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ANALYTIC SOLUTIONS OF T H E  N A V I E R - S T O K E S  E Q U A T I O N S  

MARIA CARMELA LOMBARDO 

We consider the time dependent incompressible Navier-Stokes equations on 
an half plane. For analytic initial data, existence and uniqueness of the solution 
are proved using the Abstract Cauchy-Kovalevskaya Theorem in Banach spaces. 
The time interval of existence is proved to be independent of the viscosity. 

I. Introduction. 

Despite of  both the clear-cut physical model adopted and the simplicity 
of the resulting equations, up to date, there are many unanswered questions 
related to the unstationary Navier-Stokes problem. 

In the general three dimensional case only partial regularity results have 
been asserted: globally in time, the existence of a weak L2 solution is proved, 
but the question of  uniqueness is still open. On the other hand, existence 
and uniqueness of a smooth solution is stated only locally in time, the size 
of the time interval being determined by the data of  the problem. 

If one considers the L2 norm of  the velocity and its derivatives, it 
is possible to show that, in the case of periodic boundary conditions, the 
following inequality holds (see [1]): 

1 d ilVul122 < -v l lAul l  2 + cIIAuII~/211VuII~/2 
2 dt 

from which, with the aid of H61der's inequality, one can derive: 

d iiVull 2 < cv_3llVull~ 
dt 
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which degrades as v --+ 0. The question that naturally arises is: does the 
time of existence of a regular solution tend to zero as the viscosity tends 
to zero? 

The question of regularity is, other than a mathematical problem, also a 
philosophical one. A discontinuity in the solution would imply a macroscopic 
change over a microscopic infinitesimal interval, which, in turn, would reveal 
the presence of small scale structures in the flow. This would be in conflict 
with the assumption under which the incompressible Navier-Stokes equations 
are derived, namely interacting particles in a limit of infinite separation 
of length and time scales between the microscopic and the macroscopic 
phenomena. 

In the rest of this paper we shall prove that, in a suitable Banach space 
of analytic functions, a unique regular solution of the 3 - D Navier-Stokes 
equations on an half space exists for a time which is independent of the 
viscosity. We shall use an abstract formulation of the Cauchy-Kovalevskaya 
Theorem which allows to estimate the nonlinear term through an iterative 
procedure. In order to apply the above mentioned theorem without any loss 
of regularity, the essential point is the use of the Cauchy estimates for the 
derivatives of the analytic functions. 

Our analysis will strictly follow Sammartino and Caflish ([4] and [5]). 
In their papers the authors proved that the solution of the Navier-Stokes 
equations with analytic initial data can be decomposed in the form of an 
asymptotic series. The zero-order term is composed of the sum of an Euler 
solution plus a Prandtl solution exponentially decaying outside the boundary 
layer, while the norm of the correction term is showed to be of order 
in a proper Banach space of analytic functions. 

We generalize the results obtained therein. In fact we show that the 
time of existence of a regular solution does not depend on the boundary 
layer solution whereas in [4] and [5] the size of the domain of  analyticity 
was shrinking at each step of the asymptotic expansion. 

The paper is organized as follows: in Section 2 we shall set the notation 
and the functional spaces where existence and uniqueness will be proved. In 
Section 3 we will state the Abstract Cauchy-Kovalevskaya Theorem (ACK) 
in the form proposed by Safonov [3]. In Section [4] we shall introduce the 
Navier-Stokes operator we will need to put the Navier-Stokes equations in a 
suitable form for the application of the ACK theorem. Through the Navier- 
Stokes operator the Navier-Stokes equations will be solved in Section 5 and 
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the iterative procedure of the ACK theorem will be shown to converge to 

a unique solution. 

2. Statement of the problem and function spaces. 

We shall deal with the incompressible Navier-Stokes equations in a 3 - 
D half space for the velocity field u = (u, v), u and v being the components 
of the velocity tangent and ortogonal to the boundary respectively. Namely: 

(2.1) OtU - -  vAu + u �9 Vu + Vp  = 0, 

(2.2) V . u  = 0, 

(2.3) y u  = 0, 

(2.4) u(t  = 0) = u0, 

where y is the trace operator defined as: 

yu = (u(x, y = O, t), v(x, y = O, t)) 

and uo = (u~), uo,) is the initial data. Primed quantities denote the tangential 
components of  a vector, while the subscript n denotes the normal component. 
In the sequel we shall denote e 2 = u and Y = y / s .  

