
October 15, 2015 15:53 IJFCS S0129054115500410 page 733

International Journal of Foundations of Computer Science
Vol. 26, No. 6 (2015) 733–749
c© World Scientific Publishing Company
DOI: 10.1142/S0129054115500410

A Generalization of Girod’s Bidirectional Decoding Method to

Codes with a Finite Deciphering Delay

Laura Giambruno∗ and Sabrina Mantaci†

DMI, Universitá di Palermo

Palermo, Italy
∗laura.giambruno@laposte.net

†sabrina@math.unipa.it

Jean Néraud‡ and Carla Selmi§

LITIS, Université de Rouen

76801 Saint-Etienne de Rouvray, France
‡jean.neraud@litislab.eu
§carla.selmi@litislab.eu

Received 8 December 2013
Accepted 20 April 2015

Communicated by Jacques Sakarovitch

Girod’s encoding method has been introduced in order to efficiently decode from both
directions messages encoded by using finite prefix codes. In the present paper, we gener-
alize this method to finite codes with a finite deciphering delay. In particular, we show
that our decoding algorithm can be realized by a deterministic finite transducer. We
also investigate some properties of the underlying unlabeled graph.

Keywords: Code; prefix (free) code; deciphering delay; transducer; unlabeled graph;
strongly connected component.

Introduction

Coding methods that allow bidirectional decoding of messages (such as, for instance,

bifix codes) assume a great importance in coding theory since they guarantee data

integrity (cf. [9] Chapter 3). Unfortunately bifix codes are quite rare, difficult to be

constructed and usually quite heavy with respect to the length of the codewords. On

the other side, prefix free codes (for short prefix codes) are easy to be constructed,

since they are in bijection with k-ary trees, and often very succinct. For instance

Huffman codes, used in data compression, are prefix codes. Anyway their right to

left decoding delay can be even infinite if the usual encoding method (each character

is substituted to the corresponding codeword) is used.

In this context, Girod [6] introduced a very interesting alternative encoding

method that, on one hand uses binary prefix codes, keeping in this way the suc-

cinctness property, and that, on the other hand, by the simple addition of few bits

733

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53306348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1142/S0129054115500410

October 15, 2015 15:53 IJFCS S0129054115500410 page 734

734 L. Giambruno et al.

to the encoded message (encoding key), allows an instantaneous bidirectional de-

coding of the encoded message. In [4] one can find a first study of the properties

of the transducer defined in order to perform the bidirectional decoding Girod’s

algorithm. In [5] some statistics on the number of states of Girod’s transducer are

given. A very strong result for maximal codes due to Schützenberger (cf. [2]) states

that a maximal finite code is either prefix or it has an infinite deciphering delay.

This means that for maximal finite codes the only ones that can be decoded in both

directions with a finite deciphering delay are bifix. Girod’s encoding establishes a

sort of symmetry in coding that allows, surprisingly, to decode in both directions

maximal codes that are prefix and not suffix (i.e. have no deciphering delay from

left to right and infinite deciphering delay from right to left) and symmetrically,

codes, that are suffix and not prefix (for symmetrical reasons).

The present paper deals with the generalization of Girod’s algorithm to the

so-called codes with a finite deciphering delay (f.d.d. for short, cf. [2]), a natural

extension of prefix codes: indeed prefix codes have left-to-right deciphering delay

equal to zero. Furthermore, here we consider alphabets with an arbitrary cardinal-

ity and for this reason the bitwise sum used in Girod’s encoding for two letters

alphabets is substituted by more general operations defined by Latin squares. This

new method, applied on a code X with a finite deciphering delay from left to right

(resp. right to left), allows to decode a message in both directions.

Moreover an algorithm for decoding according to this method is implemented

and realized by a deterministic transducer having remarkable properties. In partic-

ular, we prove that the underlying unlabeled graph contains an unique non trivial

strongly connected component, that neither depends on the choice of the encoding

key, nor on the Latin square but just on the code.

Section 1 contains the basic notions that we use in our paper. Some technical

properties are stated in Remark 7. In Sec. 2, we describe our generalization of

Girod’s decoding method to f.d.d. codes. The corresponding decoding from right to

left is implemented by a transducer described in Sec. 3. The corresponding decoding

phase from right to left, is implemented by a similar transducer of which we describe

the construction. Section 4 is devoted to investigating the properties of the above

transducer and the corresponding graph. In Sec. 5 we give some conclusive remarks.

1. Preliminaries

1.1. Codes

In this section we give some notions and notation about codes used throughout the

article. Let B = {b1, . . . , bm} and A = {0, . . . , n} be two alphabets, that we call

respectively source alphabet and channel alphabet. Given an injective alphabetic

morphism γ : B∗ → A∗, the set X = γ(B) ⊂ A∗ is called a variable length code

or simply a code. The map γ is called an encoding and the words xi = γ(bi) for

all 1 ≤ i ≤ m are called codewords. The function γ−1 restricted to γ(B∗) is the

corresponding decoding map.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 735

A Generalization of Girod’s Bidirectional Decoding Method 735

We recall that a prefix free code (or simply a prefix code) is a code where no

codeword is a prefix of another one. In the present paper, we are interested in a

special class of codes:

Definition 1. Let X ⊂ A∗ be a code and let d be a non negative integer. X is a

code with a (left-to-right) finite deciphering delay (f.d.d. code for short) d if for any

x, x′ ∈ X, x 6= x′, we have

xXdA∗
⋂

x′X∗ = ∅.

The delay of X is the smallest integer d for which this property is satisfied.

Intuitively, messages encoded by f.d.d. codes can be decoded from left to right

with a finite lookahead. The codes with d = 0 correspond to the class of prefix

codes.

