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ABSTRACT 25 

This research aimed at extending the choice of natural antimicrobials/antioxidants for food 26 

applications. Four plant extracts, Posidonia oceanica (PO), Green Tea (GT), Grape seeds (GS) and 27 

Grape skin (GK), were analyzed to determine their total phenolic content, antioxidant activity and 28 

in vitro antimicrobial performance. PO extract showed the highest total phenolic content (711 mg 29 

gallic acid/g extract) and antifungal activity against Aspergillus niger and Penicillium chrysogenum. 30 

The highest antioxidant (3.81 mg/L EC50) and antibacterial activities (bactericidal against Gram 31 

positives and bacteriostatic against Gram negatives) were found for GT extract.  32 

The best performing extracts (PO and GT) were applied by dipping on peach slices in storage trials. 33 

Microbiological and pomological parameters were evaluated during 7 d storage. Total aerobic 34 

count, Pseudomonas as well as yeasts and moulds populations, were reduced by about 0.5 log cfu/g, 35 

mainly up to 5 d in all treated samples compared to the control. Total soluble solids, titratable 36 

acidity and colour (L*a*b*) changes were also delayed in treated fruit.  37 

 38 
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1. Introduction 42 

One of the most important research areas as rated by a large majority of food companies is the 43 

development of healthy foods, and the introduction of fresh cut produce onto the market, in order 44 

facilitate fruit consumption, is rapidly growing (Jung and Zhao, 2016).  45 

Nevertheless, the high perishability of minimally processed fruit may lead to an increase in food 46 

waste and economic losses (Amani and Gadde, 2015). Throughout production process, cell 47 

breakage takes place causing juice leakage and leading to microbial contamination and growth. 48 

Moreover, the contact between enzymes and cell juice under oxygen exposure increases cell 49 

respiration and activation of fruit senescence. Specifically, minimally processed fruit, and peaches 50 

in particular, are very susceptible to flesh browning (Denoya et al., 2016). Therefore one of the 51 

current challenges for the agro-food companies is to lengthen cut fruit shelf life, consequently 52 

improving  attractiveness to customers as well as food safety.  53 

The food industry has been increasingly employing polyphenols to limit enzymatic oxidation which 54 

affects the shelf life of ready-to-eat fruit (Gyawali and Ibrahim, 2014). The beneficial properties of 55 

polyphenols on human health also have to be taken into account (Pandey and Rizvi, 2009).  56 

As sources of polyphenols, several trials have been carried out using plant extracts from common or 57 

endemic species (Perumalla and Hettiarachchy, 2011) or alternatively from by-products of the agro-58 

food industry (Balasundram et al., 2006). Nowadays, exploitation of by-products and/or residues 59 

represents one of the environmental and economic priorities. Several substances discarded from 60 

agro-food production can find alternative applications in different contexts. As examples, grape skin 61 

(GK) and seeds (GS) are the main wastes from the wine industry, nevertheless they are appreciated 62 

for their high phenolic content which includes flavonoids, phenolic acids and non-flavonoid 63 

compounds (Poudel et al., 2008). The hydroxyl groups of gallic acid, present in grape by-products, 64 

showed antimicrobial activity against Bacillus cereus, B. subtilis, B. coagulans, Staphylococcus 65 

aureus, Escherichia coli and Pseudomonas aeruginosa; also all the substituents of the benzene 66 



rings were found effective against S. aureus (evaluated by Minimal Inhibitory Concentration assay) 67 

(Jayaprakasha et al., 2003). 68 

The antioxidant capacity of polyphenols can also be used to prevent or slow down enzymatic 69 

oxidation of vitamins and pigments contained in ready-to-eat fruit and vegetables (e.g. enzymatic 70 

browning), thus preventing the loss of nutritional elements and increasing  attractiveness to 71 

consumers due to the maintenance of their sensorial characteristics (Rojas-Grau et al., 2009). 72 

Moreover, they can be added as antimicrobials thus increasing product shelf life (Guillen et al., 73 

2013). 74 

Flavonoids from plants have high antioxidant capacity and they are widely used substances, 75 

including catechin, epicatechin, gallocatechin, epigallocatechin, catechin gallate, epigallocatechin-76 