We shall also make use of the Fourier transform. Namely, given f ( x )  
we define its Fourier transform as: 

f (~ , )  _ 1 f dx f (x)e_iX ~, 
(2rr) 1/2 a 

where the above integral is on the whole real line. We shall adopt the 
convention of  using ~' as the dual of  x. Moreover if o ( T ) ( ~ ' )  is a function 

of ~' such that 

= 

where T is an operator acting on functions of one variable, then a ( T )  is 
called the symbol of  the pseudodifferential operator T. If T acts on functions 
of two (or more) variables,the definition is analogous. 

As far as this chapter is concerned we shall always be dealing with 
functions that are analytic in the two complex variables x and y. 
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(2.5) 

(2.6) 
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We first introduce the "strip" and the "conoid" in the complex plane. 

D(p) = R  x ( - p ,  p) = {x ~ C : ~ x  ~ ( - p ,  p)} 

E(0,  a) ={y 6 C:0  < 9~y < a and I~Y[ < 9~y tan0} 

U {y E C:9ty  > a and 13yl _< a tan0}. 

The functions will be L 2 in both the tangential and normal variable. Hence 
we introduce the paths along which the L 2 integration is performed: 

(2.7) F(b) ={x 6 C: ~x = b} 

F(0' ,  a) ={y  ~ C: 0 < My < a and ~y = 9~y tan 0'} 

(2.8) U { y 6 C : 9 t y  > a  and ~ y = a t a n O ' }  

In what follows the values of the angle 0 and the parameter l counting the 
number of derivatives will always be restricted to 

0 < 0 < rr/4 

4 < I .  

Let us now introduce the Banach spaces: we begin with the space of  functions 
which are analytic only in the x variable. 

DEFINITION 2.1. H 't'p is the set of all complex functions f (x )  such 
that 

I) f is analytic in D(p) 

2) a~f E L2( l - ' (~x) ) fo r  ~x ~ ( -p ,  p), ot < l; i.e. if ~x is inside 
( -p ,  p), then O~ f(9~c + i~x) is a square integrable function of 9Lr 

3) Iftt,p = )--'. sup II0~'f(" + i~x)llL2(r(~x~) < cx~. 
ct<l ".~xE(--p,p) 

In the above defined norm one has first to compute the usual L 2 norm, 
performing the integration with respect to the real part of  x and then one 
takes the sup with respect to the imaginary part of  x. 

~xE(--p,p) 

Notice that the above definition of  the norm is equivalent to: 

(2.9) Iflt,p=k~<_; l f  d~']ePl~'ll~'lkf(~')2}U2 



ANALYTIC SOLUTIONS OF THE NAVIER-STOKES EQUATIONS 303 

We now introduce the dependence on the time variable. 

l.l/l,P DEFINITION 2.2. "'t~,T is the set o f  all complex functions f ( x ,  t) such 
that 

1) 8 I f ( x ,  t) E L~176 T], n 'l-j'p for  j < l; 
l 

2) [flt,p,~,r ---- E sup [O/ f ( . , . ,  t)ll-j,p-lJt < oo. 
j=O O<t<T 

Let us now introduce the dependence on the normal variable. Since we 
want the time of  existence of  the solution to be independent of  the viscosity, 
we define a rescaled normal variable Y = 1/e.  

DEFINITION 2.3. L t'p'~ is the set o f  all functions f ( x ,  Y) such that 

1) f is analytic inside D(p)  x Y~(O, a/e)  
ot I c t  2 2) 8 r 81 f ( x ,  Y) E L2(F(O' ,a/e);  H ~O'p) with I0'1 _< O, cq _< 2, Otl + 

az < l and ~2 <_ l - 2 when Oll >" 0 

3) Ifll,p,o = ~ sup II loaf ( ' ,  Y)lo,pJlLz(r~o,,~/~.)~ 
ot<l 10'1- <0 

o~1 ct 2 + ~ ~ sup II 1Or Ox f ( ' ,  Y)lo, pllLzw(o',~m) < oo. 
0<~1-<2 0-<t~2<l-2 10'1-<0 

