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Abstract. The present paper reports the results of a nitrous oxide production investigation in a moving bed 

based integrated fixed film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant designed in 

accordance with the UCT layout for biological phosphorous removal. Samples of gas and liquid were collected in 

order to measure the gaseous, as well as the dissolved concentration of N2O. Furthermore, the gas flow rate 

from each reactor was measured and the gas flux was estimated. The results confirmed that the anoxic reactor 

represents the main source of nitrous oxide production. A significant production of N2O was, however, also found 

in the anaerobic reactor, thus indicating a probable occurrence of the DPAOs activity.  

1. Introduction 

Nitrous oxide (N2O) is a significant greenhouse gas (GHG) due to its high global warming potential (GWP), 

298 times higher than that of carbon dioxide (CO2), and to its capability to react with stratospheric ozone causing 

the layer depletion (IPCC, 2007). The requirement to protect the ozone layer led the governments worldwide to 

issue specific regulations and guidelines focused on the reduction of anthropogenic N2O emissions. In this 

context N2O emissions from wastewater treatment has received increasing attention in recent years. 

N2O can be produced and directly emitted from wastewater treatment plants (WWTPs). Specifically, N2O 

generation mainly occurs in biological nitrogen removal (BNR) via nitrification and denitrification processes as 

both autotrophic and heterotrophic bacteria can be responsible for N2O production during BNR (Kampschreur et 

al., 2009). 

It is widely accepted that N2O can be produced by ammonia oxidizing bacteria (AOB) via two main pathways 

(Kampschreur et al., 2009): i. the reduction of NO2
-
 as terminal electron acceptor to N2O (AOB denitrification) 

(Kim et al., 2010; Yu et al., 2010; Wrange et al., 2001; Stuven et al.,1992); ii. incomplete oxidation of 

hydroxylamine (NH2OH) to NO2
- 
(Law et al., 2012; Chandran et al., 2011). Furthermore, N2O may be produced 
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as an intermediate of the incomplete heterotrophic denitrification (Lu and Chandran, 2010).  

As it is generally recognized that the anoxic heterotrophic denitrification is the dominant process compared 

with aerobic denitrification and autotrophic denitrification, it is still a need to asses if this rank remains also for 

N2O emission (Kampschreur et al., 2009). In the last years many efforts have been spent towards the 

understanding of the key mechanisms involved in N2O production and emission (Kampschreur et al., 2009). As a 

consequence, several parameters that might favor N2O production/emission have been identified: low dissolved 

oxygen concentrations, nitrite accumulation, dynamic conditions as well as low carbon-to-nitrogen (C/N) ratio 

values during denitrification. Moreover, the technical literature highlights that in processes aimed at the 

simultaneous nitrogen and phosphorous removal (SNPR), the role of polyphosphate accumulating organisms 

(PAOs) in the production of N2O cannot be disregarded (among others, Zhou et al., 2012).   

Furthermore,  in a hybrid biological system (IFAS-system)  where suspended as well as attached biomass is 

in function in the same reactor, denitrification in the biofilm even under aerobic reactor conditions, could  

contribute significantly  to N2O-production and emission. 

In the last years, the hybrid systems have been proposed for SNPR. Hybrid systems maximize the 

nitrification by means of high solid retention time (SRT) of the biofilm, but having the potential of operating the 

suspended growth phase with a relatively short SRT. Moreover, in a hybrid system, the biofilm and the 

suspended biomass may function differently referring to either nitrogen or phosphorus removal. This aspect can 

be of importance  with respect to N2O emissions from SNPR in hybrid systems. Among the hybrid systems, the 

joint use of membrane bioreactors (MBRs) and moving bed biofilm reactors (MBBRs) in an IFAS-system, where 

the secondary  is replaced by  a membrane module, was recently proposed and referred to as moving bed 

membrane bioreactor (MB-MBR) (Di Trapani et al., 2014) or an IFAS-MBR. Up to now, only few studies (Lo et 

al., 2010) examined the relative effects of the biofilm and the suspended sludge on N and P removal efficiencies 

and N2O emission in a hybrid SNPR system. Therefore, a better understanding of the mechanisms involved in 

N2O production from hybrid systems aimed at nutrient removal is the goal of this study.  