For each word u we denote by ũ themirror image of u. ForX = {x1, x2, . . . , xm},

we set X̃ = {x̃1, x̃2, . . . , x̃n}. Notice that if X is a code, X̃ is a code as well.

Example 2. Let A = {0, 1}.

(1) For any d ≥ 0, let Xd = {01, (01)d1} ⊂ A∗. The code Xd is a code with finite

deciphering delay d. In fact, (01)XdA∗
⋂
(01)d1X∗ = ∅. More intuitively, we

cannot decide which one is the first element of a X-factorization of a prefix of

the word (01)d+11 before having read the entire word.

(2) X = {0, 10, 11} ⊂ A∗ is a prefix code such that X̃ = {0, 01, 11} is a code with

an infinite deciphering delay. In fact, 0(11)d1 ∈ 0XdA∗
⋂
01X∗ for all d ≥ 1.

Given a set X ⊂ A+ we denote by Pref(X) (resp. Suff(X)) the set of prefixes

(resp. suffixes) of words in X . For each word u ∈ A∗ and for each k ≤ |u|, we denote

by Prefk(u) (resp. Suffk(u)) the prefix (resp. suffix) of u having length k and by

Pref(u) (resp. Suff(u)) the set of prefixes (resp. suffixes) of u.

1.2. Transducers

A finite transducer T , defined on an input alphabet A and an output alphabet B,

consists of a quadruple T = 〈Q, I, E, T 〉 where Q is a finite set whose elements are

called states, I and T are two distinguished subsets of Q called the sets of initial

and terminal states, and E is a set of elements called edges which are quadruples

(p, u, v, q) where p and q are states, u is a word over A and v is a word over B.

We call u the input label and v the output label. An edge is commonly denoted by

p
u|v
−→ q. Two edges p

u1|v1
−→ q and r

u2|v2
−→ s are consecutive if q = r. A path in a

transducer is a sequence of consecutive edges. The label of the path is obtained by

concatenating separately the input and the output labels. We denote it by a pair

where the first element is a word over the input alphabet and second element is a

word over the output alphabet. It defines a binary relation between words on the

two alphabets as follows: a pair (u, v) is in the relation if it is the label of a successful

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 736

736 L. Giambruno et al.

path (i.e. a path starting from the initial state i and finishing in a terminal state).

This is called the relation realized by T .

We can represent encoding and decoding algorithms using transducers. An en-

coding γ can be represented by a one-state literal transducer with loops on the state

with labels (b, γ(b)), for each b in B. Transducers for decoding are more interesting.

In case of decoding, A represents the channel alphabet and B the source alphabet.

A finite sequential transducer T (cf. [7] Chapter 1, [8] p. 578) over an input

alphabet A and an output alphabet B consists of a quintuple T = 〈Q, i, δ, T, F 〉,

where Q is a finite set of states, i is the unique initial state, δ is a partial function

Q×A −→ B∗×Q which breaks up into a next state function Q×A −→ Q and an

output function Q×A −→ B∗. T is the set of final states. In addition, F : T −→ B∗

is a partial function which is called the terminal function, by which an additional

suffix can be attached to all the outputs.

1.3. Latin squares

We recall that the algorithm of Girod makes use of the modulo 2 sum [4]. In view

of generalizing the method to larger alphabets, it is natural to consider modulo

sum; however, we observe that when running, the corresponding algorithm does

not make use of any underlying structure of group. Most general binary operations

are defined by the so-called Latin squares.

Definition 3. Let A = {0, . . . , n}. A map f : A×A −→ A is a Latin square on A

if and only if, for each a ∈ A, the mappings x −→ f(a, x) and x −→ f(x, a), which

we call the components of f , are one-to-one.

In other words a Latin square on A is (n+ 1)× (n+ 1) matrix where each row

and each column contains one and only one occurrence of i, for all 0 ≤ i ≤ n.

Example 4. If A = {0, 1, 2}, the following matrix defines a Latin square:

f 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

Since the components of a Latin square f are one-to-one maps, we can define

two different “inverse” Latin squares associated to a given map f .

Definition 5. We define the Latin squares f−1
r , f−1

c , respectively the row and col-

umn inverse maps, as f−1
r (f(a, b), b) = a and f−1

c (a, f(a, b)) = b, for all a, b ∈ A.

In view of simplifying the notation, if there is no ambiguity concerning the choice

of the Latin square f , we shall set:

f(a, b) = a⊕ b, f−1
r (a, b) = a⊖ b; f−1

c (a, b) = a⊘ b.

Indeed, we shall see later another justification of such a notation (Corollary 16).

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 737

A Generalization of Girod’s Bidirectional Decoding Method 737

Remark 6. The corresponding matrices can be easily computed in this way:

- For each a, b ∈ A, a⊖ b is the index of the row in the b-th column that contains

the value a;

- For each a, b ∈ A, a⊘ b is the index of the column in the a-th row that contains

the value b.

Such a computation is illustrated in Example 8.

In a natural way, the preceding binary operations may be extended to words

of arbitrary length. We summarize some elementary properties of a generic Latin

square in the following remark:

Remark 7. Let f be a Latin square:

(1) (u⊕ v)⊖ v = u, for all u, v ∈ A∗ such that |u| = |v|.

(2) u⊘ (u⊕ v) = v, for all u, v ∈ A∗ such that |u| = |v|.

(3) Prefk(u⊕ v) = Pref k(u)⊕ Pref k(v), for all u, v ∈ A∗ such that |u|, |v| ≥ k.

(4) Suffk(u⊕ v) = Suff k(u)⊕ Suff k(v), for all u, v ∈ A∗ such that |u|, |v| ≥ k.