LI,p,O DEFINITION 2.4. The space ~,T is the set o f  functions f (x, Y, t) such 
that 

1) f E C~ T], L 1'p'~ and 8 tS~ f  E C~ T], L ~ with ~ < l - 2 

j ct t)lo,fl-[3t,O-l~t 2) If[,,p,o,tLr = Z E sup ]0 t 0 x f ( . , . ,  
O_<j<l ~t<l-2j O-<t<T 

+ E Z sup [ s y l s ~ 2 f ( ' , ' , t ) [ O , p - - ~ t , O - - f f !  ~ (~'~, 

0<~tl< 2 ~t2_<l_ 2 0<t<T 

Finally we recall the following Sobolev inequality, which will be useful in 
the sequel. 

and 

LI,p,O l l ,p ,  0 PROPOSITION 2.1. Let f , g  E t~,T and 1 > 4. Then f . g  E ~l~,r , 

I f "  glt,p,o,~,r < clflt,p,o,l~,rlgll,p,O,p,r. 
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The main result o f  this paper  is the fo l lowing theorem. 

THEOREM 2.1. Suppose that uo ~ L 1:~176176 I > 4, with V �9 uo = 0 and 

yuo  = O. Then there exist p,  fl, O , T  such that 0 < p < Po, 0 < 0 < 

0o, 0 < fl, 0 < T, such that the Navier-Stokes equations Eqs. (2.1) - (2.4) 
LI,p,O admit  a unique solution u ~ ~,T �9 This solution satisfies the fo l lowing 

Ll,P,O . bound in g.r �9 

lult,p,0,~,r < cluolI,po,0o. 

3. The Abstract Cauchy-Kovalevskaya Theorem. 

In order to prove existence and uniqueness for the Navier-Stokes equa- 
tions we are going to use an abstract version of the Cauchy-Kovalevskaya 
Theorem formulated in Banach spaces. We shall refer to the version pro- 
posed by Safonov [3]. 

We first define a Banach scale {Xp: 0 < p < Po} with norms I lp as 
a family of Banach spaces such that Xp, C Xp,, and I Ip" < I Ip '  when 

P" < P' < PO. 
For t in [0, T], consider the equation 

/o' (3.1) u( t )  = uo + ~'( r ,  u ( r ) ) d r .  

The following Theorem holds. 

THEOREM 3.1. (ACK) 

Let us assume that =IR > 0, Po > 0, and 15o > 0 such that i f  

0 < t < Po/~o, the fo l lowing hold: 

1) u < p' < p 5 Po the funct ion 

~'(t, u): {u e Xp: lulp < R} x [0, Polflo] --+ Xp, 

is continuous. 

2) VO < p < Po and t ~ [0, po//5o], the funct ion ~'(t, 0) is continuous in 

[0,/90//50] and satisfies, with a f ixed  constant K ,  the fo l lowing bound: 

(3.2) I.T'(t, 0) lp  < K. 
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3) u < p '  < p" < Po, t 6 [0, po//3o] and V U  1 , U 2 E Xp,, with 
lullp, < R, luZlp,, < R 

(3.3) [~'(t, U l) -- .T'(t, u2)lp, < C 
lu I - U2lp,, 

p i t  ~ pl 

Then f o r  any positive Po, R, C and K there is a positive constant ~o 
such that, under the above assumptions, 3fl > [Jo such that Eq. (3.1) 
has a unique continuously differentiable solution u(t) with 

u(t) ~ {u ~ Xp: lu(t)lp < R} for  all t ~ [0, (/90 - P)/~) .  

4. The Pseudodifferential Operators. 

In this section we shall introduce the operators we need in order to 
put the Navier-Stokes equations in a suitable form for the application of 
the ACK theorem. 

4.1. The Inverse Heat Operator. 

In order to apply the ACK theorem to Eqs. (2.1) - (2.4) one has first 
to invert the diffusion operator (Or-  e2Oxx-  Oyr) through the inverse heat 
operator E*. The operator E* solves the following system: 

(Or - e2Oxx - Oyy)E*u = u(x,  Y, t), 

(4.1) E*u(x ,  Y , t  = 0 )  = O, 

y E * u  = 0, 

Using the explicit expression of  E ' u ,  one can prove the following 
Propositions (see for examlpe [2]). 

