
X Simposio Internazionale di Ingegneria Sanitaria Ambientale  SIDISA2016 

XIII Simposio Italo-Brasiliano di Ingegneria Sanitaria Ambientale SIBESA 016 

 

Session C07: Advanced wastewater treatment and mathematical modeling C07/1-1 

 

A MATHEMATICAL MODEL FOR A SEQUENTIAL 
BATCH MEMBRANE BIOREACTOR PILOT PLANT 

G. MANNINA*, A. COSENZA*, G. VIVIANI* 

* Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali (DICAM) Scuola Politecnica, 

Università’ di Palermo, Palermo, Italy 

 

Keywords: Wastewater treatment; membrane; calibration; uncertainty analysis; measured data. 

Abstract. A mathematical model to quantify the nitrogen removal for a membrane bioreactor (MBR) has been 

presented in this study. The model has been applied to a pilot plant having a pre-denitrification MBR scheme. 

The pilot plant was cyclically filled with real saline wastewater according to the fill-draw-batch operation. The 

model was calibrated by adopting a specific protocol based on extensive field dataset. The Standardized 

Regression Coefficient (SRC) method was adopted to select the most influential model factors to be calibrated. 

Results related to the SRC method have shown that model factors of the efficiency of backwashing and the 

biological factors affecting the soluble microbial products (utilization-associated products) (namely, fUAP and 

KH,UAP) strongly affects the membrane resistance. In terms of model calibration excellent results in terms of 

model efficiency were found for the total membrane resistance model output (efficiency equal to 0.79). 

Regarding the biological model outputs acceptable were found in the case an high number of measured data 

was available. In terms of uncertainty, it was found that for the great part of the analyzed model outputs the 

measured data lay inside the uncertainty bands. 

 

1. Introduction 

Membrane Bioreactor technology (MBR) represents one of the best alternative technologies compared to the 

traditional ones (e.g. conventional activated sludge (CAS)) in order to achieve the very stringent requirements in 

terms of effluent quality of the treated wastewater, (Gabarraon et al., 2015). MBRs offer several advantages over 

the CAS (e.g. high effluent quality, reduced footprint, lower excess sludge, higher organic loading rates 

applicable) (Judd and Judd, 2010). Thus, the use of MBR has considerably increased during the last years (Judd 

and Judd, 2010). However, despite the numerous advantages of MBR over CAS the MBR technology is affected 

by crucial issues that may hamper a widespread application. Membrane fouling is certainly one of the major 

obstacles in MBR operation (Drews, 2010). Indeed, membrane fouling, causing the permeability reduction and/or 

an increasing of transmembrane pressure (TMP), leads to the increase of the operating costs. Due to its crucial 

aspect in MBR operation, membrane fouling has been widely investigated in order to better identify factors 

strongly affecting its worsening (Pretel et al., 2016). During the last years many researchers recognized that the 

Soluble Microbial Products have an important role in membrane fouling (Drews, 2010). SMPs have been divided 
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into two main fractions: utilization-associated products (UAP) and biomass-associated products (BAP) 

(Namkung and Rittmann, 1986). UAPs are produced from the substrate degradation. Conversely, BAPs can be 

produced by the during the decay of the active biomass or due to the hydrolysis of bound extracellular polymeric 

substances (EPS) or during both processes (Aquino and Stuckey, 2008). Despite the useful insights gained by 

previous experimental studies, there are still some gaps in the knowledge for understanding the role played by 

the overall operating conditions in the definition of the optimal conditions for reducing fouling (i.e. economic 

costs). Indeed, experimental studies may present some limits in terms of both economic costs and investigation 

time requirements.  

In this context, MBR mathematical models represent an useful tool to predict membrane fouling and to select 

the best operating conditions to reduce fouling (Mannina and Cosenza, 2013). MBR models have the 

advantages of providing the possibility to explore a wide range of operating conditions and compare different 

solutions prior to their effective realization/application. 

