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Abstract

Motivation: Thanks to research spanning nearly 30 years, two major models have emerged that ac-
count for nucleosome organization in chromatin: statistical and sequence specific. The first is
based on elegant, easy to compute, closed-form mathematical formulas that make no assumptions
of the physical and chemical properties of the underlying DNA sequence. Moreover, they need no
training on the data for their computation. The latter is based on some sequence regularities but,
as opposed to the statistical model, it lacks the same type of closed-form formulas that, in this
case, should be based on the DNA sequence only.
Results: We contribute to close this important methodological gap between the two models by pro-
viding three very simple formulas for the sequence specific one. They are all based on well-known
formulas in Computer Science and Bioinformatics, and they give different quantifications of how
complex a sequence is. In view of how remarkably well they perform, it is very surprising that
measures of sequence complexity have not even been considered as candidates to close the men-
tioned gap. We provide experimental evidence that the intrinsic level of combinatorial organization
and information-theoretic content of subsequences within a genome are strongly correlated to the
level of DNA encoded nucleosome organization discovered by Kaplan et al. Our results establish
an important connection between the intrinsic complexity of subsequences in a genome and the in-
trinsic, i.e. DNA encoded, nucleosome organization of eukaryotic genomes. It is a first step towards
a mathematical characterization of this latter ‘encoding’.
Supplementary information: Supplementary data are available at Bioinformatics online.
Contact: futro@us.ibm.com.

1 Introduction

Kornberg (1981), in a very influential article, posed the problem of

establishing whether nucleosome positioning obeys statistical laws

or is dictated by sequence-specific rules. Such a problem is at the

heart of studies concerned with the understanding, as well as the

prediction, of nucleosome organization and positioning in genomic

DNA and it has been the object of investigation in many disciplines,

e.g. biology, physics, bioinformatics. An account on the state of the
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art for nucleosome organization, as well as novel results, can be

found in two recent articles (Giancarlo et al., 2015; Minary and

Levitt, 2014). Among the many outstanding results, the two dis-

cussed next are, in our view, both milestones and the most relevant

in order to place the contribution given in this article in the proper

light.

Kornberg and Stryer (1988) proposed a statistical model,

referred to as the Barrier Model and recently generalized by Möbius

and Gerland (2010) that would account for nucleosome organiza-

tion in genomes. Genome-wide experiments have shown its validity

(Mavrich et al., 2008a,b). It has the great virtue of being formalized

by very elegant mathematical formulas, which can be computed

with no training on DNA sequences. Moreover, it had no predeces-

sor of its kind nor has it been the object of controversies after its

proposal.

Consequent remarkable findings by Segal et al. (2006) and

Kaplan et al. (2008) established that nucleosome organization is

DNA-encoded. The authors went also one step further and showed

that, via machine learning techniques, a computer program could

learn those sequence rules and later be used as a predictor of nucleo-

some positioning. That study had been preceded by results that

pointed to specific sequence features as being associated to nucleo-

some depletion or enrichment in genomic regions (see Giancarlo

et al., 2015; Minary and Levitt, 2014, for summary and relevant ref-

erences). However, it was the first study that provided an answer to

the sequence-specificity question in general terms and on a genomic

scale, as opposed to the specifics of preceding results, e.g. regular

patterns occurring in DNA or base composition.

Unfortunately, although what is meant by DNA-encoded in that

context is semantically clear, mathematically it is void of meaning

since no code was exhibited. Moreover, large scale investigations

that have tried to identify universal sequence dictated rules, a re-

quirement less stringent than a code, for nucleosome positioning

tended to exclude their existence (Valouev et al., 2008). Simple ‘in-

trinsic’ sequence rules are emerging, but they are very specific and

very few (Peckham et al., 2007; Tillo and Hughes, 2009) and there

is no evidence that they are exhaustive. On the contrary, recent re-

sults indicate that the role of k-mers involved in nucleosome enrich-

ment or depletion may be more complex than what expected

(Giancarlo et al., 2015). In summary, although the lab experiments

show the existence of such an encoding, in terms of rules and prop-

erties of the associated alphanumeric sequences not much progress

has been made. When compared with the Barrier Model, the DNA-

encoded one lacks a rigorous set of mathematical formulas, easy to

compute and requiring no training on the DNA sequences, that

could (even in part) be used to explain the mathematical nature of

that encoding. Finding such an object would be important methodo-

logically in order not to transform sequence-specific nucleosome

positioning into a potentially endless list of specific rules. Prediction

of nucleosome positions based on it, it is perceived as a minor point.