�9 L 1,p,~ Lt,p,o PROPOSITION 4.1 Let u ~ [~,T �9 Then E*u E p,T and 

IE*ult,p,o,p,r < clull,p,o,~,r. 
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4:2. The Projec ted  Heat  Operator. 

We now introduce the divergence-free projection operator p~o. It is the 
pseudodifferential operator whose symbol is (we shall omit the distinction 
between the operator and its symbol): 

( 
( 4 . 2 )  p~O = E2~ '2 n t- ~2 ~--E~ ~n ~2~'2J' 

where ~' and ~n denote the Fourier variables corresponding to x and Y 
respectively. The operator poo can be through as 

P ~  = 1 - VA-IV.  

and has the property of being divergence-free, i.e. 

V . P ~ u  = O. 

It is possible to give an explicit expression of P ~  which avoids 
Fourier transform in y. One first extends u oddly to Y < 0, i.e. 

u(x ,  Y)  = - u ( x ,  - Y )  when Y < 0; 

and restricts the result of the application of poo to Y >_ 0 for application 
of the norm. The expression one gets for poo are: 

pnOOu =~e[~l ,l[f0YdY, (e-el~'[(Y-Y') _ e-el~'l(Y+Y')) ( _ N / i l l  _jr il2) 

(4.3) 
+fy~dg'(eE[~'l(Y-Y')(N'ulwu2)-ee[~'[(-Y-Y"(-N'ulq-u2))], 

(4.4) 

pc~' u =u 1 _ ~-el~ ] Y' (e -e'IU[(Y-Y') _ e-el~'[(Y+Y'))(u 1 + N 'u  2) 

fT ( >] + d Y '  eelUl(Y-Y')(ul - N tu  2) - eel~'l(-Y-Y')(u I + N 'u  2) . 

Using the above expressions, the following estimate is easily proved. 

PROPOSITION 4.2. Let  u ~ L l'p'O with y u  = O. Then P ~ u  ~ L l'p'O 

and  

IP~ulz,p,o ~ clukp,O.  
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We finally introduce the projected heat operator No, acting on vectorial 

functions, defined as 

(4.5) N'o = P ~ E * .  

poo commutes with the heat operator ( O r -  Oyy-  e2Oxx). It then follows 

that for each u such that yu  = 0 

(4.6) 

(4:7) 

V .N0u = O, 

(Or - Orv - 620xx).N'ou = P~176  

Using the estimates given for poo and E*, one can prove the following: 

LI,P,O Ll,p,O PROPOSITION 4.3. Suppose u E g,T �9 Then .N'oU E #,T and 

]A/'oult,p,O.l~,T < clult,p,O~,T. 

4.3. The Navier-Stokes Operator. 

In order to invert the Navier-Stokes equations we first introduce the 
Stokes operator S. It solves the linearized Navier-Stokes equations in the 
half space y > 0 with initial condition uo and boundary data g, namely: 

(4.8) (Or - vA)S(g ,  Uo) + Vp = 0, 

(4.9) V �9 S(g, Uo) = 0, 

(4.10) y S ( g ,  uo) = g(x, t), 

(4.11) S(g, uo)(x, y, t = 0) = uo. 

The Stokes problem Eqs. (4.8)-(4.11) can be explicitly solved following 
the same line as in [6], where the case of non-zero initial data is also 
considered. Using such an explicit form of the operator S, one can prove 

the following estimate. 

PROPOSITION 4.4. Suppose that uo E L t'p'~ with W.uo = 0. Moreover  
l.ltl,P let g ~ "~ ,T ,  with g(t = 0) = yuo and such that the normal component  
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is of  the form 

(4.12) gn = 1~'1 d Y ' f ( ~ ' ,  Y', t)k(~', Y'), 

fo ~ L l,p,o / l,p,o with I~'l dY'lk(~', Y')l _ < 1 and f 6 ~,r" Then S(g, Uo) 6 "~p,r, 

and 

IS(g, U0)lt,p,0~,r < c(Ig'lt,p,~,T + Iflt,p,ol~,T + luolt.p,o. 

Remark. Notice that it is not possible to give an estimate of the 
L 2 norm in Y for a general class of boundary data. Nevertheless the 
conditions required by Proposition (4.6) will be satisfied by the solution 
to the Navier-Stokes equation. 