Bearing in mind such considerations, the aim of the present study was to investigate the N2O emissions from 

a University of Cape Town IFAS-MBR (UCT- -IFAS-MBR) pilot plant. The UCT- -IFAS-MBR pilot plant consisted 

of  one anaerobic, one anoxic and one aerobic compartments in series, according to the UCT scheme (Ekama et 

al., 1983. Particularly, the reactors were provided of specific funnel shaped covers that allowed to sample and 

quantify the gas flux stripped in each reactor head space. 

 

2. Materials and methods 

2.1. Pilot plant lay-out 

The lay-out of the  UCT- IFAS-MBR pilot plant is shown in Fig.1; it was operated for 51 days. 

In details, the pilot plant consisted of anaerobic (volume: 62 L), anoxic (volume: 102 L) and aerobic (volume: 

211 L) compartments (Cosenza et al., 2013). The solid-liquid separation phase was achieved by means of an 

ultrafiltration hollow fibre membrane module (PURON
®
). The membrane module was located inside a dedicated 

aerated compartment (referred to as the MBR tank, with a 36 L volume). An oxygen depletion reactor (ODR) 

allowed oxygen removal in the mixed liquor recycled from the MBR tank to the anoxic tank (QRAS). The
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Figure 1. Lay-out of the UCT – IFAS-MBR pilot plant 

 

membrane was periodically backwashed (every 9 min for a period of 1 min) by pumping a volume of permeate 

back through the membrane fibres from the Clean In Place (CIP) tank. The influent flow rate was set equal to 20 

L h
-1

 (Qin). During the pilot plant operation, a 20 L h
-1

 recycle flow (QR1) was continuously pumped from the 

anoxic to the aerobic tank. Furthermore, a recycle flow of 100 L h
-1

  mixed liquor (QR2) was pumped from the 

aerobic to the MBR tank. A net permeate flow rate of 20 L
-1

 was extracted (QOUT) through the membrane. 

Therefore, the recycled activated sludge (QRAS) from the MBR to the anoxic tank through the ODR tank was 

equal to 80 L h
-1

. The anaerobic, anoxic, aerobic and MBR reactors were equipped with specific funnel shape 

covers that guaranteed gas accumulation in the headspace to perform the gas sampling. 

Furthermore, the anoxic and aerobic compartments were filled with suspended carriers (Amitech s.r.l.) with a 

15 and 40% filling fraction respectively, corresponding to a net surface area of 75 and 205 m
2 
m

-3
, respectively. 

2.2. Operative conditions and experimental performances 

During the experimental campaign the pilot plant was operated with no sludge withdrawal.. As the report  of 

the present paper deals with  the pilot plant gas production, the mean values of operational parameters are only 

briefly summarized in Table 1. 

 

Table 1. Mean values of operational parameters 

CODin 

[mg L
-1

] 

TNin 

[mg L
-1

] 

PO4-Pin 

[mg L
-1

] 

TSSanaerobic 

[g L
-1

] 

TSSanoxic 

[g L
-1

] 

TSSaerobic 

[g L
-1

] 

TSSMBR 

[g L
-1

] 

VSS/TSS mean 

- 

577 60 9 1.96 3.83 3.97 4.75 0.86 

 

On average the mean COD removal efficiency was high (>95%), the nitrification efficiency was  almost 

complete (>95%), the denitrification efficiency was 62% and the phosphorus removal  was 25%. 

2.3. Gas sampling and measurements 
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The liquid and gaseous samples were withdrawn from the anaerobic, anoxic, aerobic and MBR tanks and 

analysed to determine the N2O-N concentration. Furthermore, the N2O-N fluxes (gN2O-N m
-2

 h
-1

) from all the 

compartments were quantified by measuring the gas flow rates, QGAS (L min
-1

 ). 

2.3.1. Gas flux assessment 

Text Gas flow rate, expressed as QGAS was measured in accordance to Equation 1. 

AvQ GASGAS             [1] 

where A represents the outlet section of the sampling funnel (m
2
) and VGAS (m s

-1
) is the gas velocity, 

measured by using an hot wire anemometer.  

Thus, the gas flux was assessed by applying the Equation 2. 

A

Q
CF GAS

GAS             [2] 

where FGAS represents the gas flux emitted from the sampled reactor (mgN2O-N h
-1

 m
-2

), ρ is the gas density 

at the recorded temperature (mol m
-3

), C is the measured gas concentration (mg L
-1

), QGAS is the gas flow rate 

(m
3
 h

-1
) and A represents the emitting surface of each sampled reactor (m

2
). 

