
Digital Object Identifier (DOI) 10.1007/s00205-016-0995-x
Arch. Rational Mech. Anal. 222 (2016) 15–45

Zero Viscosity Limit for Analytic Solutions of
the Primitive Equations

Igor Kukavica , Maria Carmela Lombardo &
Marco Sammartino

Communicated by P. Constantin

Abstract

The aimof this paper is to prove that the solutions of the primitive equations con-
verge, in the zero viscosity limit, to the solutions of the hydrostatic Euler equations.
We construct the solution of the primitive equations through a matched asymptotic
expansion involving the solution of the hydrostatic Euler equation and boundary
layer correctors as the first order term, and an error that we show to be O(

√
ν). The

main assumption is spatial analyticity of the initial datum.

1. Introduction

In this paper, we address the vanishing viscosity limit and analyze the structure
of the boundary layer for solutions of the primitive equations with the non-slip
boundary condition on the bottom of the domain.

The primitive equations provide a fundamental model in the study of the global
circulation dynamics and weather prediction. They are obtained from the full
Boussinesq system under the hydrostatic approximation, where the equation for
the motion of the third component of the velocity is replaced by the hydrostatic
equation for the pressure. This approximation is natural when comparing the sizes
of different terms in the momentum equation for physical data. The resulting equa-
tions are challenging mathematically due to the loss of a derivative compared either
to the original Boussinesq model or to the Navier–Stokes equations.

The study of the primitive equations was initiated by Lions,Wang, and Temam
[31–33], who provided the mathematical setting for the equations and established
results pertaining to the existence of weak and strong solutions. This theory was
advanced by Temam and Ziane [51], who proved the existence of a global weak
and the local strong solution (cf. also [44,53]). The global existence of strong
solutionswas proved byCao andTiti in [11] (see also [29,30] for non-slip boundary
conditions addressed in the present paper). For other works on the regularity of
solutions for the primitive equations cf. [14,26].
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On the other hand, the hydrostatic Euler equations (or simply hydrostatic equa-
tions) were derived by Lions in [34] as a thin domain approximation of the Euler
equation (cf. also [5,20]). However, the equations seem to be unstable, due to the
aforementioned derivative loss in the equations, and the local existence is currently
only known for convex data [4,20,40], analytic data [27], or a combination thereof
[25]. Due to instability of the spectrum, it is believed that for Sobolev data the
equations are locally ill-posed [20,46]; currently a finite time blow-up may occur
as shown in [10].

Since the primitive equations model large scale motion of the ocean, while the
viscosity acts on small scales, it seems natural to expect that the viscosity does
not play a role in the dynamics and can be neglected. This leads to the question of
whether the primitive equations converge to the hydrostatic Euler equations in the
limit of a vanishing viscosity. While a lot is known about this singular limit in the
case of the Navier–Stokes equations, the case of the primitive equations is open for
any class of initial data.

Themain goal of this paper is to prove that the vanishing viscosity theoremholds
for the primitive equations with non-slip boundary conditions given analytic initial
data (cf. Theorem 8.1 below). For the Neumann (no-flow) boundary conditions,
we can extend the solutions by reflection and periodicity to the case of a domain
with no boundary [19,45]. It is then possible to obtain the vanishing viscosity limit
theorem for analytic data by an adaptation of the techniques in the present paper.
When considering the non-slip boundary condition we are faced, in addition, with
different boundary conditions at the limit, the hydrostatic equations allowing a
tangential slip.

Here we briefly summarize some of the work on the vanishing viscosity limit
for the Navier–Stokes equations. First, the case of the domain without boundary
was completely resolved in [13,21,39,43]. On the other hand, the convergence of
the Navier–Stokes solution toward the Euler solution is still an open problem in
the case of non-slip (Dirichlet) boundary condition. An important necessary and
sufficient condition was found by Kato [22], who showed that the vanishing limit
theorem holds if the total dissipation in a small neighborhood of size ν of the
boundary vanishes in the limit ν → 0. Other sufficient conditions were found in
[12,23,50,52] (cf. also a review paper [2]). On the other hand, for analytic data, the
vanishing viscosity limit was established in [48,49] for the case of the half space. In
addition, an asymptotic expansion of the Navier–Stokes solution was provided as a
sum of the Euler equation and the Prandtl corrector in the physical boundary layer.
The approach was extended to the case of the exterior of a disk [6] (see also [9] for
non-compatible initial data). For non-analytic data, the vanishing limit only holds
in certain situations in the case when the Navier–Stokes nonlinearity decouples, in
the presence of certain symmetries, if the vertical viscosity is smaller compared to
the horizontal one, or in the case of compactly supported vorticity [3,24,37–39,42].

Compared to the Navier–Stokes counterpart, we are faced with several difficul-
ties. The first is the loss of the derivative in the vertical velocity component. Due to
this fact, the hydrostatic Euler equation is not solvable except in analytic spaces or
with convex data. The second difficultywe are facedwith is that the physics requires
non-slip boundary conditions on the bottom, but Neumann conditions on the top,
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representing the ocean surface. This is overcome by a reflection principle, which
allows us to set the problem so we have non-slip boundary conditions on both sides
of the boundary. However, we then need to provide asymptotic expansions on both
sides of the boundary. Since the expansions on both sides interfere with each other,
we need to add additional correction terms. Finally, the non-slip boundary condi-
tions lead to an additional boundary term when inverting the pressure equation, and
this term has a derivative loss as well.

In order to solve the vanishing viscosity problem for the primitive equations,
we develop the solution in an asymptotic expansion near the boundary, which in
turn requires the analysis of the boundary layer equations. The main result of this
paper states that the solution u of the primitive equations (PE), in the limit of small
viscosity ν → 0, has the asymptotic structure

u = u(0) + √
νu(1) + √

νe, (1.1)

where

u(0) = uH + ũBL

with uH the solution of the hydrostatic equations and uBL a boundary layer (BL)
corrector that varies rapidly close to the boundaries and decays exponentially small
away from them. This boundary layer (BL) corrector is needed to compensate for
the tangential slip generated by the hydrostatic solution. The first order term in the
above expansion u(1) is given by

u(1) = uH(1) + uBL(1)

where uH(1) is a small correction to the hydrostatic flow, which solves Equa-
tions (5.3a)–(5.3d), and uBL(1) is a small correction to the boundary layer flow
which is assumed to solve a linear heat equation with the term e an overall correc-
tion solving Equations (5.7a)–(5.7e) below.

The paper is organized as follows. In Section 2, we recall the primitive and
the hydrostatic equations. We introduce the expansion of the solution in terms
of the hydrostatic equation, the boundary layer corrections ũ+, ũ−, and the error
w. Section 3 contains the local existence result for the hydrostatic equation with
analytic data, proved using the abstract Cauchy–Kowalevski (ACK) theorem. In
Section 4, we provide a construction of the boundary layer correctors. The reminder
w is decomposed further in Section 5, where we introduce the refined error e. In
the remainder of the paper, we finally prove that the error e is uniformly bounded
on a local time interval. In Section 8 the main result of the paper is formally stated.

2. The Primitive and the Hydrostatic Equations

2.1. The Primitive Equations

The primitive equations (PE) for a velocity field u (x, z) = (u, u3), where
x ∈ T

2 and z ∈ [−h, h] read
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∂tu + u · ∇u + u3∂zu + ∇p = ν�u + ν∂zzu (2.1a)

∇ · u + ∂zu3 = 0 (2.1b)

γ +u = γ +u3 = 0 (2.1c)

γ −u = γ −u3 = 0 (2.1d)

u (x, z, t = 0) = u0 (x, z) . (2.1e)

In the above equations ∇ = (∂x , ∂y) and � = ∂xx + ∂yy denote the horizontal
gradient and the Laplacian, while

γ + f (x, y, z) = f (x, y, z = h) (2.2)

and

γ − f (x, y, z) = f (x, y, z = −h) (2.3)

represent the traces on the upper and the lower boundary respectively. The normal
velocity u3 is computed from

u3 = −
∫ z

−h
∇ · u dz′.

Note that the boundary conditions for u3 at the top of the domain are equivalent to
the condition

∫ h

−h
∇ · u dz′ = 0.

