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Abstract

Mast cells (MC) are immune cells located next to the intes-
tinal epithelium with regulatory function in maintaining the
homeostasis of the mucosal barrier. We have investigated MC
activities in colon inflammation and cancer in mice either wild-
type (WT) or MC-deficient (KitW-sh) reconstituted or not with
bone marrow-derived MCs. Colitis was chemically induced
with dextran sodium sulfate (DSS). Tumors were induced by
administering azoxymethane (AOM) intraperitoneally before
DSS. Following DSS withdrawal, KitW-sh mice showed reduced
weight gain and impaired tissue repair compared with their WT
littermates or KitW-sh mice reconstituted with bone marrow-
derived MCs. MCs were localized in areas of mucosal healing
rather than damaged areas where they degraded IL33, an
alarmin released by epithelial cells during tissue damage.
KitW-sh mice reconstituted with MC deficient for mouse mast

cell protease 4 did not restore normal mucosal healing or
reduce efficiently inflammation after DSS withdrawal. In con-
trast with MCs recruited during inflammation-associated
wound healing, MCs adjacent to transformed epithelial cells
acquired a protumorigenic profile. In AOM- and DSS-treated
WT mice, high MC density correlated with high-grade carcino-
mas. In similarly treated KitW-sh mice, tumors were less extend-
ed and displayed lower histologic grade. Our results indicate
that the interaction of MCs with epithelial cells is depen-
dent on the inflammatory stage, and on the activation of the
tissue repair program. Selective targeting of MCs for prevention
or treatment of inflammation-associated colon cancer should
be timely pondered to allow tissue repair at premalignant
stages or to reduce aggressiveness at the tumor stage. Cancer
Res; 75(18); 3760–70. �2015 AACR.

Introduction
Mast cells (MC) are c-kit–expressing immune cells local-

ized in mucosal surfaces at the interface between the exter-
nal and internal environment being the first immune cells
responding to exogenous stimuli and allergens (1). MCs
participate in several physiologic processes and can be
viewed as important players in initiation and regulation of
immune reactions that occur in their homing tissues, such as
the gut (2, 3).

The gut epithelium is the most exposed to the external envi-
ronment; accordingly, immune reactivity has to be strictly regu-
lated at this site to allow nutrient assimilation and avoid path-
ological reactions (4). Exposure to molecules damaging the
epithelial barrier, but also genetic predisposition or enhanced
immune reactivity, may modify gut homeostasis generating
inflammation (5).

During mucosal inflammation, luminal antigens enter the
mucosa activating the immune regulatory pathways. IL33, a
member of the IL1 family of cytokines, acts as an alarmin after
being released by epithelial cells to signal the presence of tissue
damage (6). This cytokine and the other mediators produced
during inflammation affect the immune system that in turn
induces epithelial cell proliferation, helping the resolution of
tissue damage (7).

The persistence of an inflamed environment is associated with
the development of inflammatory bowel diseases (IBD), which
includes Crohn's disease and ulcerative colitis. Chronic and
relapsing inflammation occurring in IBD has been classically
associated with an increased risk of colorectal cancer (8, 9) and
epitomizes the well-accepted link between inflammation and
neoplastic transformation (10). However, the presence of an
overactive immune response in the gut during IBD, per se, does
not explain the cause of Crohn's disease and ulcerative colitis in
mice and humans (11, 12).

The activity of MCs in colon inflammation has been widely
studied in mice, but different results have been obtained
depending on the model or on the experimental setting
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chosen for the investigation (13, 14). There is also evidence
of a pathogenic role for the mouse mast cell protease
(mMCP)-6, the mouse homolog of the human tryptase, in
dextran sodium sulfate (DSS)-induced colitis (15), but no
conclusive data exist about the actual role of mMCP-6 in colon
inflammation. MCs are known to accumulate in the inflamed
gut of IBD patients (16–18). Also, an increased number of
MCs in tumors correlated with poor prognosis in some studies
of outcome in colorectal cancer patients (19, 20) and low MC
infiltration correlated with lower overall survival in an earlier
study (21).