Here we address such a shortcoming by providing three formulas

with the required characteristics. They are either well known, or

variants of well known, formulas in Computer Science and

Bioinformatics. They both quantify the intrinsic complexity of a se-

quence. In particular, we consider (i) empirical entropy, which

measures information-theoretic content of a sequence (ii) two lin-

guistic complexity measures that measure the combinatorial richness

of a sequence as quantified by the number of distinct subsequences

composing it. Following the same experimental set-up as in Kaplan

et al. (2008), we find a quite elegant correspondence between funda-

mental notions in Mathematics and Computer Science and Biology:

there is indeed a relationship between the intrinsic complexity of

subsequences in a genome and the intrinsic, i.e. DNA-encoded, nu-

cleosome organization of eukaryotic genomes. This is new and

unique, as far as the role of sequence specificity in nucleosome pos-

itioning is concerned.

2 Methods

This section is dedicated to the presentation of the methods needed

to perform this research, as follows. Section 2.1 introduces the com-

plexity measures used here. For their study, Kaplan et al. (2008)

devised a methodology to test whether an algorithm could distin-

guish nucleosome depleted regions (NDRs, for short) from nucleo-

some enriched ones (NER). It is outlined in Section 2.2. Section 2.3

is dedicated to the description of a general method that allows con-

structing nucleosome occupancy maps, via a generic algorithm as

the one described in Section 2.2. Finally, Section 2.4 describes a pro-

cedure to assess the level of agreement between two nucleosome oc-

cupancy maps.

2.1 Sequence complexity measures
The complexity of a sequence can be formally defined by resorting

to techniques and ideas coming from the following related areas: se-

quence combinatorics and linguistic complexity (De Luca and

Varricchio, 1999; Trifonov, 1990), Shannon information theory

(Cover and Thomas, 1991), and Kolmogorov-Chaitin algorithmic

complexity (Li and Vit!anyi, 1997). In terms of actual numeric evalu-

ations, measures stemming from this latter area are not computable

and can only be heuristically approximated via data compression

programs (see Giancarlo et al., 2009, 2012). However, the corres-

ponding heuristics offer no performance guarantee on how good the

corresponding approximations are. Therefore, for the experiments

in this article, only measures obtained from the first two mentioned

areas are used.

2.1.1 Combinatorial and linguistic

Let R be a finite alphabet of symbols. Given a sequence x of length

n, defined over the alphabet R, and an integer i!n, let LCS(i) be the

number of distinct subsequences of length i that are present in x,

normalized by n. Now, fix an integer k!n and let:

LCðkÞ ¼
Xk

i¼1
LCSðiÞ:

A few remarks are in order. LC is a normalization of a measure due

to De Luca and Varricchio (1999) and it is related to the linguistic

sequence complexity introduced by Trifonov (1990). Both LC and

LCS measure the complexity of a sequence based on how many dis-

tinct subsequences are present in it. The lower that number, the less

complex the sequence is. In order to illustrate this point, we provide

an example for LCS(3). Consider two sequences x¼AAAAAAAT

and y¼TTTTAAAA. We have that LCSð3Þ ¼ 2
8 ¼ 0:25 for x since

AAA and AAT are the only distinct 3-mers that occur in it. LCSð3Þ
¼ 4

8 ¼ 0:5 for y, since TTT, TTA, TAA and AAA are the only distinct

3-mers in it. The first sequence is less complex than the second.

2.1.2 Information theoretic

The empirical entropy H0 of a sequence x is defined as follows:

H0ðxÞ ¼ %
XjRj

i¼1

ni

n
log2

ni

n
;

where ni is the number of occurrences of symbol ai in x. It is worthy

of mention that there is an important difference between empirical
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entropy and the entropy defined in a probabilistic setting (Cover

and Thomas, 1991). Indeed, as detailed in (Ferragina et al., 2005),

Shannon entropy is an expected value taken on a probabilistic process

that may emit a possibly infinite ensemble of sequences, while empirical

entropy is defined point-wise for any sequence: it measures the amount

of information needed to optimally encode it, without any reference to

‘a probabilistic model’ generating sequences. That is, it is a punctual

and intrinsic measure of information characterizing a sequence alone,

rather than a measure of uncertainty characterizing a model generating

sequences. As in the domain investigated here no obvious generative

model is available, a punctual measure of information content seems to

be best suited for the experiments performed here. Clearly, the lower

the value of H0ðxÞ, the less complex x is, all other things being equal.

