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Abstract
Revenue management aims at improving the performance of an organization by selling the
right product/service to the right customer at the right time. This task is very dependent on
uncontrollable external factors. In the hospitality industry, rooms of the hotel represent
perishable assets and fixed capacities at the same time. Therefore, in the case of a stochastic
process for customers calling in reservations prior to a particular booking date, a common
problem for hotels is to devise a policy for maximizing the total expected profit conditional
on the set of bookings. We propose a fuzzy model for the hotel revenue management under
an uncertain and vague environment. Fuzziness of objective and constraint functions have
been incorporated into a stochastic booking model considering multiple-day stays to show the
effect of uncertainty on the optimal demand. By changing the relaxation parameters of the
objective function, we have found a set of optimal solutions with, in most of the cases, a value
of the objective function equal to the optimal solution of the stochastic model, providing
several alternative optimal room allocations.
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Revenue management (RM), or yield management, is concerned with finding the optimal inventory

allocation and scheduling strategies and/or price settings so as to maximize revenue within the

planning horizon.

Although RM systems have been applied in a wide range of industries, including energy,

fashion retail, manufacturing, car rentals and hospitality, a substantial part of the literature is rooted

in the airlines because flight companies have the longest history of development in RM.

The research started in the early 1970s with the seat inventory control rule proposed by

Littlewood (1972) for airlines offering fare products that mixed discount and higher fare

passengers in the same aircraft compartments. With the expected marginal seat revenue

heuristic, Belobaba (1989) extended the Littlewood’s one-period model with two fare classes

to the case of multiple fares. Overbooking models (Chatwin, 1998), procedures for finding the

booking limit (the limit on the number of items that can be sold at a cheaper price) that

maximizes the company’s expected revenue (Belobaba and Weatherford, 1996; Bodily and

Weatherford, 1995; Weatherford et al., 1993) and models with customers diversion (Pfeifer,

1989) appeared in the literature shortly after. Weatherford (1998), McGill and van Ryzin

(1999), Pak and Piersma (2002) and Talluri and van Ryzin (2004) provided an overview of

RM applications in airline seat inventory control.

From its origins, RM has grown to its current status of mainstream business practice because

control of costs is an important task to succeed in the current intense competition but it is the RM

the task most dependent on uncontrollable external factors. Moreover, the more a company offers

perishable products/services or operates with fixed capacities, the more revenues are sensitive to

such factors.

Several articles provide a review of the literature on RM problems addressed in a variety of

industries. Chiang et al. (2007) and McGill and van Ryzin (1999), for instance, discussed a

list of published articles, books, conference proceedings, working articles, industrial technical

reports and graduate theses and provided a wide bibliography of works in RM up to 1999 and

since 1999, respectively. Pullman and Rodgers (2010) focused on the RM approaches that

have gained significant worldwide adoption in the accommodation industry. In this domain,

most RM theories deal with the uncertainty of the environment using statistical forecasting

methods and mathematical optimization techniques. Weatherford and Kimes (2003) provided

a comparison of such forecasting methods. Bitran and Mondschein (1995) and Weatherford

(1995) used simulations to test their heuristics for whether or not to accept a reservation

request. Baker (1994) extended the above studies and compared them with his heuristic

models for overbooking and allocation. Lai and Ng (2005) and Liu et al. (2008) proposed a

network optimization model for hotel RM in a stochastic programming formulation so as to

capture the randomness of the unknown demand (unknown number of arrivals and unknown

length of stays).

In a wide range of tourism studies, uncertainty, imprecision and other ambiguities have been

modelled by applying the fuzzy programming approach. Accurate forecasting of tourism arrivals

(Chou et al., 2010; Hadavandi et al., 2011; Huarng et al., 2007; Lee et al., 2012; Wang, 2004),

sustainable development of tourism (Stojanovic, 2011) and electronic tourism (e-tourism) (Hamedi

and Jafari, 2011) are just a few successful examples. A fuzzy approach for the hotel revenue

optimization is instead still missing in the literature.

In this work, we incorporate fuzziness of the objective and constraint functions into the sto-

chastic model proposed by Liu et al. (2008) to show the effect of uncertainty on the optimal

demand. Indeed, in the case of a stochastic process for customers calling for reservations before a
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particular booking date, a problem for hotels is to devise a policy for booking the set of customers

that maximizes the total expected profit (Badinelli, 2000).