From the literature three MBR modeling approaches can be pin down (Fenu et al., 2010): biomass kinetic 

models, membrane fouling models and integrated models. The kinetic models are based on the activated sludge 

models (ASMs) taking also into account the formation and degradation of the soluble microbial products (SMPs) 

in the MBR (Mannina and Di Bella, 2012). The hybrid models enable to describe the influences of SMPs in the 

biological processes and effluent quality (Zuthi et al., 2012). Membrane fouling models takes into account the 

physical processes modelling. Finally, the integrated models, basically couple the kinetic models with the fouling 

one (such the resistance-in-series model) and they often consider the formation and degradation of SMP. 

Recently Zuthi et al. (2013) addressed the importance of using integrated modeling approach with the use of 

resistance-in-series models in order to better simulate the membrane fouling. During the last years several 

modelling efforts have been also performed with the aim of introducing the role of SMP in the physical fouling 

mechanism process. Therefore, several mathematical models have been developed introducing SMP kinetics 

into the bioprocess of MBR (Oliveira-Esquerre et al., 2006; Jiang et al., 2008; Mannina and Di Bella, 2012) or 

with the extension of ASMs. However, the integration of the SMP kinetics  modelling into ASMs has complicated 

their structure by including new processes, state variables and model parameters (Zuthi et al., 2013). Thus 

making their use un-adequate in real plants if not accurately calibrated and validated with real data. In this 

context the assessment of the uncertainty may improve the calibration process. With this aim the sensitivity and 

uncertainty analysis could help modeller to identify the key source affecting model outputs (Sweetapple et al., 

2013). 

In order to detail the fouling and pollutants removal modelling in MBR plant, in this work a mathematical 

model has been presented. The mathematical model has been applied to a sequential batch (SB) MBR pilot 

plant fed with real saline wastewater. The model has been calibrated by adopting a specific protocol (Mannina et 

al., 2011). A long-term data base, acquired during an extensive gathering campaign, was adopted for the model 

calibration. Uncertainty analysis has also been performed. 

 

2. Materials and methods 

2.1. The mathematical model 

The proposed model couples the ASM1 model (Henze et al., 2000) with the SMPs modelling 
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(formation/degradation of both utilisation associated products and biomass associated products) in order to take 

into account their influence on membrane fouling.  

The mathematical model is divided into two sub-models: a biological sub-model and a physical sub-model. 

The biological sub-model involves: 16 biological processes (aerobic and anoxic); 19 state variables, which 

include dissolved N2O and CO2 (SN2O and SCO2, respectively) and 68 model factors. In the Appendices A and B, 

the Gujer Matrix and the process rate equations of the biological model are reported, respectively. According to 

the Hiatt and Grady (2008) approach the nitrogen removal process is described as a two steps nitrification and 

four steps denitrification processes. With this regard the autotrophic biomass is modelled as ammonia-oxidising 

biomass (XAOB) and nitrite oxidising biomass (XNOB). Regarding the denitrification process four corrections factors 

for the heterotrophic anoxic growth rate have been introduced. Specifically, factors related to the reduction from  

SNO3 to SNO2 (g2), SNO2 to SNO (g3), SNO to SN2O (g4) and SN2O to SN2 (g5) have been considered.  

For example, the process rate related to the anoxic growth of heterotrophic biomass on soluble 

biodegradable organics (SS) reducing SNO to SN2O is reported in Equation 1. As reported in Equation 1 both the 

switch functions related to the alkalinity (
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In order to model the SMP formation/degradation the aerobic and anoxic hydrolysis processes related both to 

the UAP and BAP have been added in the ASM1 (see Appendix B). With this aim two state variables have been 

added (SUAP and SBAP). The SBAP production proportional to the biomass decay coefficient fBAP (fraction of SBAP 

generated per biomass decayed). The SBAP reduction comprises first-order kinetics that are based on the 

hydrolysis rate coefficient kH,BAP. The rate of the anoxic hydrolysis of SBAP is provided in Equation 2. The SUAP 

formation/degradation processes occur similarly to that of SBAP. 

HBAP

NOHYDNO

NO

OHYDO

HYDO

HYDNOBAPh XS
SK

S

SK

K
k 






























3,3

3

2,2

,2

,3,    (2) 

The biological model takes into account the influence of the salinity both for the autotrophic and heterotrophic 

biomass according to Park and Marchland (2006). More precisely, the maximum growth rate of both autotrophic 

and heterotrophic biomass has been reduced of the Is coefficient. This latter coefficient has been evaluated 

according to the Equation 2. 

