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Mast Cells Boost Myeloid-Derived Suppressor Cell
Activity and Contribute to the Development of
Tumor-Favoring Microenvironment
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Abstract

Inflammation plays crucial roles at different stages of tumor
development and may lead to the failure of immune surveillance
and immunotherapy. Myeloid-derived suppressor cells (MDSC)
are one of the major components of the immune-suppressive
network that favors tumor growth, and their interactionwithmast
cells is emerging as critical for the outcome of the tumor-associ-
ated immune response. Herein, we showed the occurrence of cell-
to-cell interactions between MDSCs and mast cells in the mucosa
of patients with colon carcinoma and in the colon and spleen of
tumor-bearing mice. Furthermore, we demonstrated that the CT-
26 colon cancer cells induced the accumulation of CD11bþGr1þ

immatureMDSCs and the recruitment of protumoralmast cells at

the tumor site. Using ex vivo analyses, we showed that mast cells
have the ability to increase the suppressive properties of spleen-
derivedmonocytic MDSCs, through amechanism involving IFNg
and nitric oxide production. In addition, we demonstrated that
the CD40:CD40L cross-talk between the two cell populations is
responsible for the instauration of a proinflammatory microen-
vironment and for the increase in the production of mediators
that can further support MDSC mobilization and tumor growth.
In light of these results, interfering with the MDSC:mast cell
axis could be a promising approach to abrogate MDSC-related
immune suppression and to improve the antitumor immune
response. Cancer Immunol Res; 3(1); 85–95. �2014 AACR.

Introduction
In the tumor microenvironment (TME), cancer progression is

often associated with an inflammatory response, which is medi-
ated by numerous cytokines, chemokines, and growth factors
produced by cancer and stromal cells. These factors support the
tumor-induced immune suppression and constitute an impedi-
ment to immunotherapy and immunosurveillance in patients as
well as in experimental animals with malignant tumors (1).
Among the stromal cells infiltrating the tumor, myeloid-derived
suppressor cells (MDSC) are one of the major components of the
immunosuppressive network responsible for T-cell nonrespon-
siveness and for the generation of the immunosuppressive micro-
environment that favors tumor growth. MDSCs have a very rapid
turnover and accumulate in large numbers in lymphoid tissues of

tumor-bearing mice as well as in mice with infectious diseases,
sepsis, and trauma. These cell populations have been described in
human cancer and have been found circulating in the blood of
patients with cancer (reviewed in ref. 2). They are a heterogeneous
population of early myeloid progenitors, immature granulocytes,
macrophages, and dendritic cells at different stages of differenti-
ation. In mice, these cells are broadly defined as Gr1þCD11bþ

cells (3), and at least twomajor subsets, the so-called granulocytic
polymorphonuclear (CD11bþLy6GþLy6Clow) and the highly
immunosuppressive monocytic (CD11bþLy6G�Ly6Chigh) types,
are described (4, 5). The main feature of these cells is their ability
to suppress T-cell responses in Ag-specific or nonspecific manners
depending on the status of T-cell activation (reviewed in ref. 6).
However, available information is growing on the role of MDSCs
in themodulation of innate immune cell activity that is present in
the TME.

Despite their well-known role in allergy and anaphylaxis, mast
cells are emerging as general antennae of the microenvironment
regulating physiologic and pathologic immune responses (7, 8).
In the context of the TME,mast cells are recognized as an early and
persistent infiltrating cell type involved in angiogenesis, tissue
remodeling, and immune modulation (9). Mast cells may have
both antitumor and tumor-promoting roles, potentially also in
the same context (10, 11).

Mast cells interactwith and functionallymodulate different cells
in the TME; however, relatively little is known about their possible
functional interaction with MDSCs. Using a transplanted hepato-
carcinoma model, Huang and colleagues (12) have recently dem-
onstrated thatmast cells can accumulate in the TMEand exacerbate
inflammation and immunosuppression via the SCF/c-kit signaling
pathway. Moreover, they discuss a close loop between mast cells,
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MDSCs, and regulatory T cells (Treg) in creating a potent suppres-
sive TME. Protumor mast cells are able to mobilize the infiltration
of highly suppressive MDSCs, likely by increasing CCL-2 levels
within the tumor lesion, and to induce these cells to produce IL17
that indirectly attract Tregs and enhance their suppressor function
(13). Other findings by Cheon and colleagues (14) suggest that in
the APCD468 murine model of colon polyposis, mast cells could
support and mobilize MDSCs via 5-lipoxygenase activity to drive
immune escape with an increase in polyp development. The idea
that mast cells can enhance the immunosuppressive function of
MDSCs is further supported by recent in vivo data showing that
MDSCs depend on mast cells to exert their protumor suppressive
function (15, 16). Herein, we demonstrate the relevance of the
interplay between mast cells and monocytic MDSCs in a colon
cancer model and describe the molecular mechanisms involved.