We assume that the hotel has only one type of room to allocate but the unit rate per room may be

different during every booking period and every reservation may cover several days.

We have found a set of optimal solutions with the value of the objective function being

equal. Each optimal solution embodies a different degree of uncertainty and subjectivity in the

measurement of the expected demand. Therefore, our model provides several alternative

optimal room allocations to which the decision maker (DM) can refer to face the real cus-

tomers’ demand.

This article is organized as follows: In section ‘Properties of the accommodation industry’,

properties of the accommodation industry are discussed. The fuzzy approach is introduced in

section ‘The fuzzy approach’. The mathematical models with notations and parameters used in this

article will be introduced in section ‘Stochastic programming’. The illustrative examples with

model settings and computational results are given in section ‘Experimental analysis’. The final

section concludes and gives some future research recommendations.

Properties of the accommodation industry

Hotel management has the following characteristics:

� Short-term costs are largely fixed, and variable costs per user are small. Thus, in most

situations, it is sufficient to seek for booking policies that maximize revenues.

� Booking decisions are repeated millions of times per year. Thus a risk-neutral approach is

justified, although there is a lower risk in accepting a current booking request than in

waiting for later possible bookings.

� Rooms in the hotel represent perishable assets (they cannot be stored for future sale) and

fixed capacities at the same time: A room left empty in a hotel for a night represents a

revenue loss for the company management.

� The best practice is to fulfil the requests of highly profitable guests as much as possible. Yet,

it is generally necessary to allow for less profitable guests in order to prevent rooms from

remaining vacant.

� Advance booking is allowed (and thus cancellations, no-shows and overbooking problems

exist).

� Capacity is usually fixed and the cost of instant expansion is very high.

� The management faces a network capacity control problem when customers require a

sequence of nights at the hotel.

The fuzzy approach

Fuzzy linear programming (FLP) is one of the most popular decision-making approaches

based on the fuzzy set theory. Since Zadeh’s (1965) pioneer work, FLP has been widely

applied in many disciplines, such as operational research, management science, control theory

and artificial intelligence.

Some early works include Bellman and Zadeh (1970), Negoita and Sularia (1976), Tanaka et al.

(1973) and Zimmermann (1974).
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Among the approaches for solving FLP, the method proposed by Zimmermann is the most often

used when the objective function and/or the right-hand sides of the constraints are fuzzy. Indeed, as

several literature (Lai and Hwang, 1992; Zimmermann, 2001) has pointed out, the Zimmermann’s

approach has the advantage of few assumptions and easy computation compared with alternative

fuzzy methods (Safi et al., 2007).

The Zimmermann’s approach

Starting from a standard linear programming problem:

max
x

z ¼ cTx

s:t:
Ax � b

x � 0

; ð1Þ

let us assume that the objective function and the right-hand side coefficient in the constraints are

vague because of imprecise human evaluations, inconsistent or incomplete evidence, natural

language to be modelled and so on.

For such a case, Zimmermann (1976) proposed a model that included both fuzzy objective and

constraints:

gmax
x

z ¼ cTx

s:t:
Ax f b

x � 0

; ð2Þ

where A 2 Rm�n

, b 2 Rm, c 2 Rn, x 2 Rn; gmax
x

and f denote the relaxed or fuzzy version of the

ordinary max and � operators, respectively.

If the DM can establish an aspiration level, b0, he wants to achieve as much as possible and if the

constraints of the model can be slightly violated, without causing unfeasibility of the solution, then

model (2) can be written as follows (Zimmermann, 2001):

s:t:
find x

cTx g b0

Ax f b

x � 0

: ð3Þ

For treating fuzzy inequalities, Zimmermann proposed linear membership function:

~A
0ðxÞ ¼

1 ifcTx > b0

1� b0 � cTx

p0

ifb0 � p0 � cTx � b0

0 ifcTx � b0 � p0

;

8>><
>>: ð4Þ

~A
iðxÞ ¼

1 ifðAxÞi < bi

1� ðAxÞi � bi

pi

ifbi � ðAxÞi � bi þ pi

0 ifðAxÞi > bi þ pi

;

8>><
>>: ð5Þ
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where for i ¼ 1, 2, . . . , m, (Ax)i is the ith row of Ax, bi is the ith element of b and pi is a

constant expressing the admissible violation of the ith inequality. p0 is the admissible vio-

lation of the objective function. b0 and pi are subjectively chosen by the DM or calculated

following Zimmermann (1978) and Werners (1987).