Latin squares are used in this context in order to generalize Girod’s method

to codes defined on alphabets of any cardinality. In fact in the original Girod’s

method, that only deal with binary codes, the binary sum is used, that can actually

be defined by a very simple 2× 2 Latin square, with zeros in the main diagonal and

1 elsewhere.

2. Extension of Girod’s Method for f.d.d. Codes

In 1999 Girod (cf. [6]) introduced an efficient alternative coding method that uses

finite prefix codes on binary alphabets. This method transforms a word obtained

as concatenation of codewords from a prefix code X into a word which can be bidi-

rectionally decoded without any delay, even if X is a not suffix code. This result is

surprising, especially when the reverse code X̃ is a code with an infinite decipher-

ing delay (see for instance Example 2). The goal of this section is to generalize this

method to codes with a finite deciphering delay over an alphabet with cardinality

greater than two. This new method, applied on a code X with a finite delay from

left to right or from right to left allows to decode a message in both directions. In

other words, it is sufficient that the code has a finite deciphering delay from left to

right or from right to left to obtain a decoding algorithm with finite deciphering

delay in both directions. In the following we will say “deciphering delay” to mean

“left-to-right dechiphering delay”. This does not cause any loss of generality, since,

in the case where the left-to-right dechiphering delay is infinite, the roles of X and

X̃ can be switched.

The generalized encoding algorithm. In the whole paper, a Latin square being

fixed, we state the following notation:

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 738

738 L. Giambruno et al.

- X = {x1, . . . , xm} ⊂ A+ stands for a finite code with finite deciphering delay d.

- γ is an injective alphabetic morphism γ : B∗ → A∗, where B = {b1, . . . , bm} and

xj = γ(bj), for all 1 ≤ j ≤ m.

- We set L = (d+ 1)max{[x||x ∈ X}.

- We define the “encoding key” xL as any given word in A+ of length L.

- Let y = xi1 . . . xit , xij ∈ X , for j = 1, . . . , t. We denote by y′ = x̃i1 x̃i2 ...x̃it

the word obtained by concatenating the reverse, x̃ij of each codeword xij , for

j = 1, . . . , t. Notice that y is different from ỹ.

- We denote by β : B∗ −→ A∗ the map defined by β(s) = γ(s)xL ⊕ x̃Lγ(s)
′, for all

s ∈ B∗.

Example 8. Let X = {01, 012} be a code with finite deciphering delay d = 1

encoding B = {b1, b2} by a map γ. We consider the Latin square from Example 4

with its two corresponding inverses described as follows:

⊕ 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

⊖ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

⊘ 0 1 2

0 0 2 1

1 1 0 2

2 2 1 0

Let xL = 011011 be the encoding key. Let y = (012)(01) and let y′ = (210)(10).

The encoding z of y is performed by applying the Latin square map to the pair

(yxL, x̃Ly
′)

β(b2b1) = 01201xL ⊕ x̃L21010

= 01201011011⊕ 11011021010

= 20220020001 .

In the proposition that we state below, we show that every z ∈ β(B∗) is univocally

decipherable in elements of B. In other words β is an encoding method that allows

to generalize the classical encoding method from Girod.

Before proving this result, we introduce a transducer as defined in [[8] Chapter

5, p. 772]. This transducer, which we denote by S = 〈QS , δS , iS , TS , FS〉, generalizes

to a code with a finite deciphering delay the classical flower transducer, which is

used for decoding prefix codes. In the following figure, we give the transducer S for

the left to right decoding of a text encoded by X = {01, 012} (see Fig. 1).

Proposition 9. Consider the notation given above. For each z ∈ A∗ there exists

at most one element s ∈ B∗ such that z = β(s).

Proof. By contradiction, we suppose that there exist two different words s, s ∈ B∗

such that z = β(s) = β(s). Let us denote y = γ(s) and y = γ(s), then we get

(1) yxL ⊕ x̃Ly
′ = yxL ⊕ x̃Ly

′

and |y| = |y|. Since γ is an injective map, it suffices to prove that y = y.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 739

A Generalization of Girod’s Bidirectional Decoding Method 739

ε 0 01 012
0|ε 1|ε 2|ε

0|b1
0|b1

0|b2

Fig. 1. The transducer S for a text encoded by X = {01, 012} with FS(01) = b1 and
FS(012) = b2.

First, we assume that |y| ≤ L. By Remark 7 we get z = y ⊕ Pref|y|(x̃L) =

y⊕ Pref|y|(x̃L) and by the injectivity of the components of the Latin square map,

it follows that y = y.

Now, let |y| > L. Then y and y are products of at least d + 1 elements of X .

We set:

y = xi1 · · ·xirxir+1
· · ·xir+d+1

, with xij ∈ X , for all 1 ≤ j ≤ r + d+ 1

y = xi1 · · ·xitxit+1
· · ·xit+d+1

, with xij ∈ X , for all 1 ≤ j ≤ t+ d+ 1 .

In what follows we prove, by iteration on the integer r, that y ∈ xi1 . . . xirA
∗.

Let u1 = Pref L(z)⊖ x̃L. By Remark 7 and since |y| > L we obtain that u1 is the

prefix of length L of y. For the same reason u1 is the prefix of length L of y. Since

|u1| = L and since X is a code with finite deciphering delay d, there exists a unique

xi1 ∈ X such that u1 ∈ xi1A
∗. In what follows we indicate how to compute xi1

by applying the transducer S introduced above: Let u′
1 be the shortest prefix of u1

such that δS(iS , u
′
1) = (qi1 , bi1), qi1 ∈ TS , bi1 ∈ B. We have xi1 = γ(bi1). Then both

y and y begin with xi1 . Let z
′ = Suff |z|−|xi1

|(z) and u2 = Pref L(z
′)⊖Suff L(x̃Lx̃i1).