Materials and Methods
Human tissue samples

Formalin-fixed, paraffin-embedded bioptic tissue specimens of
patients with colon carcinoma were retrospectively gathered from
the archives of the Department of Human Pathology of the Uni-
versity of Palermo, Italy, per institutionally approved protocols.

Immunohistochemistry and immunofluorescence
Double-marker immunohistochemistry was performed by two

sequential rounds of single-marker staining. Tissue samples were
incubated with the following primary antibodies: mouse anti-
human CD33 (clone PWS44; Novocastra), mouse anti-human
mast cell tryptase (clone AA1; Dako), anti-mouse IL4R (Bioss),
anti-mouse CD117/c-kit (Acris antibodies), or anti–mouse-FceRI
(mouse anti-rat FceRI clone JRK, which also recognizes mouse
FceRI, a kind gift from Dr. Juan Rivera, NIH). The staining was
detected by specific HRP- and AP-conjugated secondary antibo-
dies (Sigma). 3-amino-9-ethylcarbazole (AEC) and 5-Bromo-4-
chloro-3-indolyl phosphate/Nitro Blue Tetrazolium (Bcip/NBT)
were used as substrate chromogens (DAKO).

Slides were analyzed under a Leica DM2000 optical micro-
scope, and microphotographs were collected using a Leica
DFC320 digital camera.

For immunofluorescence staining, primary antibody incuba-
tion was performed overnight at 4�C in the case of Gr1 (rat anti-
mouse Ly6c clone RB6-8C5; Life Technologies; 1:100) and FceRI
staining, and 2 hours at 37�C for CD11b staining (rabbit poly-
clonal anti-mouse; Abcam; 1:100). To detect primary antibodies,
A488, A555 (both from Molecular Probe, Invitrogen), and
Dylight 649 (Jackson Immunoresearch) dye–labeled secondary
antibodies, diluted 1:600, were employed 1 hour at 37�C. Finally,
Vectashield (Vector) added with 0.1 mg/mL DAPI (Sigma) was
used as mounting medium. Epifluorescence images were
obtained utilizing a live cell imaging–dedicated system consisting
of a LeicaDMI 6000Bmicroscope connected to a LeicaDFC350FX
camera (Leica Microsystems) and equipped with a 63� oil
immersion objective (numerical aperture: 1.40) or a 40� oil
immersion objective (numerical aperture: 1.25). Adobe Photo-
shop softwarewas utilized to compose, overlay the images, and to
adjust contrast (Adobe).

Mice, cell lines, and MDSC purification
BALB/c mice were purchased from Harlan Laboratories. All

mice were maintained in our animal facility and used from 8

weeks of age. Gamma knock-out (gko), cd40l�/�, and tnf-a�/�

mice on Balb/c background were kindly provided by Dr. M.
Colombo (Milan).

For the induction of colitis-associated carcinoma, mice (ages
10–12 weeks) were given a single intraperitoneal injection of
azoxymethane (AOM; 10 mg/kg body weight diluted in saline).
Seven days after, mice were exposed to drinking water containing
1.5% dextran sodium sulfate for a period of 7 days, followed by
normal drinking water. Mice were observed daily for any relevant
clinical signs and were sacrificed 90 days after AOM injection.
Colonic carcinogen AOM was purchased from Sigma-Aldrich;
DSS with a molecular weight of 40,000 to 50,000 was from
Affymetrix and was dissolved in water to a concentration of
1.5% (w/v).

CT-26 tumor cells were cultured in DMEM (Euroclone)
supplemented with 10% FCS (Sigma-Aldrich). CT-26 cells (2 �
105) were injected s.c. in the mouse flank. Within 3 weeks of
inoculation, CT-26 tumor–bearing mice were sacrificed, and
MDSCs were purified from spleens with mouse Myeloid-
Derived Suppressor Cell Isolation Kit (Miltenyi Biotec) devel-
oped for the isolation of Gr1highLy-6Gþ (indicated as PMN-
MDSC) and/or Gr1dimLy-6G� (indicated as M-MDSC) CD11bþ

myeloid cells, according to the manufacturer's instructions.
Where specified, tumor growth was monitored three times per
week and recorded as [longest diameter � (shortest diameter)2/
2] (mm3). Where indicated, tumor-bearing mice were treated
with cromolyn (Sigma) by daily i.p. injection of 10 mg/kg (in
1� PBS) per mouse from day þ5 to day þ15 after cancer cell
injection.