NaCl

NaClI
I s

s
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)(%
*


        (3) 

 

Where I*s represent the inhibition factor evaluated and %NaCl is the percentage of salinity expressed as 

NaCl content. 

The physical sub-model simulates the main physical processes that occur in the MBR which are influenced 

by or may influence the biological sub-model. The physical sub-model involves 6 model factors. Specifically, 
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several processes are taken into account: cake layer formation during suction and back- washing phases; COD 

removal throughout cake layer which acts as a filter; COD removal due to physical membrane; pore fouling; pore 

blocking; and influence of SMP on pore fouling. The membrane is modeled by dividing its surface into N equal 

fractions (areal sections) according to the sectional approach method (Li and Wang, 2006). A different shear 

intensity of the fluid turbulence (G) is considered as a function of the distance from the aeration systems. Both 

reversible and irreversible fouling is modeled. More specifically, irreversible fouling is modeled as the sum of two 

contributes: pore fouling, which is caused by the deposition of solutes inside the membrane pores, and stable 

cake fouling which is caused by deposition of particles on the membrane surface not removed by backwashing. 

The deposition of solutes inside the pore is carefully taken into account, as it can be crucial for assessing SMP 

concentration inside the MBR tank and eventually the membrane fouling. Reversible fouling is modeled as 

dynamic cake fouling caused by deposition of particles removed during backwashing phase. For a detailed 

description of the physical sub-model reader is referred to the literature (Mannina and Cosenza, 2013).  

2.2. The case study 

An SB-MBR pilot plant consisted of two reactors in-series, one anoxic (volume 45 L) and one aerobic (volume 

224 L), according to a pre-denitrification scheme (Figure 1) was monitored for almost three months. The pilot 

plant was equipped with an hollow fiber membrane module (Zenon Zeewed, ZW10) installed into a separate 

aerated compartment (volume 50 L) for the solid liquid separation. An oxygen depletion reactor (ODR) was 

placed in the recycling line in order to ensure anoxic conditions inside the anoxic reactor despite the intensive 

aeration in the aerobic tank. The aerobic, anoxic and MBR reactors were equipped with specific covers that 

guaranteed the gas accumulation in the headspace. 

The SB-MBR pilot plant was discontinuously fed with real domestic wastewater (stored in a feeding tank of 

320 L volume) according to fill-draw-batch operation approach. More in detail, 40 L of wastewater (VIN) 

(previously mixed inside the mixing tank with salt, in order to meet the design salinity concentration) were 

cyclically fed in, whereas the permeate was extracted at 20 L h
-1

 (QOUT). 

 

QRAS

VIN

QOUT

QR1

MBR

ODRFeeding tank

Mixing tank Anoxic

Aerobic

Salt dosing

 

Figure 1. Layout of the SB-MBR pilot plant (where VIN = 40 L = influent wastewater volume; ODR = Oxygen Depletion 

Reactor; MBR = membrane Bioreactor; QRAS = 80 L h-1 = recycled sludge from MBR to ODR; QR1 = 80 L h-1 = sludge 
feeding from aerobic tank to MBR; QOUT = 20 L h-1 (only during the MBR filtration phase = effluent flow rate) 
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Each cycle had the duration of 3 hours that were split into 1 hour of biological reaction and 2 hours of MBR 

filtration. During the biological reaction time the permeate extraction pump was turned out, thus QOUT was equal 

to zero. During the cycle, 80 L h
-1

 (QR1) were continuously pumped from the aerobic to the MBR tank. 

Furthermore, a recycling activate sludge stream (QRAS), equal to 80 L h
-1

 during the reaction period and to 60 L 

h
-1

 (QR1-QOUT) during the filtration phase, was recycled from the MBR to the anoxic tank via the ODR tank. The 

experimental campaign was divided into six phases each characterized by a specific salt concentration from 0 up 

to 10 g NaCl L
-1

. The NaCl concentration in the influent was increased at step of 2 g NaCl L
-1

 on a weekly basis. 