We have investigated MC role in colon inflammation and
transformation, modeling colitis and colorectal cancer in c-kit-
mutant MC-deficient KitW-sh mice (22). Colitis was chemically
induced by administration of DSS in the drinking water of wild-
type (WT), KitW-sh and KitW-sh mice reconstituted with bone
marrow-derived MCs (BMMC). DSS ingestion causes damage
to the epithelial cell barrier and recapitulates the inflammatory
condition of human IBD (23). To further analyze the transition
from inflammation to cancer, DSS administration was com-
bined with the injection of azoxymethane (AOM), a carcinogen
with tropism for colonic tissue (24). Using these animal mod-
els of colon inflammation and transformation, we have char-
acterized an unknown function of MCs in colitis and colorectal
cancer pathogenesis. The defective recovery from colitis in
KitW-sh mice was linked to the persistence of proinflam-
matory signals headed by IL33, which caused a prolonged
alteration of intestinal homeostasis. After the development of
colorectal cancer, MC infiltration in the tumor stroma became
protumorigenic.

Materials and Methods
Mice and treatments

C57BL/6WTmice of 4 to 6 weeks of age were purchased from
Charles River. C57BL/6 c-kit mutant KitW-sh/W-sh (referred to as
KitW-sh) mice were purchased from The Jackson Laboratory and
crossed with C57BL/6J, to obtain congenic C57BL/6-Kitþ/þ WT
littermates used as controls in colitis and carcinogenesis
experiments.

Mice were maintained under pathogen-free conditions and
housed in filter-top cages. Experiments were approved by the
Ethics Committee for Animal Experimentation of the Fonda-
zione IRCCS Istituto Nazionale dei Tumori of Milan according
to institutional guidelines. The Italian Ministry of Health (Proj-
ect Number INT07/2009) approved the use of animals for the
induction of experimental colitis and colorectal cancer with
DSS and AOM/DSS. Mice were administered 1.5% DSS (molec-
ular weight 40,000–50,000; Affymetrix) in drinking water for
10 days. Recovery from acute inflammation was evaluated 7
days after DSS withdrawal. Monitoring of percent loss of body
weight from day 0 was used to follow disease course and
clinical signs of disease (hunching, diarrhea, rectal bleeding)
were combined in a 6-point scoring system and used to mon-
itor disease course (25).

To induce colonic tumors, mice were injected by intraperi-
toneal (i.p.) route with 10 mg/kg AOM (Sigma Aldrich) and,
one week later, exposed to 1.5% DSS in the drinking water for 7
days (modified from ref. 26). Disease course was monitored
twice a week and 3 months later, mice were sacrificed by
cervical dislocation after anesthesia.

Histology and IHC
Histologic analyses were carried out on paraffin-embedded

tissues. The extent of colon inflammation was determined
through a 6-point scoring system based on grade and extension
of colitis and glandular dysplasia (modified from ref. 27). MC
distribution and frequency in colon were assessed by toluidine
blue stain, as previously reported (28). MCs were counted in five
nonoverlapping high-power microscopic fields (�400) and
results were expressed as means.

Human IBD and colorectal cancer samples were collected from
the pathology archives of the Human Pathology Section, Depart-
ment of Health Sciences (University of Palermo, Palermo, Italy),
the Human Pathology Section, Ospedali Riuniti Villa Sofia-Cer-
vello (Palermo), and the archives of the Royal London Hospital
with approval from appropriate local ethics committee (REC 13/
LO/1271; P/01/023). Samples representative of active (n¼ 5) and
inactive (n ¼ 6) IBD, dysplasia-associated lesions or masses
(DALMs, n ¼ 5), IBD-associated colorectal cancer (n ¼ 9), and
sporadic adenoma (n ¼ 6) were selected.