Using the max–min operator of Bellman and Zadeh (1970), the optimal solution of model (3)

can be found solving the linear programming problem:

max �
s:t:

� � ~A
iðxÞ

x � 0

; ð6Þ

where i ¼ 0, 1, . . . , m and � 2 ½0; 1�.

Stochastic programming

Stochastic programming is an approach for modelling optimization problems that involve

uncertainty. It dates back to the 1950s (Dantzig, 1955) as an extension of linear programming to

problems with uncertain parameters in the constraints or in the objective function.1 In fact, real-

world problems almost regularly include parameters which are unknown at the time a decision

should be made.

Since it is impossible to resolve the uncertainty fully, the best way to make decisions under an

uncertain environment is to study uncertainty first and then include it into the model. Uncertainty is

usually characterized by a probability distribution on the parameters and it can range in detail from

a few scenarios (possible outcomes of the data) to specific and precise joint probability distribu-

tions. Stochastic programming models take advantage of the fact that probability distributions

governing the data are known or can be estimated from historical data. Thus, it is possible to

replace the unknown variables by their best point estimator using, for instance, their expected

value.

Often these models apply to settings in which decisions are made repeatedly in essentially

the same circumstances, and the aim is to find a solution feasible for all (or almost all)

possible parameter choices, which optimizes a given objective function. To say it differently,

the purpose of such models is to come up with a decision that will perform well on average.

In these circumstances, the optimization problem (1) could be written as:

max
x

z ¼ cð!ÞTX

s:t:
Að!Þx � bð!Þ
x � 0

; ð7Þ

where c(!), A(!) and b(!) are model parameters, ! 2 � is a random parameter associated with

random data and � is the space of events.

When a simple stochastic representation of uncertainty is not feasible or viable, a more

recent decision framework is robust optimization. Instead of seeking to immunize the solution

in some probabilistic sense to stochastic uncertainty, with robust optimization, the DM

constructs a solution that is feasible for any realization of the uncertainty in a given set.
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Robust optimization is the approach followed to obtain the stochastic programming model

described in the next session.

The stochastic model

In this study, we refer to the stochastic model presented in Liu et al (2008) for hotel RM with

multiple-day stays:

max ztot ¼
XS

s¼1

ps

XT

t¼1

XI

i¼1

rtisxti � �
XS

s¼1

psys �
XS

s¼1

ps

XT

t¼1

XI

i¼1

wti qtis

s:t: XT

t¼1

XI

i¼1

xti � C

XT

t¼1

XI

i¼1

rtis xti �
XS

s¼1

ps

XT

t¼1

XI

i¼1

rtis xti þ ys � 0

;

xti � qtis � dtis

xti � maxs¼1;:::;Sfdtisg
xti; qtis � 0 and integers

ys � 0

t ¼ 1; . . . ; T ; i ¼ 1; . . . ; I ; s ¼ 1; . . . ; S

ð8Þ

where t is the time index, T is the number of periods in advance of the booking dates (t ¼ T is the

start of the booking horizon and t ¼ 1 is the walk-in day and represents the end of the reservation

period), i is the index for the number of days the customer will stay in the hotel, I is the maximum

number of such days, s is the index associated with the total number S of scenarios, C is the room

capacity of the hotel, xti are the decision variables representing the number of rooms to be booked

out during period t for i days, ys are variables representing the expected losses, qtis are slack

variables representing unmet demands, wti are the penalty factors for demand constraint violations,

dtis is the demand during period t for i days in scenario s, rtis is the unit rate for each room night per

booking made in period t for i days, under scenario s, ps are the probabilities for each scenario, withPS
s¼1

ps ¼ 1, and � is the risk-aversion factor for the DM.