We shall assume that the initial datum is compatible with the boundary condition

γ ±u0 = 0, (2.4)

and satisfies

∫ h

−h
∇ · u0 dz′ = 0. (2.5)

Taking the two dimensional divergence of (2.1a) and then averaging in the vertical
direction give an equation for the pressure

−�p = 1

2h

(∫ h

−h
∇ · (∇ · (uu)) dz′ − ν

[
∂z∇ · u]z=h

z=−h

)
. (2.6)

Equation (2.6) ensures that the zero-average condition for the divergence of the
initial datum u0 is maintained by the solution.
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2.2. The Hydrostatic Euler Equations

Next we recall the hydrostatic Euler equations

∂tuH + uH · ∇uH + uH
3 ∂zuH + ∇pH = 0 (2.7a)

∇ · uH + ∂zuH
3 = 0 (2.7b)

γ +uH
3 = 0 (2.7c)

γ −uH
3 = 0 (2.7d)

uH (x, z, t = 0) = u0 (x, z) . (2.7e)

Also in this case the normal velocity u3 is computed by

uH
3 = −

∫ z

−h
∇ · uH dz′. (2.8)

Moreover, the boundary condition for uH
3 at the top of the domain is equivalent to

the condition ∫ h

−h
∇ · uH dz′ = 0,

which by taking the two dimensional divergence of (2.7a) and averaging in the z
direction leads to

− �pH = 1

2h

∫ h

−h
∇ ·

(
∇ · (uHuH )

)
dz′. (2.9)

The above equation for the pressure ensures that the zero-average condition for the
divergence of the initial datum u0 is maintained by the solution.

2.3. The Expansion

First, we expand the PE solution as

u = uH + ũ+ + ũ− + εw (2.10a)

u3 = uH
3 + εũ+

3 + εũ−
3 + εw3, (2.10b)

where ε = √
ν. The terms (ũ±, εũ±

3 ) specified in the next section are boundary
layer (BL) correctors at the top and bottom boundaries. They correct (cancel) the
tangential slip introduced by the hydrostatic solution. We show below that these
correctors decay exponentially fast away from the boundary layer. Also, we show
that

ũ− = uBL− − γ −uH

ũ−
3 =

∫ h/ε

Z
∇ · uBL− dZ ′ (2.11)

where uBL− is a BL solution which approximates the primitive equation solution
at the bottom boundary. The variable Z is a rescaled normal variable, the meaning
of which is explained in the next subsection.

The term (w, w3) is a remainder term which is expanded further in Section 5.
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2.4. The Boundary Layer Equation: the Bottom Boundary

We introduce the rescaled variable

Z = z

ε
.

Assuming that close to the bottom boundary the solution of the PE depends on Z ,
denoting the boundary layer approximation of the PE solutionwith (uBL−, εuBL−

3 ),
and imposing the usual boundary layer asymptotic hypotheses,weobtain the bound-
ary layer equations

∂tuBL− + uBL− · ∇uBL− + uBL−
3 ∂ZuBL− + ∇pH = ∂Z ZuBL− (2.12a)

uBL−
3 = − ∫ Z

−h/ε
∇ · uBL−(x, Z ′, t) dZ ′ (2.12b)

uBL−(x, Z = −h/ε, t) = 0 (2.12c)

uBL−(x, Z = h/ε, t) = γ −uH (2.12d)

uBL−(x, Z , t = 0) = 0. (2.12e)

Introducing the new function ũ− defined by

ũ− = uBL− − γ −uH (2.13)

and using

∂tγ
−uH + γ −uH · ∇γ −uH + ∇pH = 0,

which are derived by taking the trace of (2.1a) at the bottom boundary, we may
write the equation for ũ− as

∂t ũ− + ũ− · ∇ũ− + ũ− · ∇(γ −uH ) + (γ −uH ) · ∇ũ−

+ uBL−
3 ∂Z ũ− = ∂Z Z ũ−, (2.14a)

uBL−
3 = − ∫ Z

−h/ε
∇ · ũ− dZ ′ − (Z + h/ε) ∇ · (γ −uH ), (2.14b)

ũ−(x, Z = −h/ε, t) = −γ −uH , (2.14c)

ũ−(x, Z = h/ε, t) = 0, (2.14d)

ũ−(x, Z , t = 0) = 0. (2.14e)

Note that the initial condition and the boundary datum for ũ− are compatible thanks
to the fact that the initial datum for the PE satisfies the compatibility condition (2.4).
We define the normal velocity at the bottom boundary layer as

ũ−
3 =

∫ h/ε

Z
∇ · ũ− dZ ′.

It is identically zero at the top boundary and decays exponentially fast away from
the bottom boundary. Therefore, the vector (ũ−, εũ−

3 ) is the appropriate bottom BL
corrector to the solution of the hydrostatic equation (uH , uH

3 ). In fact (ũ−, εũ−
3 )

has the following properties:
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– it is divergence free;
– it corrects the tangential slip generated by uH ;
– it decays away from the bottom boundary layer;
– it generates normal flux at the bottom boundary which, however, is O(ε).

The normal flux (recall that the solution of the PE has zero normal flux at the bottom
boundary) will be corrected by the higher order terms in the asymptotic expansion.

2.5. The Boundary Layer Equation: the Top Boundary

For the boundary layer at the top we write analogous equations

∂tuBL+ + uBL+ · ∇uBL+ + uBL+
3 ∂ZuBL+ + ∇pH = ∂Z ZuBL+ (2.15a)

uBL+
3 = − ∫ Z

h/ε
∇ · uBL+(x, Z ′, t) dZ ′ (2.15b)

uBL+(x, Z = h/ε, t) = 0 (2.15c)

uBL+(x, Z = −h/ε, t) = γ +uH (2.15d)

uBL+(x, Z , t = 0) = 0. (2.15e)

Introducing the new function

ũ+ = uBL+ − γ +uH (2.16)

and using

∂tγ
+uH + γ +uH · ∇γ +uH + ∇pH = 0,

we write the equations for ũ+ as

∂t ũ+ + ũ+ · ∇ũ+ + ũ+ · ∇(γ +uH ) + (γ +uH ) · ∇ũ+ + uBL+
3 ∂Z ũ+

= ∂Z Z ũ+, (2.17a)

uBL+
3 = − ∫ Z

h/ε
∇ · ũ+ dZ ′ − (Z − h/ε) ∇ · (γ +uH ), (2.17b)

ũ+(x, Z = h/ε, t) = −γ +uH , (2.17c)

ũ+(x, Z = −h/ε, t) = 0, (2.17d)

ũ+(x, Z , t = 0) = 0. (2.17e)

We also define the normal velocity at the bottom boundary layer as

ũ+
3 =

∫ −h/ε

Z
∇ · ũ+ dZ ′

and note that the corrector at the top boundary (ũ+, εũ+
3 ) satisfies the properties

analogous to the (a)–(d) for the bottom BL corrector.
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2.6. The Equation for the Remainder

We define the zeroth order approximation to the PE solution as

(u(0), u(0)
3 ) = (uH + ũ+ + ũ−, uH

3 + εũ+
3 + εũ−

3 ).

This approximation satisfies the no-slip condition at the boundary, but it may have
a non-zero flux. The remainder (w, w3) in the expansion (2.10a)–(2.10b) must
therefore cancel this normal flux. After some straightforward calculationswe derive
the equations for the remainder (w, w3), which read

∂tw + w · ∇u(0) + u(0) · ∇w + εw · ∇w + w3∂zu(0) + u(0)
3 ∂zw

+εw3∂zw + ∇pw = ε2�3w + F0 + F−1 (2.18a)

∇ · w + ∂zw3 = 0 (2.18b)

γ +w = 0 , γ +w3 = ∇ · G+ (2.18c)

γ −w = 0 , γ −w3 = ∇ · G− (2.18d)

w(x, Z , t = 0) = 0 (2.18e)

where

G− = −
∫ h/ε

−h/ε

ũ− dZ ′, G+ =
∫ h/ε

−h/ε

ũ+ dZ ′;

the source term has been split, for clarity’s sake, in a part which formally is of
zeroth order in ε

F0 = ε�3uH + ε(�ũ+ + �ũ−) − ε−1[ũ+ · ∇ũ− + ũ− · ∇ũ+]
− ε−1[(uH − γ +uH ) · ∇ũ+ + ũ+ · ∇(uH − γ +uH )

+ (uH − γ −uH ) · ∇ũ− + ũ− · ∇(uH − γ −uH )]
− ε−1[(uH

3 + (z + h)γ −∇ · uH )∂z ũ− + (uH
3 + (z − h)γ +∇ · uH )∂z ũ+]

− ũ+
3 ∂zuH − ũ−

3 ∂zuH − ũ+
3 ∂z ũ− − ũ−

3 ∂z ũ+

(actually the first term is O(ε), while the second, third, and the last two terms are
exponentially small) and a part which is O(ε−1)

F−1 = ∇ · G+ ∂z ũ+ + ∇ · G− ∂z ũ−.