All slides were analyzed under a DM2000 optical microscope
(Leica Microsystems), and microphotographs were collected
using a DFC320 digital camera (Leica). The extent of the neo-
plastic areas was measured using a Leica DMD108 digital micro-
scope equipped with digital image analysis software.

Isolation of immune cells infiltrating colon
To analyze immune infiltrate in the gut, colons were dissected

frommice and epithelial cells were removed by incubating colons
for 1 hour at 37�C in medium supplemented with 5 mmol/L
EDTA (29). Colons were further digested with 30 mg/mL collage-
nase IV (Worthington) for 1 hour then filtered with a 70-nm cell
strainer (BDBiosciences). Laminapropriamononuclear cellswere
collected from the interface of a 40% and 75% Percoll gradient
(GE Healthcare Life Sciences).

Bone marrow-derived MC differentiation and reconstitution
of KitW-sh mice

BMMCs were obtained from bone marrows of 3 to 4 congenic
mice. In vitro differentiation was caused by adding IL3 (20 ng/mL;
Peprotech) in the culture medium (30). After 5 weeks of cul-
ture, purity of BMMCs was evaluated as percentage of FceRIþ and
c-kitþ cells. When purity was more than 90%, 107 BMMCs were
injected i.p. into 6 weeks old KitW-sh mice.

Colon cultures and ELISA on supernatants
To perform ELISA assays on culture supernatants, colons

were excised from mice and a 1-cm piece immersed in 1 mL of
RPMI supplemented with 10% FBS, penicillin (100 U/mL),
streptomycin (100 mg/mL), nonessential amino acids (NEAA),
sodium pyruvate (1 mmol/L), and b-mercaptoethanol (2.5
mmol/L). Colons were incubated overnight in a 24-well culture
plate at 37�C, 5% CO2. Supernatants were sampled after 24
hours and ELISA performed with IL22 Ready-SET-Go! and
IL33 Ready-SET-Go! Kits according to the manufacturer's
instruction (eBioscience). The reaction was stopped with 2N
H2SO4 and the absorbance was measured at 450 nm.

Statistical analysis
Comparisons between two groups were carried out with the

two-tailed unpaired Student t test, and Welch correction was
applied in the presence of unequal variances. In all tests, a
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P value of < 0.05 was considered statistically significant (�, P <
0.05; ��, P < 0.01; ���, P <0.005).

Results
Mast cells move in areas of epithelial regeneration during DSS-
induced colitis

To investigate the role of MCs in colitis, we induced acute
inflammation inWTmice by administering 1.5%DSS in drinking

water for 10 days. Colons were dissected at different time points
during the acute and recovery phase (day 11–17) and the fre-
quency of c-kit and FceRI double-positive cells in CD45þCD11b�

infiltrating cells assessed (Fig. 1A).
During acute inflammation (from day 3 to 10), the percent-

age of MCs among lamina propria (LP) infiltrating cells was
similar to that at day 0. In contrast, during the recovery phase
after DSS withdrawal (days 14 and 17), the numbers of MCs
increased significantly by approximately 2-fold (Fig. 1B)

Figure 1.
MC infiltration in colon during DSS-induced colitis. A, MC percentage in LP infiltrating cells was analyzed by flow cytometry. B, mean percentages
(�SEM) of LP infiltrating MCs during DSS-induced colitis. Data are pooled from four different experiments (5 mice/group). C, representative
toluidine blue stain of colon sections at days 0, 10, and 17. Scale bars, 100 mm, top; 50 mm, bottom. D, representative pictures of MCs in colonic
mucosa characterized by acute inflammation (left) or tissue regeneration (right). Scale bars, 100 mm, left; 50 mm, right. Arrows, infiltrating MCs.
Student t test; � , P < 0.05; �� , P < 0.01.
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implicating MCs in the resolution of inflammation during the
repair process.