As for u1, we have u2 = Pref L(x
−1

i1
y) (in this notation, u−1v stands for the unique

word w such that uw = v). Therefore, we obtain u2 ∈ xi2A
∗. The computation of

xi2 will be done in a way similar to the computation of xi1 : let u
′
2 be the shortest

prefix of u2 such that δS(qi1 , u
′
2) = (qi2 , bi2), qi2 ∈ TS , bi2 ∈ B; we have xi2 = γ(bi2).

Then y ∈ xi1xi2A
∗ and, analogously, y ∈ xi1xi2A

∗. By iterating this process, we

get y, y ∈ xi1 . . . xirA
∗. Each codeword xij is computed as indicate above.

Now, we set:

yr = xir+1
· · ·xir+d+1

and yr = xir+1
· · ·xit+d+1

.

Let us prove now that yr = yr. According to (1), since xij = xij , ∀1 ≤ j ≤ r,

we have:

yrxL ⊕ Suff |yr|+L(x̃Ly
′) = yrxL ⊕ Suff |yr|+L(x̃Ly

′).

Thus, according to Statement 4 of Remark 7, we obtain:

Suff |yr|+L(yrxL ⊕ x̃Ly
′) = Suff |yr|+L(yrxL ⊕ x̃Ly

′).

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 740

740 L. Giambruno et al.

By considering the suffix of length L, we have:

xL ⊕ Suff L(y
′) = xL ⊕ Suff L(y

′).

From the injectivity of the Latin square, we obtain Suff (y′) = Suff L(y
′). Since

|y′r| = |y
′
r| ≤ L, y′r ∈ Suff (y) and y′r ∈ Suff (y), we have y′r = y′. It follows yr = yr,

and this completes the proof.

The proof of Proposition 9 suggests the implementation of the following algo-

rithm for the left-to-right decoding. Let z = β(s), where s is the concatenation of

at least d+ 1 elements:

(1) Set the variables v := x̃L, t := z and t′ := Pref L(t).

(2) The word u = t′ ⊖ v is the product of at least (d + 1) codewords of X , that is

u = xi1 . . . xid+1
u′, with u′ ∈ A∗ and xij ∈ X for all 1 ≤ j ≤ d + 1. Since X

is a code with finite deciphering delay d, the factorization of u begins by xi1 .

Therefore the decoding of z begins by bi1 .

(3) Set v := Suff L(vx̃i1), t := Suff |t|−|xi1
|(t), t

′ = Pref L(t).

In order to get all the factors of the coding, iterate Step 2 followed by Step 3

until t′ = t = xL (|t′| = |t| = L).

Example 10. [Example 8 (continued)] This example gives an application of the

previous decoding method on z = 20220020001 as defined in the Example 8.

In order to decode z from left to right, we consider L = 6 and t′ = Pref 6(z) =

202200 and

u = t′ ⊖ x̃L

= 202200⊖ 110110

= 012010.

Since |u| = L, we are able to recognize the first codeword 012. Thus the decoding of

z begins with b2.

Afterwards, we consider v = Suff L(x̃L0̃12) = 110210, t = Suff |z|−|012|(z) =

20020001 and t′ = Pref 6(t) = 200200. We have:

u = t′ ⊖ v

= 200200⊖ 110210

= 010110.

Since u is prefix of u′ = t ⊖ v = 01011011 ∈ XdxL we are able to recognize the

first codeword 01. Thus the decoding of z begins with b2b1. Since the length of the

remaining part of z is exactly 6, this means that b2b1 is the decoding of z.

Similar arguments on the reversed words lead to implement a corresponding

right-to-left decoding algorithm. In particular, the input word x̃Ly
′ is substituted

to yxL, the inverse Latin square ⊘ is substituted to ⊖.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 741

A Generalization of Girod’s Bidirectional Decoding Method 741

In the previous algorithm, Step (2) may be completed by reading the word u

in the transducer S introduced above. In what follows, we indicate a more precise

scheme of this method:

Algorithm

{Input z ∈ A∗ Output s = β−1(z)}

u← ε; v ← x̃L; t← z; q ← iS ;

s← ε; x← ε; b← ε;

while |t| > L do

a← Pref 1(t)⊖ Pref 1(v);

u← ua;

(q, b)← δS(q, a);

{b ∈ B ∪ {ε}}

if q /∈ TS then

{u ∈ Pref (Xd+1) \Xd+1, b = ε}

v ← A−1v; t← A−1t

endif

if q ∈ TS then

{u ∈ Xd+1, u = xXd, x ∈ X, b ∈ B}

x← γ(b);

u← x−1u;

v ← vx̃; { Step (a)}

endif

if q = ∅ then

{z is not an encoding of Girod }

exit

endif

endwhile;

if q ∈ Xd+1 then

s← sFS(q)

endif

endalgorithm

In Step (a), the computation of v, makes necessarily use of a memory for stocking

x. Taking account of this remark, an alternative implementation of this algorithm

consists in computing, in a preprocessing phase, the transducer Tf,xL
as indicated

in Sec. 3. Actually, in this transducer, the states are the pairs (u, v) defined in the

previous algorithm. After having constructed this transducer, the processing phase

consists only in reading the input word on line. No more operation then applying

output function, being required.

3. Transducers for Decoding

In this section, we prove that two previous decoding algorithms (for the left to right

and the right to left decoding) can be realized by some particular transducers.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 742

742 L. Giambruno et al.

Transducer for left-to-right decoding. The left-to-right decoding algorithm

given in Sec. 2 can be described by the transducer T (X)f,xL
= 〈Q, i, δ, T, F 〉 defined

as follows:

(1) Q contains pairs of words (u, v) such that:

- u ∈ Pref (Xd+1) \Xd+1;

- v ∈
⋃d+1

i=0
Suff (x̃LX̃

i) of length L− |u|.

