form y # zj , zj # Y, or Y 4 zj appear in Di, 
the set of literals in Di which contain the universally quantified variable either carries 
no information, being false at  least for some element in the universe, or turns into a 
tautology if some pair of distinct existentially quantified variables are interpreted as 
representing the same set. 

We perform the above substitution of the set of literals containing the universally 
quantified variable whenever possible, declaring rk to be unsatisfiable if there exists a 
conjunct Di such that mi = 0 and Ei = 8. 

Let us now consider a Vy (tA,+l V . V tA ,+# , )  such that there exists an t; which 
is of the form y # zj or zj # y. In case si = 1, we can simply remove such a part 
(which is unsatisfiable) from Di and, as above, if mi = 0, then we can declare rk to 
be unsatisfiable. Otherwise we substitute Vy(tk,+l V . .. V tA,+,,) with 

. . 

(tf,+l v ' .  . v ti-1 v ti+, v . . v t;,+,,)[z/~j]. 

At this point any Vy (t;,,, V . . V tA,+*,) still remaining in our formula contains 
an J!X which is of the form y 4 zj, namely the formula is now in purely universal 
Ao-form and, in particular, belongs to the class of the so-called (V)i-simplc prenez 
formulas, introduced in [7] and there proved to have a satisfiability problem that 
can be solved in polynomial time on a suitable non-deterministic Turing Machine. 
Actually the underlying theory used in [7] was an unspecified axiomatization of naive 
set theory (say ZF), but the argument works in the case of NWLER and can even 
be simplified for NWLR. Here is a short description of the decision algorithm for the 
theories NWLER and NWLR: 

If a (V)&simple prenex formula is satisfied in a given model M of NWLER, then 
there exists a graph G (called model-graph of the formula in question) which has the 
following characteristics: 

1. Nodes in E represent sets in M and, in particular, there is at most one node 
for each of the sets ml, . . . , m, used to interpret the existentially quantified 
variables; 

2. for any pair of distinct sets mi, mi (0 < i ,  j 5 n), there is a node in G repre- 
senting a set which belongs to exactly only one between mi and mj; 
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3. there is an edge going from node a to node 6 if and only if the set represented 

4. G is acyclic. 
by a is an element in M of the set represented by b; 

It  can also be shown, by induction on the number n of existentially quantified vari- 
ables, that the total number of nodes in the smallest model-graph for a satisfiable 
formula is less than 2n. 

The decision test for the class of (V)&simple prenex formulas is based on the fact 
that the existence of a model-graph with the above characteristics is also a sufficient 
condition for the satisfiability of the given formula. As a matter of fact, it can be shown 
that in case a model-graph exists, the formula in question is true in the model 7t3, 
and therefore in any model of NWLER, and this can be checked by simply inspecting 
the graph. The non-deterministic polynomial satisfiability algorithm will consist in 
guessing the model-graph and checking its adequacy against the formula. The reader 
is referred to [7] for the details. 

Notice that the model-graph technique hinted at here is akin to the decision tech- 
nique underlying Propositions 5.1 and 6.1. However here we can resort to a simpler 
(i. e. smaller) structure G, that can be guessed in polynomial time, so taking advantage 
of the fact that universal quantifiers are restricted in the input formula. 

The case of NWLR is treated in complete analogy, the only difference being that 
now the model-graph does not need to be eztensional, namely condition 2 above 
does not need to hold, and therefore the only nodes that need to appear in the 
smallest model-graph are those associated to the sets used to interpret the existentially 
quantified variables. Given such a model-graph we can rebuild a model of NWLR by 
starting with n constants and closing with respect to the functional symbols w and 1 
as we did in our constructions in the lemmas of the preceding section. 

R e m a r k .  In order to obtain from the results in this section a proof of the NP- 
completeness of the entire class of 3'V-sentences, it would be necessary, for example, 
to have a polynomial-time reduction of 3.V-sentences to 3'V-CBF-sentences. Unfor- 
tunately, the classical reduction used in the context of propositional logic, based on 
the introduction of new propositional symbols, does not seem to generalize to this 
context. 

R e  1 a t  e d w o r  k . Further studies along the lines presented here are currently 
under progress. Among them we mention the attempt to extend the results contained 
in this paper to the class of W-formulas and the studies of the satisfiability problem 
in the context of (weak) set theories assuming a suitable form of antifoundation axiom 
(cf. [l]). The class of W-formulas has been shown to be decidable with respect to the 
theory NWL in [23] by enhancing the method in this paper. By related (as well as 
by alternative) techniques, various satisfiability problems regarding non-well-founded 
membership theories have been considered and solved in (21, 21. 
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