3-gallate (the most abundant and biologically active compound in green tea), gallocatechin gallate 77 

and epicatechin gallate (Sutherland et al., 2006). The hydroxyl groups in the ring structure of 78 

catechin can be easily oxidized (Janeiro and Brett, 2004).  79 

Green tea (GT) is one of the plant extracts with high antioxidant and antibacterial activities, and 80 

with anti-tumor effects due to its catechin content. GT catechin showed antimicrobial activity 81 

against Gram positive and Gram negative bacteria including certain pathogens of the 82 

gastrointestinal tract such as S. aureus, S. epidermis and Plesiomonas shigelloides, but it was not 83 

effective against E. coli, Pseudomonas aeruginosa and Aeromonas hydrophila (Kusmita et al., 84 

2014). 85 

Posidonia oceanica (PO) is a marine endemic plant of the Mediterranean sea protected by the EU 86 

(92/43 EEC Habitat Managerial and Community Board 97/62/EEC). It is an important species in 87 

coastal waters defence, forming extensive marine grasslands (Foden et al., 2007). Twenty-three 88 

phenolic compounds were identified in this species (Cuny et al., 1995; Agostini et al., 1997) and 89 

several studies showed that PO extract is able to inhibit the growth of both Gram positive and Gram 90 

negative bacteria, and it was particularly effective against P. aeruginosa and S. aureus (Berfad and 91 

Alnour, 2014), as well as yeasts. PO extract was also assayed in the biomedical field, proving its 92 



high anti-diabetic and anti-oxidant effects (Gokce and Haznedaroglu, 2008). However, some reports 93 

found evidence for the transfer of toxins originating from toxic dinoflagellates which live as 94 

epiphytes on PO leaves (Bellassoued et al., 2012). 95 

The present research is aimed at extending the choice of natural antimicrobials/antioxidants for food 96 

applications, derived from PO, GT, GS and GK. These extracts were analyzed to determine their 97 

total phenolic content and antioxidant activity as well as in vitro antimicrobial performance. The 98 

two best performing extracts were also used to set up fresh-cut storage trials on peach slices, 99 

applying the dipping procedure. Peach (Prunus persica L. Batsch) is a climacteric fruit that contains 100 

carbohydrates, organic acids, pigments, phenolics, vitamins, volatiles, antioxidants and trace 101 

amounts of proteins and lipids, which make it very attractive to consumers (Kader and Mitchell, 102 

1989). However, peaches are susceptible to physiological disorders (internal breakdown and 103 

chilling injury), pathogen (moulds) and processing manipulation (browning of tissues) (Caceres et 104 

al., 2016). 105 

 106 

2. Materials and methods 107 

 108 

2.1 Chemicals 109 

2,2-Diphenyl-1-picrylhydrazyl (DPPH), (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic 110 

acid (Trolox) 97%, Ethanol (≥99.8%), Ethyl acetate (anhydrous, 99.8%), Folin-Ciocalteu’s phenol 111 

reagent, hydrochloric acid, sodium hydroxide and sodium sulfate (≥99.0%, anhydrous), were 112 

purchased from Sigma–Aldrich (Gallarate, MI, Italy).  113 

Green tea, grape skin (Vitis vinifera L., Chardonnay variety) and seed extracts for oenological use 114 

(antioxidants) were obtained from DAL CIN GILDO S.p.A. (Concorezzo, MB, Italy). 115 

 116 

2.2 Posidonia oceanica extract 117 



Posidonia oceanica (L.) Delile was collected by scuba diving from Palermo (Sicily, Italy), 118 

Tyrrhenian Sea, in October 2014. Note that as this is a protected marine plant, for use in  any 119 

industrial application, it should be sourced from aquaculture systems under controlled growing 120 

conditions. The epiphytes on the leaves were removed with paper towels without damaging the 121 

organs, as reported by Gokce and Haznedaroglu (2008). Leaves were dried in the dark at 20 ± 1°C 122 

and then stored at 4 ± 1°C before use. The extract was obtained according to the method of Gokce 123 

and Haznedaroglu (2008). Briefly, homogenized tissues were infused in 50% (v/v) ethanol-water 124 

solution for 3 h in a water bath at 40°C with a reflux system in the dark. The homogenate was 125 

filtered and acidified at pH 3 with hydrochloric acid 2 N. After evaporation of ethanol under 126 

vacuum at 45°C, the aqueous residue was extracted with ethyl acetate. The organic phase was 127 

filtered and evaporated under vacuum. The extract obtained, which was a green viscous material 128 

