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Gadolinium (Gd), a metal of the lanthanide series used as contrast agent for magnetic resonance imaging,
is released into the aquatic environment. We investigated the effects of Gd on the development of four
sea urchin species: two from Europe, Paracentrotus lividus and Arbacia lixula, and two from Australia,
Heliocidaris tuberculata and Centrostephanus rodgersii. Exposure to Gd from fertilization resulted in in-
hibition or alteration of skeleton growth in the plutei. The similar morphological response to Gd in the
four species indicates a similar mechanism underlying abnormal skeletogenesis. Sensitivity to Gd greatly
varied, with the EC50 ranging from 56 nM to 132 mM across the four species. These different sensitivities
highlight the importance of testing toxicity in several species for risk assessment. The strong negative
effects of Gd on calcification in plutei, together with the plethora of marine species that have calcifying
larvae, indicates that Gd pollution is urgent issue that needs to be addressed.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Themarine environment is the sink for a range of anthropogenic
contaminants, the diversity of which is increasing rapidly as new
chemicals are produced and new applications developed. The ma-
rine environment receives anthropogenic chemicals originating
from terrestrial sources (Islam and Tanaka, 2004). Monitoring
chemical pollution in the marine ecosystems and understanding
their toxic effects is critical for environmental management
(European Marine Board, 2013). Understanding the impacts of
chemical pollution in the marine environment requires determi-
nation of exposure and chemical concentrations as well as the toxic
gadolinium; PMCs, primary
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effects using model organisms (Lyons at al., 2010; Chapman, 2007).
Many pharmaceuticals including therapeutic and prognostic

drugs pollute the marine environment because wastewater treat-
ment plants do not adequately remove these compounds. Recently
the International Conference on Chemicals Management (ICCM)
highlighted the need for global cooperation to build awareness and
push for action to address drug pollution (Time To Get Clean, 2015).
For example rare elements used in medical applications, such as
Gadolinium (Gd), a metal of the lanthanide series of the elements,
are released into municipal waste water and then are discharged
into aquatic and marine environments. Since the 1980s, chelates of
Gd have been used as contrast agents for magnetic resonance im-
aging (MRI) and were considered safe for humans (Niendorf et al.,
1991) until they were linked to nephrogenic systemic fibrosis
(NSF) disease (Cowper et al., 2000; Grobner, 2006). Gd3þ toxicity
appears to be associated with its action as a blocker of Ca2þ chan-
nels because its ionic radius is nearly equal to that of divalent Ca2þ

(Sherry et al., 2009). Gd chelates are stable complexes and are not
metabolized and so they enter the environment unchanged
(Kümmerer and Helmers, 2000). It has been estimated that be-
tween 70 and 300 g Gd is released each day into the environment
osure to gadolinium on the development of geographically and
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(Knappe et al., 2005). This poses a potential hazard to the marine
biota. Although it is recognized that Gd has negative consequences
on human health, the effects of Gd exposure on aquatic organisms
are poorly understood. We addressed this gap in knowledge in an
investigation of the effects of Gd on the development of sea urchin
embryos and larvae.