3. Results: the Construction of the Hydrostatic Solution

In this section, we provide a well-posedness result for the hydrostatic equations
(2.7a)–(2.7e) in the analytic setting. In the literature, several results of this type have
appeared, treating analytic datawith uniformanalyticity radius in thewhole domain.
Here we shall state a result in the analytic function spaces more appropriate for the
subsequent analysis and addressing data whose analyticity radius decays linearly
when approaching the boundary.
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3.1. Function Spaces for the Hydrostatic Equations

For functions defined on the boundary, we introduce

D(ρ) = {x ∈ C
2 : �x ∈ T

2 , �x ∈ (−ρ, ρ)2}, (3.1)

which expresses the domain of analyticity with respect to the tangential variable
x. Then we define the space of the functions analytic with respect to the tangen-
tial variable. Analyticity is expressed in terms of decay properties of the Fourier
spectrum.

Definition 3.1. The space Hl,ρ is the space of functions f (x) such that

• ∂
j
x f , with 0 � j � l, is analytic in D(ρ);

• | f |l,ρ = ∑
0� j�l

(∑
k∈Z2 e2ρ|k|(1 + k2) j | fk |2

)1/2
< ∞.

The following space is the space of functions depending on (x, t). The analyt-
icity radius decreases linearly in time at the rate β. The trace of the solution of the
hydrostatic equations belongs to the space below and therefore also the boundary
data for the equations of the BL corrector.

Definition 3.2. The space Hl,ρ
β,T is the set of functions f (x, t) for which

• ∂ it ∂
j
x f (x, t) ∈ H0,ρ−βt for all 0 � t � T with 0 � i + j � l and 0 � i � 1.

We now define the domain of analyticity with respect to the normal variable z

	(θ) = {z ∈ C : �z ∈ [−h, 0], |�z| < (�z + h) tan θ}
∪{z ∈ C : �z ∈ [0, h], |�z| < (h − �z) tan θ}, θ < π/4

and the path of integration in the complex plane

�(θ ′) = {z ∈ C : �z ∈ [−h, 0], |�z| = (�z + h) tan θ ′} ∪
{z ∈ C : �z ∈ [0, h],�z = (h − �z) tan θ ′}, θ ′ < θ.

Definition 3.3. The space Hl,ρ,θ , with θ < π/4, is the set of the functions f (x, z)
such that

• f is analytic in D(ρ) × 	(θ);
• ∂

α1
x ∂

α2
z f ∈ L2(�(θ ′); H0,ρ) with |θ ′| � θ , α1 + α2 � l;

• | f |l,ρ,θ = ∑
α1+α2�l sup|θ ′|�θ ‖|∂α1

x ∂
α2
z f (·, z)|0,ρ‖L2(�(θ ′)) < ∞.

Definition 3.4. The space Hl,ρ,θ
β,T is defined as the set of all functions f (x, z, t)

such that

• f (x, z, t) ∈ Hl,ρ−βt,θ−βt and ∂t f (x, z, t) ∈ Hl−1,ρ−βt,θ−βt for all t ∈ [0, T ],
Moreover,

| f |l,ρ,θ,β,T ≡
∑

α1+α2�l

sup
0�t�T

|∂α1
x ∂α2

z f (·, ·, t)|0,ρ−βt,θ−βt

+
∑

α1+α2�l−1

sup
0�t�T

|∂t∂α1
x ∂α2

z f (·, ·, t)|0,ρ−βt,θ−βt < ∞.



24 I. Kukavica, M. C. Lombardo & M. Sammartino

Remark 1. Here and in the rest of the paper we suppose that the index l is large
enough to give to all the function spaces the structure of an algebra. For example
we have that if f, g ∈ Hl,ρ,θ , then f g ∈ Hl,ρ,θ with the estimate

| f g|l,ρ,θ < c| f |l,ρ,θ |g|l,ρ,θ .

We shall make the same assumption for the function spaces K (that we shall in-
troduce for the construction of the boundary layer solutions), M (introduced in
Section 6.1 in the analysis of the first order hydrostatic Euler equations), and L
(introduced in Section 7 and used in the construction of the correction e).

3.2. Well-Posedness Result for the Hydrostatic Equations

The well-posedness of the hydrostatic equations is expressed by the following
theorem.

Theorem 3.1. Suppose the initial datum of the hydrostatic equations u0 belongs to
Hl,ρ0,θ0 and satisfies the compatibility condition (2.5). Then there exist β0 > 0 and
T0 > 0 such that Equations (2.7a)–(2.7e) admit a unique solution uH ∈ Hl,ρ0,θ0

β0,T0
.

Note that, for the above theorem to hold, one only needs to require the compatibility
condition between the initial datum and the incompressibility condition (2.5). It is
not necessary to impose condition (2.4).

The proof is based on the ACK theorem given in Appendix E. The crucial step
in recasting the hydrostatic equation in the operator form suitable for application of
the ACK theorem is to eliminate the pressure from the equation using (2.9) which
gives the expression

∇pH = −∇�−1 1

2h

∫ h

−h
∇ · (∇ · (uHuH ))dz′. (3.2)

Moreover, one has the following lemma which gives an estimate of the gradient of
the pressure in terms of the velocity.

Lemma 3.1. Let u ∈ Hl,ρ,θ , and let p be expressed by

p = −�−1
(

1

2h

∫ h

−h
∇ · (∇ · (uu)) dz′

)
.

Then, if 0 < ρ′ < ρ, we have ∇p ∈ Hl,ρ′
and the estimate

|∇p|l,ρ′ � c
|u|l,ρ,θ

ρ − ρ′

holds.
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The proof is achieved by expressing the operators ∇ and �−1 in terms of their
Fourier symbol, using Remark 1, and the Cauchy estimate for the derivative of an
analytic function.

We then rewrite the hydrostatic equations in the integrated form

uH + F(uH , t) = 0

where

F(uH , t) = uH
0 +

∫ t

0
(uH · ∇uH + uH

3 ∂zuH + ∇pH ) ds,

where the pressure gradient is given by (3.2), while uH
3 is given by (2.8).

With the help of the lemma above, and of the Cauchy estimate to bound the
operators ∇ and ∂z , we obtain that F is bounded and quasi-contractive and thus
satisfies the hypotheses of theACK theorem. This concludes the proof Theorem3.1.

4. Results: the Construction of the Layer Correctors

4.1. Function Spaces for the Boundary Layer Equations

We first introduce the domain of analyticity

�(θ) = {Z ∈ C : �Z ∈ [−h/ε, 0], |�z| < (�Z + h/ε) tan θ}
∪ {Z ∈ C : �Z ∈ [0, h/ε], |�Z | < (h/ε − �Z) tan θ} , θ < π/4

of the normal variable for the BL correctors.

Definition 4.1. The space K−,l,ρ,θ,μ is the space of functions f (x, Z) such that,
for i + j � l and j � 2, eμ(�Z+h/ε)∂ ix∂

j
Z f ∈ L∞(�(θ), K 0,ρ) . The norm in

K−,l,ρ,θ,μ is defined as

| f |l,ρ,θ,μ ≡
∑
j�2

∑
i�l− j

sup
Z∈	−(θ)

eμ(�Z+h/ε) |∂ j
Z∂ ix f (·, Z)|0,ρ .

Definition 4.2. The space K−,l,ρ,θ,μ
β,T , with θ < π/4, is the space of the functions

f (x, Z , t) such that

• f ∈ K−,l,ρ−βt,θ−βt,μ−βt and ∂t∂
i
x f ∈ K−,0,ρ−βt,θ−βt,μ−βt for all 0 � t � T ,

where 0 � i � l − 2.

Moreover,

| f |l,ρ,θ,μ,β,T ≡
∑

0� j�2

∑
i�l− j

sup
0�t�T

|∂ j
Z∂ ix f (·, ·, t)|0,ρ−βt,θ−βt,μ−βt

+
∑

i�l−2

sup
0�t�T

|∂t∂ ix f (·, ·, t)|0,ρ−βt,θ−βt,μ−βt < ∞.

The spaces K+,l,ρ,θ,μ and K+,l,ρ,θ,μ
β,T are defined analogously, imposing the

exponential decay away from the top boundary.
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4.2. Well-Posedness Result for the Boundary Layer Equations

We now state the existence and uniqueness result concerning system (2.14a)–
(2.14e). Given that we have proven that uH ∈ Hl,ρ0,θ0

β0,T0
, we may assume that the

gradients ofuH ,which are present in (2.14a), have the same regularitywith a smaller
analyticity radius. This means that we can assume that∇uH , ∂ZuH ∈ Hl,ρ1,θ1

β0,T ′
0

with

ρ1 < ρ0, θ1 < θ0 and T ′
0 < T0. The same reasoning is applied to the subsequent

terms in the asymptotic expansion and is thus omitted.
With the same techniques used in [8,28,35,48] one can prove the following

result.