Analysis of MC distribution within the complex tissue archi-
tecture during colitis following toluidine blue staining, a meta-
chromatic marker for MC granules (Fig. 1C) supported the flow
cytometry data. Under basal conditions at day 0, MCs were
distributed throughout the outer layers of the muscularis pro-
pria and serosa close to blood vessels. From day 10, the MCs
repositioned themselves from the outer to the inner intestinal
layers, closer to the sites of mucosal regeneration. As colitis
progressed, MCs moved into the tunica muscularis and the
mucosa where they contacted the regenerating glands (Fig.
1D). At day 17, MCs were enriched in the healed areas of the
mucosa, and in close proximity to lymphoid aggregates within
the LP. These results support the hypothesis that MC activity
has a role in the resolution of tissue damage induced by DSS
exposure.

KitW-sh mice show a defective tissue repair activity in DSS-
induced colitis

To test our hypothesis that MCs are required for the effective
resolution of intestinal inflammation, we compared the
response of WT and KitW-sh mice during the acute colitic and
regeneration phases using our established DSS model. Mice
were followed for body weight and disease score until day 17
(Fig. 2A).

DSS induced a significant loss of body weight with a similar
progression in both WT and KitW-sh mice. Following DSS with-
drawal, the rate at which mice recovered their body weight was
significantly impaired in KitW-sh mice compared with their WT
littermates (Fig. 2B). Moreover, a delay in the resolution of
inflammation was also confirmed by histologic analyses (Fig.
2C). At day 17 (7 days after DSS withdrawal), the LP of WT mice

had already recovered its normal structure, whereas that of KitW-sh

mice showed severe glandular dysplasia and abundant inflam-
matory infiltrates. This data has been confirmed scoring histo-
logical damage at day 0 and 17 (Fig. 2D). Disease activity index,
obtained by analyzing stool consistency, bleeding, and hunching,
was also higher in KitW-sh mice than in the WT counterpart (Fig.
2E), although colon length shortening, a typical sign of colon
inflammation, was similar between the two groups (Supplemen-
tary Fig. S1). These data provide evidence that MCs, either directly
or through the crosstalk with other cells, are required for the
effective resolution of DSS-induced colitis in mice.

BMMC-reconstituted KitW-sh mice show a course of colitis
similar to the wild-type counterpart

To further confirm MC involvement in the resolution of
DSS-induced inflammation, KitW-sh mice were reconstituted by
i.p. injection of 107 BMMCs and, 8 weeks after reconstitution,
the same schedule of DSS administration used for WT and
KitW-sh mice was followed. Body weight loss in reconstituted
mice (hereafter KitW-sh REC) was comparable with that of the
WT counterpart during both the acute and recovery phases of
colitis, whereas impaired recovery occurred in KitW-sh mice,
confirming that MCs are mostly involved in restoring tissue
integrity after colitis (Fig. 3A).

This result was confirmedby histologic analyses, which showed
that the crypt architecture of KitW-sh RECmice was almost normal
at day 17 and that the inflammatory infiltrate was more similar to
WT than to KitW-sh mice at the same time point and experimental
condition (Fig. 3B). Furthermore, colons of WT and KitW-sh REC
mice showed several areas enriched in MCs confirming their
increase in number during the recovery phase following DSS
withdrawal (Fig. 3C and D).

Figure 2.
Course of DSS-induced colitis in wild-type and KitW-sh mice. A, experimental scheme of DSS administration. B, percent change in mass of WT and KitW-sh

mice during the course of colitis. Values are calculated as percent difference of body weight from day 0 and depicted as mean � SEM. C, representative
hematoxylin and eosin sections from WT (top) and KitW-sh (bottom) mice colon during recovery from DSS-induced inflammation (day 17). Scale bars,
100 mm. D, histopathological grading (mean � SEM) of inflammation in WT and KitW-sh mice at day 0 and day 17 (5 mice/group from three different
experiments). E, scoring of colitis symptoms in WT and KitW-sh mice. Results are from three different experiments (n ¼ 5 mice/group). Student t test
� , P < 0.05; ��, P < 0.01; ��� , P < 0.005; ns, not significant.
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Mast cell deficiency impact on epithelial cells activity during
tissue repair

The alteration in intestinal homeostasis not only may be
evaluated through histological damage and persistence of
inflammatory infiltration but also assessed analyzing epithelial
cell proliferation and the mediators involved in mucosal
regeneration.