BMMC differentiation and IgE-dependent activation
Bone marrow–derived mast cells (BMMC) were obtained by in

vitro differentiation from wt, gko, cd40l�/�, and tnf-a�/�, Balb/c
mice as described (17); their maturation was monitored for c-kit
and FceRI expression by flow cytometry after 4 to 5 weeks with
purity usually more than 95%.

For IgE-dependent activation, BMMCswere sensitized inmedi-
um without IL3 for 3 hours with 1 mg/mL of dinitrophenol
(DNP)-specific IgE and then eventually treated with 100 ng/mL
of DNP (Sigma-Aldrich).

Migration assay
Chemotaxis was performed in a 96-transwell insert (Corning)

with 5-mm pore-size filters. Cells (7.5 � 104) were plated in the
upper chamber and different stimuli were added in the lower
chamber. After 4 hours, cells thatmigrated into the lower chamber
were counted. Results were expressed as fold induction compared
with number of cells migrated in response to nonconditioned
medium. Assays were done in duplicate in four separate experi-
ments. Where indicated, the leukotriene inhibitor Montelukast
(Merck) was added to the culture medium.

Flow cytometry
PE-Cy7–conjugated anti-CD4 (L3T4 clone), PE-Cy7–conjugat-

ed anti-CD8 (53–6.7 clone), FITC-conjugated anti-CD11b (M1/
70 clone), PE-conjugated anti-Gr1 (RB6-8C5 clone), PerCp-
Cy5.5–conjugated anti-Ly6C (HK1.4 clone), FITC-conjugated
anti-CD117 (c-kit, 2B8 clone), and PE-conjugated anti-FceRIa
(MAR-1 clone) were from eBioscience, and BD Horizon V450–
conjugated anti-CD11b (M1/70 clone) and PE-Cy7–conjugated
anti-Ly6G (1A8 clone) were from BD Biosciences.
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PE-conjugated anti-CD40L (clone MR-1 clone) was by Biole-
gend. Surface staining reactions were performed in PBS supple-
mented with 0.05% BSA on ice for 30 minutes. Flow cytometry
data were acquired on a FACSCalibur (BD Biosciences) or on a
LSRFortessa cell analyzer (BD Biosciences), and analyzed with
FlowJo software (TreeStar).

Proliferation assay
Responder cells (1.5 � 105) consisting of whole splenocytes

fromuntreatedwtor gkoBalb/cmice, labeled by incubationwith 5
mmol/L carboxyfluorescein succinimidyl ester (CFSE; Invitrogen)
for 15minutes at 37�C,were stimulatedwith 5mg/mLof anti-CD3
(145-2C11 clone; eBioscience). Responder cells were cultured
with 1 � 105 purified splenic MDSCs derived from CT-26
tumor–bearing mice with or without 1 � 105 BMMCs in RPMI
1640 medium (Sigma-Aldrich) containing 10% FCS, 2 mmol/L
L-glutamine, 200 U penicillin, and 200 mg/mL streptomycin
(Sigma-Aldrich). Where indicated, IgE-sensitized BMMCs were
treated with 100 ng/mL DNP (100 ng/mL; Sigma-Aldrich; IgE/
Ag). In some experiments, the effects of L-NG-monomethyl-
arginine (L-NMMA; 0.5 mmol/L; Sigma-Aldrich), neutralizing
antibody anti-IFNg (10 mg/mL; XMG.1 clone; Harlan), anti-
TNFa (Miltenyi Biotech), anti-IL6R [15A7 clone, a gift from Dr.
M. Colombo (Milan)], phorbol 12 myristate 13 acetate (PMA;
100 ng/mL; Sigma-Aldrich), and lipopolysaccharide (LPS; 5 mg/
mL; Sigma-Aldrich) were tested on coculture system. In some
coculture experiments, BMMCs and/or MDSCs were separated
from responder cells by a transwell polyestermembrane using 96-
well plates (Costar; Euroclone) with 0.4-mm pore size, following
the manufacturer's recommendations. For transwell experiments,
the number of origin cells used has been doubled. After 72 hours,
CFSE dilution on gated CD4þ and/or CD8þ responder T cells was
evaluated by flow cytometry as a function of proliferation, and
results were expressed as percentage of divided cells.

Nitric oxide detection
Equal volumes of culture supernatants were collected after 72

hours and mixed with Griess reagent (Sigma-Aldrich). After
incubation at room temperature for 15 minutes, the absorbance
at 560 nmwasmeasured using amicroplate plate reader (Bio-Rad
Laboratories). Nitrite concentrations were determined by com-
paring the absorbance values for the test samples to a standard
curve generated by serial dilution of 100 mmol/L sodium nitrite.

Statistical analysis
Results are expressed as mean plus SD (or SEM where specif-

ically indicated). Data were analyzed using the two-tailed Student
t test. P < 0.05 was considered statistically significant.