In order to exemplify this, consider again x¼AAAAAAAT and

y¼TTTTAAAA. H0ðxÞ ¼ 0:535 and H0ðyÞ ¼ 1. Again, x is less

complex than y.

It is also well known that entropy estimation, in particular for

DNA sequences, is a very rich area of investigation. The interested

reader may find relevant methodologies in (Giancarlo et al., 2009,

2012, 2014). Therefore, it is quite natural to ask whether known

techniques would bring better results with respect to the very simple

empirical entropy used here, in particular when one resorts to com-

pressive estimates of entropy. That is, estimation via the use of data

compression programs. During the preliminary stages of this study,

this possibility has been considered. In particular, experiments (re-

ceiver operating curve (ROC) analysis, described in Section 3.3)

have been performed with the use of higher order empirical entro-

pies and two data compressors: XM (Cao et al., 2007) and

Arithmetic Coding (Witten et al., 1987). The first data compressor

is among the best for DNA sequences. The second is quite effective

and also offer the advantage to have specific parameters that control

how fast the compressor learns statistics about the sequence to be

compressed. Although the results of the experiments were good

(data not shown and available upon request), they were no better

than the ones obtained with the use of H0. Therefore, the full set of

experiments was done with the use of this measure only, which has

also the advantage of being simple and fast to compute.

2.2 An in silico method to distinguish between
nucleosome enriched and depleted genomic regions
Assume one is given two sets of genomic sequences coming from the

same genome. The first is composed of NDR, while the second of

NER. Moreover, assume one is also given an algorithm A that takes

as input a sequence x and assigns a score to x. Intuitively, such a

score is an assessment of how likely it is for x to be a NER or a

NDR. In order to test whether A can distinguish NDR from NER,

one can proceed as follows. All sequences in NDR are assigned a

class label of zero and all sequences in NER are assigned a class label

of one. We anticipate that, in terms of complexity measures, the

meaning of such an assignment is that one expects NDR regions to

be much less complex than NER ones. Then, one uses A to assign a

score to each sequence in NER [ NDR. Now, the well known ROC

analysis (Hanley and McNeil, 1982) can be used to establish how

well A distinguishes NDR from NER, based on the produced scores.

Indeed, the resulting Area Under the Curve (AUC) takes values in [0,

1] with the following meaning: (i) a value below 0.5 indicates that in

order to get a correct classification one needs to invert the class

labels; (ii) the further away the AUC is from 0.5, a value indicating

random classification, and close to one, a value indicating a perfect

classification, the better the ability of A to distinguish NDR from

NER.

Such a mode of operation is referred to as full scores, since each

sequence x 2 NER [ NDR is assigned a score obtained by process-

ing the entire sequence. It results convenient to define also a score

that is normalized with respect to the sequence length. This mode of

operation is referred to as normalized scores and it is described next.

Assume that x has length at least 147 bp. A sliding window of

147 bp sweeps x from left to right, and a score, as computed by A
with input the subsequence ‘in the window’, is assigned to the left-

most position of x covered by the window. Therefore, one obtains n

– 147 values. In order to assign a score to x, one needs to choose a

representative value based on the n – 147 available ones. Natural

candidates are: the average, the minimum and the median of the

given set of values. It is well known that the median of a set of values

is a statistically robust synoptic value for the entire set and, in fact,

having conducted experiments with all three of them, the median

yields the best results. When n<147, one computes its score via A
as a whole and that score is assigned to it. The choice of a window

of length 147 is related to the typical sequence length forming a nu-

cleosome core.

2.3 In silico construction of nucleosome occupancy
maps
Intuitively, a nucleosome occupancy map, for a given genome, pro-

vides a value that can be seen as an in silico, in vitro or in vivo esti-

mate of the ‘probability’ that a given genomic position is covered by

a nucleosome, i.e. an occupancy value. For the convenience of the

reader, we point out that a nucleosome positioning map is much

more specific than a corresponding occupancy map, since it provides

an estimate of how likely it is for a given genomic position to be the

initial position (or, in alternative, the center) of a nucleosome.

Methodologically, those terms are made precise by Kaplan et al.