2.3.2. Gas phase sampling 

Gas produced due to biological activities of biomass accumulated inside the head space of each reactor 

funnel and was collected by withdrawing samples (9 ml) by means of commercial syringes and thus transferred 

into glass vials where the vacuum was previously created. Samples from the anaerobic, anoxic, aerobic and 

MBR reactors were collected two times per week with tree replicates for each sampling section. Gas samples  

were analysed with GC equipped with ECD detector to assess the Nitrous Oxide concentration. 

2.3.3. Dissolved phase sampling 

The measure of gas dissolved in the liquid phase was conducted on the basis of the head space gas method 

derived from Kimochi et al. (1998). In detail, 70 mL of supernatant (after 5 min of centrifugation at 8000 rpm) 

were sealed into 125 mL glass bottles. To prevent any biological reaction, 1 mL of 2N H2SO4 was added. After 

24 h of gentle stirring, the bottles were left for 1 h without moving. 

Thereafter, the gas accumulated in the headspace of the bottles was collected similarly to the gas sampling 

procedure. Finally, by applying Henry’s Law, the dissolved gas concentration at equilibrium with the headspace 

gas was calculated. Samples of liquid phase were collected from the anaerobic, anoxic, aerobic, MBR and ODR 

reactors two times per week with tree replicates for each sampling section; furthermore liquid samples of the 

MBR permeate were also collected and analysed in order to assess the N2O concentration discharged with the 

pilot plant effluent. 

 

2.3.4. N2O emission factor and mass balance 
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For each compartment, the evaluation of the N2O-N emission factors, expressed as the percentage of N2O-N 

emitted compared to the inlet nitrogen loading rates, was conducted by means of the following Equation 3 

derived by Tsuneda et al., 2005: 

HRT

TN

HRT

NON

HRT

NON

EF
IN

Dissolved

HS

Gas 






22

        [3] 

where EF represents the N2O emission factor [%];N2O-NGas is the nitrous oxide concentration in the gas 

phase (mg N2O-N L
-1

), HRTHS is the hydraulic retention time of the head space of the sampled reactor, assessed 

by taking into account the head space volume and the gas flow rate, (h); N2O-NDissolved is the liquid phase gas 

concentration (mg N2O-N L
-1

); HRT is the hydraulic retention time of the pilot plant (h) and TNIN is the total 

nitrogen concentration fed to the pilot plant (mgN L
-1

). 

Furthermore, in order to evaluate the gas production or consumption inside each reactor, the nitrous oxide 

mass balance was performed in accordance to Equation 4. 

cpOUTGasOUTDissolvedINDissolved NONNONNONNON ,2,2,2,2     [4] 

where N2O-NDissolved,IN and N2O-NDissolved,OUT represent the influent and effluent amount of dissolved nitrous 

oxide respectively (mg N2O-N h
-1

); N2O-NGas,OUT is the effluent gaseous N2O-N (mg N2O-N h
-1

) and N2O-Np,c (mg 

N2O-N h
-1

) represents the amount of N2O-N produced (in case of negative sign, therefore consider only subscript 

“p”) or consumed (in case of positive sign, therefore consider only subscript “c”) inside the tank. 

 

3. Results and discussion 

The recorded gas phase concentrations are shown in Figure 2.  The N2O gas concentration remained quite 

constant during the experimental period except for in the anoxic reactor gas concentration varied considerably 

as compared to the others reactors. On the 25
th
 experimental day, the gas concentration in the anoxic reactor 

started to increase progressively up to the maximum value of 210 μg N2O-N L
-1

 on the 32
th
 experimental day. 

This result is likely due to an incomplete denitrification that occurred during those days, with nitrate concentration 

in the permeate flow ranging from 33.6 to 41 mg NO3-N L
-1

. This affected the gas production in the anoxic 

reactor, where denitrification takes place, in agreement with data in the literature where incomplete denitrification 

is identified as one of the causes that can lead to the N2O production (Kampschreur et al., 2009). Several 

authors agree in identifying the anoxic reactor as the main N2O producer (Otte et al., 1996; Kampschreur et al., 

2009). 

On average the  average gas concentrations during the experimental period, measured in each reactor, were 

equal to 15.40 μg N2O-N L
-1

, 29.11 μg N2O-N L
-1

, 13.97 μg N2O-N L
-1

 and 12.50 μg N2O-N L
-1

 for anaerobic, 

anoxic, aerobic and MBR reactor respectively.  