(Figure 1), was freeze dried and finally stored at -20°C until use. 129 

 130 

 131 

 132 

Figure 1. Extract of P. oceanica 133 

 134 

2.3 Total phenolic content  135 

Total phenols (TP) levels of the PO, GT, GS and GK extracts were estimated colorimetrically by 136 

the Folin-Ciocalteau method (Scalbert et al., 1989). Extracts (1 g/L) were dissolved in 50% (v/v) 137 

methanol/water and appropriately diluted (1:2.5, 1:5 and 1:10 v/v) in the same solvent. The Folin-138 



Ciocalteau reagent was 10-fold diluted in water (v/v) and 2.5 mL were added to each 0.5 mL 139 

sample. Two milliliters of 75 g/L sodium carbonate solution were added and tubes kept for 1 h at 20 140 

± 1°C in the dark. In the meanwhile, the calibration curve for gallic acid (5-100 mg/L) dissolved in 141 

50% (v/v) methanol/water was achieved. The absorbance at 765 nm was measured and results were 142 

expressed as g gallic acid/100 g powder. Each formulation was analyzed in triplicate. 143 

 144 

2.4 Antioxidant assay  145 

Analysis of the antioxidant capacity of PO, GT, GS and GK extracts was carried out employing the 146 

DPPH assay, following the method of Brand-Williams et al. (1995) with some modifications. The 147 

DPPH solution was diluted in methanol to obtain 1.00 ± 0.03 absorbance units at 515 nm. The 148 

extracts samples were dissolved (20 g/L) in 70 % methanol (v/v) and, after centrifugation, they 149 

were serially diluted. The DPPH solution (2.94 mL) was placed in a cuvette where a 60 µL sample 150 

was added. The absorbance readings were carried out after incubation for 50 min at 20 ± 1°C. A 151 

calibration curve was prepared by adding increasing concentrations of Trolox ranged from 50 to 152 

1000 µM; each concentration was assayed in triplicate. Results were expressed as mol Trolox per 153 

100 g dry weight. Each formulation was analyzed in triplicate. 154 

 155 

2.5 Microorganisms and culture conditions 156 

Antimicrobial activity was analyzed by carrying out in vitro tests determining the Minimal 157 

Inhibitory Concentration (MIC) against strains belonging to official collections, i.e.  Escherichia 158 

coli CECT 434 (Spanish Type Culture Collection), Listeria innocua DSM 20649 (Deutsche 159 

Sammlung von Mikroorganismen und Zellkulturen), Pseudomonas putida ATCC 12633 160 

(American Type Culture Collection), Staphylococcus aureus ATCC 29213, Aspergillus niger 161 

NRRL 565 (Agricultural Research Service Culture Collection) and Penicillium chrysogenum 162 

CECT 2802. These microorganisms were selected among the most common spoilage and/or 163 

pathogen microorganisms that might be present in fresh food products (Mascheroni et al., 2014). 164 



Bacterial strains were weekly maintained on TSB (Tryptic Soy Broth, Scharlau Chemie, Spain), 165 

incubated at 30°C for 24 h and then stored at 4°C, while moulds were maintained on MEA solid 166 

culture (MEB added with 15 g/L agar), incubated at 25°C for 5-7 d and then stored at 4°C until use. 167 

 168 

2.6 Determination of antimicrobial activity in vitro 169 

Qualitative determination of antimicrobial activity was performed as follows: 30 mL of soft TSA or 170 

MEA (TSB or MEB added with 8 g/L agar) were poured in a Petri Dish and inoculated with 300 µL 171 

of a microbial suspension prepared in sterile distilled water (OD 600nm: 0.300 ± 0.050); moulds 172 

were inoculated as spores suspension in sterile distilled water (OD 600 nm: 0.300 ± 0.050). Once 173 

solidified, holes were made by using a sterile tip and 150 µL of extracts were poured inside. 174 