Theorem 4.1. Suppose that u0 ∈ Hl,ρ0,θ0 and satisfies the compatibility conditions
(2.4)-(2.5). Then there exist β1 < β0 and T1 < T0 and μ1 > 0 such that the
system (2.14a)–(2.14e) admits a unique solution ũ− ∈ K−,l,ρ1,θ1,μ1

β1,T1
and ũ−

3 ∈
K−,l−1,ρ1,θ1,μ1

β1,T1
.

An analogous statement holds for the system (2.17a)–(2.17e).

Theorem 4.2. Suppose that u0 ∈ Hl,ρ0,θ0 satisfies the compatibility conditions
(2.4) and (2.5). Then there exist β1 > β0 and T1 < T0 such that the system (2.17a)–
(2.17e) admits a unique solution ũ+ ∈ K+,l,ρ1,θ1,μ1

β1,T1
and ũ+

3 ∈ K+,l−1,ρ1,θ1,μ1
β1,T1

.

5. Asymptotic Expansion of the Remainder

In this section, we decompose the remainder as

w = uH(1) + ũ+(1) + ũ−(1) + e (5.1a)

w3 = uH(1)
3 + εũ+(1)

3 + εũ−(1)
3 + e3 (5.1b)

pw = pH(1) + pe. (5.1c)

In the rest of the paper we shall use the following notation:

u(1) = uH(1) + ũ+(1) + ũ−(1) (5.2a)

u(1)
3 = uH(1)

3 + εũ+(1)
3 + εũ−(1)

3 . (5.2b)

The term (uH(1), uH(1)
3 ) is afirst order correction to thehydrostatic solution (uH , uH

3 ).
It is introduced to correct the vertical inflow introduced at the bottom boundary by
the zeroth order BL correction (ũ−, εũ−

3 ), as well the vertical inflow introduced
at the top boundary by the zeroth order BL correction (ũ+, εũ+

3 ). However, uH(1)

introduces tangential slip at both boundaries.
The term (ũ+(1), εũ+(1)

3 ) is a first order BL corrector at the top boundary, with

a similar meaning for (ũ−(1), εũ−(1)
3 ). They are introduced to correct the tangential

slip introduced by uH(1). However, these first order BL correctors introduce normal
inflow at the boundaries (in the same fashion as the zeroth order BL correctors
(ũ+, εũ+

3 ) and (ũ−, εũ−
3 ) did in the previous step of the asymptotic expansion).
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The term e is an error term and is introduced to correct these normal inflows, see
the normal boundary conditions (5.7c) below.

In the rest of this section, we write the equations satisfied by the above terms.

5.1. The First Order Hydrostatic Equations

The term (uH(1), uH(1)
3 ) satisfies the system

∂tuH(1) + uH · ∇uH(1) + uH(1) · ∇uH + εuH(1) · ∇uH(1)

+ uH
3 ∂zuH(1) + uH(1)

3 ∂zuH + εuH(1)
3 ∂zuH(1) + ∇pH(1) = 0 (5.3a)

∇ · uH(1) + ∂zu
H(1)
3 = 0 (5.3b)

γ +uH(1)
3 = ∇ · G+ (5.3c)

γ −uH(1)
3 = ∇ · G− (5.3d)

uH(1) (x, z, t = 0) = 0. (5.3e)

Differently from the zeroth order hydrostatic equations the above equations have a
non-zero flux at the boundary. Therefore, we find it more convenient to solve the
above equation introducing the new unknown (v, v3) defined as

v = uH(1) −
(
R
cosh [|k|(z + h)]

sinh [2|k|] ∇ · G+ + R
cosh [|k|(h − z)]

sinh [2|k|] ∇ · G−
)

(5.4a)

v3 = uH(1)
3 −

(
sinh [|k|(z + h)]

sinh [2|k|] ∇ · G+ − sinh [|k|(h − z)]
sinh [2|k|] ∇ · G−

)
(5.4b)

where R is the operator

R = ik

|k| .

It is easy to verify that γ ±v3 = 0 and that ∇ · v+ ∂zv3 = 0. Thus (v, v3) satisfies a
system analogous to (5.3a)–(5.3e). The boundary conditions are homogeneous and,
given that∇ ·G±(t = 0) = 0, we can also say that the initial data are homogeneous:
the well-posedness can therefore be proved analogously to what has been done for
(uH , uH

3 ). The formal statement is given in Theorem 6.1.

5.2. The First Order Boundary Layer Corrector

We shall impose that the equation satisfied by ũ−(1) is a linear heat equation
with the appropriate boundary conditions so that the tangential slip generated by
uH(1) at the bottom boundary is cancelled:
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∂t ũ−(1) − ∂Z Z ũ−(1) = 0 (5.5a)

ũ−(1)
3 =

∫ h/ε

Z
∇ · ũ−(1) dZ ′ (5.5b)

γ −ũ−(1) = −γ −uH(1) (5.5c)

γ +ũ−(1) = 0 (5.5d)

ũ−(1)(x, Z , t = 0) = 0. (5.5e)

An analogous system is satisfied by (ũ+(1), εũ+(1)
3 ),

∂t ũ+(1) − ∂Z Z ũ+(1) = 0 (5.6a)

ũ+(1)
3 = −

∫ Z

−h/ε

∇ · ũ+(1) dZ ′ (5.6b)

γ +ũ+(1) = −γ +uH(1) (5.6c)

γ −ũ+(1) = 0 (5.6d)

ũ+(1)(x, Z , t = 0) = 0. (5.6e)

For the above systems one can recognize that the initial and the boundary conditions
are compatible.Note also that these first orderBLcorrectors introduce normal influx
at the boundaries. In particular, the normal influx at the bottom boundary is

γ −εũ−(1)
3 = −ε∇ · G−(1) where G−(1) ≡ −

∫ h/ε

−h/ε

ũ−(1) dZ ′,

while the influx at the top boundary is

γ +εũ+(1)
3 = −ε∇ · G+(1) where G+(1) ≡

∫ h/ε

−h/ε

ũ+(1) dZ ′.

These normal fluxes will be cancelled by the normal fluxes of the error term (e, e3)
with appropriate boundary conditions, cf. (5.7d) below.

5.3. The Error Equation

Finally one can write the equation satisfied by the error as

(∂t − ε2�)e + e · ∇[u(0) + εu(1)] + [u(0) + εu(1)] · ∇e + εe · ∇e

+[u(0)
3 + εu(1)

3 ]∂ze + e3∂z[u(0) + εu(1)] + εe3∂ze + ∇pe = � (5.7a)

∇ · e + ε−1∂Ze3 = 0 (5.7b)

γ −e = 0, γ +e = 0 (5.7c)

γ −e3 = ε∇ · G−(1), γ +e3 = ε∇ · G+(1) (5.7d)

e|t=0 = 0 (5.7e)

being the expression for the source term specified in Appendix D, where it is shown
to be O(1).

Note the crucial fact that the influxes at the boundaries are O(ε) quantities, and
are in the form of a derivative of a function.
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6. Results: Construction of the First Order Hydrostatic Solution and of the
First Order BL Corrector

6.1. Function Spaces

First we define the domain of analyticity with respect to the normal variable z

	(θ) = {z ∈ C : �z ∈ [−h, 0],�z < (�z + h) tan θ}
∪ {z ∈ C : �z ∈ [0, h],�z < (h − �z) tan θ} , θ < π/4

and the path of integration in the complex plane

�(θ ′) = {z ∈ C : �z ∈ [−h, 0],�z = (�z + h) tan θ ′}
∪{z ∈ C : �z ∈ [0, h],�z = (h − �z) tan θ ′}, θ ′ < θ.

Definition 6.1. The space Ml,ρ,θ is the set of all functions f (x, z) such that

• f is analytic inside D(ρ) × 	(θ);
• ∂

α1
z ∂

α2
x f (x, y) ∈ L2(�(θ ′); H0,ρ) with |θ ′| � θ , α1 + α2 � l and α2 � l − 2

when α1 > 0;
• | f |l,ρ,θ = ∑

α�l sup|θ ′|�θ ‖|∂α
x f (·, z)|0,ρ‖L2(�(θ ′))

+ ∑
0<α1�2

∑
α2�l−2 sup|θ ′|�θ ‖|∂α1

z ∂
α2
x f (·, z)|0,ρ‖L2(�(θ ′)) < ∞.