Based on the measured gas concentration, the flux emitted from each reactor was  assessed, see Figure 3. 
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Figure 1 – concentrazione gas
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Figure 2. Gas phase concentrations  
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Figure 3. N2O-N Flux emitted from aerated reactors (a) and not aerated reactors (b) 

 

 

Figure 3. N2O-N Flux emitted from aerated reactors (a) and not aerated reactors (b) 

 

The results reported in Figure 3 allow analysis of the effect of the air supply to the N2O emission as well as 
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the effect of the carriers. The flux measured in the aerated reactors (Figure 3a) was two orders of magnitude 

higher than the flux measured in the not aerated reactors (Figure 3b). The air supplied to the aerobic reactor (to 

guarantee the aerobic environment) and to the MBR reactor (in order to mitigate the membrane fouling) 

enhances the physical stripping of the gas from the liquid phase. The average fluxes measured in each reactor  

were found to be 25.39 μg N2O-N m
-2

 h
-1

, 25.01 μg N2O-N m
-2

 h
-1

, 3092 μg N2O-N m
-2

 h
-1

 and 9872 μg N2O-N m
-

2
 h

-1
 for anaerobic, anoxic, aerobic and MBR reactor respectively.  

The nitrous oxide flux emitted from the MBR reactor resulted on average three time higher than the flux 

emitted in the aerobic reactor. This result is emphasized since the scientific literature consider the nitrogen 

transformation process as the main source of nitrous oxide (Kampschreur et al., 2009; Law et al., 2012; Zhao et 

al., 2014) while in the MBR reactor, due to the low HRT (0.36 h), very little biological activity  is expected to 

occur. The presence in the aerobic reactor of both biomasses, suspended and attached, may have enhanced 

the gas production both contributing to the flux emission. The reason for the huge emission from the MBR 

reactor is likely due to the high value of QR2 (100 L h
-1

) that is constantly pumped from aerobic to MBR reactor 

and thus acting as a recycle of dissolved nitrous oxide produced in the aerobic reactor. Dissolved nitrous oxide 

conveyed to the MBR reactor pass into the gas phase by stripping, due to the intensive aeration provided for 

membrane fouling mitigation, and hence contributing to the large flux emitted from MBR. 

The circumstance that the physical effect of the aeration significantly affect the gas concentration is also 

noticeable from the dissolved gas concentrations measured in the reactors of the pilot plant  (see Figure 4). 

The results reported in Figure 4 provide an opposite situation for the dissolved phase as compared to the gas 

phase and the emitted flux of nitrous oxide. Due to the absence of the air supply, the measured concentration in 

the non aerated reactors (Figure 4a) resulted in an order of magnitude higher concentration than the one 

measured in the aerated reactors and in the permeate flow (Figure 4b). The average concentrations measured 

in each reactor and in the permeate flow  were 100 μg N2O-N L
-1

, 50.30 μg N2O-N L
-1

, 12.25 μg N2O-N L
-1

, 13.12 

μg N2O-N L
-1

 and 14.63 μg N2O-N L
-1

 for the anaerobic, anoxic, aerobic and MBR reactor and for the permeate 

flow respectively. The circumstance that the highest dissolved concentration were retrieved in the anaerobic 

reactor is likely ascribable to the low biological phosphorus removal efficiency achieved during the 

experimentation (25% on average). Indeed if anoxic conditions can prevail inside the anaerobic reactor, the 

denitrifying phosphate accumulating organisms (DPAOs) can denitrify during a denitrifying P removal process 

leading to a low P removal efficiency. Several studies reported that N2O rather than N2 was the major 

denitrification product when DPAOs used poly-β-hydroxyalkanoates (PHA) as a carbon source for denitrification 

during denitrifying P removal process (Lemaire et al., 2006; Jia et al., 2012; Wang et al., 2015). In such a 

context, N2O production can be expected to be significantly influenced as the amount of anaerobic PHA 

synthesis is affected by influent quality variation. Hence N2O generation during denitrifying P removal processes 

should also be noticed (Wang et al., 2015).  

With reference to the anoxic reactor the measured N2O concentration appears consistent with previous 

studies that identified the anoxic reactor as one of the major contributors to N2O-N production (Otte et al., 1996; 

Kampschreur et al., 2009).  