The Phase VI had a duration of 26 days. During plant operations, the influent wastewater, the mixed liquor inside 

the anoxic and aerobic tank and the effluent permeate have been sampled and analyzed for total and volatile 

suspended solids (TSS and VSS), total chemical oxygen demand (CODTOT), supernatant COD (CODSUP), 

ammonium nitrogen (NH4-N), nitrite nitrogen (NO2-N), nitrate nitrogen (NO3-N), total nitrogen (TN), total carbon 

(TC) and inert carbon (IC). Further, transmembrane pressure (TMP) [bar] data were achieved by means of an 

analogic data logger every 1 minute. Moreover, instantaneous permeate flow rate (QOUT,i) were measured also 

every day in order to evaluate the total membrane resistance RT [m
-1

] according to Equation 4.  
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Where: A [m
2
] represents the membrane surface,  [Pa s] is the permeate viscosity; the unit of the TMP is 

Pascal [Pa], QOUT,i is expressed as cubic meter per second [m
3
 s

-1
]. 

2.3. Calibration protocol  

Model calibration has been performed by adopting the calibration protocol as proposed by Mannina et al. 

(2011). After a first trial and error calibration, the aforementioned protocol takes into account the selection of 

model factors of being calibrated for the model outputs of interest by using a sensitivity analysis and later the 

model factors calibration on the basis of the measured data. 

2.4. Sensitivity analysis 

In this study sensitivity analysis has been performed by adopting a global sensitivity method (GSA). More 

precisely, the standardized regression coefficient (SRC) method has been adopted to select important model 

factors (Saltelli et al., 2004). The SRC method consists of a Monte Carlo simulation (with random sampling of the 

model factors) and a multivariate linear regression between the model output and the considered model factors. 

 The absolute value of the standardized regression slopes of the regression (SRC or βi) represents the 

measure of sensitivity. The sign of βi indicates if the model factor “i” has positive (+) or negative (-) influence on 

the considered model output. The βi represents a valid measure of sensitivity when the coefficient of 

determination (R
2
) is greater than 0.7, as suggested by Saltelli et al. (2004). However, when compared results of 

the SRC method with other more sophisticated GSA methods (e.g. Extended-FAST) literature studies have 

demonstrated that SRC method can be adopted to select important model factors even at lower R
2
 value 

(Cosenza et al., 2013). In the case of a linear model, R
2
 is equal to 1, and the SRC method can be applied to 

select important and non-influential model factors. Conversely, when the R
2
 is less than 1, the model factors 
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interact, and the SRC method does not provide any information about the interacting factors. the SRC method 

can be applied to non linear models only in terms of the selection of important model factors. To apply the SRC 

method, at least 500 and 1000 simulations are required as suggested in the literature (Cosenza et al., 2013).  

2.5. Model parameter calibration 

The protocol takes into account the adoption of the generalized likelihood uncertainty estimation (GLUE) 

methodology (Beven and Binley, 1992); based on Monte Carlo simulations: a large number of model parameter 

sets are generated from the multidimensional parameter space, each with random parameter values selected 

from uniform probability distributions for each parameter in order to explore the whole confidence region. The 

acceptability of each set is assessed by comparing predicted to observed data throughout a chosen likelihood 

measure/efficiency. In this study the same likelihood measure as adopted by Mannina et al. (2011) was used.  

Regarding the uncertainty analysis, non important parameter are fixed to their default or trial and error 

calibration value. Further, only the model factors classified as important are considered to be uncertain and 

varied in the uncertainty range according to a random sampling. The results of the Monte Carlo simulations were 

interpreted by evaluating the trend related to the 5th and 95th percentiles of the model outputs.  

 

3. Results and discussion 

3.1. Model application and numerical settings 

Simulations were run using input time series employed on the basis of the measured data according to the 

pilot plant feeding operation. Simulation period has the duration of 84 days. Four different sections of the SB-

MBR plant were considered, in particular, the anoxic tank (section 1), aerobic tank (section 2), MBR tank 

(section 3) and permeate tank (section 4). In order to apply the SRC method model outputs are defined as the 

average values of the 84 days of simulated time series. Fifteen model outputs of the biological sub-model were 

taken into account for the GSA: CODTOT for all the four sections; CODSUP for sections 1, 2, and 3; SNO3 for 

sections 1, 3, and 4; ammonia (SNH4) for sections 3 and 4; total nitrogen (TN) for the section 4; total suspended 

solids (XTSS) for sections 1 and 2. Further, one model output of the physical sub-model was also considered: 

membrane total resistance (RT). To apply SRC method 1200 model simulations have been performed. According 

to the literature suggestion, a threshold value of 0.1 has been chosen for the absolute value of i to discriminate 

between important and non influential model factors (Cosenza et al., 2013).  