Results
Mast cells potentiate monocytic MDSC–suppressive properties
in the CT-26 mouse model of colon carcinoma

A preliminary investigation of a cohort of patients with colon
carcinoma revealed a spatial interaction between tryptaseþ mast
cells and CD33þ myeloid cells (18), suggesting a potential mast
cell–dependent role on colon cancer–derived MDSCs (Fig. 1A).
Similarly, immunohistochemical analysis of AOM/DSS-induced
colitis-associated carcinoma in BALB/c mice indicated that mast
cells were in close proximity with MDSCs (Fig. 1C and D),
suggesting the possibility of a cross-talk between these two cell

types in the development of an immunosuppressive microenvi-
ronment. Indeed, when compared with normal epithelium, dys-
plastic glands showed a more intense inflammatory infiltrate
characterized by a higher number of c-kit–expressing mast cells
interacting with IL4R-expressing myeloid cells, namely MDCSs
(5), in the lamina propria (black arrows). Of note, respectively,
44.1%�7.0%and42.9%�7.0%of totalmast cellswere found in
contact with MDSCs in both human and mouse samples (Fig. 1B
and E).

Because the key role of the spleen for tumor-induced tolerance
mediated by MDSCs has been recently demonstrated in a thy-
moma and mammary mouse model (19), we focused our atten-
tion on the splenic microenvironment of AOM/DSS-treated
tumor-bearing mice, in which the two cell populations also were
found in close proximity (Fig. 1F).

To elucidate and analyze the possible functional relevance of
theMDSC–mast cell interaction, the cross-talk between these two
immune cell populations was further examined in tumor-bearing
mice. Animals were injected s.c. with 2 � 105 CT-26 colon cancer
cells, and all the mice used were sacrificed at development of
similar-sized tumors (i.e., 1.5 cm in diameter) within 3 weeks of
inoculation.Mast cells were recruited to the CT-26 growing tumor
(Fig. 2A) and exerted a protumor role because mice treated with
cromolyn, a specific mast cell inhibitor (20), showed a significant
tumor growth reduction compared with that in untreated mice
(Fig. 2B).

Considering the rate of variability in MDSC frequency between
different tumormodels (5),we took advantage of theCT-26 colon
carcinoma model because it showed a relatively strong accumu-
lation of MDSCs in the bonemarrow, blood (Supplementary Fig.
S1A), and spleen (Fig. 2C). As in the spleen of AOM/DSS-induced
colon carcinoma–bearing mice (Fig. 1F), FceRIþ mast cells were
found to localize in the proximity of accumulating IL4RþMDSCs
(Fig. 2D) Consistently, immunohistochemical analysis of spleens
of CT-26 tumor–bearing mice revealed FceRIþ cells in close
proximity of Gr1þ or CD11bþ cells (Supplementary Fig. S1B).

MDSCs consist of two major subsets with distinct phenotype,
morphology, and preferential suppressionmechanisms: the poly-
morphonuclear CD11bþGr1highLy6GþLy6Clow (PMN-MDSC)
and the monocytic CD11bþGr1dimLy6G�Ly6Chigh (M-MDSC)
cells (4). Both subsets were present in the spleens of CT-26
tumor–bearingmice 3 weeks after tumor inoculation (percentage
of CD11bþGr1þMDSCs: 13.5%� 1.0% in CT-26 tumor–bearing
mice vs. 3.8% � 0.8% in control mice; PMN- and M-MDSCs
represented 76.9% � 0.7% and 23.0% � 0.8% of total MDSCs,
respectively) and were separately purified (Supplementary Fig.
S1C).

Because mast cells have been described for their ability to
mobilize MDSCs at the TME (13, 14), we decided first to verify
thismast cell capability in our colon cancermodel.We performed
in vitro migration assays and confirmed that supernatants from
IgE/Ag-activated BMMCs induced the migration of both purified
PMN- and M-MDSCs, and these had respectively an additive or
synergistic effectwithCT-26–conditioned culturemedia–induced
migration.We further validated that the effectwasmediatedpartly
by mast cell–derived leukotrienes by using the specific inhibitor
Montelukast (Supplementary Fig. S1D).