In model (8), the first term of the objective function is the expected revenue of the hotel, the

second term measures the revenue risk and the third component is a penalty term for the expected

constraints violation. The first constraint states that the actual number of reservations cannot

exceed the total capacity, the second and third constraints come from a linearization method used

to obtain a linear programming model, and the fourth constraint puts an upper bound on the number

of rooms booked that cannot exceed the maximum demand over all the scenarios.2

The fuzzy-stochastic model

In this section, we develop a fuzzy-stochastic approach to systematically quantify both prob-

abilistic and fuzzy uncertainties associated with customers’ demand and RM. In particular,

uncertainty is incorporated into our model assuming that the DM can refer to a set of scenarios
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associated with realizations of customers’ demand (as in Liu et al., 2008), while the possible

violation of the DM’s revenue aspiration level, z�tot, is modelled with fuzzy uncertainties.

The integrated fuzzy-stochastic RM model we propose is described below:

max�2½0;1� �
s:t:

� � 1þ ztot � z�tot

z�totzlo

� � 1� ztot � z�tot

z�totzup

ztot ¼
XS

s¼1

ps

XT

t¼1

XI

i¼1

rtisxti � �
XS

s¼1

psys �
XS

s¼1

ps

XT

t¼1

XI

i¼1

wtiqtis

XT

t¼1

XI

i¼1

xti ¼ C

XT

t¼1

XI

i¼1

rtisxti �
XS

s¼1

ps

XT

t¼1

XI

i¼1

rtisxti þ ys � 0

� � 1� xti � qtis � dtis

dtislti

� � 1� xti �maxs¼1; ... ;Sfdtisg
maxs¼1; ... ;Sfdtisglti

0 � � � 1

xti; qtis � 0 and integers

ys � 0

t ¼ 1; . . . ; T ; i ¼ 1; . . . ; I ; s ¼ 1; . . . ; S

ð9Þ

where � is the fuzzy optimization variable; lti are parameters used for the admissible fuzzy vio-

lation of the inequality constraints; z�tot is the optimal value of the objective function used as the

aspiration level for the DM, and zlo and zup are parameters used to calculate the fuzzy violation

allowed on the left and right of the objective function. In particular, the inequality constraints of

model (9) involving the fuzzy optimization variable � are in a form that recalls the Zimmerman’s

linear membership functions shown in models (4) and (5) for the objective function and the

inequality constraints.

The model here formulated offers a valuable tool for systematically quantifying various

uncertainties in RM, and it also provides a realistic support for reservation-related decisions.

Experimental analysis

Models settings

We consider the same settings as in Liu et al (2008) for the three scenarios example with different

unit room rate per scenario. Therefore, in the proposed model, T ¼ 5, I ¼ 6, and S ¼ 3. Demands

under each scenario are listed in Table 1. Table 2 shows the value of the unit rates rtis, while the
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penalty factors for demand constraint violation, wti, and the risk-aversion factor, �, have been set to

the value of 1. Table 3 shows the values of lti.

Computational results

The optimal solution for both the stochastic and the fuzzy programming models is shown in

Tables 4 and 5, respectively. In particular, Table 5 shows the optimal demands when the fuzzy

Table 1. Demands per scenario (dtis).

Scenarios

Demand

T\I 1 2 3 4 5 6

1 1 20 13 12 7 4 2
2 10 15 12 9 5 3
3 3 14 15 10 5 2
4 2 11 13 12 6 2
5 2 11 12 8 6 2

2 1 15 12 10 6 4 2
2 6 13 12 9 5 3
3 3 10 12 10 5 2
4 2 10 10 12 6 2
5 2 9 10 5 3 2

3 1 10 10 8 6 4 2
2 6 10 10 9 5 3
3 3 11 8 7 5 2
4 2 9 10 9 6 2
5 1 8 9 5 3 2

Table 2. Unit room rates per scenario (rtis).

T\S 1 2 3

1 0.82 0.84 0.86
2 0.80 0.82 0.84
3 0.78 0.80 0.82
4 0.76 0.78 0.80
5 0.74 0.76 0.78

Table 3. Fuzzy violation of the demand inequalities (lti).