(2010), although pragmatically for nucleosome occupancy maps one

resorts to estimates based on the experimental data rather exact

probability distributions. When no ambiguity arises, we refer to a

nucleosome occupancy map simply as a map. Obviously, the same

genome can have different maps, depending on which occupancy

value estimation method is used. Here we concentrate on how to ob-

tain a map with the use of the generic algorithm A described in

Section 2.2. Assume that the genome of which the map has to be

built is divided into maximal regions of contiguous bases

R ¼ f½s1; e1'; ½s2; e2'; . . . ; ½sq; eq'g, where the interval endpoints nat-

urally indicate the start and end genome coordinate of each region,

respectively. Each region in R is swept, from left to right, by a win-

dow of length 147. The corresponding sequence is given in input to

A and the value returned in output is assigned to the genomic pos-

ition aligned with the center of the window, e.g. when ½s1; e1' is

swept, the result is a map for the genomic positions in

½s1 þ 73; e1 % 73'.

2.4 Statistics on the level of agreement between two
maps via binning
Because maps can be seen as numeric vectors, the degree of agree-

ment between two different maps of the same organism can be as-

sessed by computing standard correlation coefficients. However,

care must be exercised. Indeed, since the comparison is made on a

genome-wide scale, it implies estimating the correlation of a very

large number of points. In those circumstances, some correlation

measures, e.g. Pearson coefficient, may suffer from what is known

as “the most influential point effect”. That is, relatively few points

may be responsible for a good correlation. Such a potential problem

has been specifically mentioned by Stein et al. (2010) as a criticism

Combinatorial and theoretic content of a sequence are correlated to the DNA encoded nucleosome organization 3
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to the way in which Kaplan et al. (2008) assessed the correlation be-

tween maps in their study. The approach described below accounts

for this criticism.

Let R1;R2; . . . ;Rk be a collection of maps, given in the format

of sets of intervals, of the same genome. Each of them can be ob-

tained either via the methods described in Section 2.3 or by other

techniques, even in vivo and in vitro. Assume that we are interested

in establishing the level of relatedness between each pair of maps. In

that case, all of them must refer to the same set of genomic positions,

i.e. genomic areas covered by one map but not present or with an

undefined occupancy value in another must be eliminated.

Intuitively, one needs a simple ‘superimposition’ of all maps, from

which a projection is taken of the genomic coordinates having a

value assigned to them in all maps. From such a projection, deriving

the set of intervals common to all maps is straightforward and left

to the reader.

Now, the level of agreement between Ri and Rj is established ac-

cording to the following heuristic procedure in which, intuitively,

each interval is divided in small pieces for comparison. The length

of the pieces should be such that the correlation between two pieces

must be statistically significant, avoid the most influential point ef-

fect and guarantee that the maps are not divided into too many

pieces, resulting in a slowdown of the computational process asso-

ciated to the comparison of maps. In this study, given the data

being used, a length of 1000 seems reasonable. However, we

choose 1029, i.e. the smallest integer greater that 1000 and divisible

by 147, since that would allow to have an ‘integral’ number of nu-

cleosome centers in each piece. More formally, each interval ½s; e'
obtained as outlined above is processed with the use of a sliding

window of size 1029. It sweeps the interval from left to right. The

correlation between portions of the maps Ri and Rj in the window

is computed and assigned to the corresponding genomic region.

Once that each interval has been processed, the following binning

procedure is used, in order to get a synoptic rendering of the correl-

ation of the entire two maps, assuming that the correlation has

been computed with a method that returns a value in ½%1; 1'. That

interval is partitioned into subintervals, referred to as bins, and

each genomic region is assigned to the bin comprising the correl-

ation value computed for that region. If the bins are picked in such

a way to represent qualitatively increasing levels of correlation, i.e.

bad, poor, fair, good, very good, excellent, the end result of this

procedure is the production of accurate statistics of how many rela-

tively short genomic regions fall into the qualitative levels of correl-

ation represented by the bins.

3 Results and discussion

Kaplan et al. (2008) intended to establish to what extent the DNA

sequence determines nucleosome positions in eukaryotes. Towards

that end, the main part of their strategy was to show that an in vitro

nucleosome occupancy map was correlated with an in vivo one.