To assess whether the role of mast cells in the TME is limited
to the recruitment of MDSCs or if it can impact their immu-
nosuppressive activity, we analyzed the interplay between these
two cell populations on T-cell proliferation in vitro. CFSE-
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labeled total splenocytes from na€�ve Balb/c mice were poly-
clonally activated with an anti-CD3 mAb and were used as
responder cells in a proliferation assay in the presence of M-
MDSCs, PMN-MDSCs, or mast cells alone or in coculture. In
our experimental conditions, only M-MDSCs revealed relatively
weak suppression ability, whereas mast cells alone did not
perturb non–antigen-specific CD4þ T-cell proliferation (Fig.
3A and data not shown). As shown in Fig. 3A and B, resting
mast cells significantly enhanced the ability of M-MDSCs to
suppress the proliferation of CD4þ T cells but had a slight
and not statistically significant effect on CD8þ T-cell prolifer-
ation. Moreover, when we used IgE/Ag-activated mast cells, the
M-MDSC–inhibitory potential was further amplified for CD4þ

T cells and not so much for the CD8þ cell compartment
(Fig. 3B). By contrast, in these experimental conditions,
PMN-MDSCs were not suppressive and their inhibitory poten-
tial was not affected by mast cells (Fig. 3A and B).

M-MDSC:mast cell–suppressive axis is nitric oxide mediated
and IFNg dependent

Different mechanisms of MDSC-mediated suppression of T-
cell function have been described mostly based on the release of
soluble mediators such TGFb, arginase 1, and reactive oxygen
species. Among the suppressive molecules, nitric oxide (NO) acts
as a key factor (21). Thus, as the activity of M-MDSCs is typically
NO dependent (2), culture media from proliferation assays were
tested for nitrites production, using amethod based on the Griess
reaction. Both resting and activated mast cells were able to
increase basal NO release in the coculture (Fig. 4A), proportion-
ally to the inhibition of T-cell proliferation (Fig. 3). Considering
that in M-MDSCs NO production is dependent on the inducible
nitric oxide synthase (iNOS), we assessed the specificity of NOS
signaling on M-MDSC activity by using NMMA, a nitric oxide
synthase inhibitor. As shown in Fig. 4B, NMMA completely
abolished the production of nitrites and reestablished T-cell
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Figure 1.
Interacting MDSCs and mast cells (MC) in human colon carcinoma and in the colon of AOM/DSS-induced tumor-bearing mice. Double immunohistochemistry for
CD33 (blue) and tryptase (red) in the human mucosa of a patient with colon carcinoma (A); for IL4R (red) and c-kit (blue) in normal (C) and in dyplastic (D) colonic
mucosa of AOM/DSS-induced colon carcinoma–bearing mice; for IL4R (red) and FceRI (blue) in the spleen of AOM/DSS-treated mouse. Arrows indicate
tryptase-positive mast cell interacting with CD33 myeloid cells (in A) and c-kit–positive mast cells interacting with IL4R-expressing lymphocyte (in D), respectively.
Original magnification, �200 (A, left, and C) and �400 (A, intermediate and right plots, and D). Histograms represent the mean þ SD count (in �400 fields) of
interactingMDSCs andmast cells compared with total MCs and MDSCs in at least 4 different samples from patients with human colon carcinoma (B) and AOM/DSS-
treated mice (E).
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proliferation. We also tested arginase activity, and reactive oxygen
species and TGFb production, but did not record any statistically
significant regulation in the production of these mediators mod-
ulated by MDSC:mast cell interaction (data not shown).

Because freshly isolated MDSCs from tumor-bearing mice
required IFNg to become fully suppressive and to activate the
iNOS machinery (22, 23), we investigated the possible contri-
bution of this cytokine in the MDSC:mast cell axis. As expected,
anti–CD3-polyclonally activated splenocytes produced IFNg
but, interestingly, a significant increase in IFNg levels was found
when the responder population was cocultured with resting or
IgE/Ag-activated mast cells either alone (as already described in
ref. 24) or together with M-MDSCs (Fig. 4C). To understand the
importance of IFNg in the coculture system, a neutralizing anti-
IFNg antibody was used. This addition significantly inhibited
the acquisition of mast cell–dependent M-MDSC–suppression
properties (Fig. 4B).

To discriminate the contribution of IFNg production from the
different cell populations, we isolated responder T-effector cells,
BMMCs, andMDSCs from gkomice. In the presence of M-MDSCs
derived from gko tumor-bearing mice, NO production was not
affected, and consequently they still suppressed proliferation of
CD4þ T cells (Supplementary Fig. S2A). In addition, gko-derived
mast cells were still able to potentiate M-MDSC nitrites produc-
tion similarly as that of the wt counterpart (Supplementary Fig.
S2B). Instead, IFNg deficiency in responder cells reduced almost
completely themast cell–dependentM-MDSCactivation, empha-
sizing the important role of IFNg in NOS machinery activation
(Fig. 4D). To confirm the importance of T cells as a source of IFNg ,
CD4þCD25� T cells were purified from spleens of untreated wt