The sea urchin embryo has long been an important model or-
ganism in developmental biology and eco-toxicology to assess the
hazard posed by contaminants entering the marine environment
(Radenac et al., 2001; Russo et al., 2003; Roccheri et al., 2004;
Pinsino et al., 2010; Tellis et al., 2014). A wealth of research with
sea urchin embryos and larvae have shown that chemical pollut-
ants impair development and that the larval skeleton is a particu-
larly vulnerable response variable for ecotoxicological tests
(Bonaventura et al., 2015; Byrne et al., 2013; Morroni et al., 2016).
For instance, exposure to toxic elements (e.g. cadmium and man-
ganese), UVB and X rays inhibits skeletogenesis (Filosto et al., 2008;
Pinsino et al., 2011; Bonaventura et al., 2005; Matranga et al., 2010).
The sea urchin larval skeleton is produced by the primary mesen-
chyme cells (PMCs) that migrate into the blastocoel during
gastrulation, forming two ventrolateral clusters that secrete the
spicule rudiment (Killian and Wilt, 2008; Matranga et al., 2011).
Elongation and branching of the spicules produce the three-
dimensional pluteus endoskeleton, with specific features depend-
ing on the sea urchin species (Zito el al., 2015). We investigated the
effect of a range of concentrations of Gd on the development of sea
urchin embryos and larvae from four species, two from Europe
(Paracentrotus lividus, Parechinidae, Arbacia lixula, Arbaciidae), and
two from eastern Australia (Heliocidaris tuberculata, Echinome-
tridae, Centrostephanus rodgersii, Diadematidae). This allowed us to
compare the responses to Gd and sensitivity across phylogeneti-
cally diverse species. As all four species are ecologically important
members of rocky reef communities (Boudouresque and Verlaque,
2013; Byrne and Andrew, 2013; Gianguzza and Bonaviri, 2013;
Keesing, 2013) and develop through a feeding echinopluteus
larva, information of their sensitivity to Gd will aid in the under-
standing of the hazard posed and of the conserved morphological
response across species to provide insights into potential mecha-
nisms of Gd toxicity. The markedly different sensitivities of the four
species to Gd is discussed in context of single-species toxicity tests.

2. Materials and methods

2.1. Embryo cultures and Gd exposure conditions

Adult Paracentrotus lividus and Arbacia lixula were collected
along the North-Western coast of Sicily, Italy. Heliocidaris tuber-
culata and Centrostephanus rodgersii were collected near Sydney,
Australia. Gametes were collected by routine methods (Pinsino
et al., 2011; Byrne et al., 2013) and used for fertilization. Four in-
dependent experiments were performed for P. lividus,
H. tuberculata and C. rodgersii and two for A. lixula (see Table 1),
with gametes obtained from at least two males and two females.
Embryos were reared at 18�e20 �C in Millipore filtered seawater
(MFSW) in the presence of antibiotics only for the European species
(30 mg/L penicillin and 50 mg/L streptomycin sulfate). Just after
fertilization, embryos were exposed to different concentrations of
Gadolinium Acetate Tetrahydrate (GAT, Waco). GAT salt was freeze-
dried before weighing and dissolved in MFSW. To minimize the
volumes to be used for the assessments of Gd toxicity, exposures
were carried out in 24-multiwell plates (Cellstar, Greiner Bio-One),
with 2000 embryos per well in 2 ml. P. lividus was used in pre-
liminary experiments to assess the Gd concentration range causing
developmental abnormalities and with respect to results with
Hemicentrotus pulcherrimus, Pseudocentrotus depressus and
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Heliocidaris crassispina (Saitoh et al., 2010). Specifically, we used
doses increasing by a factor of 5 (from 1 to 125 mM) and found about
50% of abnormal embryos at the lowest dose, and 100% lethality at
the highest dose tested. A similar approach was used for the other
three species under investigation, with final Gd concentrations
used ranging from 1 nm to 200 mM. For each experiment 50 em-
bryos from three different wells were sampled at the two devel-
opmental stages, gastrula (24 h post fertilization-hpf) and pluteus
(48 hpf), as in previous studies (Bonaventura et al., 2005; Pinsino
et al., 2011). In some experiments, a total number of 100 or 300
embryos were sampled (see Table 1). Embryos were examined
microscopically (Zeiss Axioscop 2 plus or Olympus BX60), photo-
graphed using a digital camera and scored for normal/abnormal
development (see below).

2.2. Toxicity criteria

The four species were chosen because of their comparable
developmental timeline. At 48 hpf, embryos of all species have
reached the pluteus stage, where a tri-partite gut and larval arms
could be observed in control embryos. Exposure to Gd resulted in
major alterations or inhibitions of skeleton growth at the final
endpoint (48 hpf). Thus, abnormal embryos were categorized into
five morphotypes, as sketched in Fig. 1: CS, complete skeleton:
larvae with a regular skeleton; NS, no skeleton; SS, shorter skel-
eton: skeleton arm rods shorter than controls; AS, asymmetrical
skeleton: larvae with a left-right (LR) asymmetry in skeleton rods.
For H. tuberculata and C. rodgersii we identified one additional
category, called LP, lost pattern, characterized by an incorrect
growth and branching of the skeletal rods. The percentage of each
skeleton category in the larvae examined from each of the three
wells (per fertilization) was determined and used as the datum for
statistical analysis.