Here we want to establish that the DNA sequence, considered as a

combinatorial object, has enough information about nucleosome oc-

cupancy in the corresponding genome. Therefore, our strategy is as

in (Kaplan et al., 2008), with the use of the complexity formulas pre-

sented in Section 2.1 that have the role of quantifying the sequence

information. In particular the same maps are used, with the addition

of two (see Section 3.1). Two computational experiments, nearly

verbatim replicas of the ones described in the mentioned article, are

performed: correlation analysis between the map of an organism

and the corresponding one obtained by computational methods (see

Section 3.2) and ROC analysis to assess how well NERs and NDRs

can be classified by a computational method (see Section 3.3).

3.1 Maps
Five nucleosome occupancy maps are used in this study, the first

three common to the study by Kaplan et al. (2008). Namely, the

normalized in vitro and in vivo Saccharomyces cerevisiae maps, the

adjusted occupancy Caenorhabditis elegans map by Valouev et al.

(2008) (chromosome 2), and the Drosophila melanogaster maps by

Mavrich et al. (2008a) (only chromosome 2). In particular, from

this latter map, two have been extracted, one for the left and the se-

cond for the right arm of the chromosome. Individually, they are

referred to as SCvitro, SCvivo, CE, DM-2L and DM-2R, respect-

ively. Additional details regarding them are given in Supplementary

Section S1. The inclusion of a map for D.melanogaster is justified by

our interest in checking our hypothesis on a eukaryotic organism

more complex than S.cerevisiae and C.elegans. It is also worth

pointing out that DM-2R and DM-2L are much more challenging

maps for this study than the ones being used here for the other two

organisms. Indeed, as opposed to them, where each genomic pos-

ition is given an estimate of the chance of that position being cov-

ered by a nucleosome, whereas DM-2R and DM-2L are binary maps.

That is, each genomic position is assigned a value of one, when that

position is covered by a nucleosome, or zero, when it is not.

3.2 Correlation between complexity-based maps and
the corresponding experimental ones of S.cerevisiae
and C.elegans
We carry out a set of correlation experiments between maps, via the

approach outlined in Section 2.4, and with the use of the Spearman

rank correlation coefficient. Such a choice is motivated by the fact

that it provides a statistically robust non-parametric estimate of cor-

relation, which is largely immune to the presence of outliers. For

completeness, we also carry out the same experiment with the use of

the Pearson correlation coefficient. As for the measures to be tested,

we use H0, LCS(k), at k¼7, and LC(k), at k¼17, (those are the val-

ues of k that maximise the AUC value of the corresponding measure

in the ROC analysis—see Section 3.3). Moreover, we also use the

probabilistic model devised by (Kaplan et al., 2008), here referred to

as KModel. As opposed to the measures proposed here, that con-

sider a sliding window of 147 bp, KModel is allowed to use the en-

tire genome as input for its prediction. Finally, we exclude both DM-

2L and DM-2R because their binary form does not lend itself to

meaningful correlation studies, based on monotonicity or linear re-

lations between numeric vectors.

The results are reported in Tables 1–3 for the Spearman rank

correlation coefficient. The analogous results for the Pearson correl-

ation coefficient are reported in Supplementary Tables S2–S4. As for

the statistical significance of those correlations (both Spearman and

Pearson), since we are in a case of repeated tests of hypothesis, we

have computed a p-value with a standard Bonferroni correction for

the cumulative number of tests performed in the interval [0.3, 1.0].

The remaining intervals are somewhat irrelevant. The significance

level is below 0:80264) 10%19.

In order to fully highlight the implications of those results, the

discussion of an example is helpful. From the Spearman rank correl-

ation in the interval [0.6, 0.9) between H0 and SCvivo, we have

randomly selected one of the genomic regions of 1029 bp falling into

it. For that region, Figure 1 displays the plots of the occupancy val-

ues of SCvivo and SCvitro. As for the computational methods, it

displays the plots obtained by applying them to that region,

4 F.Utro et al.
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according to the methodology already discussed. We take as refer-

ence the in vivo curve (top of the Figure). As it is evident, the corres-

ponding curve of the in vitro map closely follows the in vivo one. An

analogous observation can be made regarding the curves generated

by the computational procedures. The example seems to suggest

that, given in input a sequence, the output of the mathematical for-

mulas and the computational procedure are able to generate curves

for that sequence that are in agreement with the corresponding ones

obtained from in vivo and in vitro maps. Tables 1-–3 here and

Supplementary Tables S2–S4 quantify to what extend such an agree-

ment hold for the maps involved in this study.