Definition 6.2. The space Ml,ρ,θ
β,T is defined as the set of all functions f (x, z, t)

such that

• For each t ∈ [0, T ], we have f (x, z, t) ∈ Ml,ρ−βt,θ−βt and ∂t∂
j
x f (x, z, t) ∈

M0,ρ−βt,θ−βt with j � l − 2;
• | f |l,ρ,θ,β,T = ∑

0� j�1
∑

α�l−2 j sup0�t�T |∂ j
t ∂α

x f (·, ·, t)|0,ρ−βt,θ−βt

+ ∑
0<α1�2

∑
α2�l−2 sup0�t�T |∂α1

z ∂
α2
x f (·, ·, t)|0,ρ−βt,θ−βt < ∞

in which the norms on the right are those defined in Ml,ρ,θ .

6.2. Well-Posedness Result for the First Order Hydrostatic Equations

In Section 5.1 we found that, through the change of variable defined by (5.4a)–
(5.4b), one can write a system with homogeneous normal boundary conditions.
Moreover note that, given that the boundary influx, as expressed by (5.3c)–(5.3d),
is a derivative, the change of variable (5.4a)–(5.4b) is regular (no issue arises at
k = 0). One can therefore state the following well-posedness result.

Theorem 6.1. Suppose that u0 ∈ Hl,ρ0,θ0 and satisfies the compatibility conditions
(2.4) and (2.5). Then there exist β2 > β1, T2 < T1 ρ2 < ρ1, θ2 < θ1, such that the
system (5.3a)–(5.3e) admits a unique solution uH(1) ∈ Ml,ρ2,θ2

β2,T2
.
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6.3. Well-Posedness Result for the First Order Boundary Layer Corrector

The equations satisfied by the first order BL corrector (the Equations (5.5a)–
(5.5e) for the bottom boundary) are linear heat equations. The following theorem
is therefore easily proved.

Theorem 6.2. Suppose that u0 ∈ Hl,ρ0,θ0 and satisfies the compatibility conditions
(2.4) and (2.5). There exist β3 > β2, T3 < T2 ρ3 < ρ2, θ3 < θ2, μ3 < μ1, such
that Equations (5.5a)–(5.5e) admit a unique solution ũ−(1) ∈ K−,l,ρ3,θ3,μ3

β3,T3
and

ũ−(1)
3 ∈ K−,l−1,ρ3,θ3,μ3

β3,T3
.

Obviously, an analogous result holds for the top BL corrector.

Theorem 6.3. Suppose that u0 ∈ Hl,ρ0,θ0 and satisfies the compatibility conditions
(2.4) and (2.5). There exist β3 > β2, T3 < T2 ρ3 < ρ2, θ3 < θ2, μ3 < μ1, such
that Equations (5.6a)–(5.6e) admit a unique solution ũ+(1) ∈ K+,l,ρ3,θ3,μ3

β3,T3
and

ũ+(1)
3 ∈ K+,l−1,ρ3,θ3,μ3

β3,T3
.

The following lemma, where we express the regularity of the boundary data
for the error Equations (5.7a)–(5.7d), is an immediate consequence of the above
theorems:

Lemma 6.2. The traces of the boundary layer correctors are such that G+(1),
G−(1) ∈ Hl+1,ρ3

β3,T3
.

Note that we have raised the regularity of the boundary dataG+(1) andG−(1) stating
that they belong to an l + 1 space rather than l. This can be assumed by shrinking
the size of the domain of analyticity from ρ3 to ρ′

3 and, for notational convenience,
renaming ρ′

3.

7. Results: Analysis of the Error Equation

7.1. Function Spaces

First introduce, in the complex plane, the trapezoid 	(θ, a) and a family of
paths �(θ ′, a), where θ ′ < θ < π/4 and 0 < a < h. These concepts will be
useful to define the domain of analyticity, with respect to the normal variable, of
the solution of the error equations and the path of integration in the complex plane.
Namely, let

	(θ, a) = {z ∈ C : h − a < |�z| < h, |�z| < (h − |�z|) tan θ}
∪ {z ∈ C : |�z| < a, |�z| < a tan θ}

�(θ ′, a) = {z ∈ C : h − a < |�z| < h , |�z| = (h − |�z|) tan θ ′}
∪{z ∈ C : |�z| < a, |�z| = a tan θ ′}

for 0 < a < h, 0 < θ < π/4, and 0 < θ ′ < θ .
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Definition 7.1. The space Ll,ρ,θ is the set of all functions f (x, Z) such that

• f is analytic inside D(ρ) × 	(θ, a/ε)

• ∂
α1
Z ∂

α2
x f (x, Z) ∈ L2(�(θ ′, a/ε); H0,ρ) with |θ ′| � θ , α1 � 2, α1 + α2 � l

and α2 � l − 2 when α1 > 0
• | f |l,ρ,θ = ∑

α�l sup|θ ′|�θ ‖ |∂α
x f (·, Z)|0,ρ‖L2(�(θ ′,a/ε))

+ ∑
0<α1�2

∑
0�α2�l−2 sup|θ ′|�θ ‖ |∂α1

Z ∂
α2
x f (·, Z)|0,ρ‖L2(�(θ ′,a/ε))

< ∞.

Definition 7.2. The space Ll,ρ,θ
β,T is the set of functions f (x, Z , t) such that

• f (x, Z , t) ∈ Ll,ρ−βt,θ−βt and ∂t∂
α
x f (x, Z , t) ∈ L0,ρ−βt,θ−βt for all α � l−2;

and t ∈ [0, T ];
• | f |l,ρ,θ,β,T = ∑

0� j�1
∑

α�l−2 j sup0�t�T |∂ j
t ∂α

x f (·, ·, t)|0,ρ−βt,θ−βt

+ ∑
0<α1�2

∑
α2�l−2 sup0�t�T |∂α1

Z ∂
α2
x f (·, ·, t)|0,ρ−βt,θ−βt < ∞

where the norms on the right are those defined in Ll,ρ,θ .

The following theorem is the main result of this section.

Theorem 7.1. Suppose that u0 ∈ Hl,ρ0,θ0 and satisfies the compatibility conditions
(2.4) and (2.5). Then there exist β4 > β3, T4 < T3, ρ4 < ρ3, θ4 < θ3, such
that Equations (5.7a)–(5.7e) admit, for ε sufficiently small, a unique solution e ∈
Ll,ρ4,θ4

β4,T4
.

7.2. The Equation of the Error in the Operator Form

We now express the error (e, e3) as the sum of two terms:

e = Ss (η) + σ and e3 = Ss
3 (η) + σ3. (7.1)

The term (σ , σ3) takes care of the boundary data. It solves the following Stokes
problem with boundary data, whose solution is constructed in Appendix B:

(∂t − ε2�2 − ∂Z Z )σ + ∇pσ = 0 (7.2a)

∇ · σ + ∂Zσ3 = 0 (7.2b)

γ ±σ = 0 (7.2c)

γ ±σ3 = ε∇ · G±(1) (7.2d)

σ |t=0 = 0. (7.2e)

Note that the boundary data for the above problem, being the normal flux
O(ε) and of divergence type, have the same form of the boundary data as the
system (B.4a)–(B.4e); the above problem can therefore be solved using the oper-
ator

(Sb,Sb
3

)
introduced in Appendix B.1. Using Theorem B.1, and also due to

Lemma 6.2, one can therefore see that σ ∈ Ll,ρ3,θ3
β3,T3

while σ3 ∈ Ll−1,ρ3,θ3
β3,T3

. Shrink-
ing the domain of the analyticity of σ3 from ρ3 to ρ′

3 and renaming ρ′
3, one can

state the following proposition:
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Proposition 7.1. The systemEquations (7.2a)–(7.2e)admits, for ε sufficiently small,
a unique solution σ which belongs to Ll,ρ3,θ3

β3,T3
.

We may therefore write the equation for η which is

η + G(η) = f; (7.3)

where the operator G is defined as

G(η) = Ss(η) · ∇[u(0) + εu(1) + εσ ]
+ [u(0) + εu(1) + εσ ] · ∇Ss(η) + εSs(η) · ∇Ss(η)

+Ss
3(η)∂z[u(0) + εu(1) + εσ ] + [u(0)

3 + εu(1)
3 + εσ3]∂zSs(η)

+ εSs
3(η)∂zSs(η) (7.4)

and where the operator Ss solves the Stokes equation with source term and is
introduced in Appendix A, while f is a source term whose expression is

f = � − [u(0) + εu(1)] · ∇σ − σ · ∇[u(0) − εu(1)] + εσ · ∇σ

−[u(0)
3 + εu(1)

3 ]∂zσ − σ3∂z[u(0) + εu(1)] − εσ3∂zσ . (7.5)

In order to prove that the error e exists and is bounded, and given the bounded-
ness of σ , it is sufficient to estimate η as solution Equation (7.3). We shall prove
the existence and uniqueness of Equation (7.3) using the ACK theorem stated in
Appendix E, verifying that the operator G(η) − f satisfies the hypotheses (i)–(iii).