T\I 1 2 3 4 5 6

1 0.60 0.50 0.30 0.20 0.10 0.05
2 0.50 0.40 0.20 0.10 0.05 0.02
3 0.45 0.35 0.18 0.13 0.04 0.01
4 0.40 0.30 0.15 0.10 0.03 0.01
5 0.30 0.20 0.10 0.08 0.02 0.01
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violation of the objective inequality is so negligible (zlo ¼ zup ¼ 0.001) that the two models can be

considered equivalent. In spite of this, the optimization converges to a different solution with the

same value of the objective function, meaning that the fuzzy relaxation of constraints is sufficient to

move the optimal demands into the solutions space. It is worth noting that the fuzzy optimal demands

also include the walk-in day (Table 5, first column) that the stochastic results exclude.

We have run a total of 121 fuzzy optimizations changing the value of both the parameters zlo and

zup in the interval (0.0, 0.5), with increment step of 0.05 (the actual sequence of values was 0.001,

0.05, 0.10, 0.15, . . . , 0.50). For each run, we have found a feasible optimal solution with, in most

of the cases, a value of the objective function equal to that of the stochastic counterpart. An optimal

demand with a higher objective value has never been found, instead. Figure 1 shows the value of

the objective function in the fuzzy model for each run.

The low dependency of the value of the objective function from the fuzzy violations is con-

firmed by the multiple linear regression shown in Table 6, with a RMSE ¼ 0.084, F-test ¼ 5.023

and p value ¼ 0.008.

Figure 2 displays the value of � for each combination of zlo and zup. Almost all the combinations

give a value of � equal to 1, meaning that the fuzzy violations work properly. Moreover, as shown

in Figure 3, the frequencies of the ð�; ztotÞ pair confirm that the fuzzy model provides the higher

optimal value of the objective function with � ¼ 1 in most of the cases.

In order to evaluate the efficiency of the optimal fuzzy solution with respect to the stochastic

one, we have used the semi-absolute distance:

�d ¼
XS

s¼1

ps

XT

t¼1

XI

i¼1

maxð0; dtis � x�tiÞ;

where x�ti is the optimal solution. The lower the value of �d, the higher the average fulfilment of the

demands. Assuming that the stochastic model has a value of �d ¼ 0:17, Figure 4 shows that, in most

of the cases, the fuzzy violations provide better values of �d. Some descriptive statistics are shown

in Table 7.

Table 4. Optimal solution for the stochastic model.

T\I 1 2 3 4 5 6

1 0 12 12 7 4 2
2 0 12 12 9 5 3
3 0 10 15 10 5 2
4 0 10 13 12 6 2
5 0 9 12 8 6 2

Table 5. Optimal solution for the fuzzy model (zup ¼ zlo ¼ 0.001).

T\I 1 2 3 4 5 6

1 0 12 12 7 4 2
2 0 12 12 9 5 3
3 3 10 15 10 5 2
4 0 6 13 12 6 2
5 2 8 12 8 6 2

Lacagnina and Provenzano 787



0
0.1

0.2
0.3

0.4
0.5

0
0.1

0.2
0.3

0.4

519.4

519.5

519.6

519.7

519.8

z t
ot

Stochastic
optimal
value

zup

zlo

Figure 1. Mesh and contour plot of zup, zlo versus ztot.

Table 6. Multiple linear regression.

ztot Coefficient Standard error t Pr > t [95% CI]

zup 0.125 0.049 2.570 0.011 [0.028, 0.221]
zlo 0.090 0.049 1.860 0.066 [�0.006, 0.186]
Constant 519.699 0.019 0.000 [519.662, 519.737]

Notes: CI ¼ confidence interval.
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Figure 2. Mesh and contour plot of zup, zlo versus �.
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Table 7. Descriptive statistics.

� ztot
�d

Mean 0.998 519.753 0.167
SD 0.005 0.087 0.006
min 0.980 519.420 0.160
max 1.000 519.790 0.180

Lacagnina and Provenzano 789



Conclusions

In this article, we discuss the effects of incorporating fuzziness of objective and constraints

functions into a pure stochastic model. Starting from the model of Liu et al (2008), our approach

provides several alternative optimal room allocations with the value of the objective function equal

to that of the stochastic counterpart. An optimal demand with a higher objective value has never

been found, instead.