2.3. Statistical analysis

The dose-response curves of the four species were calculated
plotting the percentages of embryos bearing an abnormal skeleton
(Fig. 1: NS, SS, AS and LP embryos) across increasing Gd concen-
trations. Two ecotoxicological parameters were determined: EC50,
the half maximal effective concentration, that represents the con-
centration where 50% of Gd maximal effect is observed, and the
NOEC, no observed effect concentration, the highest concentration
of a substance at which no adverse effect is found in exposed or-
ganisms. The EC50 values for each Gd-experiment performed were
determined using the SigmaPlot 13.0 analysis software (Systat
Software, Inc., San Jose, California, USA). The EC50 values were
analyzed by the one-way ANOVA on the data for three species
(except for H. tuberculata due to insufficient replication) with
species as the fixed factor. The analyses were performed using the
OriginPro 8.1 (OriginLab Corp., Northampton, MA, USA), and the
level of significance was set to P � 0.05. The percentage data
determined for each of the morphological categories observed
were analysed by the one-way analysis of variance (ANOVA) with
Gd concentration as the fixed factor and individual skeletal
morphology as the response variable. Tukey’s HSD test was used as
Post-hoc test for mean comparison. Additionally, two-way ANOVAs
were run with Gd concentration and species as the fixed factor and
individual skeletal morphology as the response variable. Homo-
geneity of variance and normality were checked using the Levene’s
and Shapiro-Wilk tests, respectively.The Shapiro-Wilk normality
test showed that all data was significantly drawn from a normally
distributed population, except for the concentrations correspond-
ing to percentages all equal to zero or very similar. The data for the
skeleton categories of H. tuberculata were not analyzed by ANOVA
osure to gadolinium on the development of geographically and
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Table 1
Summary of experiments performed on the four sea urchin species.
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tests as there were only two replicates for each Gd concentration
(see Table 1).
3. Results

3.1. Gd toxicity dose-response curves in phylogenetically distant
species show divergent levels of sensitivity

Our first aimwas to determine the general response to Gd in the
four species, comparing control embryos raised in normal seawater
with embryos raised in Gd-containing seawater at different con-
centrations. Control embryos developed through the gastrula stage
(24 hpf) and subsequently reached the pluteus larvae (48 hpf),
characterized by the presence of a fully-developed skeleton (Fig. 1,
CS embryos).

In all four species there was a decrease in the percentage of CS
embryos, in parallel with the increase of the Gd concentration
tested, with species-specific differences in sensitivity. The dose-
response curves, obtained by plotting the percentages of embryos
with an abnormal skeleton are shown in Fig. 2. The EC50 values
were: 56 nM for H. tuberculata; 1.18 mM for P. lividus; 2.1 mM for
Fig. 1. Sketches of the five morphotypes observed and categorised on the basis of skeleton
Shorter Skeleton; AS, Asymmetrical Skeleton; LP, Lost Pattern.
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A. lixula and 132 mM for C. rodgersii. Thus, there was a three-order
magnitude of difference between the EC50s of H. tuberculata and
C. rodgersii values and a two-order magnitude of difference be-
tween the EC50s of P. lividus/A. lixula and H. tuberculata.

The NOEC values, calculated empirically on the basis of the
observed effects, were: 1 nM for H. tuberculata; 250 nM for A. lixula;
250 nM for P. lividus and 1 mM for C. rodgersii. One-way ANOVA
revealed significant differences for the EC50 of P. lividus, A. lixula
and C. rodgersii (F ¼ 482,27; P ¼ 2,32$10�14).