With the previous example in mind, an immediate conclusion

that can be drawn from those results is that the good correlation be-

tween SCvivo and SCvitro established by Kaplan et al. (2008) is

also found here, with a method and a correlation coefficient that

does not suffer from the most influential point effect. The compari-

son between KModel and the formulas proposed here has important

methodological implications, discussed next, regarding the nature of

those formulas and what can be learned from a sequence about its

nucleosome occupancy.

KModel has been trained on SCvitro. Therefore, it is not sur-

prising that it performs better than the methods proposed here on

that particular map and on the strongly related one SCvivo.

However, for CE, such an advantage for KModel disappears and its

performance is in line with that of the measures proposed here.

Those observations seem to suggest that those formulas have a

‘foundational nature’ in quantifying nucleosome occupancy from se-

quence, providing some sort of ‘baseline’ common to at least two or-

ganisms. Machine Learning procedures can certainly profitably

extract relevant features when trained on a specific genome.

However, such training may not always be possible, and in those

cases, they may not do much better than the ‘baseline’ procedures

proposed here. That is, training on one genome in the hope to per-

form well on another does not seem to be so easy, in view of the re-

sults of this Section.

Although numerically different, the experiments with the

Pearson correlation coefficient, reported in the Supplementary

Material, also support the above analysis.

3.3 ROC curve analysis
For conciseness, it results convenient to describe in detail first the

ROC curve analysis for one map only: SCvivo.

For each of the thresholds t ¼ 0; 0:25;0:50;0:75, the corres-

ponding NERt and NDRt are extracted according to the method

described in Supplementary Section S2. With reference to the pro-

cedure outlined in Section 2.2, NERt [ NDRt is processed in full

and normalized score modes of operation, respectively, with

A ¼ H0; A ¼ LCSðkÞ; k in [2, 36]; A ¼ LCðkÞ; k in [2, 36], respect-

ively. For the normalized score mode of operation, only the results

obtained by using the median to assign a score to the sequences in

NERt [ NDRt are reported (see Section 2.2 again). As for the min-

imum and the average, we limit ourselves to mention that they also

ensure a good classification (data not shown and available upon re-

quest), however inferior with respect to the median.

The same experiments have been performed for all of the other

maps mentioned in Section 3.1. No thresholding has been applied

for D.melanogaster since it is meaningless for that map. The com-

plete results are reported in Table 4 for H0. As for LC and LCS,

Figure 2 provides the relevant AUC plots, as a function of k, but for

the case of threshold zero. The corresponding plots for all the

thresholds are reported in Supplementary Figures S1–S3. For LCS,

Table 5 provides the value of both the maximum AUC and of the k

for which it is achieved in the mentioned plots. The corresponding

data for LC is reported in Supplementary Table S1. In all Tables, the

analogous results from the study by Kaplan et al. (2008) are also re-

ported for comparison.

As it is evident, all three complexity measures distinguish quite

well NER from NDR for all three organisms studied here. It is also

to be appreciated that the AUC values go up in accordance with the

Table 1. Spearman rank correlation SCvivo

[%1, 0) [0,0.3) [0.3, 0.6) [0.6, 0.75) [0.75, 0.9) [0.9, 1]

(SCvivo, H0) 2.77% 9.48% 31.77% 28.28% 25.38% 2.34%

(SCvivo, LCS(7)) 14.29% 48.21% 25.22% 9.02% 3.20% 0.06%

(SCvivo, LC(17)) 9.38% 21.66% 39.27% 20.11% 9.40% 0.27%

(SCvivo, SCvitro) 1.22% 6.72% 26.54% 27.69% 32.09% 5.74%

(SCvivo, KModel) 0.12% 0.88% 11.47% 23.26% 48.77% 15.50%

The interval [%1, 1] has been divided into six intervals, reported on top of the table, each corresponding to a qualitative ‘value’ of the Spearman rank correl-

ation, as follows (from left to right): bad, poor, fair, good, very good, excellent. The first column in the table indicates the experiment whose result is reported, in

the form (map, predictor). The predictor, i.e. the method used to assign scores to NER and NDR is either H0, LCS(7), LC(17), SCvitro or KModel. For each row,

the percentage of regions that fall within that level of correlation is given in the corresponding column position.