Cultures were all incubated at each appropriate temperature for 24 h (up to 7 d for moulds). The 175 

presence of a growth inhibition halo around holes indicates an antimicrobial activity. 176 

Quantitative determination of antimicrobial activity was performed only with PO and tea extracts. 177 

Ten mL of soft TSA or MEA were poured in a Petri Dish, to which aliquots of PO extract were 178 

added in order to obtain a final concentration of 0.5-1.0-1.5-2.0-2.5 and 3.0 g/L. Tea 179 

extract was tested at the following concentrations: 0.5-1.0-1.5-2.0 g/L. Once solidified, 180 

plates were all surface inoculated with aliquots (3 µL) of appropriately diluted (OD 600nm: 181 

0.300 ± 0.050) overnight microbial cultures on TSB (bacteria). Moulds were inoculated as spore 182 

suspension in sterile distilled water (OD 600 nm: 0.300 ± 0.050). For each strain control trials were 183 

also prepared without the addition of extracts. In order to highlight any possible inhibitory effect of 184 

the solvent present in extracts, a set of solid cultures was also set up by adding ethanol (up to 3 g/L) 185 

to the culture media.  186 

Cultures were all incubated at each appropriate temperature for 24 h or up to 7 d for moulds. MIC 187 

(Minimum Inhibitory Concentration) was determined as the lowest extract concentration (g/L) able 188 

to inhibit microbial growth. Trials were repeated twice for each extract.  189 

 190 



2.7 Fresh-cut peach storage 191 

Peaches (Prunus persica L. Batsch cv. ‘Rich May’) were purchased at the wholesale market (3 kg), 192 

24 h after harvesting at commercial maturity and stored for 1 d at 4°C until use. Peaches were 193 

homogenous in weight (180 ± 5 g) and ripening (10.85 ± 0.07 °Brix). Fruits were pre-washed with 194 

distilled water, sanitized for 2 min in chlorinated water (150 mg/L sodium hypochlorite), rinsed 195 

with distilled water and gently dried by hand. Peaches with skin were cut into slices (8 slices per 196 

fruit) of about 1.5 cm thickness (15 ± 2 g each slice), using a sterile stainless-steel knife, and dipped 197 

for 3 min in the following solutions: PO extract (2% w/v), GT extract (1% w/v) and distilled water 198 

for control samples (CTRL). Slices were then left in the air for 2 min in order to drain off the excess 199 

solution.  Three slices (45 ± 6 g) were placed into low-density polyethylene (LDPE) bags (22 x 15 200 

cm, 25 µm thickness, bag volume 450 mL, ratio between fruit weight and container volume 100 201 

g/L, surface film for each bag 660 cm2, O2 permeability 6200 cm3 m-2 d-1 bar-1, CO2 permeability 202 

24000 cm3 m-2 d-1 bar-1 at 10 °C). Bags were all stored at 4 ± 1°C up to 7 d. A total number of 48 203 

bags were prepared, 24 used for color evaluation, and the remaining ones for the other analyses. 204 

Samples were then collected after 0, 3, 5 and 7 d. Each trial at each day was carried out in duplicate. 205 

 206 

2.8 Colour evaluation 207 

Flesh colour was evaluated using the CIE L*a*b* System by a Minolta CR-300 chromameter 208 

(Konica Minolta Sensing, Inc., Japan). Three measurements were performed on each side of slices. 209 

The instrument was calibrated using a standard white plate. The chroma (C) was calculated as 210 

follows (1): 211 

𝐶∗ = √𝑎∗2 + 𝑏∗2    (1) 212 

 213 

2.9 Total soluble solids and titratable acidity 214 

Total soluble solids (TSS, %) and titratable acidity (TA, g/L) were measured on the juice obtained 215 

from slices (30 g for each sample) by an electronic blender (Ariete, Italy). TSS were determined by 216 



a digital refractometer (Atago Co., Ltd, Tokyo, Japan model PR-32), while TA was determined by 217 

titrating 1:10 diluted juice using sodium hydroxide 0.1 M by an automatic titrator (Compact 44-00, 218 