In most of our optimization runs, we got a value of � equal to 1, meaning that fuzzy violations

work properly, and a higher value for the efficiency of the optimal fuzzy solution, as measured by

the �d index. Moreover, when the relaxation of constraints is so negligible that the stochastic and the

fuzzy models can be considered equivalent, we are able to provide an alternative optimal solution

including the walk-in day that the stochastic results exclude.

The fuzzy-stochastic approach developed in this study offers a valuable tool for systematically

quantifying various uncertainties in RM, and it also provides more realistic support for reservation-

related decisions.

The contribution of this study is two-fold. First, it offers a set of Pareto-optimal solutions to

which the DM can refer to face the real customers’ demand. Second, the fuzzy revenue optimi-

zation model we propose demonstrates to be a useful environment to capture both uncertainty and

imprecision in solving the optimal allocation of rooms for profit maximization.

Overbooking, cancellation, no-show and early checkout are well-known practices that introduce

new challenges for hotel managers. They are all worthy topics in hotel RM and are left for future

research.
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Notes

1. The interested reader can refer to several textbooks (Birge and Louveaux, 1997; Huber, 1981; Kall and

Wallace, 1994; Prékopa, 1995) and references therein for a more comprehensive picture of stochastic

programming.

2. The interested reader can refer to Liu et al. (2008) for model details.
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Prékopa A (1995) Stochastic Programming. Dordrecht: Kluwer Academic.

Pullman M and Rodgers S (2010) Capacity management for hospitality and tourism: a review of current

approaches. International Journal of Hospitality Management 29(1): 177–187.

Safi MR, Maleki HR and Zaeimazad E (2007) A note on the Zimmermann method for solving fuzzy linear

programming problems. Iranian Journal of Fuzzy Systems 4(2): 31–45.

Stojanovic N (2011) Mathematical modelling with fuzzy sets of sustainable tourism development. Interdis-

ciplinary Description of Complex Systems 9(2): 134–160.

Talluri KT and van Ryzin GJ (2004) The Theory and Practice of Revenue Management. Boston: Kluwer.

Lacagnina and Provenzano 791

http://www.eur.nl/WebDOC/doc/econometrie/feweco20020213101151.pdf
http://www.eur.nl/WebDOC/doc/econometrie/feweco20020213101151.pdf


Tanaka H, Okuda T and Asai K (1973) On fuzzy mathematical programming. Journal of Cybernetics 3(4):

37–46.

Wang C-H (2004) Predicting tourism demand using fuzzy time series and hybrid grey theory. Tourism

Management 25(3): 367–374.

Weatherford LR (1995) Length of stay heuristics: do they really make a difference? The Cornell Hotel and

Restaurant Administration Quarterly 36(6): 70–79.

Weatherford LR (1998) A tutorial on optimization in the context of perishable-asset revenue management

problems for the airline industry. In: Yu G (ed) Operations Research in the Airline Industry, fourth

printing 2002. Boston: Kluwer, pp. 68–100.

Weatherford LR, Bodily S and Pfeifer P (1993) Modeling the customer arrival process and comparing

decision rules in perishable asset revenue management. Transportation Science 27(3): 239–251.

Weatherford LR and Kimes SE (2003) A comparison of forecasting methods for hotel revenue management.

International Journal of Forecasting 19(3): 401–415.

Werners B (1987) An interactive fuzzy programming system. Fuzzy Sets and Systems 23(1): 131–147.

Zadeh LA (1965) Fuzzy sets. Information and Control 8(3): 338–353.

Zimmermann H-J (1974) Optimization in Fuzzy Environment. XXI International TIMS and 46th ORSA

Conference, San Juan.

Zimmermann H-J (1976) Description and optimization of fuzzy system. International Journal of General

System 2(4): 209–216.

Zimmermann H-J (1978) Fuzzy programming and linear programming with several objective functions.

Fuzzy Sets and Systems 1(1): 45–55.

Zimmermann H-J (2001) Fuzzy Set Theory and its Applications. New York: Springer, Science þ Business

Media.

792 Tourism Economics 22(4)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 266
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 266
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 900
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 175
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 9
      /MarksWeight 0.125000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
  /SyntheticBoldness 1.000000
>> setdistillerparams
<<
  /HWResolution [288 288]
  /PageSize [612.000 792.000]
>> setpagedevice