(2) The initial state is i = (ε, x̃L).

(3) For each state (u, av), for each c ∈ A, let b = f−1
r (c, a), the transition function

δ is defined as follows:

δ((u, av), c) =

(ε, (ub, v)), if ub ∈ Pref (Xd+1) \Xd+1;

(bi1 , (xi2 . . . xid+1
, vx̃i1)), if ub = xi1 . . . xid+1

∈ Xd+1;

undefined, otherwise.

(4) The set of the final states is T = {(u, v)|u = xi1 . . . xid ∈ Xd}.

(5) The function F is defined only for the accessible final states (u, v), u =

xi1 . . . xid ∈ Xd, as the word bi1 . . . bid ∈ Bd.

Example 11. X = {0, 01} is a code with finite deciphering delay d = 1 defined

by an encoding over B = {b1, b2}. We use for decoding the Latin square inverse

⊖ given in Example 8 and the key xL = 0101. We obtain the following transducer

associated to X for decoding from left to right. The output function F is defined

for final states as : F (0, 010) = b1, F (0, 100) = b1, F (0, 000) = b1, F (01, 10) = b2,

F (01, 00) = b2.

(ε, 1010 0, 010 0, 100 0, 000

01, 0001, 10

2|ε 0|b1 2|b1

0|ε
1|ε

0|b1

0|b2
1|ε2|b2

Fig. 2. The transducer T for the left-to-right decoding of a text encoded by X = {0, 01}, using
encoding key xL = 0101 over B = {b1, b2} with Latin square f of the Example 4.

Transducer for right-to-left decoding. In a similar way, we can define the

transducer T̃ (X)f,xL
= 〈Q̃, ĩ, δ̃, T̃ , F̃ 〉 for the right-to-left decoding as follows:

(1) Q̃, contains pairs of words (u, v) such that:

- u ∈ Suff (X̃d+1) \ X̃d+1;

- v ∈
⋃d+1

i=0
X iPref (xL) of length L− |u|.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 743

A Generalization of Girod’s Bidirectional Decoding Method 743

(2) The initial state is ĩ = (ε, xL).

(3) For each state (u, va), for each c ∈ A, let b = f−1
c (a, c), then the transition

function δ is defined as follows:

δ̃((u, va), c) =

(ε, (bu, v)), if bu ∈ Suff (X̃d+1) \ X̃d+1;

(bi1 , (x̃i2 . . . x̃id , xi1v)), if bu = x̃i1 . . . x̃id+1
∈ X̃d+1;

undefined, otherwise.

(4) The set of the final states is T̃ = {(u, v)|u = x̃i1 . . . x̃id ∈ X̃d}.

(5) F̃ is defined only for the accessible final states (u, v), u = x̃i1 . . . x̃id ∈ X̃d, as

the word bi1 . . . bid ∈ Bd.

ε, 0101 0, 010 0, 001 0, 000

10, 0010, 01

1|ε 0|b1 1|b1

0|ε
2|ε

0|b1

0|b2
2|ε1|b2

Fig. 3. The transducer T̃ for the right-to-left decoding of X = {0, 01} for xL = 0101 over
B = {b1, b2} with the Latin square f of the Example 4.

Example 12. X = {0, 01} is a code with finite deciphering delay d = 1 defined by

an encoding over B = {b1, b2}. We use for decoding the Latin square inverse ⊘ given

in Example 8 and the encoding key xL = 0101. We obtain the following transducer

associated to X for decoding from right to left. The output function F̃ is defined

for final states as : F̃ (0, 010) = b1, F̃ (0, 001) = b1, F̃ (0, 000) = b1, F̃ (10, 10) = b2,

F̃ (10, 00) = b2.

As one can notice from Figs. 2 and 3, the transducers T (X)f,xL
and T̃ (X)f,xL

are isomorphic as unlabeled graphs. This is a general property proved in the next

section.

The proof that the transducer T (X)f,xL
(resp. T̃ (X)f,xL

) really realizes the

left-to-right decoding (resp. right-to-left decoding) lays upon the results of Lemma

13 and Proposition 14. Since the proofs of these two statements are straightforward

but technical, we suggest to the reader, that he (she) at first report in Sec. 4 to

continue the reading of the paper. decoding (resp. right-to-left decoding), stated in

Proposition 14, we first establish the following Lemma.

Lemma 13. Transducer T (X)f,xL
contains a path from the initial state (ε, x̃L) to

a final state (u, v) labeled (z, bi1 . . . bik), k ≥ 0, if and only if

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 744

744 L. Giambruno et al.

(1) z = xi1 . . . xiku⊕ Pref |xi1
...xik

|+|u|(x̃Lx̃i1 . . . x̃ik),

(2) v = Suff L−|u|(x̃Lx̃i1 . . . x̃ik).

Proof. Let us consider a successful path from (ε, x̃L) to a final state (u, v) with

label (z, bi1 . . . bik). We prove the first direction by induction on k ≥ 0.

If k = 0 then we have a path from (ε, x̃L) to a final state (u, v) with label (z, ε)

and, by construction u = xi1 . . . xid , v = Suff L−|u|(x̃L) and z = u⊕ Pref |u|(x̃L).