There were significant differences in the percentage of the CS
embryos in the control and Gd-exposed embryos (Table 2). The
pair-wise comparisons (Tukey HDS Post-hoc Test) showed that the
mean percentages of CS embryos for 5, 10 and 20 mM Gd concen-
trations to 0 mM Gd (control embryos), differed (P < 0.05, data not
shown). Gd concentrations among sea urchin species had signifi-
cant effects on the categorized skeletal morphologies (Two-way
ANOVA, Table 3).
3.2. Gadolinium exposure perturbs skeleton growth and pattern

At 48 hpf, control embryos of all the four species were plutei
occurrence, abnormality and asymmetry. CS, Complete Skeleton; NS, No Skeleton; SS,

osure to gadolinium on the development of geographically and
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Fig. 2. Concentration-dependent effects of 48 h Gd exposure on abnormal skeleton formation. Percentages of embryos bearing an abnormal skeleton are plotted across increasing
Gd concentrations in seawater.
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with a tri-partite gut and well-developed skeleton, with species-
specific evident differences (Fig. 3 A-D). Specifically, P. lividus plu-
tei (Fig. 3A) have an elongated body, with unfenestrated skeletal
rods typical of Echinidae (Emlet, 1982; Zito et al., 2015). A. lixula
plutei (Fig. 3B) have fenestrated postoral rods and a robust apical
dentate rostrumwith a variable number of 7e9 teeth. The plutei of
H. tuberculata (Fig. 3C) are more truncated and their skeleton forms
a robust and intricate basket-structure, with solid ladder-like
fenestrated rods typical of the Echinometridae (Kinjo et al.,
2008). The plutei of C. rodgersii (Fig. 3D) are generally referred to
as two-armed larvae (Soars and Byrne, 2015) because of their very
long postoral arms in comparison to the short anterolateral arms,
characteristic form of many diadematids (Emlet et al., 2002).

Exposure to Gd had no major effects on early development to
gastrulation (24 hpf). Ingression and migration of PMCs occurred
with the correct timing, if compared to control embryos, as well as
the invagination of the vegetal plate (not shown); at the gastrula
stage, we observed a slight delay in biomineral deposition timing
(not shown). At 48 hpf, differentiation of ectoderm territories into
the columnar epithelium at the animal pole and the squamous
epithelium at the vegetal pole also appeared normal (see Fig. 3E, F,
K, P). Gd also had no apparent effect on normal tripartite gut
development, as shown for P. lividus (Fig. 3E, H, L) and C. rodgersii
embryos (Fig. 3K, O, Q).

After 48 hpf of Gd exposure, impaired skeleton development
was evident with a range of skeletal abnormalities (Figs. 1 and 3),
Table 2
Effects of Gd concentrations on the categorized skeletal morphologies (One-way
ANOVA).

Specie Morph. DF F value P value

P. lividus CS 11 262.60 0
NS 11 39.49 0
SS 11 25.95 1887$10�15

AS 11 20.27 1469$10�13

A. lixula CS 10 763.08 0
NS 10 171.01 0
SS 10 91.03 0
AS 10 37.54 0

C. rodgersii CS 11 464.65 0
SS 11 717.87 0
AS 11 67.99 0
LP 11 37.40 0

P value < 0.05 indicated that Gd concentrations had significant effects on skeleton
morphologies.
DF, degree of freedom: number of Gd concentrations to which embryos were
exposed, including zero concentration (control embryos), minus 1.
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including complete skeleton (CS, Fig. 3A-D), no skeleton (NS,
Fig. 3E-G), shorter skeleton (SS, Fig. 3H-K) and asymmetrical skel-
eton (AS, Fig. 3LeO). The lost pattern category was only seen in
C. rodgersii and H. tuberculata (LP, Fig. 3PeQ). A summary of the
occurrence of the morphotypes observed in the presence of
different concentrations of Gd is shown in Fig. 4. There was a sig-
nificant effect of Gd concentration on the percentage of the skeletal
morphologies observed (Table 2).

For P. lividus, the SS category initially increasedwith the increase
of Gd concentration (48.30% ± 0.06 SD at 2.5 mM), as for A. lixula
(58.82% ± 0.03 SD at 5.0 mM) (Fig. 4A and B). At Gd concentrations
higher than 2.5 mM (P. lividus) and 5.0 mM (A. lixula) the SS category
decreased, in parallel with the increase of the NS morphotypes,
probably occurring because of the high Gd dose used. The AS
morphotype was infrequent in A. lixula (Fig. 4B), but common in
P. lividus with a peak percentage of 43.41% (±0.05 SD) at 20 mM
(Fig. 4A). At higher concentrations (100 mM), the incidence of the
most severe phenotype (NS) increased (48.85% ± 0.01 SD) in
P. lividus.