Thus, we evaluated the proliferation index of colon crypts of
KitW-sh and WT littermates during the healing process after DSS
withdrawal. At day 17, colons from KitW-sh, but not from WT
littermates, showed a significant increase in the percentage of
Ki67þ epithelial cells (Fig. 4A and D), a result consistent with the
continued need for ongoing tissue repair in MC deficient mice.

Epithelial cell proliferation and survival are modulated by
IL22, a member of the IL10 family of cytokines, produced by
immune cells after various stimuli, among which IL23 is
predominant (31). Furthermore, IL22 levels are controlled by
IL22-binding protein (IL22bp), a protein that inhibits IL22

binding to its receptor. In homeostatic conditions, IL22 and
IL22bp levels are balanced to assure the normal proliferation of
epithelial cells. Accordingly, at day 17, we found a higher
number of infiltrating cells producing IL23 (Fig. 4B and E)
and IL22 (Figure 4C and F) only in colons of KitW-sh where
inflammation is still not solved. An increase in the expression
of IL22 mRNA in KitW-sh relative to WT mice at day 17 was
confirmed by qRT-PCR (Supplementary Fig. S2). Furthermore,
mRNA levels of IL22bp, downregulated during colon inflam-
mation, were reduced in KitW-sh mice at day 17 relative to day 0,
a finding consistent with increased IL22 signaling in these mice.
Altogether, these data strongly support the idea that MCs are
involved in epithelial regeneration after mucosal damage.

Mast cells dampen inflammation in an IL33/IL33R-dependent
manner

During colitis, damaged epithelial cells release endogenous
danger signals. IL33 is relevant (32, 33) because of IL33R

Figure 3.
Course of DSS-induced colitis in
wild-type, KitW-sh, and KitW-sh-
reconstituted mice. A, percent
difference of body weight from day
0 in WT, KitW-sh, and KitW-sh mice
reconstituted with BMMCs (KitW-sh

REC). B and C, representative
hematoxylin and eosin (B) and
toluidine-blue stain (C) of WT,
KitW-sh-reconstituted, and KitW-sh

mice colons 7 days after DSS
withdrawal. Scale bars, 200 mm.D,MC
count carried out on toluidine-blue
stained colon sections of WT and
KitW-sh-reconstituted mice during
recovery from DSS-induced colitis.
Values are from two different
experiments (n ¼ 3 mice/group) and
depicted as mean � SEM. Student
t test � , P < 0.05; ns, not significant.
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constitutive expression on BMMCs. Hence, we hypothesized that
MC can sense and respond to tissue damage through the IL33/
IL33R axis.

We used flow cytometry to examine the expression of
IL33R by colonic MCs following their expansion in numbers
after DSS withdrawal. These analyses showed that less than 5%
of MCs express IL33R at the steady state (day 0), whereas 15%
of MCs express the receptor at high intensity at day 17 (Fig. 5A
and B). At this time point, IL33 was detectable in the super-
natant of fresh colonic tissues of WT mice kept in vitro overnight
but, strikingly, IL33 was significantly higher in the colons of
KitW-sh mice (Fig. 5C), suggesting that IL33 is either sequester-
ed or destroyed in the presence of MCs. The second hypothesis
fits well with MCs known capacity to degrade HSP70, biglycan,
HMGB1, and IL33 through the mouse homolog of the human
chymase, mMCP-4 (34).