Crison Instruments, SA, Barcelona, Spain). 219 

 220 

2.10 Antimicrobial activity of green tea and P. oceanica on peach slices 221 

After 0, 3, 5 and 7 d, peach slices (15 g) were transferred aseptically into a Stomacher bag (400 mL 222 

PE, Barloworld, France) containing 135 mL of sterile peptoned water (10 g/L bacteriological 223 

peptone, Costantino, Italy) and blended in a Stomacher (Star Blender LB 400, Biosystem, Belgium) 224 

at high speed for 3 min. Ten-fold dilution series of the obtained suspensions were made of the same 225 

solution for plating. The following culture media were used: TSA (Merck, Germany) for 226 

mesophiles, Pseudomonas Agar base (Himedia, India) for Pseudomonas spp., VRBLA (Violet Red 227 

Bile Agar, Merck, Germany) for Enterobacteriaceae and MEA for yeasts and fungi. Colonies were 228 

counted after incubation at 30°C for 24 h for mesophiles, 30°C for 5 d for yeasts and fungi and 229 

25°C for 24 h for Pseudomonas. Counts were performed in triplicate and reported as logarithms of 230 

the number of colony forming units (log cfu/g peach), and means and standard deviations (SD) were 231 

calculated. 232 

 233 

2.11 Statistical analysis 234 

Statistical analysis was carried out using the STATISTICA 7.1 software package (Statsoft Inc., 235 

Tulsa, OK, USA). One-way analysis of variance (ANOVA) was performed on mean values and 236 

Tukey’s test was carried out for the comparison of difference among treatments for each storage 237 

time and for each treatment during storage. Differences were considered significant at p ≤ 0.05. 238 

 239 

3. Results and discussion 240 

 241 

3.1 In vitro evaluation of total phenolic index and antioxidant activity 242 



Total phenol index (TPI) and antioxidant capacity (AC) were evaluated for each investigated extract 243 

(Table 1). PO showed the highest TPI (711 mg/g) followed by the GS extract (526 mg/g). The 244 

highest AC was found for GT extract (3.8 ± 0.11 mg/L EC50).  245 

In case of PO, the highest polyphenols content corresponded to the lowest antioxidant capacity. 246 

Such a low value could be attributable not only to the extraction procedure but can also be related to 247 

the type of polyphenols present in the extracted matrix (Berfad and Alnour, 2014). The choice of 248 

the solvent to use (50% v/v ethanol-water solution) was based on the best results obtained by Berfad 249 

and Alnour (2014), who investigated the extraction performance of different solvent mixtures on P. 250 

oceanica, as well as also taking into account its food-grade nature.  As reported in the literature, the 251 

principal polyphenols present in PO are acetosyringone, ferulic acid and acetovanillone, while those 252 

in GT are gallic acid, catechin gallate and epicatechin (Agostini et al., 1998). These last compounds 253 

are characterized by the presence of three proximal hydroxyl groups, able to efficiently delocalize 254 

radicals present in the aromatic ring thus acting as radical scavengers. On the contrary, the 255 

polyphenols present in PO hydroxyl groups are not in close proximity and a methyl moiety is often 256 

present, thus reducing its antioxidant capacity (Agostini et al., 1998). 257 

Nevertheless, the polyphenols values obtained were comparable with those reported in the literature 258 

for other plants (Mensor et al., 2001). The highest antioxidant capacity of the GT extract is not 259 

surprising since GT is particularly rich in phenols, as proanthocyanidins, with low redox potential 260 

and it does not contain bi-flavanols (Lee et al., 2014).  261 

 262 

3.2 In vitro determination of antimicrobial activity 263 

In qualitative trials performed employing 1 g/L extract solutions, all samples showed the highest 264 

antimicrobial activity against L. innocua. GT proved to be the most powerful sample, while at the 265 

tested concentration PO did not show any antibacterial activity but was the only extract possessing 266 

an antifungal action against Aspergillus niger (Table 2). 267 



Quantitative determination of antimicrobial performance found that MIC for GT and PO extracts 268 

were 1 and 2 g/L respectively against the two Gram positive strains L. innocua and S. aureus. The 269 

two Gram negative strains showed a reduction of microbial growth attributable to a bacteriostatic, 270 

rather than a bactericidal, effect (Figure 2). Aspergillus and Penicillium showed a marked reduction 271 

of hyphal growth (up to 30% for A. niger and to 70% for P. chrysogenum employing 3 g/L extract) 272 

and sporulation when grown in presence of PO, while no effect was evident with GT (Figure 3). 273 