Table 2. Spearman rank correlation SCvitro

[%1, 0) [0, 0.3) [0.3, 0.6) [0.6, 0.75) [0.75, 0.9) [0.9, 1]

(SCvitro, H0) 5.21% 15.48% 35.13% 25.01% 18.10% 1.07%

(SCvitro, LCS(7)) 15.58% 49.74% 24.19% 7.50% 2.14% 0.08%

(SCvitro, LC(17)) 12.06% 24.91% 39.91% 17.01% 5.99% 0.12%

(SCvitro, KModel) 1.27% 7.23% 29.99% 29.57% 28.28% 3.66%

Table 3. Spearman rank correlation CE

[%1, 0) [0, 0.3) [0.3, 0.6) [0.6, 0.75) [0.75, 0.9) [0.9, 1]

(CE, H0) 16.99% 22.94% 33.22% 15.59% 10.51% 0.75%

(CE, LCS(7)) 18.22% 45.49% 24.19% 8.09% 3.87% 0.14%

(CE, LC(17)) 16.92% 25.90% 34.04% 15.15% 7.69% 0.30%

(CE, KModel) 12.74% 21.53% 33.52% 17.67% 12.99% 1.55%
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threshold value. That is, as NER and NDR become more and more

representative, the complexity measures distinguish them better and

better. Moreover, the AUC values obtained with the use of the com-

plexity measures are competitive with respect to the computational

model designed by Kaplan et al. (2008), given the simplicity of those

measures and the total absence of a learning phase on a training set

of sequences. Indeed, the results obtained here confirm, from a dif-

ferent point of view, what has been stated at the end of Section 3.2.

In terms of structural organization of sequence features for nu-

cleosome positioning, we also get brand new insights. When one

considers the ROC analysis curves for LC and LCS, it is evident that

the k-mers organization of the underlying sequences follows the

same trend in favoring/disfavoring nucleosome positioning.

Moreover, the ROC analysis together with the correlation analysis

bring to light that the DNA-encoded organization of eukaryotic gen-

omes is much easier to grasp in S.cerevisiae than in C.elegans. Such

an ‘encoding’ is present in D.melanogaster but it either has a much

less prominent role with respect to the other two, much simpler, or-

ganisms, or it is more complex to describe by a closed form formula.

Quite remarkably, at least for S.cerevisiae and C.elegans, those re-

sults are in agreement with a recent information-theoretic study by

Giancarlo et al. (2015). Using the same data as here, the study

showed that NER in the mentioned organisms have minor differ-

ences in their information-theoretic content, yet those differences

are statistically very significant. The same holds for NDR. It is also

of interest to note that the best AUC values of the various methods

on the various organisms decrease in accordance with the genetic

density of the latter, supporting the fact that more complex organ-

isms may hide more complex mathematical rules with respect to the

ones proposed here.

3.4 Time performance of our methods
Although not the major objective of this research, the simplicity of

the formulas proposed here has also the remarkable side effect to

provide efficient procedures for the computation of nucleosome

density maps. The algorithmic engineering details, as well as the full

results of an experiment conducted on CE, are reported in

Supplementary Section S3. Here we limit ourselves to report that the

timing for H0, LCS(7) and LC(17) (the values of k for which those

measures perform best), executed in normalized scores mode, are

0:490) 102; 0:239) 103 and 0:108) 104 seconds, respectively.

Fig. 1. For a genomic region selected as specified in the main text, the plots of the occupancy values for SCvivo and SCvitro (top two). The abscissa indicates a

position in the sequence and the corresponding ordinate provides the occupancy value. The remaining plots provide curves analogous to the ones just described.

However, the ‘occupancy’ value of a position has been determined by one of the computational methods considered in this article. Taking as reference SCvivo,

the value of the Spearman rank correlation coefficient is also indicated for each curve

Table 4. H0 separates well NER from NDR in three model organisms and an in vitro map for S.cerevisiae

0 0.25 0.5 0.75

(SCvivo, H0) 0.904 (0.844) 0.942 (0.887) 0.967 (0.916) 0.979 (0.934)

(SCvitro, H0) 0.938 (0.889) 0.964 (0.925) 0.980 (0.947) 0.987 (0.962)

(CE, H0) 0.818 (0.744) 0.866 (0.787) 0.900 (0.822) 0.910 (0.838)