Let us consider now k > 0 and let

(ε, x̃L)
z′|bi1 ...bik−1

−→ (u′, v′)
z′′|bik−→ (u′′, v′′)

be a successful path. By induction, we have:

u′ = xik . . . xid+k−1
,

v′ = Suff L−|u′|(x̃Lx̃i1 . . . x̃ik−1
),

z′ = xi1 . . . xik−1
u′ ⊕ Pref |xi1

...xik−1
|+|u′|(x̃Lx̃i1 . . . x̃ik−1

).

First, we note that, (1) u′′ = x−1

ik
u′xid+k

= xik+1
. . . xid+k

, hence, we have (2) |u′′|−

|u′| = |xid+k
| − |xik |. Therefore, since |u′′| + |v′′| = |u′| + |v′| = L, we obtain

(3) |v′′|+ |xid+k
| = |v′|+ |xik |. We have also that z′′ = xid+k

⊕ Pref |xid+k
|(v

′).

Since u′ = xik . . . xid+k−1
and, by (1), xi1 . . . xid+k

= xi1 . . . xiku
′′, we have that:

z = (xi1 . . . xid+k−1
⊕ Pref |xi1

...xik−1
|+|u′|(x̃Lx̃i1 . . . x̃ik−1

))(xid+k
⊕ Pref |xid+k

|(v
′))

= xi1 . . . xid+k−1
xid+k

⊕ Pref |xi1
...xik−1

|+|u′|(x̃Lx̃i1 . . . x̃ik−1
)Pref |xid+k

|(v
′)

= xi1 . . . xiku
′′ ⊕ Pref |xi1

...xik−1
|+|u′|(x̃Lx̃i1 . . . x̃ik−1

)Pref |xid+k
|(v

′) .

Now, we compute r = Pref |x̃i1
...x̃ik−1

|+|u′|(x̃Lx̃i1 . . . x̃ik−1
)Pref |xid+k

|(v
′):

r = Pref |x̃i1
...x̃ik−1

|+|u′|(x̃Lx̃i1 . . . x̃ik−1
)Pref |xid+k

|(Suff L−|u′|(x̃Lx̃i1 . . . x̃ik−1
))

= Pref |x̃i1
...x̃ik−1

|+|u′|(x̃Lx̃i1 . . . x̃ik−1
)Pref |xid+k

|(Suff L−|u′|+|x̃ik
|(x̃Lx̃i1 . . . x̃ik)).

Set t′ = Pref |x̃i1
...x̃ik−1

|+|u′|(x̃Lx̃i1 . . . x̃ik−1
) and t = Suff yL− |u

′ + |x̃ik |(x̃Lx̃i1 . . .

x̃ik−1
).

We have |t′|+|t| = |x̃i1 . . . x̃ik−1
|+|u′|+L−|u′|+|x̃ik | = |x̃Lx̃i1 . . . x̃ik |. It follows

that t′t = x̃Lx̃i1 . . . x̃ik , whence r = t′Pref |xd+k|
(t) = Pref |z|+|xd+k|

(x̃Lx̃i1 . . . x̃ik).

We compute |r| = |t′|+ |xid+k
| = |x̃i1 . . . x̃ik−1

|+ |u′|+ |xid+k
|. By (3), we have:

|r| = |x̃i1 . . . x̃ik−1
|+ |u′|+ |v′| − |v′′|+ |x̃ik |

= |x̃i1 . . . x̃ik−1
|+ L− |v′′|+ |x̃ik |

= |x̃i1 . . . x̃ik |+ |u
′′|.

As a consequence, we obtain r = Pref |x̃i1
...x̃ik

|+|u′′|(x̃Lx̃i1 . . . x̃ik). This implies that

z = xi1 . . . xiku⊕ Pref |xi1
...xik

|+|u′′|(x̃Lx̃i1 . . . x̃ik) and this completes the proof.

The reverse direction follows by remarking that every previous statement is

invertible.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 745

A Generalization of Girod’s Bidirectional Decoding Method 745

As a consequence of Lemma 13, the following result holds:

Proposition 14. With the preceding notation, the pair (z, s) ∈ A∗ × B∗, with

s = bi1 . . . bik , k ≥ 0, is the label of a successful path in T (X)f,xL
ending at (u, v) if

and only if z is the prefix with length |xi1 . . . xiku| of the word β(s).

Proof. Let (z, s) ∈ A∗×B∗ be the label of a successful path in T (X)f,xL
. According

to Lemma 13, we have

z = xi1 . . . xiku⊕ Pref |xi1
...xik

|+|u|(x̃Lx̃i1 . . . x̃ik) ,

with u = xik+1
. . . xik+d

. By Remark 7, Property 3, we obtain

z = Pref |xi1
...xik

|+|u|(xi1 . . . xiku⊕ x̃Lx̃i1 . . . x̃ik)

= Pref |xi1
...xik

|+|u|(xi1 . . . xikuxL ⊕ x̃Lx̃i1 . . . x̃iku
′)

with u′ = x̃ik+1
. . . x̃ik+d

. We obtain z = Pref |z|(β(s)) with s = bi1 . . . bik+d
.

The reverse direction follows by remarking that every previous statement is

invertible.

4. The Graph Associated to the Transducer T (X)f,xL

In this section we examine the transducer T (X)f,xL
= 〈Q, i, δ, F 〉, defined in the

previous sections, from the point view of graph theory. According to the definition

of Latin square, given two transitions δ((u, v), c) = (bj , (u
′, v′)) and δ((u, v), d) =

(bk, (u”, v”)) in T (X)f,xL
, if c 6= d, then we have (u′, v′) 6= (u”, v”). This leads

to introduce a graph, namely G(X)f,xL
, which is obtained by removing the labels

from the transitions of T (X)f,xL
. More precisely:

- We associate to every transition δ((u, av), c) = (ε, (ub, v)) in T (X)f,xL
, the edge

(u, av)→ (ub, v) in G(X)f,xL
.