Only in the control plate (no extract added) after 7 d incubation the two moulds showed an 274 

antagonistic effect, while in all the other plates the hyphal growth of each strain was not influenced 275 

by the presence of the other one. Note that ethanol, the solvent used to prepare extracts, was not 276 

found to inhibit microbial growth at the tested concentrations, thus confirming literature results 277 

(Dantigny et al., 2005).  278 

Recently, Alkan and Yemenicioglu (2016) tested the in vitro antimicrobial activity of various plant 279 

phenolics, finding that clove extract was the most potent antimicrobial, with MIC values of 10.24 280 

g/L against the plant pathogens Erwinia amylovora, E. carotovora, Pseudomonas syringae and 281 

Xanthomonas vesicatoria. The reported values are much higher than those found in the present 282 

research (MIC of 1-2 g/L), at least for PO, highlighting that the tested extracts are of actual interest. 283 

 284 

 285 

 286 
A B 



Figure 2. Growth of bacterial strains in presence of P. oceanica (A) and Green Tea (B) extracts. 287 

Concentrations used: 0-0.5-1-1.5-2-2.5-3 g/L PO; 0-0.5-1-1.5-2 g/L GT. Strains: L-Listeria 288 

innocua, S-Staphylococcus aureus, E-Escherichia coli, P-Pseudomonas putida. 289 

 290 

 291 

 292 

 293 

 294 

Figure 3. Growth after 2 days (A) or 7 days (B) incubation of Penicillium chrysogenum (left in 295 

each plate) and Aspergillus niger (right in each plate) in presence of different concentration of P. 296 

oceanica extract (from 0.5 to 3.0 g/L). Control: medium without extract.  297 

 298 

 299 

3.2 Fresh-cut peach storage  300 

GT and PO extracts were chosen for the dipping of fresh cut peach slices: the first of these had the 301 

most powerful antioxidant capacity, while the second was chosen for its high polyphenols content 302 

and antifungal activity. Fruits are usually quite acid and hence quite resistant to invasion by 303 

bacteria. Therefore spoilage of fruit and fruit products is often caused by fungi (Pitt and Hocking, 304 
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1999). However, recent studies have documented the exponential growth of bacteria on a variety of 305 

fresh-cut fruit (Alegre et al., 2010; John et al., 2013). 306 

In terms of pomological traits, after 7 d storage, TSS content was found almost constant in treated 307 

samples of peach slices, while in CTRL samples this value sharply increased up to 11.8 %, mainly 308 

from 5 to 7 d (Figure 4A). 309 

Differences of TA content were significant between t 0 and 3 d, then reduced with storage. CTRL 310 

samples evidenced a significant decrease from 3 to about 1 g/L. Peach slices dipped in the two 311 

extracts showed a TA decrease of only 17 % with respect to the initial value, but with different time 312 

courses: when PO was employed, a sharp decrease of TA in the last 3 d of shelf life was evident, 313 

while in samples treated with GT the decrease was evident in the first 3 d.  314 

Note that the sharp decrease of TA in CTRL samples occurred at the same time with the TSS 315 

increase in the last 3 d of the shelf life. For the GT treatment, no significant changes were evident in 316 

TSS between 3 and 7 d (Figure 4B).  317 

 318 

 319 

 320 

 321 

 322 

 323 

 324 

 325 

 326 

Figure 4. Evolution of total soluble solids (%) (A) and titratable acidity (g/L) (B) in peach (Prunus 327 

persica) cv. Rich May slices treated with Posidonia oceanica (PO), Green Tea (GT) and untreated 328 