7.3. Estimate on the Source Term f

In order to verify the hypothesis (i) (namely the boundedness of the source
term), one has to inspect expression (7.5). In Appendix D we have shown the
boundedness of �. The other terms, all containing σ , are all easily estimated,
the more problematic terms are those involving ∂zσ . However, one immediately
recognizes that the coefficients of ∂zσ are, after some rearrangement,uH

3 and ε[ũ+
3 +

ũ−
3 +u(1)

3 +σ3]; using the fact that both these coefficients are zero at the boundaries,
and with Cauchy estimates on ∂zσ , one gets the desired estimate.

7.4. Quasi-Contractivity of the Operator G

We now verify the hypothesis (iii) of the ACK theorem, namely the quasi-
contractivity of the operatorG.Hypothesis (ii), namely the continuity of the operator
G, can be easily estimated using the same ideas.

The linear terms in (7.4) are immediately estimated using: (a) the estimates,
given in the previous sections, for the lower order terms in the asymptotic expansion;
(b) the estimate onσ given in Proposition 7.1; (c) the estimate on the Stokes operator
with source term Ss given in (A.4a) and (A.4c) of Theorem A.1; (d) the Cauchy
estimate to bound terms involving the z-derivative of rapidly varying functions.
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Concerning the nonlinear terms, we first consider the term involving the tangential
derivatives. Suppose

∣∣∣η(1)
∣∣∣
l,ρ0,θ0,β,T

< c , and
∣∣∣η(2)

∣∣∣
l,ρ0,θ0,β,T

< c.

Then, for ρ′ < ρ < ρ0 − βt and θ ′ < θ < θ0 − βt one can write the estimate

|εSs(η(1)) · ∇Ss(η(1)) − εSs(η(2)) · ∇Ss(η(2))|l,ρ′,θ ′

� |[εSs(η(1)) − εSs(η(2))] · ∇Ss(η(1))|l,ρ′,θ ′

+|εSs(η(2)) · ∇[Ss(η(1)) − Ss(η(2))]|l,ρ′,θ ′

� εc
∫ t

0
|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ′,θ ′ ds

|η(1)|l,ρ0,θ ′

ρ0 − ρ′

+εc
∫ t

0

|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ(s),θ ′

ρ(s) − ρ′ ds |η(2)|l,ρ′,θ ′

� εc
∫ t

0
|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ′,θ ′ ds

+εc
∫ t

0

|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ(s),θ ′

ρ − ρ′ ds

� εc
∫ t

0

|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ(s),θ ′

ρ(s) − ρ′ ds.

To pass from the second to the third line we have used the estimate on the oper-
ator Ss and used the Cauchy estimate on the tangential derivative. In particular,
note that, given the expression (7.3) for η and the expression (7.4) for G, one has
γ ±(η(1) − η(2)) = 0. This has allowed us to use the estimate on Ss given in
Theorem A.2.

We now estimate the nonlinear terms involving the normal derivative; the pro-
cedure is the same as that used for the tangential derivative, the only difference
being that here the ε factor is needed to estimate the O(ε−1) z-derivative:

|εSs
3(η

(1))∂zSs(η(1)) − εSs
3(η

(2))∂zSs(η(2))|l,ρ′,θ ′

� |[εSs
3(η

(1)) − εSs
3(η

(2))]∂zSs(η(1))|l,ρ′,θ ′

+|εSs
3(η

(2))∂z[Ss(η(1)) − Ss(η(2))]|l,ρ′,θ ′

� c
∫ t

0
|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ′,θ ′ ds

|η(1)|l,ρ′,θ0
θ0 − θ ′

+c
∫ t

0

|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ′,θ(s)

θ(s) − θ ′ ds |η(2)|l,ρ′,θ ′
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� c
∫ t

0
|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ′,θ ′ ds

+c
∫ t

0

|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ′,θ(s)

θ(s) − θ ′

� c
∫ t

0

|η(1)(·, ·, s) − η(2)(·, ·, s)|l,ρ′,θ(s)

θ(s) − θ ′ ds.

Having shown that all the hypotheses of the ACK theorem are satisfied, we have
proved the following theorem:

Theorem 7.2. Suppose that u0 ∈ Hl,ρ0,θ0 satisfies the compatibility conditions
(2.4) and (2.5). Then there exist β4 > β3, T4 < T3, ρ4 < ρ3, θ4 < θ3, such that
Equation (7.3) admits, for ε sufficiently small, a unique solution η ∈ Ll,ρ4,θ4

β4,T4
.

Now, Theorem 7.1 follows immediately from the above theorem and Proposi-
tion 7.1.

8. The Main Result

We can now state formally the main result of the paper as a direct consequence
of Theorems 3.1, 4.1, 4.2, 6.1, 6.2, 6.3 and 7.1. Defining T̄ as the common time
of existence of the hydrostatic terms and of the Boundary Layer correctors as well
as of the error term, and with ρ̄ and θ̄ the smallest radius of analyticity of the
various terms, and with μ̄ the smallest exponential decay rate of the BL correctors
away form the boundaries, we can expand the solution of the primitive equations
as follows.

Theorem 8.1. Suppose that u0 ∈ Hl,ρ0,θ0 satisfies the compatibility conditions
(2.4) and (2.5). Then, for ν sufficiently small, there exist ρ̄, θ̄ , μ̄, β̄, and T̄ such that
the unique solution of the primitive equations (2.1a)–(2.1e) can be written as

u = uH + ũ− + ũ+ + √
ν(uH(1) + ũ−(1) + ũ+(1) + e)

u3 = uH
3 + √

ν(ũ−
3 + ũ+

3 ) + √
ν[uH(1)

3 + √
ν(ũ−(1)

3 + ũ+(1)
3 + e3)]

where

• uH and uH
3 solve Equations (2.7a)–(2.7e) and belong to Hl,ρ̄,θ̄

β̄,T̄

• ũ− and ũ−
3 solve Equations (2.14a)–(2.14e) and belong to K−,l,ρ̄,θ̄ ,μ̄

β̄,T̄

• ũ+ and ũ+
3 solve Equations (2.17a)–(2.17e) and belong to K+,l,ρ̄,θ̄ ,μ̄

β̄,T̄

• uH(1) and uH(1)
3 solve Equations (5.3a)–(5.3e) and belong to Ml,ρ̄,θ̄

β̄,T̄

• ũ−(1) and ũ−(1)
3 solve Equations (5.5a)–(5.5e) and belong to K−,l,ρ̄,θ̄ ,μ̄

β̄,T̄

• ũ+(1) and ũ+(1)
3 solve Equations (5.6a)–(5.6e) and belong to K+,l,ρ̄,θ̄ ,μ̄

β̄,T̄

• e and e3 solve Equations (5.7a)–(5.7e) and belong to Ll,ρ̄,θ̄

β̄,T̄
.



Zero Viscosity Limit for Analytic Solutions 35

9. Conclusions

In this paper we have constructed the solution of the primitive equations in the
limit of zero viscosity, the main assumption being the analyticity of the initial data.
Wehave shown that the solution exists for a time that depends on the size of the initial
data but does remain finitewhen ν → 0. The solution of the PEhas been constructed
with an asymptotic matching procedure involving, as dominant terms, the solution
of the hydrostatic equations and BL correctors. The byproduct of our construction
is that the solution of the PE, away from boundaries, is well approximated by
the hydrostatic equations; in fact the BL correctors decay exponentially outside a
small layer, size O(

√
ν), close to the boundary. The structure of the solution (1.1)

describes a laminar flow, with strong gradients confined in the boundary layer.
It is interesting to note that the equations satisfied by the BL correctors share the

mathematical structure with the Prandtl equations. It is well known how Prandtl
solutions develop a singularity (see [17] and references therein), and one could
therefore expect that the boundary layer solution that we have constructed to show
similar blow-up phenomena, and to do this also if initialized with analytic data.
In the classical high Reynolds number Navier–Stokes theory the boundary layer
singularities (or, to be more precise, the appearance of complex singularities that
are precursor of the blow-up [18]) signal the interaction stage-when the pressure
profile at the boundary is modified by the vorticity generated in the boundary layer;
this interaction ultimately leads to separation of the boundary layer and to the
break-up of asymptotic structures like (1.1). It would be interesting to explore if
the phenomenology typical of the high Reynolds number Navier–Stokes flows is
also shown by the primitive equations solutions.
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A Stokes Equation with a Source Term

In this section, we solve the Stokes equations with source term and homogeneous
boundary data

(∂t − ε2�2 − ∂Z Z )u + ∇p = ω (A.1a)

∇ · u + ε−1∂Zu3 = 0 (A.1b)

γ ±u = 0 (A.1c)

γ ±u3 = 0 (A.1d)

ut=0 = 0. (A.1e)

In order to simplify the notation, we denote the solution of the above problem as

(u, u3) = (Ss(ω),Ss
3(ω)).
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Without loss of generality, we may assume that
∫ h/ε

−h/ε

∇ · ω dZ ′ = 0.