To directly test the role of mMCP-4 in the resolution of DSS-
induced colitis, KitW-sh mice were reconstituted with 107

BMMCs derived from mMCP-4 KO mice or WT mice as control.
Mice were then treated with 1.5% DSS for 10 days and mon-
itored as before. In contrast with KitW-sh mice reconstituted
with WT BMMCs who resolved inflammation and tissue dam-
age after DSS withdrawal, KitW-sh mice reconstituted with
BMMCs from mMCP-4 KO mice were unable to recover from
colitis (Fig. 5D). Critically, theMcpt4 gene was highly expressed
at time of DSS withdrawal and was maintained at day 17 in
colons of WT mice (Fig. 5E). Together, these data suggest that
the delayed resolution of inflammation in the KitW-sh mice was
due to a failure to reduce the IL33 levels that are a key
inflammatory response to tissue damage.

Mast cell infiltration in colorectal tumors is associated with
high-grade malignancy

Cancer resembles a persistent repair process, a wound that
does not heal. To test whether persistent (not yet chronic)
inflammation is associated with increased transformation in
a context of impaired tissue repair, as observed in KitW-sh mice,
we injected the carcinogen AOM i.p. one week before treating
mice with DSS. After 3 months, we sacrificed mice to determine
the extent of tumor development and progression.

The intestinal mucosa of tumor-bearing KitW-sh mice was more
inflamed in comparison to their WT littermates (Fig. 6A). The
fraction of Ki67þ cells increased going from the mucosa to the
tumor in both WT and KitW-sh mice underling an alteration in
epithelial cell proliferation suggestive of active transformation.
Nevertheless, KitW-sh mice displayed a stronger proliferative
hint than their WT counterpart in all the districts analyzed
(Fig. 6B) and showed more preneoplastic intestinal polyps, as
detected by colon staining with methylene blue (Supplementary
Fig. S3A and S3B).

Nevertheless, an analysis of neoplastic areas revealed that
WT tumors were more widespread than tumors presenting in
KitW-sh mice (Fig. 6C). Moreover, tumor grading based on cell
differentiation indicated that a much higher percentage of
poorly differentiated tumors developed in WT (63.64%) than
in KitW-sh (30%) mice (Fig. 6D and E). These data suggest that
persistent inflammation in KitW-sh mice promotes the rate of
transformation, but also that the absence of signals from MCs
in KitW-sh mice attenuates the grade of developing tumors.
The latter effect concords with the increase of MCs during
adenocarcinoma progression and, accordingly, we found more

Figure 4.
Activity of colonic epithelial cells in wild-type and KitW-sh mice during DSS-induced colitis. Representative stain of Ki67 (A), IL23 (B), and IL22 (C) in WT and
KitW-sh mice in noninflammatory conditions (day 0) and 7 days after DSS withdrawal. Scale bars, 50 mm. D–F, quantification of Ki67 (D), IL23 (E), and IL22 (F)
positive cells in the aforementioned sections. Quantification was carried out in five nonoverlapping high-power microscopic fields (n ¼ 3 for each group).
Student t test � , P < 0.05; �� , P < 0.01; ns, not significant.
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peri- and intratumoral MCs in less differentiated and more
aggressive tumors (Fig. 6F and G).

To confirm these results, AOM and DSS were given to
KitW-sh mice reconstituted with WT BMMCs expecting that
transferred MCs would modify differentiation and grade of
developing tumors. Indeed, KitW-sh REC mice developed
tumors with phenotype resembling their WT counterpart in
terms of extension of neoplastic areas (Supplementary Fig.
S4A), differentiation, and aggressiveness (Supplementary
Fig. S4B). Nevertheless, the proliferation index of tumors
from KitW-sh REC mice was higher than WT counterpart and
similar to that of KitW-sh mice, in intra- and peritumoral areas
but also in the nearby mucosa (Supplementary Fig. S4C)
confirming MC importance in defining tumor grade.