(CTRL). Data are means ± SE.  Minor and capital letters show significant differences (p ≤ 0.05) for 329 

each treatment and among treatments for each storage time, respectively. 330 

A B 
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 332 

After three days, lightness (L*) of peach slices decreased in all treatments (Table 3). When 333 

prolonging the incubation time up to 7 d, lightness decreased much more in CTRL sample rather 334 

than in peach slices treated by GT or PO. Caceres et al. (2016) developed a flesh browning 335 

assessment methodology for fresh whole peaches stored for a long time, and reported that  L* 336 

values higher than 21 can be considered symptoms of extreme flesh browning. Even if our data 337 

relate to peach slices, L* values calculated at 7 d storage were found higher than 21 only in the 338 

control sample. 339 

An indicator of chlorophyll degradation is the a* value, which decreases when color changes from 340 

green to red (Martín-Diana et al., 2008). An increase of a* values was only found for PO treatment 341 

(Table 3). This behavior can be attributed to the greenish colour imparted by the PO extract, 342 

similarly to what was found by Martín-Diana et al. (2008), after a dipping treatment with natural 343 

extracts, which they also correlated to lightness lowering. 344 

The b* parameter indicates the color changes from yellow to blue, and its values decreased in all 345 

samples during storage (Table 3) due to phenolic degradation taking part on tissues (Fuentes-Perez, 346 

2014). However, after 7 d storage, treated samples showed higher values than the control. 347 

Finally, the Chroma decreased after 3 and 5 d storage more rapidly in PO samples compared  to GT 348 

ones (Table 3). After 7 d, GT showed a higher value compared with samples dipped in PO.  349 

These results, in accordance with the findings reported by Oms-Oliu et al. (2010), highlighted that 350 

dipping treatment after peeling and/or cutting can represent an effective way to control browning 351 

phenomena in fresh-cut fruit, since it can affect enzyme activity or substrates availability for 352 

enzymatic degradation. In particular, the high polyphenols content present in both extracts can 353 

protect the cut surface of fruit products against oxidative rancidity, degradation and enzymatic 354 

browning, thus slowing their senescence process (Rojas-Grau et al., 2009). 355 

 356 



From the microbiological point of view, the applied dipping treatments were found effective in 357 

lowering the total aerobic count (TAC) and Pseudomonas population present in peach slices of 358 

about 0.5 log cfu/g mainly up to 5 d (Figure 5). This behavior may also be favored by the fruit 359 

respiration process (Rojas-Grau et al., 2009). Yeasts and moulds were found significantly lower 360 

than the CTRL only at 3 d, with the best performance being shown by peach slices dipped in PO 361 

extract. No significant changes were found for the Enterobacteriaceae population. These results are 362 

in accordance with those reported by Siroli et al. (2014) for minimally processed apples dipped in 363 

different antimicrobials comparatively: shelf life of fresh cut fruit is limitedly affected by microbial 364 

growth: independently from the addition of natural antimicrobials, the end of shelf life is mainly 365 

determined by changes in colour.  366 

Time course of CO2 and O2 during storage trials was not determined as it was assumed meaningless 367 

because of the high gas permeability and the geometry of the packaging system used. Assuming an 368 

oxygen  respiration rate of the fruits of about 18 mg kg-1 h-1 at 10 °C and taking into account the 369 

permeable surface of the package (0.066 m2), the headspace volume (450 cm3), the amount of the 370 

product (0.045 kg) and the oxygen and carbon dioxide permeabilities (respectively 6200 and 24000 371 

cm3 m-2 d-1 bar-1, at 10 °C) using a common model for forecasting atmosphere changes in ready-to-372 

eat vegetables (Piergiovanni et al., 1999) we estimated after 7 d a maximum CO2 concentration 373 

equal to 0.8%  and a minimum O2 concentration of 18%.  374 
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 376 