(DM-2L, H0) 0.626 (0.578) — — —

(DM-2R, H0) 0.638 (0.591) — — —

(SCvivo, SCvitro) 0.871 0.923 0.956 0.974

(SCvitro, KModel) 0.953 0.983 0.996 0.999

(CE, KModel) 0.763 0.825 0.870 0.890

The legend for the first column of the table is as in Table 1. The remaining columns correspond to the four thresholds. The AUC value obtained via ROC ana-

lysis corresponding to an experiment is reported as a numeric value in the entry summarizing the experiment. For the first five rows, the value refers to the AUC of

that experiment in normalized scores mode, while that in full scores mode is provided in parenthesis. For comparison, the last three rows report the results of the

experiments conducted in Kaplan et al. (2008) (full scores mode only).
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For comparison, KModel takes 0:289) 104 seconds. Therefore, the

measures proposed here are, in their best predictive setting, always

faster than KModel and the best performing one by two orders of

magnitude. It is worth pointing out that in full score mode, the per-

formances of our measures are 0:384) 10; 0:188) 102 and

0:650) 102 seconds, respectively. However, a comparison between

the performance of our measures in that setting and KModel is in-

appropriate because our methods produce a single value for each in-

put sequence while KModel produces a value for each position in an

input sequence.

4 Conclusions

When the findings of Sections 3.2 and 3.3 are placed in the context

of the current state of the art on the identification of what plays a

role in determining nucleosome organization in eukaryotes, we have

the following fundamental advances.

We provide a set of formulas that have the same nice properties

of the ones available for the Barrier Model (Kornberg and Stryer,

1988; Möbius and Gerland, 2010) and that apply to the sequence-

specific model of nucleosome positioning. It is worth recalling that,

prior to this work, the sequence-specific model was populated by a

few sequence rules and Machine Learning procedures and that the

existence of universal sequence dictated rules for nucleosome pos-

itioning was even dismissed (Valouev et al., 2008). The fact that the

formulas, proposed here, are well known in the Literature, and have

not been previously considered in this context, adds value to our

contribution.

The intent of the study by Kaplan et al. (2008) was to show that

the sequence itself has enough ‘information’ to influence nucleosome

positioning and that such a genomic organization is ‘DNA encoded’

in eukaryotes. The term ‘information’ in that setting has to do with

Biology and the term ‘encoding’ is semantically clear. Our results es-

tablish that the purely information theoretic content and combina-

torial richness of subsequences within a sequence, i.e. two measures

Fig. 2. The plots of the AUC values obtained when LCS(k) and LC(k) are used as predictors to separate NER from NDR, for k in [2,36]. The threshold is zero. The

correspondence between the plots and the maps is given in (a). (a) LCS in full scores mode; (b) LC in full scores mode; (c) LCS in normalized scores mode; (d) LC

in normalized scores mode

Table 5. LCS separates well NER from NDR in three model organisms and an in vitro map

0 0.25 0.5 0.75

(SCvivo, LCS) 0.856, 4 (0.723, 6) 0.896, 4 (0.769, 6) 0.926, 4 (0.802, 6) 0.945, 4 (0.824, 6)

(SCvitro, LCS) 0.874, 4 (0.732, 7) 0.905, 4 (0.760, 6) 0.928, 4 (0.795, 6) 0.944, 4 (0.819, 6)

(CE, LCS) 0.806, 4 (0.695, 6) 0.853, 4 (0.752, 6) 0.879, 4 (0.786, 6) 0.874, 4 (0.815, 5)

(DM-2L, LCS) 0.670, 2 (0.621, 6) — — —

(DM-2R, LCS) 0.658, 2 (0.623, 7) — — —

(SCvivo, SCvitro) 0.871 0.923 0.956 0.974

(SCvitro, KModel) 0.953 0.983 0.996 0.999

(CE, KModel) 0.763 0.825 0.870 0.890

The first column in the table indicates the experiment whose result is reported, in the form (map, predictor). The predictor, i.e. the method used to assign scores

to NER and NDR is either SCvitro or KModel or LC. The remaining columns correspond to the four thresholds. The AUC value obtained via ROC analysis cor-

responding to an experiment is reported as a numeric value in the entry summarizing the experiment, in the form ðAUC; kmaxÞ, together with a value of k where it

is maximum. For the first three rows, the reported values refer to the experiment in normalized scores mode, while those in full scores mode are provided in paren-

thesis. For comparison, the last three rows report the results of the experiments conducted in Kaplan et al. (2008) (full scores mode only).
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of information and complexity in Computer Science, are both corre-

lated to the biological information alluded to by Kaplan et al.

(2008). Moreover, our formulas are the first that provide an inter-

pretation of the mathematical nature of the ‘encoding’ discovered by

the mentioned authors.
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