MCnumbers are higher in IBD patients following resolution of
inflammation compared with active disease and cancer
associated with inflammation

To test whether MC behavior in mouse models of colitis and
associated-colorectal cancer is similar in the human disease coun-
terpart, we evaluated MC numbers in human samples. MCs were

counted in biopsies obtained from active or remitting IBDs and
counts were higher in inactive IBD compared with patients with
active inflammation (Fig. 7A). This supports the hypothesis that
MCs are involved in tissue regeneration following resolution of
inflammation as described above in mice. Moreover, DALM and
colorectal cancers arising in a context of pre-existing IBD showed a
similar significant reduction in MC counts when compared with
IBD inactive biopsies (Fig. 7B and C). This is consistent with the
hypothesis that persistent inflammation and loss of repair capac-
ity are associated with a reduction inMC numbers; however, MCs
are not per se necessary for transformation in an inflammatory
setting. In contrast, sporadic adenomas (non-IBD) conserve tissue
regenerative capacity and a MC density similar to that of IBD in
remission. Therefore, adenomas that arise in the absence of
inflammation retain their repair capacity and MC numbers.

Discussion
Deciphering the role of MCs in colonic inflammation and

tumorigenesis is made complex by MC capacity to mold their
function depending on perceived stimuli. Here, we have

Figure 5.
The IL33/IL33R axis during colon inflammation. A, representative plots showing LP infiltrating MCs and their relative expression of IL33R. B, mean
percentages of IL33R expression on colonic MCs at day 0 (n ¼ 6) and during resolution from colitis (day 17, n ¼ 6). C, evaluation of IL33 levels in colon
measured with an ELISA assay on colon culture supernatants. Data are a pool of three different experiments (n ¼ 5 mice/group). Values are depicted
as mean � SEM. D, percent mass change of WT (n ¼ 6), KitW-sh (n ¼ 7) and KitW-sh mice reconstituted with either WT (n ¼ 5) or mMCP-4 KO (n ¼ 11) BMMCs.
Values are calculated as percent difference of body weight from day 0. E, Mcpt4 expression in colon during colitis progression. Colons were dissected
from mice, homogenized, and gene expression levels evaluated with RT-PCR. Student t test � , P < 0.05; �� , P < 0.01.
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uncovered the role of MCs in repairing DSS-induced colon dam-
age. The increase of MC frequency in the LP of WT mice after
DSS withdrawal parallels the delayed recovery of weight loss
occurring in KitW-sh mice. Our findings propose a novel
activity of MCs in colonic epithelial regeneration and add new
insights into the role of MCs in intestinal homeostasis. MC
accumulation in the inflamed gut was already known (35) albeit
in a setting of acute intestinal damage rather than during recovery
phase when the regeneration of intestinal crypts is active.

The development of IBD is amultistep process characterized by
an unbalanced production of pro- and anti-inflammatory cyto-
kines that progressively perturbs the normal intestinal homeo-

stasis, ultimately leading to the deregulation of epithelial cell
proliferation (36, 37). In this context, members of the IL1 cyto-
kines family are chief regulators of innate immunity and inflam-
mation (38). Belonging to this family, IL33 is a bona fide alarmin
mediating "danger" signals that activate the innate immune
responses (39). Indeed, epithelial cell-derived IL33 and its recep-
tor are deregulated in human IBD patients and in mouse models
of colon inflammation (40, 41). Here, the relevance of IL33 is
further proved by data showing that exogenous IL33 administra-
tion is pathogenic during the acute phase of DSS-induced inflam-
mation (42) or that IL33 KO mice are less susceptible to DSS-
induced colitis because of reduced granulocytes infiltration (43).