 Uncertainty bands have been performed by employing 1000 Monte Carlo runs by varying only the most 

important model factors for all the model outputs taken into account. Likelihood distributions for each simulation 

time step and for each model output were then used for calculating uncertainty bands (5% percentile and 95% 

percentile of the 1000 runs for each model outputs). 

3.2. Sensitivity analysis 

The application of the SRC method has provided for each model output taken into account an R
2
 value 

around 0.7. Despite this value is outside the range of applicability of SRC, previous studies have demonstrated 

that for complex environmental models (such as that under study) reliable results can also be obtained even if R
2
 

is lower than 0.7 (Cosenza et al., 2013). By applying the SRC method 20 model factors have been selected to 
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be important at least for one of the sixteen model output taken into account. 

Figure 2 summarizes the results of the SRC method application for five (CODTOT,1, SNO3,1, CODSUP,2, SNO3,2 

and RT) of the sixteen model output taken into account. By analyzing data reported in Figure 2 one can observe 

that the model factors mostly affecting the model output CODTOT,1 and CODSUP,2 isH. Indeed, the i value of H 

for both CODTOT,1 and CODSUP,2 is equal to 1; having a positive influence. Indeed, with the increasing of the 

maximum growth rate of heterotrophic bacteria the increase of the particle fraction of COD takes place. Further, 

CODTOT,1 is also affected by g3 and g4 which respectively control the rate of the heterotrophic anoxic growth 

when SNO2 (nitrite) is reduced to SNO (g3) and SNO (g4) is reduced into SN2O. The model output SNO3,1 is mostly 

influenced by the half saturation coefficients for free ammonia (KFA) for nitrous oxide-nitrogen (KN2O). Such a 

results is mainly due to the fact that this coefficients control the amount of nitrate that can be produced inside the 

aerobic tank and consequently recycled inside the anoxic one. Similarly, AUT,NOB and iN,Ss influence the amount 

of nitrate that can be produced inside the aerobic tank and consequently SNO3,1 (Figure 2b). Indeed, AUT,NOB is 

the most important model factor for SNO3,2 (Figure 2d). In terms of resistance, the set of important model factors i: 

fUAP (fraction of SUAP generated in biomass decay), KH,UAP (hydrolysis rate coefficient for SUAP),  (screening 

parameter) and CE (efficiency of backwashing) (Figure 2e). Among these factors fUAP and KH,UAP are related to 

the biological sub-model;  fUAP and KH,UAP positively influence RT due to the fact that with their increase, the 

increase of the SUAP production takes place, thus influencing the membrane fouling. Such a result has 

paramount interest because suggests that by optimizing biological processes in order to reduce the SMP
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Figure 2. Results of the important model factors for CODTOT,1 (a), SNO3,1 (b), CODSUP,2 (c), SNO3,2 (d) and RT (e). 

production a substantial reduction of the membrane resistance (which means a reduction of operational costs) 
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can occur.  Model factors  and CE are directly connected with the physical sub-model. The negative influence of 

CE is due to the fact that with the increase of the backwashing efficiency the amount of the cake layer deposited 

on the membrane surface decreases thus reducing the TMP value at fixed permeate flux.  

3.3. Model calibration 

Model calibration have been performed by varying all the important model factors selected during the 

sensitivity analysis. All the other model factors have been fixed at their default value or at the value obtained 

during the initial trial and error calibration as suggested in the protocol of Mannina et al (2011).  

The model calibration has been performed by comparing simulated data with measured data acquired during 

the sampling campaign. Simulations which provided model efficiency greater than 0.2 were selected as 

behavioral. The selection of the calibrated parameter values have been performed on the basis of the maximum 

model efficiency value.  