- We associate to every transition δ((u, av), c) = (bi1 , (xi2 . . . xid+1
, vx̃i1)), the edge

(u, av)→ (xi2 . . . xid+1
, vx̃i1) in G(X)f,xL

.

A natural question arises: what happens to G(X) when the Latin square map is

replaced by another one?

4.1. Exchanging the Latin square map

Proposition 15. Given a vertex (u, av) of G(X)f,xL
and given a letter b ∈ A, the

following properties hold:

(1) If ub is a proper prefix of Xd+1 then a unique edge (u, av) → (ub, v) exists in

G(X)f,xL
.

(2) If ub = xi1 . . . xid+1
, with xij ∈ X (1 ≤ j ≤ d+1), then a unique edge (u, av)→

(xi2 . . . xid+1
, vx̃i1) exists in G(X)f,xL

.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 746

746 L. Giambruno et al.

As a direct consequence, we obtain the following property:

Corollary 16. Given two Latin squares maps f, g, the corresponding graphs

G(X)f,xL
and G(X)g,xL

are isomorphic.

Actually, this result shows that any graph G(X)f,xL
is actually independent of

the Latin square f : this fact corroborates the validity of the generic notation ⊕ for

any Latin square, and it allows to denote by G(X)xL
the graph G(X)f,xL

.

Moreover, we remark another property: the transducer T̃ (X)f,xL
can be

realized by a transducer T (X)f,xL
. Indeed, each state (u, v) of T (X)f,xL

can be as-

sociated to the state (ũ, ṽ) of T̃ (X)f,xL
, the transition being in one to one correspon-

dence as indicated in the following: With each transition δ̃((ũ, ṽ), c) = (b, (ũ′, ṽ′))

which is defined in T̃ (X)f,xL
, with b ∈ B ∪ {ε} we associate the unique transition

δ((u, v), c) = ((u′, v′), b) in T̃ (X)f,xL
.

Corollary 17. Let T (X)f,xL
, T̃ (X)f,xL

be the transducers defined as indicated

above. Then the corresponding graphs G(X)xL
and G̃(X)xL

are isomorphic.

Moreover if f is a commutative Latin square then they are also isomorphic as

transducers.

Remark 18. This result is consistent with the one in [4], where the isomorphism

between the left-to-right and right-to-left decoding transducers is proved for binary

codes, where the only Latin square map, different from identity, that is also com-

mutative, is the bitwise sum.

4.2. A remarkable strongly connected component

Another natural question is to ask what happens to the graph G(X)xL
when the

encoding key xL is modified.

In Example 8, we note that the unlabelled graphs associated to the two corre-

sponding transducers contains only one non trivial strongly connected component.

Actually, this illustrates a general property of transducers T (X)xL
that we are

going to show in the sequel.

We consider C(G(X)xL
), the subgraph of G(X)xL

whose vertices are elements

of V = Xd(Pref (X) \ X) × Suff (X̃+) and whose edges are the edges in G(X)xL

which are connected to V . connecting vertices in the subgraph.

Proposition 19. C(G(X)xL
) is a strongly connected component of G(X)xL

.

In view of proving Proposition 19, we state the following result that comes from

construction:

Lemma 20. Let (xi1 . . . xidp, v) be a vertex of C(G(X)xL
), with xij ∈ X, for all

1 ≤ j ≤ d, and let x ∈ X such that p is a prefix of x. Then C(G(X)xL
) contains a

path from (xi1 . . . xidp, v) to (xi2 . . . xidx, rx̃i1), where r is the suffix of v with length

|x| − |p|.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 747

A Generalization of Girod’s Bidirectional Decoding Method 747

Proof of Proposition 19.We consider an arbitrary pair of vertices in C(G(X)xL
),

(t1 . . . tdp, v), (t
′
1 . . . t

′
dq, v

′), with ti, t
′
j ∈ X for all 1 ≤ i, j ≤ d; p, q ∈ Pref (X) \X

and v, v′ ∈ Suff (X̃+). We are going to prove that C(G(X)xL
) contains a path

from (t1 . . . tdp, v) to (t′1 . . . t
′
dq, v

′). More precisely, we are going to construct a

sequence of vertices (ui, vi)
m
i=1 of C(G(X)xL

) such that (u0, v0) = (t1 . . . tdp, v),

(um, vm) = (t′1 . . . t
′
dq, v

′) and such that C(G(X)xL
) contains a path from (uk, vk)

to (uk+1, vk+1) for all 0 ≤ k ≤ m − 1. By definition, there exists a pair of words

td+1 ∈ X , y ∈ X̃+ such that p is a proper prefix of td+1 and such that v′ is a suffix

of y. Without loss of generality, we may assume that y = x̃d+k for some k ≥ 1 and

x ∈ X .

Starting from u0 = t1 . . . tdp, w0 = v0 = v, we set u1 = t2 . . . td+1, w1 = w0 t̃1 =

vt̃1, and we denote by v1 the suffix of w1 of lenght L − |u1|. According to Lemma

20, there is in C(G(X)xL
) a path from (u0, v0) to (u1, v1).

Since u1 starts with t2 we consider u2 = (t2)
−1u1x = t3 . . . td+1x, w2 = w1t̃2 =

vt̃1 t̃2, and denote by v2 the suffix of w2 with lenght L−|u2|. Furthermore according

to Lemma 20, a path from (u1, v1) to (u2, v2) exists in C(G(X)xL
).

The construction is completed in a similar way. The main steps are summarized

as indicated below. In each step, vn stands for the suffix of wn with length L−|un|.

u0 = t1 . . . tdp, w0 = v0 = v

u1 = t2 . . . td+1, w1 = w0t̃1 = vt̃1
u2 = t3 . . . td+1x, w2 = w1t̃2 = vt̃1 t̃2
...