Figure 6.
Colorectal cancer development in wild-type and KitW-sh mice. A, scores of inflammation in colon tissues of tumor-bearing mice. The score was
calculated combining the grade of immune infiltration, tissue damage, and glandular rarefaction (n ¼ 5 mice/group from three different experiments).
B, quantification of the percentage of Ki67þ cells in colon of WT and KitW-sh mice. Ki67þ cell percentage was calculated into the tumor, in
peritumoral areas, and in the mucosa of five nonoverlapping high-power microscopic fields (n ¼ 6 for each group). Values are represented as
mean � SEM. C, mean neoplastic areas in whole colons collected from WT and KitW-sh mice. D, representative hematoxylin and eosin staining of a
moderately differentiated tumor in a WT mice (left) and an in situ adenocarcinoma of a KitW-sh mice (right). Scale bars, 200 mm. E, relative percentage of
well-differentiated (WD) and poorly differentiated (PD) tumor occurrence in WT and KitW-sh mice. F, toluidine blue staining of MC infiltrating well-
differentiated or poorly differentiated areas of tumors from WT mice. Inset shows higher magnification. G, peri- and intratumoral-MC count in colorectal
tumors. MCs were counted on five high-power fields (�400). Values are depicted as mean � SEM. Five to seven samples per histologic type were
analyzed. Scale bars, 50 mm. Student t test � , P < 0.05; �� , P < 0.01; ��� , P < 0.05.
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In our model, MCs infiltrating the colon upon DSS withdrawal
upregulate IL33R, indicating that IL33 should be active on MCs
in vivo, when inflammation is resolving or should be resolved. In
MC-deficient mice, delayed tissue repair and persistent inflam-
mation are associated with increased levels of IL33 proving again
that MCs may be active in the resolution of colitis during the
removal of proinflammatory stimuli.

Indeed, MC granules contain a wide range of proteases and
mMCP-4, thehomologof thehuman chymase, has been shown to
degrade several alarmins, including IL33, both in vitro and in vivo
(34, 44). Confirmatory evidences in our model came from recon-
stitution of KitW-sh mice with BMMCs from mMCP-4 KO mice:
mMCP-4 KO BMMCs were unable to promote mucosal healing
after DSS withdrawal, unlike WT BMMCs.

IL22, a member of the IL10 family of cytokines, is protective
in the gut: it promotes antimicrobial activity and induces
epithelial cell survival and proliferation. The levels of IL22 in
colon are controlled by IL22bp, a high-affinity soluble receptor
downregulated in the intestine following tissue damage (45).
Accordingly, persistent inflammation and incomplete repair of
tissue damage occurring in KitW-sh mice after DSS withdrawal
were associated with higher Il22 and lower Il22bp gene expres-
sion than in the WT counterpart.

The role of MCs in resolving colonic inflammation and
their capacity to reduce the persistence of inflammatory sti-
muli suggested that they might be protective against transfor-
mation in a setting of inflammation. MCs have been shown to
support progression from polyposis to adenocarcinoma in
models of chemically induced and oncogene-driven carcino-
genesis (13, 46, 47). However, the transfer of the APCMin/þ

mutation onto the KitW-sh background resulted in increased
tumorigenesis, highlighting the antitumor activity of MCs in
this setting (14).

Our comparison of WT and KitW-sh mice during AOM/DSS-
induced carcinogenesis showed that the final outcome of MC
activity in this context is likely to be dependent on whether the

neighboring epithelial cells have the capacity to engage in the
healing process or are already transformed (Supplementary Fig.
S5). Our results can reconcile apparent controversies regarding
the interpretation of MC activity in favor of repair in normal
tissues or in promotion of malignancy in transformed cells.
Accordingly, tumors with high MC infiltration were less differ-
entiated and more aggressive, whereas mice lacking MCs had
more tumors of low grade. Questioning whether MCs should
be targeted in cancer clearly requires careful consideration:
treatment should be given in context, namely at the beginning
of transformation and not during early phases of the inflam-
matory process.

Also, the comparison with the equivalent human disease
underlined the paucity of MCs in cases of detrimental inflamma-
tion as occurring in active IBD and IBD-associated colorectal
cancers. Conversely, MCs infiltrated areas that were mirroring
healing areas of the mouse epithelium such as biopsies of remit-
ting IBD and of tumors arising spontaneously. Indeed, the growth
of sporadic adenocarcinomas is driven by genetic alterations and
inflammation coevolves with tumor-associated modifications of
tissues endowed with repair capacity.

In conclusion, in both mice and humans, MCs acquire a
different behavior when faced with normal, damaged, or trans-
formed epithelial cells. This needs to be considered when design-
ing more efficacious approaches to MC targeted therapies.
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