mice, CFSE-labeled, and used as responder population in the
presence of wt mytomicin–treated APCs. In these conditions,
CD4þ T-cell proliferation was inhibited at high levels by M-
MDSCs alone, independent from mast cell presence (Fig. 4E,
left). Despite the fact that mast cells did not play a crucial role
in T-cell suppression, resting or IgE-activatedmast cells continued
to increase NO levels when cocultured with M-MDSCs (Fig. 4E,
right). To exclude IFNg production by other non–T cells, prolif-
eration of wt CD4þ T cells was performed in the presence of gko-
derived APCs. Figure 4E shows that M-MDSCs, either alone or
togetherwithmast cells,were still competent in the suppression of
CD4þ T-cell proliferation, indirectly confirming that anti–CD3-
activated CD4þ T cells represent the crucial initial source of IFNg
required to fully activate mast cell–MDSC-suppressive axis.

Moreover, if mast cells and M-MDSCs were cultured either
alone or together for 72 hours in the absence of anti–CD3-
activated populations, resting or IgE/Ag-activatedmast cells alone
were not sufficient to switch onM-MDSC activation, but activated
mast cells contributed to the generation of NO-competent M-
MDSCs only in the presence of soluble IFNg (Fig. 4F).

To investigate whether the M-MDSC-suppressive efficacy was
affected by the activation status of the distinct cellular compo-
nents representative of the TME, different stimulatory pathways
were investigated. Proliferation assays were performed in the
presence of LPS and PMA, respectively a known activator of both
mast cells and MDSCs (25–29), and mitogen for T-cell prolifer-
ation (30). Both LPS andPMA stimulation raised the basal level of
M-MDSC suppression in terms of both T-cell proliferation inhi-
bition and NO secretion, phenomena that were completely (for
PMA) or partially (for LPS) reverted when using the anti-IFNg
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CT-26 colon cancer induces the
recruitment of protumor mast cells
and the accumulation of MDSCs. CT-
26 colon carcinoma cells (2 � 105)
were injected s.c. into Balb/c mice.
After 3 weeks, spleens and/or tumors
were collected. A, FceRI-positivemast
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the percentage of gated cells
compared with the total live
population of splenocytes. D, IL4R-
expressing MDSCs (red) in close
proximity with FceRI (blue) in the
spleen of CT-26 tumor–bearing mice.

Mast Cell/MDSC Interaction in the Control of Tumor Immune Response

www.aacrjournals.org Cancer Immunol Res; 3(1) January 2015 89

on October 12, 2016. © 2015 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst October 28, 2014; DOI: 10.1158/2326-6066.CIR-14-0102 

http://cancerimmunolres.aacrjournals.org/


antibody (Supplementary Fig. S2C). For IgE-dependent activa-
tion, LPS- or PMA-activated mast cells boosted M-MDSC produc-
tion of NO and suppression of T-cell proliferation. Addition of
neutralizing anti-IFNg Ab demonstrated that the mechanism of
mast cell–dependent M-MDSC suppression was mediated by
IFNg for both IgE-dependent and IgE-independent mast cell
activation (Supplementary Fig. S2C).

Reciprocal influence of M-MDSC:mast cell via CD40:CD40L
axis on cytokine release

So far we have shown that mast cells are able to recruit MDSCs
and that they are able to influence their suppressive activity in an
experimental setting that involves T cells. To investigate the cross-
talk between these two immune cell populations, equal numbers
ofmast cells andM-MDSCs were cultured either alone or together
in the absence of anti–CD3-activated populations, and mast cell
degranulation and cytokine production were assessed.

Although mast cell degranulation, measured both as release of
b-hexasominidase and histamine production, was not affected by
coculturewithM-MDSC(data not shown),when IgE/Ag-activated

mast cells were cocultured with M-MDSCs, we observed an
increase in TNFa production (Fig. 5A). This cytokine has a
fundamental role in promoting MDSC activity in an inflamma-
tory setting (31) and is required for MDSC survival and accumu-
lation (32). M-MDSCs may be an important source of TNFa.
Indeed, even though their basal secretion levels were almost
undetectable, these cells released a large amount of TNFa upon
LPS activation (data not shown). To identify the source of TNFa
and to elucidate the mechanism of the synergism in TNFa
production, the coculture experiment was performed with
BMMCs derived from TNFa-deficient (tnf-a�/�) mice. In M-
MDSC and IgE/Ag-activated tnf-a�/� mast cell coculture, TNFa
was undetectable, suggesting that mast cell–derived TNFa is
crucially involved in the upregulation of this cytokine (Fig. 5A).