The final step of the procedure is to introduce the Navier-Stokes 

operator A/'* 

(4.13) .M*(w, Uo) = NoW - S(yAfoW, 0) + S(0, Uo), 

which inverts the following Stokes equations: 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(% - t23xx - 3~'I,)A/'*(w, Uo) + Vp  = w, 

V �9 A/'*(w, uo) = O, 

yA/'* (w, uo) = O, 

A/'*(w, Uo)(x, y, t - 0) = Uo. 

With the aid of Proposition 4.3 and 4.4 one can easily prove the following. 

fl,p,O Ll,p,O PROPOSITION 4.5. Let w E ~ , r  and Uo ~ with yUo = 0 and 
Lt,,,o V . u o = 0 .  Then .A/'*(w, uo) ~ ~,r and 

IN*(w, uo)lt,p,0,~,r ~ c(Iwlt,p,o~,r + luolt,p,0). 

Proof. We only have to prove that the normal component of the 
boundary data YA/'o is of the form (4.12) required by Proposition 4.4. 
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This is easily checked by a straightforward calculation using the explicit 

expression of Pn ~176 given by Eq. (4.3). 

5. The Main Result. 

In this section we shall prove the existence and uniqueness of the 
solution to the Navier-Stokes equations as stated in Theorem 2.1. 

With the aid of the operators introduced in the previous section, one 
can put the Navier-Stokes equations, Eqs. (2.1)-(2.4), in the form: 

(5 .18 )  u = A f * ( u  �9 V u ,  uo) ,  

as required by the ACK theorem. We have to verify that the hypotheses 
1., 2. and 3. of the Theorem 3.1 are satisfied by the operator N'*. The 
hypotheses 1. and 2. are trivial. 

As far as 3. is concerned we observe that we have to deal with the 
estimate of the nonlinear term, which also involves the derivatives of the 
velocity. We hence state the following Lemmas (Cauchy estimates). 

LEMMA 5.1. Let f ( x ,  Y) E L l'p'~ ThenforO < p' < p andO < O' < 0 

[flt,p,O 
[Oxfll,p'.O < c p - p' ' 

Ix(Y)Ov fb,p,O' <_ c 
Iflz,p,O 
0 - 0 '  

In the above Proposition the Y - derivative has to be multiplied by 
x(Y), which is a monotone, bounded function going to zero linearly fast 
near the origin, because of the conoidal shape of the domain. 

Using the Sobolev inequality, Proposition 2.1 we can prove the 
following Lemmas: 

LEMMA 5.2. Let f ( x ,  Y) and g(x,  Y) be in L t'p'~ Then for  0 < p' < p 

Iflt,p,O 
p - p'  
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LEMMA 5.3. Let f ( x ,  Y) and g(x,  Y) be in L t'p'~ with g(x,  Y = 

0 ) = 0 .  Then for  0 < 0 ' < 0  

[fll,p,o 
Ig~Y fh, , ,o '  < clglt.p,o' 0 - O' 

With the aid of the above Lemmas, the nonlinear part is easily bounded 
as stated by the following Proposition. 

LI,P, O PROPOSITION 5.1. Suppose u I and u 2 are in ~,T wxith ynw I = 

ynw 2 = 0 .  Then for  O < p~ < p and 0 < 0 ' < 0  

lul - u2l/'P'~ [ul - u2lt'P"~ 1 
lu I �9 V u  I - u 2 �9 Vu2lt,p, o, < c P' -t- 

where the constant c depends only on I ul It,p,og,r and lu2lt,p,ol~,T. 

This concudes the proof of the Theorem 2.1. 

6 .  C o n c l u d i n g  R e m a r k s .  

In this paper we have considered the incompressible Navier-Stokes 
equations on an half space. Assuming analiticity of the initial data, we 
have proved that a unique regular solution exists for a time which is 
independent of the viscosity. Moreover, since the result has been obtained 
through a direct study of the Navier-Stokes equations, it clarifies how the 
time of existence of a regular solution does not depend on the boundary 
layer solution. 

We stress the fact that the properties of the analytic functions (especial- 
ly the Cauchy estimates), play an essential role in the proof. No analogous 
result, in the realm of Sobolev space, up to date is known. 
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