H. tuberculata was the most sensitive species to Gd exposure
(Fig. 4C). Beyond the 250 nM threshold there were no CS larvae and
the skeleton was absent at concentrations above 5 mM (NS em-
bryos). The peak percentages of the SS, AS and LP morphotypes
were reached at 40.80% (±0.03 SD) at 125 nM, 54.38% (±0.03 SD) at
0.5 mM, and 36.00% (±0.0015 SD) at 100 nM, respectively, and
decreased at higher Gd doses tested. In contrast, C. rodgersiiwas far
less sensitive than the other three species (Fig. 4D). Very low
amounts of SS (4.72% ± 0.01 SD) and AS (2.07% ± 0.007 SD) mor-
photypes were observed at 2.5 mM. The amount of CS embryos
Table 3
Effects of Gd concentrations among sea urchin species on the skeletal morphologies
(Two-way ANOVA).

Morph. Factors DF F value P value

CS Gd Conc. 14 96.55 0
Specie 2 320.70 0

NS Gd Conc. 14 16.86 0
Specie 2 103.64 0

SS Gd Conc. 14 13.00 0
Specie 2 94.90 0

AS Gd Conc. 14 73.42 0
Specie 2 118.14 0

P value < 0.05 indicated that among species, Gd concentration had significant effects
on the categorized skeletal morphologies.
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Fig. 3. Morphotypes occurring after Gd exposure show severe impairments of skeleton growth and patterns. Control (AeD) and Gd-exposed (EeQ) embryos after 48 h of
development. Bar ¼ 50 mM in A-D, G, J, K, N-Q; 25 mM in E, F, H, I, L, M.
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Fig. 4. Impairment of skeleton growth and patters correlates with the exposure to
increasing Gd concentrations. P. lividus (A), A. lixula (B),H. tuberculata (C) and C. rodgersii
(D) embryos after 48 h of development. Bars in the histograms show the percentages of
observed phenotyes: white: CS (complete skeleton); black: NS (no skeleton); grey: SS
(shorter skeleton); oblique strips: AS (asymmetrical skeleton); horizontal strips: LP
(lost pattern). Standard deviation values ranged from 0.0004 to 0.06 for all samples.
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decreased in a dose-dependent manner, but as much as 26.14%
(±0.02 SD) of the normal morphologies were present even at high
Gd concentration (150 mM). Differently from what observed in the
other species, the AS category was represented by embryos with a
completely full-sized spicule on one side only, never shorter than
that of controls, with the highest percentage of 19.74% (±0.01SD) at
10 mM. The LP morphotype reached the amount of 16.10% (±0.02
SD) at 80 mM and then gradually decreased at higher doses. In
contrast with what we observed in the other three species, the NS
phenotype was never observed in C. rodgersii even at the highest
concentration tested (200 mM). In this latter treatment, the SS
category was 100%.

The effects of Gd concentration with respect to each morpho-
logical category for P. lividus, A. lixula and C. rodgersii were signifi-
cant (Table 2). For P. lividus, the data of skeletal morphologies
analyzed by ANOVA included values on 0.8 mM Gd concentration
(see Table 2) not shown in Fig. 4. The effects of Gd concentrations
per each morphological category and across the three species were
significant (P < 0.05). The pair-wise tests between species (Tukey
HSD, Table S1), revealed significant differences. For two species,
P. lividus and A. lixula the responses to Gd of the CS categorywas not
significantly different (Table S1), because the percentage of CS
embryos in these species was similar (Figs. 2 and 4, Table S1).