Because it has been suggested that TNFa promotes the suppres-
sive activities of MDSCs via TNFR2 (33), a neutralizing anti-TNFa
antibody was used in culture to study the role of this cytokine in
supporting the suppressive activity of the M-MDSC on anti–CD3-
activated CD4þ T cells. A decreased response of mast cell–depen-
dent M-MDSC–suppressive activity was observed following TNFa
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MDSC–suppressive functions. A andB,
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blocking (Fig. 5B).Notwithstanding, tnf-a�/�mast cells showedno
difference in their ability to amplify M-MDSC–inhibitory activity
compared with wtmast cells, and the addition of the neutralizing
anti-TNFa antibody inhibited M-MDSC activity (corresponding
NO levels are shown inFig. 5C), suggesting that in theproliferation
assay, the source of TNFa responsible for MDSC activity could not
be directly represented by mast cells.

The finding of a synergism between mast cells and MDSCs in
the context of TNFa production led us to investigate whether a
generalized increase in cytokine production is the outcome of this
cellular interaction. Similar to results shown by Saleem and
colleagues (15) andMorales and colleagues (16), whereas resting
mast cells, either alone or togetherwithM-MDSCs, released lowor

undetectable levels of the investigated mediators, coculture of
activated mast cells and M-MDSCs resulted in a significant
increase of IL6 andCCL-2 levels (Fig. 6A), similar to that observed
for TNFa production. Neither resting or IgE/Ag-activated mast
cells, orM-MDSC alone, produced detectable levels of CCL-3, IL2,
IL4, IL10, or IL17, and a synergistic effect in the production of
these cytokines was not observed in the M-MDSC:mast cell
coculture (data not shown).

Considering the role of CD40 expression and ligation in the
activation and in the immunosuppressive function of MDSCs
(34) andknowing the constitutive expressionof its ligandonmast
cells (ref. 35; Supplementary Fig. S3A), the requirement of CD40:
CD40L axis in the activation of M-MDSC in this setting was
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Mast Cell/MDSC Interaction in the Control of Tumor Immune Response

www.aacrjournals.org Cancer Immunol Res; 3(1) January 2015 91

on October 12, 2016. © 2015 American Association for Cancer Research. cancerimmunolres.aacrjournals.org Downloaded from 

Published OnlineFirst October 28, 2014; DOI: 10.1158/2326-6066.CIR-14-0102 

http://cancerimmunolres.aacrjournals.org/


evaluated.Whenweused cd40l�/�mast cells, the increased release
of TNFa, IL6, and CCL-2 seen in the M-MDSC:wt mast cell
coculture was completely lost (Figs. 5A and 6A). Therefore, these
results suggest that theM-MDSC:mast cell axis, through theCD40:
CD40L interaction, induces a selective and preferential produc-
tion of proinflammatory cytokines and chemokines, such as
TNFa, IL6, and CCL-2, that could sustain an immune response
supporting tumor promotion.

The importance of the CD40:CD40L axis in affecting T-cell
proliferation was further evaluated taking advantage of cd40l�/

�mast cells. Of note, no reduction was measured in terms of M-
MDSC NO induction by cd40l�/� mast cells compared with wt
cells in the presence of IFNg (Supplementary Fig. S3B). As
shown in Fig. 6B, no significant differences in terms of
MDSC-dependent T-cell suppression or NO production was
observed compared with wtmast cells. Similarly, no differences
in T-cell proliferation and NO levels were found when the
proliferation assay was performed in the presence or absence of
a transwell that physically separates mast cells from the other

cell populations (Supplementary Fig. S3C). It is also plausible
that the importance of CD40, and similarly, of other possible
membrane-bound molecules involved, could be lost in the
proliferation assay because of the presence, in the splenocytes
preparation, of other CD40Lþ cells besides mast cells, such as T
cells and macrophages with a potential redundant role in CD40
activation of MDSCs.

Discussion
In tumor-bearing hosts, cancer growth results in the accu-

mulation of MDSCs in peripheral lymphoid organs and at the
tumor site. This tumor-induced cell population acts to suppress
on-going antitumor immune response, either directly or by
interacting with other immune cells present in the tumor-
associated microenvironment (6). In terms of immunomodu-
lation, the existence of a closed loop between mast cells and
MDSCs provides a new insight into the relationship between
inflammation and immunosuppression in the tumor
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microenvironment (36). Saleem and colleagues (15) demon-
strated that the suppression of antitumor immune response
mediated by monocytic MDSCs is mast cell dependent and that
the M-MDSC:mast cell interaction determines a synergistic Th2-
skewed immune response, deleterious in the context of cancer
immune response. Furthermore, mast cell–derived histamine
has been recently indicated as the potential mediator involved
in the immunoregulation of histamine receptor-1– and -2–
expressing MDSCs (37).