...

ud = td+1x
d−1, wd = vt̃1 . . . t̃d

ud+1 = xd, wd+1 = vt̃1 . . . t̃dt̃d+1

ud+2 = xd, wd+2 = vt̃1 . . . t̃d+1x̃ = wd+1x̃
...

...

ud+k−1 = xd, wd+k−1 = wd+1x̃
k−1

ud+k = xd−1t′1, wd+k = wd+1x̃
k

...
...

u2d+k−1 = xt′1 . . . t
′
d−1

, w2d+k = wd+1x̃
d+k−1

u2d+k = t′1 . . . t
′
d, w2d+k+1 = wd+1x̃

d+k

u2d+k+1 = t′1 . . . t
′
dq, w2d+k+2 = w2d+k+1 .

(1)

According to Lemma 20, for each integer i ≥ 0, a path from (ui, vi) to (ui+1, vi+1)

exists in C(G(X)xL
). This completes the proof of Proposition 19. As a consequence,

we state the following result:

Proposition 21. Given a code X with a finite deciphering delay, and given a

encoding key xL, C(G(X)xL
) is the unique non trivial strongly connected component

of G(X)xL
which is accessible from any vertex of G(X)xL

.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 748

748 L. Giambruno et al.

0, 010 0, 100 0, 000

01, 0001, 10

Fig. 4. Theorem 22: the connected graph C(G(X) associated to X = {0, 01}.

Proof. Let X be a finite code with finite deciphering delay d ≥ 0. First, we prove

that the strongly connected component C(G(X)xL
) is accessible from any vertex

of G(X)xL
. Let (u, v) be a vertex in G(X)xL

\C(G(X)xL
). We have v = v1v2, with

v1 a non empty suffix of x̃L and v2 ∈ Suff (X̃+). Moreover, we have u = u′p with

u′ ∈ X+ and p ∈ Pref (X). By construction, a path with length not smaller than

|v1| starting from (u, v) necessarily reach a vertex (u′, v′), with v′ ∈ Suff (X̃+), thus

(u′, v′) is a vertex in C(G(X)xL
). This proves that C(G(X)xL

) is accessible from

any vertex of G(X)xL
.

In order to prove the uniqueness of C(G(X)xL
) we are going to prove that, for

any (u, v) in G(X)xL
\ C(G(X)xL

), the strongly connected component of (u, v) is

{(u, v), ∅}. In fact, let (u′, v′) be a vertex in G(X)xL
\ C(G(X)xL

) such that there

is a path from (u, v) to (u′, v′). By construction, a unique pair of words v1, v2 and

a unique pair of words v′1, v
′
2 exist such that v = v1v2 and v′ = v′1v

′
2, with v1,v

′
1 non

empty suffixes of x̃L, v2, v
′
2 ∈ Suff (X̃+), and |v′1| < |v1|. This last condition implies

that (u′, v′) 6= (u, v) and so that no cycle of G(X)xL
may contain (u, v), and this

completes the proof.

As another remarkable property, following by construction and by Proposition

21, the component C(G(X)xL
) does not depend of the key xL.

Theorem 22. Given a code X with finite deciphering delay d, a unique strongly

connected graph, namely C(X), exists such that C(X) = C(G(X)xL
), for any

key xL.

Figure 4 illustrates the result of Theorem 22 with the condition of Example 8.

5. Conclusions

In this paper we gave a generalization of Girod’s encoding/decoding method to

codes defined on alphabets of any size and with a finite deciphering delay. We

also gave a general construction of a transducer for decoding texts encoded by the

generalized Girod’s method. Some properties of this transducer and its underlying

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

October 15, 2015 15:53 IJFCS S0129054115500410 page 749

A Generalization of Girod’s Bidirectional Decoding Method 749

graph have been investigated. As a further works it could be of interest to develop

similar methods not just for finite codes but also for rational codes.

References

[1] M.-P. Béal, J. Berstel, B. H. Marcus, D. Perrin, C. Reutenauer and P. H. Siegel.
Variable-length codes and finite automata. In I. Woungang (ed), Selected Topics in

Information and Coding Theory. World Scientific, 2010.
[2] J. Berstel, D. Perrin and C. Reutenauer. Codes and Automata. Cambridge University

Press, 2010.
[3] A. S. Fraenkel and S. T. Klein. Bidirectional Huffman Coding, The Computer Journal,

33:296307 (1990)
[4] L. Giambruno and S. Mantaci. Transducers for the bidirectional decoding of prefix

codes, Theoretical Computer Science, 411:1785-1792 (2010)
[5] L. Giambruno and S. Mantaci. On the size of transducers for bidirec-

tional decoding of prefix codes. Rairo-Theoretical Informatics and Applications,
DOI:10.1051/ita/2012006 (2012)

[6] B. Girod. Bidirectionally decodable streams of prefix code words. IEEE Communica-

tions Letters, 3(8):245–247, August 1999.
[7] M. Lothaire. Applied combinatorics on words, Vol 104 of Encyclopedia of mathematics

and its applications. Cambridge University Press, 2005.
[8] J. Sakarovitch. Éléments de théorie des automates. Vuibert Informatique, 2003.
[9] D. Salomon. Variable-Length Codes for Data Compression. Springer-Verlag, 2007.

In
t.

J.
 F

ou
nd

. C
om

pu
t.

Sc
i.

20
15

.2
6:

73
3-

74
9.

 D
ow

nl
oa

de
d

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 P
ro

f.
 S

ab
ri

na
 M

an
ta

ci
 o

n
12

/0
7/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