4. Discussion

Gadolinium, along with a plethora of medically used agents
released into the marine environment, is an emerging pollutant
(Telgmann et al., 2013). Gd pollution is measured as “the Gd
anomaly”, calculated as the ratio of the measured Gd concentration
in a sample with respect to the background levels of Gd due to
geological processes. Positive Gd anomalies were observed in
several rivers, lakes and in seawater from different locations (Bau
and Dulski, 1996; Nozaki et al., 2000; Elbaz-Poulichet et al., 2002;
Zhu et al., 2004; Ogata and Terakado, 2006; Kulaksiz and Bau,
2007). The Gd anomaly is determined using only the total Gd
concentration, without information about the speciation of the Gd
present in the sample (Bau and Dulski, 1996). Strikingly, the Gd
anomalies in seawater around the urban areas with large human
populations have increased greatly over time, all over the world,
demonstrating that Gd anomalies are caused by the emission
release from anthropogenic sources (Zhu et al., 2004). Here we
show the toxic effects of Gd on the development of four sea urchin
species living in coastal areas around big cities (Palermo, Italy: >1
million inhabitants; Sydney, NSW: >4 million inhabitants), and in
particular the perturbation of calcification. As many marine species
make a skeleton during their planktonic developmental stage, the
strong negative effects of Gd, for some of the sea urchin species at
very low concentrations, highlights that Gd pollution is an issue
that needs to be addressed.

The four species investigated involved European (Paracentrotus
lividus and Arbacia lixula) and Australian (Heliocidaris tuberculata
and Centrostephanus rodgersii) species that all develop through an
echinopluteus larva producing a complex three-dimensional skel-
eton. As the mechanism of skeletogenesis and digestive tract for-
mation in echinoplutei is conserved across the Echinoidea (Arnone
et al., 2015), we expected that the four species would have a similar
response to Gd, exhibiting similar phenotypes. On the other hand,
due to differences in the extent of skeletogenesis between the
species we expected that there might be some differences in ab-
solute sensitivity levels. As expected, the phenotypic response to
Gd of impaired skeleton formation was similar across the four
species, indicating a similar response mechanism, albeit with
different levels of sensitivity with respect to the concentrations
used. The response seen for the four species investigated here is
osure to gadolinium on the development of geographically and
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similar to that reported for three Japanese species, Hemicentrotus
pulcherrimus, Heliocidaris crassispina and Pseudocentrotus depressus
(Saitoh et al., 2010), providing further evidence of a conserved
mechanism of toxicity of Gd to sea urchin embryos.

Pharmaceuticals are designed to specifically act on biological
systems and that’s the reason of their high toxicity; Gd ions (Gd3þ)
toxicity appears to be associated with its action as a blocker of Ca2þ

channels because its ionic radius is nearly equal to that of divalent
Ca2þ (Sherry et al., 2009). Some studies suggested that Gd ion
concentrations in the micromolar range (between 1 and 200 mM)
are able to block Ca2þ channels in the membrane of sea urchin eggs
(David et al., 1988), Xenopus oocytes (Yang and Sachs, 1989) and
mammalian cell lines (Broad et al., 1999; Lansman, 1990; Luo et al.,
2001). As the skeleton is a carbonate structure, potential blockage
of Ca2þ channels by Gd may be particularly toxic to the calcification
response. Further research in this direction is awaited.

Therewas several orders of magnitude difference in the EC50 for
the most sensitive (H. tuberculata) and most tolerant (C. rodgersii)
species. For all species we observed a strong concentration-
dependent impairment of skeletogenesis. The sensitivity to Gd
might reflect the differences in the amount of calcite deposited in
the spicules with the species that produce more robust complex
skeletons (eg. H. tuberculata and A. lixula) to be more sensitive than
species that produce a simpler, lower calcite skeleton (e.g.
P. lividus). It may be that species that normally produce more calcite
are more affected by Gd-impaired uptake of Ca2þ. The requirement
of Ca2þ for the sea urchin biomineralization requires the supply of
bicarbonate or carbonate ions, by the formation of an over-
saturated micro-environment at the calcification front in the em-
bryo (Stumpp et al., 2012), and a minimal molecular toolkit for
mineral deposition in adult tests (Karakostis et al., 2016) which
might be the same in the larvae.