Table 1 summarizes the results of the model calibration on the basis of the efficiency obtained for each model 

output of the biological sub-model. By analyzing data of Table 1 one can observe that acceptable efficiency were 

obtained for the model outputs of sections 1, 2 and 4. Indeed, as reported in Table 1 the average value 0.42 was 

obtained for the efficiencies of the model outputs related to the section 1; 0.41 for the model outputs of the 

section 2; 0.33 for the model outputs of the section 4. Conversely, the low efficiency values were obtained for the 

model outputs of the section 3 (0.28 on average). Such a result is mainly debited to the lower number of 

measured data for the section 3 with respect to the other sections. For the RT a quite high efficiency  value (0.79) 

was obtained. Thus underlying the excel ability of the model to reproduce the membrane fouling mechanisms.  

 
Table 1. Results of the model calibration in terms of efficiency related to each model output  

Section 1 Anoxic tank 

Model output CODTOT,1 CODSUP,1 XTSS,1 SNO3,1 

Efficiency 0.42 0.52 0.31 0.54 

n° data 14 14 16 17 

Section 2 Aerobic tank 

Model output CODTOT,2 CODSUP,2 XTSS,2 
 Efficiency 0.36 0.52 0.36 
 n° data 14 14 14 
 Section 3 MBR tank 

Model output CODTOT,3 CODSUP,3 SNH4,3 SNO3,3 

Efficiency 0.25 0.29 0.31 0.28 

n° data 8 8 8 8 

Section 4 Permeate 

Model output CODTOT,4 SNH4,4 SNO3,4 TN,4 

Efficiency 0.35 0.34 0.36 0.3 

n° data 15 17 17 12 
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3.4. Calibrated results and uncertainty bands 

Figure 3 shows the result of the calibrated model in terms of measured data, calibrated modelled trends and 

uncertainty bands (5% and 95% band).  
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Figure 3. Results of the uncertainty analysis for CODTOT in the anoxic (a), aerobic tank (b) and permeate (e), CODSUP in the 

MBR (c), SNO3 in the MBR (d) and RT (f). 

 

By analysing data reported in Figure 3 one can observe that the uncertainty band width (as average 
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difference between 95% and 5% uncertainty band value) changes with the model outputs in the different plant 

sections (e.g., greater for CODTOT,1, CODSUP,3 and CODTOT,4) (Figure 3 a-e).Such a result is mainly due to the 

fact that some model outputs entail different level of complexity in terms of involved phenomena in the different 

plant sections. Indeed, for example the variation of the total COD involves the combination of the variation of 

different state variables of the model: XS, Xi, XH, XAOB, XNOB. Similarly, the variation of supernatant COD involves 

the variation of SBAP, SUAP, SI, SS. Moreover, the band width of model outputs CODTOT,1, CODSUP,3 and CODTOT,4 

is greater than others because an higher number of the model factors for which the uncertainty has been studied 

(important model factors) was important for these model outputs. Indeed, as reported in Figure 3f the band width 

of the model output RT is very narrow due to the high accuracy of the model in reproducing the membrane 

fouling and due to the low number of model factors that resulted to be important for RT. Note that during the 

period between the day 62
nd

 and 78
th
 technical failure of the TMP acquisition system occurred, thus the 

measured value were deeply erroneous (Figure 3f).  

Globally, the measured data lays inside the uncertainty band. However, for CODTOT,4 a significant proportion 

of the measured data fall near or on the extremes of the uncertainty bands. Such a fact confirms even more the 

importance in the quantification of the model uncertainty. Indeed, the quantification of the uncertainty pointed out 

that the model structure has to be improved in order to provide a better reproduction of the simulated 

phenomena. 

 

4. Conclusions 

The main conclusions deduced from this study are: 

 Model factors affecting the UAP production strongly influence the model resistances coupled with the 

backwashing efficiency. 

 The calibrated model is able to reproduce in an excellent way the physical processes occurring inside 

the modelled systems.  

 For the biological model outputs the calibrated model shows a good adaptation between modelled and 

measured data for the case an high number of measured data is available.  

 Model uncertainty has shown the possibility to improve the model structure to improve the reproduction 

of some phenomena involved in the modelling of the permeate total COD.  
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