Therefore, u satisfies the equation

(∂t − ε2�2 − ∂Z Z )u = − ε

2h
[∇�−1∇ · ∂Zu]h/ε

−h/ε + ω (A.2a)

γ ±u = 0 (A.2b)

ut=0 = 0. (A.2c)

The normal component is given in terms of u by

u3 = −ε

∫ Z

−h/ε

∇ · u dZ ′. (A.3)

We then have the following statement:

Theorem A.1. Let ω ∈ Ll,ρ,θ
β,T . Then, for ε sufficiently small, Ss(ω) ∈ Ll,ρ,θ

β,T ,

Ss
3(ω) ∈ Ll−1,ρ,θ

β,T , ∂zSs
3(ω) ∈ Ll−1,ρ,θ

β,T , and we have the estimates

|Ss(ω)|l,ρ,θ,β,T � c|ω|l,ρ,θ,β,T (A.4a)

|Ss
3(ω)|l−1,ρ,θ,β,T � c|ω|l,ρ,θ,β,T (A.4b)

|∂zSs
3(ω)|l−1,ρ,θ,β,T � c|ω|l,ρ,θ,β,T . (A.4c)

In order to prove the above theorem, we construct the solution of Equations (A.2a)–
(A.2c) as the limit of the sequence

u(0) = 0

· · ·
(∂t − ε2�2 − ∂Z Z )u(n+1) = − ε

2h
[∇�−1∇ · ∂Zu(n)]h/ε

−h/ε + ω

(A.5)

withu(n+1) satisfying homogeneous initial data and boundary conditions. Therefore
u(n+1) can be expressed using the operator F2 introduced in Appendix C.

u(n+1) = F2(ω) − ε

2h
F2([∇�−1∇ · ∂Zu(n)]h/ε

−h/ε) (A.6)

If one introduces the operator M

Mω = [∇�−1∇ · ∂Z F2ω]h/ε
−h/ε,

from (A.6) one can easily prove, by induction, that

u(n) = F2

(
n−1∑
i=0

(−1)i
( ε

2h

)i
Mi ω

)
. (A.7)

Using Proposition C.2 and Lemma C.4, it is easy to prove the following statement.
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Lemma A.3. Let ω ∈ Ll,ρ,θ
β,T . Then Mω ∈ Hl,ρ

β,T and

|Mω|l,ρ,β,T � c
√
T |ω|l,ρ,θ,β,T

Therefore, if ε < 2h/(c
√
T ), the sequence (A.7) is bounded, namely

|u(n)|l,ρ,θ,β,T � c|ω|l,ρ,θ,β,T (A.8)

Using (A.7) one immediately sees that

|u(n+1) − u(n)|l,ρ,θ,β,T =
∣∣∣F2

(
(−1)n

( ε

2h

)n
Mn ω

)∣∣∣
l,ρ,θ,β,T

.

Using the bounds on F2 andM , the above inequality shows that, under the smallness
condition on ε, the sequence u(n) is a Cauchy sequence.
Moreover the estimate (A.4a) is a consequence of the bound (A.8). The proof
of the estimate (A.4b) can be achieved looking at the expression (A.3) for the
normal component and using Jensen inequality. The estimate (A.4c) is an immediate
consequence of the expression (A.3).
Moreover, we have the following result:

Theorem A.2. Let ω ∈ Ll,ρ,θ
β,T with γ ±ω = 0. Then, for ε sufficiently small, we

have

|Ss(ω)|l,ρ′,θ ′ � c
∫ t

0
|ω(·, ·, s)|l,ρ′,θ ′ ds

|Ss
3(ω)|l−1,ρ′,θ ′ � c

∫ t

0
|ω(·, ·, s)|l,ρ′,θ ′ ds

for ρ′ < ρ − βt and θ ′ < θ − βt .

The above statement is a consequence of the estimate on the operator F2 given in
Lemma C.5.

B Stokes Equations with Boundary Data

In this section, we solve the Stokes equations with boundary data. We shall assume
that the normal influx is in gradient form and of size O(ε). We first treat the case
when the boundary condition for the normal influx is homogeneous.

B.1 Homogeneous Normal Influx

Here we construct the solution (σ , σ3) of the system

(∂t − ε2�2 − ∂Z Z )σ + ∇pσ = 0 (B.1a)

∇ · σ + ε−1∂Zσ3 = 0 (B.1b)

γ ±σ = g± (B.1c)

γ ±σ3 = 0 (B.1d)

σ |t=0 = 0. (B.1e)
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Taking first the divergence and then the average of (B.1a), we get the expression
for the pressure which reads:

pσ = 1

2h
ε�−1[∂Z∇ · σ ]h/ε

−h/ε.

Thus σ can be found by solving a heat-type equation:

(∂t − ε2�2 − ∂Z Z )σ = − 1

2h
ε[∇�−1∇ · ∂Zσ ]h/ε

−h/ε (B.2a)

γ ±σ = g± (B.2b)

σ |t=0 = 0. (B.2c)

The third component σ3 is given by:

σ3 = −ε

∫ Z

−h/ε

∇ · σ dZ ′.

One can easily prove the following proposition:

Proposition B.1. Let g± ∈ Hm,ρ
β,T . Then (σ , σ3), the solution of the system (B.1a)–

(B.1e), is in Lm,ρ,θ
β,T , with θ < π/4, and we have the estimate

|σ |m,ρ,θ,β,T � c|g±|m,ρ,β,T

|σ3|m−1,ρ,θ,β,T � cε|g±|m,ρ,β,T . (B.3a)

B.2 Non-Homogeneous Normal Influx of the Divergence Type

Wenow treat the casewhere normal influx is present and solve the following system:

(∂t − ε2�2 − ∂Z Z )σ + ∇pσ = 0 (B.4a)

∇ · σ + ε−1∂Zσ3 = 0 (B.4b)

γ ±σ = g± (B.4c)

γ ±σ3 = ε∇ · g±
3 (B.4d)

σ |t=0 = 0. (B.4e)

We define (σ̃ , σ̃3) as

σ̃ = σ − ε

(
R
cosh (|k|(z + h))

sinh (2|k|) ∇ · g+
3 + R

cosh (|k|(h − z))

sinh (2|k|) ∇ · g−
3

)
(B.5a)

σ̃3 = σ3 − ε

(
sinh (|k|(z + h))

sinh (2|k|) ∇ · g+
3 − sinh (|k|(h − z))

sinh (2|k|) ∇ · g−
3

)
(B.5b)

and observe that it solves a system with homogeneous normal boundary conditions
of the form (B.1a)–(B.1e).
Given Proposition B.1, and denoting with

(Sb,Sb
3

)
the operator that solves the

system (B.4a)–(B.4e), we have immediately the following statement:
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Theorem B.1. Let g± ∈ Hl,ρ
β,T and let g±

3 ∈ Hl+1,ρ
β,T . Then Sb(g±, g±

3 ) ∈ Ll,ρ,θ
β,T ,

Sb
3 (g±, g±

3 ) ∈ Ll,ρ,θ
β,T , with θ < π/4, and we have the estimates

|Sb(g±, g±
3 )|l,ρ,θ,β,T � c(|g±|l,ρ,β,T + |g±

3 |l+1,ρ,β,T )

|Sb
3 (g±, g±

3 )|l−1,ρ,θ,β,T � cε(|g±|l,ρ,β,T + |g±
3 |l+1,ρ,β,T ).