Figure 5. Time course of Total Aerobic Count (TAC), Enterobacteriaceae, Pseudomonas and 377 

yeasts and moulds presence (log cfu/g peach) in samples of peach slices subjected to dipping 378 

treatment with P. oceanica (PO) and Green Tea (GT) extracts and then stored at 4 °C. CTRL: peach 379 

slices dipped in sterile distilled water. Data are means ± SD. Minor and capital letters show 380 



significant differences (p ≤ 0.05) for each treatment and among treatments for each storage time, 381 

respectively. 382 

 383 

4. Conclusions 384 

In this study Posidonia oceanica (PO) and green tea (GT) extracts were applied by dipping on 385 

peach slices, once having shown their highest total phenolic content and antifungal activity, as well 386 

as the highest antioxidant activity, respectively. Results showed that these natural extracts limited 387 

microbial spoilage of fresh-cut peach, especially the Pseudomonas population, and maintained the 388 

pomological parameters during storage at 4°C while not modifying their characteristic taste.  389 

Overall, polyphenolic extracts derived from PO and GT could provide an additional post-harvest 390 

benefit of fresh-cut produce. To the best of our knowledge, this paper represents the first report on 391 

the application of P. oceanica extract on fresh-cut fruit, even if this marine protected plant never 392 

should be collected from the sea for industrial application. 393 

Although this work relates to the application of natural extracts directly on fresh-cut fruit in a 394 

traditional package, future trials will be aimed at setting up innovative active packaging solutions 395 

from which these extracts will be released. Further research will be also needed to complement 396 

antioxidant activity of plant or other extracts with digestion simulation to assess parameters such as 397 

bioaccessibility, bioavailability and in vivo antioxidant performance; sensorial analyses should also 398 

be performed on treated fruit. 399 

These results can pave the way to the use of innovative natural extracts to be applied on ready-to-400 

eat vegetables, thus improving  the attractiveness for consumers of these healthy foods. 401 
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Table 1: Total Phenolic Index (TPI) and Antioxidant Capacity (AC) of the extracts investigated in 518 

this study. Data are presented as mean ± SE. 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 Table 2. Diameter (mm) of microbial growth inhibition halos around wells containing the analyzed 531 

extracts (1 g/L) after incubation.  532 

Microorganism GT PO GK GS 

Listeria innocua 12 n.p.* 4 6 

Staphylococcus aureus 10 n.p. 2 4 

Escherichia coli 6 n.p. 2 4 

Pseudomonas putida 4 n.p. n.p. 4 

Aspergillus niger n.p. 8 n.p. n.p. 

Penicillium chrysogenum n.p. n.p. n.p. n.p. 

*n.p.: inhibition halo not present. 533 

 534 

Extract 

 

TPI 

mg gallic acid/g extract 

AC 

 mg/L EC50 

Posidonia oceanica 710.6 ± 20.1 72.42 ± 22.9 

Green tea 526.3 ± 14.9 3.80 ± 0.11 

Grape skin 398.2 ± 9.5 6.14 ± 0.78 

Grape seeds 596.4 ± 15.6 4.10 ± 0.14 



 535 

 536 

 537 

Table 3. Color parameters changes during storage of fresh cut peach slices treated by P. oceanica 538 

(PO), Green Tea (GT) and untreated. Data are presented as mean ± SE. Minor and capital letters 539 

show significant differences (p ≤ 0.05) for each treatment and among treatments for each storage 540 

time, respectively. 541 

 542 

Treatment Day Lightness (L*) a* b* C* 

                      0 64.07±1.30a -2.22±0.41a 41.56±0.40a 41.58±0.40a 

 3 59.63±0.85bA -1.04±0.18bB 39.63±0.55aA 39.73±0.54aA  

CTRL 5 50.01±1.14cA 0.40±0.22cB 29.60±1.63bA 29.61±1.63bA 

 7 41.70±0.89dB 1.57±0.27dB 18.96±0.28cB 19.06±0.27cB 

 3 57.11±0.19bB -3.15±0.19abA 33.88±0.72bB 34.04±0.71bB  

PO 5 48.69±1.11cA -1.65±0.40bA 25.92±0.84cA 26.03±0.84cA 

 7 42.99±0.62dAB -0.28±0.41cA 20.05±0.39dA 20.12±0.40dAB 

 3 55.19±0.79bB -1.29±0.24bB 39.39±0.45aA 39.42±0.45aA  

GT 5 48.56±0.58cA 0.43±0.41cB 29.02±1.59bA 29.07±1.59bA 

 7 44.71±0.68dA 1.24±0.09cB 20.28±0.44cA 20.32±0.44cA 
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