As predicted, H. tuberculata embryos were much more sensitive
to the Gd exposure then the other three species, suggesting that the
need to deposit more calcite and construct a robust larval skeleton
may be an indication of sensitivity. The differences in the sensitivity
of the species to Gd may also be related to their different habitats
and perhaps pollution history of the parental population, a trans-
generational effect as seen for the progeny of other invertebrates
from polluted sites (Lister et al., 2015). This is a form of develop-
mental plasticity through the influence of environment on gamete
quality (Ghalambor et al., 2015; Hamdoun and Epel, 2007). The
epigenome may also be involved (Vandegehuchte and Janssen,
2014). The different ability to activate defence strategies, such as
the autophagic program (Chiarelli and Roccheri, 2012) and stress
proteins induction (Matranga et al., 2011), may contribute to the
resilience of the species. Chemical pollutants have been a persistent
source of evolutionary challenges throughout the life history of
living organisms (Whitehead, 2014). Human-introduced pollutants
greatly increased the rate of change of contemporary environment,
severely challenging the adaptive potential of many species.
Empirical data on the evolutionary potential of a wide range of
species are needed to determine their adaptation to the changing
world (Hoffmann and Sgr�o, 2011). Geographically separated pop-
ulations within the same species have been shown to differ in their
tolerance to climatic conditions, indicating that past selection has
resulted in local adaptation to temperature (Kelly et al., 2011) and
pH (Langer et al., 2009; Hammond and Hofmann, 2010).

The two European species collected from the same environ-
ment, P. lividus and A. lixula, showed similar sensitivities in
response to Gd exposure, in agreement with a previous workwhere
these two species were found equally sensitive to different types of
chemicals (Carballeira et al., 2012). In contrast, a recent article on
the effects of silver nanoparticles (Ag-NPs) on the development of
three sea urchin species demonstrated the species-specific effects
Please cite this article in press as: Martino, C., et al., Effects of exp
phylogenetically distant sea urchins species, Marine Environmental Rese
of Ag-NPs low concentrations (from 100 down to 1 mg/L) (Buri�c
et al., 2015). These authors found that the three species, A. lixula,
P. lividus and Sphaerechinus granularis, differ in their sensitivity to
Ag-NPs. The most sensitive species is A. lixulawhose embryos show
an impaired development at the lowest Ag-NP concentrations
(1e10 mg/L) tested. It followed S. granularis, with an effective Ag-
NP concentration range of 10e50 mg/L, and last P. lividus
(50e100 mg/L). Thus, sympatric species living in the same envi-
ronment can have different sensitivities to toxicants, as also shown
here for the two Australian species and for Japanese species in
response to Gd (Saitoh et al., 2010). This indicates that species,
despite having a similar environmental history and potential
exposure to pollution, might have similar sensitivities to some
toxicants and different sensitivities to others.

The differences in sensitivity between the three species may
also be influenced by phylogeny. Phylogenetic threes, based on
molecular data, show that C. rodgersii is a member of the oldest sea
urchin lineage among the four examined (Lawrence, 2013), while
H. tuberculata and P. lividus are more recent and more closely
related. The hypothesis that C. rodgersii is the most robust to the Gd
insult may be due to being of a more ancient lineage needs to be
assessed. A quantitative genetics study showed the presence of
tolerant genotypes in response to concurrent warming and acidi-
fication, contributing to the adaptive capacity and resilience of
C. rodgersii in a changing ocean (Foo et al., 2012). Comparative data
on Gd toxicity from the Mediterranean species, Centrostephanus
longispinuswould help discern the potential influence of phylogeny
or geographic environment on sensitivity. To understand the rela-
tive influence of environmental or phylogenetic history on the
different sensitivities of the embryos and larvae of different sea
urchins to Gd and other stressors requires data from many other
species.

The comparison among effects of Gd on larval skeleton of
different species can address important evolutionary questions
from a developmental viewpoint, to understand how these differ-
ences are generated, and from an ecotoxicological viewpoint, to
investigate how such differences influence the response to envi-
ronmental contaminants.

4.1. Conclusions

In conclusion, we show that four sea urchin species, geograph-
ically and phylogenetically distant, had different sensitivity to Gd,
but that the effect of this agent on larval phenotype was similar.
That the same pollutant can have very different toxicity levels on
marine organisms, even within the same taxonomic group, shows
that using only one model organism to test the effects of pollutants
on the marine environment is not sufficient. Results of pollution
assays based on one species within a taxon can be misleading with
respect to hazard risk assessment.
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