C The Heat Operators

In this section, we give the explicit solution to the heat equation

(∂t − ε2�2 − ∂Z Z )u = f (C.1a)

γ ±u = g± (C.1b)

ut=0 = 0. (C.1c)

The explicit representation of the solution is given in terms of the inverse heat
operators F1 and F2 introduced in [36] (here used in the case whenU = 0), which
we briefly recall here.
The operator F1 solves the above equations (C.1a)–(C.1c), with f = 0. Introducing
the ϕ−function

ϕ(Z , t) =
∞∑

n=−∞
H

(
Z + 4n

h

ε
, t

)
, −∞ < Z < ∞,

where

H(Z , t) = Z

t

e−Z2/(4t)

√
4π t

,

one can easily verify the formula

F1(g
+, g−) =

∫ t

0
ds e−ε2k2(t−s)ϕ

(
Z + h

ε
, t − s

)
g−(k′, s)

+
∫ t

0
ds e−ε2k2(t−s)ϕ

(
h

ε
− Z , t − s

)
g+(k′, s). (C.2)

The operator F2 solves the equations (C.1a)–(C.1c), with g± = 0 and has the
explicit expression

F2 f =
∫ t

0
dse−ε2k2(t−s)

×
∫ h/ε

−h/ε

dZ ′
(

θ(Z − Z ′, t − s) − θ

(
Z + Z ′ + 2h

ε
, t − s

))
f (k, Z ′, s),

(C.3)
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where

θ(Z , t) =
∞∑

n=−∞
K

(
Z + 4n

h

ε
, t

)
, −∞ < Z < ∞

and

K (Z , t) = 1√
4π t

e−Z2/(4t).

We now give estimates for the above heat operators, the proof following along the
same lines as in [36, Section 3] (note that in [36] also a convection term is present):

Proposition C.1. Let g+ ∈ Hl,ρ
β,T , g− ∈ Hl,ρ

β,T satisfy the compatibility conditions

g+(t = 0) = g−(t = 0) = 0. Then F1(g+, g−) ∈ Ll,ρ,θ
β,T and the estimate

|F1(g+, g−)|l,ρ,θ,β,T � c
(|g+|l,ρ,β,T + |g−|l,ρ,β,T

)
holds.

Proposition C.2. Let f ∈ Ll,ρ,θ
β,T . Then F2 f ∈ Ll,ρ,θ

β,T and we have the estimate

|F2 f |l,ρ,θ,β,T � c| f |l,ρ,θ,β,T .

Using the operators F1 and F2, the solution of the heat equations (C.1a)–(C.1c)
may be expressed as

u = F2 f + F1(g
+, g−) (C.4)

and the following theorem holds.

Theorem C.1. Let f ∈ Ll,ρ,θ
β,T and g+ ∈ Hl,ρ

β,T , g− ∈ Hl,ρ
β,T satisfy the compatibility

conditions g+(t = 0) = g−(t = 0) = 0. Then the solution of the heat equations
(C.1a)–(C.1c) satisfies u ∈ Ll,ρ,θ

β,T with the estimate

|u|l,ρ,θ,β,T � c[| f |l,ρ,θ,β,T + |g+|l,ρ,β,T + |g−|l,ρ,β,T ].
We now give certain additional estimates on the operator F2 that are useful for the
construction of the solution the Stokes problem.

Lemma C.4. Let f ∈ Ll,ρ,θ
β,T . Then γ ±F2 f ∈ Hl,ρ

β,T and, if ρ′ < ρ − βt and
θ ′ < θ − βt , we have

|γ ±∂Z F2 f |l,ρ′ � c1

∫ t

0

1√
t − s

| f (·, ·, s)|l,ρ′,θ ′ ds � c2
√
t | f |l,ρ,θ,β,T .

Lemma C.5. Let f ∈ Ll,ρ,θ
β,T satisfy the condition γ ± f = 0. Then if ρ′ < ρ − βt

and θ ′ < θ − βt , we have

|F2 f |l,ρ′ � C1

∫ t

0
| f (·, ·, s)|l,ρ′,θ ′ ds � C2| f |l,ρ,θ,β,T .
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D Estimates on the Source Terms

A simple calculation shows that the source term for the error equation (5.7a) is
given by

� = −[u(0) · ∇(ũ+(1) + ũ−(1)) + uH(1) · ∇(ũ+ + ũ− + ε(ũ+(1) + ũ−(1)))

+ (ũ+(1) + ũ−(1)) · ∇u(0)

+ (ũ+ + ũ− + ε(ũ+(1) + ũ−(1))) · ∇uH(1) + ε(ũ+(1) + ũ−(1))

·∇(ũ+(1) + ũ−(1))

+ u(0)
3 ∂z(ũ+(1) + ũ−(1)) + uH(1)

3 ∂z(ũ+ + ũ− + ε(ũ+(1) + ũ−(1)))

+ ε(ũ+(1)
3 + ũ−(1)

3 )∂zu(0)

+ ε(ũ+
3 + ũ−

3 + ε(ũ+(1)
3 + ũ−(1)

3 ))∂zuH(1)

+ ε(ũ+(1)
3 + ũ−(1)

3 )∂z(ũ+(1) + ũ−(1))]
+ ε2�uH(1) + ε2�(ũ+(1) + ũ−(1)) + F0 + F−1.

In the above terms are present terms which are O(ε−1) (being z-derivatives of
the BL correctors ũ+ and ũ−); however, all these terms are multiplied by slowly
varying terms that vanish at the boundaries. In fact � can be rewritten as:

� = −[u(0) · ∇(ũ+(1) + ũ−(1)) + uH(1) · ∇(ũ+ + ũ− + ε(ũ+(1) + ũ−(1)))

+ (ũ+(1) + ũ−(1)) · ∇u(0)

+ (ũ+ + ũ− + ε(ũ+(1) + ũ−(1))) · ∇uH(1)}
+ ε(ũ+(1) + ũ−(1)) · ∇(ũ+(1) + ũ−(1))

+ uH(1)
3 ∂z(ε(ũ+(1) + ũ−(1))) + ε(ũ+(1)

3 + ũ−(1)
3 )∂zu(0)

+ ε(ũ+
3 + ũ−

3 + ε(ũ+(1)
3 + ũ−(1)

3 ))∂zuH(1)

+ ε(ũ+(1)
3 + ũ−(1)

3 )∂z(ũ+(1) + ũ−(1))]
+ ε2�uH(1) + ε2�(ũ+(1) + ũ−(1)) + F0

− u(0)
3 ∂z(ũ+(1) + ũ−(1))−(uH(1)

3 −∇ · G+)∂z ũ+−(uH(1)
3 −∇ · G−)∂z ũ−.

The terms in the first five lines of the above expression for� are obviously O(1). In
the last line there are terms resulting from ∂z ũ+ or ∂z ũ− (therefore, in the boundary
layer are O(ε−1)) which are however multiplied by terms which are O(ε) in the
boundary layer, and can therefore be bounded using the Cauchy estimate.

E A Fixed Point Theorem

In order to prove the existence and uniqueness of the solution to the Prandtl equa-
tions (cf. [7,15–18,28,41]), we use the following version of the Abstract Cauchy–
Kowalevski Theorem (ACK) (cf. [1,35,47] and references therein). Consider the
equation

u + F(u, t) = 0. (E.1)
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Let {Xρ : 0 < ρ � ρ0} be a scale of Banach spaces with norms | · |ρ , such that
Xρ′ ⊂ Xρ′′ and | · |ρ′′ � | · |ρ′ when ρ′′ � ρ′ � ρ0.

Theorem E.1. (ACK) Suppose that there exist R > 0, ρ0 > 0, and β0 > 0 such
that for 0 < τ � T � ρ0/β0 the following statements hold:

(i) if ρ is such that 0 < ρ � ρ0 − β0τ , then the function F(0, t) : [0, τ ] → {u ∈
Xρ : sup

0�t�τ

|u(t)|ρ < ∞} is continuous and

|F(0, t)|ρ0−β0t � R0 < R;
(ii) if ρ′, ρ are such that 0 < ρ′ < ρ � ρ0 − β0τ , then the function F(u, t) :

[0, τ ] → Xρ′ is continuous for all u such that {u ∈ Xρ : sup0�t�T |u(t)|ρ �
R};

(iii) if ρ′ and ρ(s) are such that ρ′ < ρ(s) � ρ0 − β0s and if u1 and u2 ∈ {u :
u(t) ∈ Xρ0−β0t : sup

0�t�τ

|u(t)|ρ0−β0t � R}, then

|F(u1, t) − F(u2, t)|ρ′ � C
∫ t

0
ds

(
|u1 − u2|ρ(s)

ρ(s) − ρ′ + |u1 − u2|ρ′√
t − s

)
,

where C is a constant independent of t , τ , u1, u2, ρ, ρ′, ρ(s).

Then there exists β > β0 such that for all 0 < ρ < ρ0 Equation (E.1) has a unique
solution u(t) ∈ Xρ0−βt with t ∈ [0, ρ0/β]. Moreover, sup

ρ<ρ0−βt
|u(t)|ρ � R.

The proof of the above theorem is given in [1], where it is stated without the mild
singularity in time represented by the square root singularity in the assumption (iii).
This generalization is given in [35].
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