Our findings herein demonstrate that mast cells not only had
the potential to induce MDSC recruitment, but they could
contribute to the acquisition of suppressive functions by MDSCs.
In fact, by using BMMCs and MDSCs derived from the spleens of
CT-26 tumor–bearing mice, we showed that the suppressive
function of monocytic Ly6G�Gr1dimCD11bþ cells was signifi-
cantly increased when this population was cocultured with
resting or stimulated mast cells. The described mechanisms of
mast cell–dependent modulation of MDSCs seemed to be rel-
evant only for the monocytic subset of the immunosuppressive
populations, because PMN-MDSCs responded to mast cell–
derived migratory signals but their activity was not affected.
M-MDSCs are known to be a highly immunosuppressive pop-
ulation compared with PMN-MDSCs that inversely are tradi-

tionally represented as the predominant subset that accumulates
during cancer progression (38).

The immune system is considered a double-edge sword for
cancer development, and it is known that immune cells, such as
CD8þ and CD4þ T-helper cells or natural killer cells, along with
their characteristic cytokine IFNg , function as themajor antitumor
effector cells (discussed in ref. 39). Despite the traditional view of
IFNg as a tumor-suppressor cytokine, results from several studies
suggest that IFNg could be involved in the recruitment and
activation of MDSCs, and that IFNg-induced signaling is crucial
to activate NO production in M-MDSCs (22). Results from a
recent article suggest that in a mouse model of melanoma, the
efficacy of transgenic cytotoxic T lymphocyte (CTL) transfer was
limited due to the consequent massive accumulation of M-
MDSCs in the tumor. Their accumulation and suppression activity
were caused by IFNg produced by the effector CTLs (40). Simi-
larly, a recent report showed that the low efficacy of vaccination in
melanoma-bearing mice was associated with IFNg production by
early attacking and invading CD8þ T cells, resulting in the upre-
gulationof immunosuppressive processes that suppressed local T-
cell activation (41). In our ex vivo system, we showed that IFNg
production by activated CD4þ T cells was required to sustain the
initial activation of M-MDSCs and render functional the
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M-MDSC:mast cell–suppressive axis. IFNg may become a detri-
mental response in tumor-bearing hosts because the cytokine
cascade could contribute to MDSC functional activation, further
sustained by signals derived from infiltrating mast cells.

Classically, the bone marrow represents the primary site of
myelopoiesis, but suppressive cells accumulate in the spleens of
tumor-bearingmice. In fact, the spleen has been identified as a key
organ in the regulation of the frequency of MDSCs and inflam-
matory monocytes with a T-cell tolerating potential that is
described in the splenic marginal zone during cancer develop-
ment (19). Despite draining lymph nodes are "historically"
considered the primary site for tumor-antigen presentation and
tolerance induction (42), recent data underlined that MDSC-
dependent immune tolerance to tumor antigens occurs efficiently
in specialized sites of the spleen (19). In light of this consider-
ation, the evidence that in the spleen mat cells can interact with
and further amplify the potential of M-MDSCs to switch off the
antitumor response ofCD4þ T cells, it could be seen as an effective
novel mechanism to amplify tumor-induced tolerance. This pos-
sibility does not exclude that, once activated,M-MDSCs, driven by
mast cells, could migrate toward lymph nodes and the tumor
mass and exert their suppressive functions directly in these sites.
Our findings are further supported by the possibility of a previ-
ously not investigated interaction betweenmast cells andMDSCs
in the spleen of CT-26 tumor-bearing mice, as well as in the
spleens and colons of AOM/DSS-induced colitis-associated car-
cinoma tumor–bearing mice. These findings are supported by a
similar physical colocalization between tryptaseþ mast cells and
CD33þmyeloid cells in a cohort of patients with colon carcinoma
under preliminary investigation, suggesting a specific mast cell–
dependent influence on colon cancer MDSC biology.

Mast cells express costimulatory molecules for innate and
adaptive immune cells, and are therefore able to replace some
T-cell functions. This prompts us to investigate the CD40:CD40L
cross-talk betweenM-MDSCs andmast cells. This axis was shown
to be responsible for shaping a proinflammatory microenviron-
ment, with an exacerbation in the production of mediators
(TNFa, IL6, CCL-2) that could further support MDSC activation
and tumor growth. In particular, the production of CCL-2 has

been linked with MDSC migration and activation in the cancer
microenvironment (43). Recently, it has been suggested that
endocannabinoid-activated mast cells produce CCL-2, resulting
in the massive recruitment of M-MDSCs (44). mast cells have the
ability to induce the trafficking of MDSCs, which cause immu-
nosuppression that may lead to immune evasion by cancer cells,
or downregulation of inflammation in the context of autoimmu-
nity or other inflammatory diseases.

In light of these results, interfering with theMDSC:mast cell axis
couldbeapromisingapproach toabrogateMDSC-related immune
suppression and to improve antitumor immune response.
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