On the contrary the results reported in Figure 4b confirm that the stripping effect exerted by the air supply on 

the aerobic and MBR reactor is very important with respect to the flux of N2O-N emitted.  The permeate flow 
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Figure 4. Dissolved N2O-N concentrations measured inside the anaerobic and anoxic reactors (a) and 

inside the aerobic and MBR reactors and in the permeate flow (b) 

 

 

Figure 4. Dissolved N2O-N concentrations measured inside the anaerobic and anoxic reactors (a) and inside the aerobic and 
MBR reactors and in the permeate flow (b) 

concentration were comparable to dissolved concentrations measured in the other aerated reactor and thus not 

negligible.  

In order to better quantify the influence exerted by each reactor on the N2O emission, the emission factors 

have been assessed and the results are  shown in Figure 5. 

Results reported in Figure 5 highlight that emission factors of each compartment, expressed as a percentage 

of the total nitrogen load of the plant, varied moderately during the experimentation, with a maximum value close 

to 1%. However, Figure 5a demonstrates that the main contribution in N2O emission derives from the aerated 

reactors while the contribution of the anaerobic reactor as well as of the anoxic reactor is negligible. This 

observation is confirmed by data reported in Figure 5b where the average contribution of each reactor is 

depicted. The MBR contribution represented on average 76.13% of the total emission, the aerobic reactor 

contributed on average with 21.38% of the total, while the sum of anaerobic and anoxic reactors contributed with 

a total of 2.49%. This result is consistent with the fact that the results reported in Figure 3 and 4  demonstrated 

that a significant fraction of N2O produced in the reactors without air supply is further conveyed and thus stripped 

in the aerated reactors. 



 

Session C05: GHG emission quantification C05/4-9 

 

1.80% 0.69%

21.38%

76.13%

0.0

0.4

0.8

1.2

9 12 16 18 23 25 30 32 37 39 44 46 51

E
m

is
si

o
n

 F
a
c
to

r 
[%

]

Time [d]

ANOXIC ANAEROBIC AEROBIC MBR
(a) (b)

 

Figure 5. N2O-N emission factors (a) and average percentage contribution of each tank (b) 

 

As the denitrification is consider to be one of the dominant factor in N2O production, the influence exerted by 

nitrate concentration in the nitrous oxide production is reported in Figure 6. 

The data shown in Figure 6 confirm the key role of the anoxic reactor in the N2O production. Indeed, the 

nitrate concentration in the anoxic reactor significantly influences the gas concentration as well as the flux 

(Figure 6a and b). As the nitrate concentration increase, both gas concentration and gas flux increase 

logarithmic. Furthermore the N2O gaseous concentration in the anoxic reactor is strongly related to the nitrate 

concentration in the permeate flow (Figure 6 c). 

Nitrous oxide represents an intermediate product of denitrification and thus of incomplete denitrification 

(Kampschreur et al., 2009). Furthermore, in the anoxic reactor the dissolved nitrate should be removed, and if 

biological denitrification takes place, limited N2O production should result. The logical link between the latter 

observation and the presence of nitrate in the effluent is the accordance with the relation between gas 

concentration in the anoxic reactor and nitrate concentration in the effluent. Indeed the occurrence of high N2O 

production in the anoxic reactor should represent a limitation of the denitrification phenomenon thus leading to 

the presence of nitrates in the effluent flow rate. 

In order to investigate on the specific production/consumption of each reactor, the N2O mass balance 

analysis over the reactors was carried out and shown in Figure 7. 

The data presented in Figure 7 a, b, c, d and e are consistent with results previously discussed. Indeed the 

mass balance highlights that in the anaerobic and anoxic reactor a net N2O production took place during the 

experimentation. This is in accordance with the higher N2O dissolved concentration measured in the non aerated 

reactors. On the contrary, in the aerobic reactor the mass balance outlined a constant consumption of nitrous 

oxide (up to almost 15 mg N2O h
-1

), due to the high amount of gas stripped. In the MBR reactor a clear trend of 

the mass balance result was not noticeable. This confirms that the high nitrous oxide flux emitted from the MBR 

reactor was due to a physical stripping of the gas produced in other reactors of the pilot plant and conveyed in 

the MBR with the QR2. 

However the mass balance demonstrate, with reference to N2O production (Figure 7f), that the anaerobic and 
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anoxic reactors represent the main source of N2O production (85 % of the overall production). Thus, the results 

of this paper indicate that the main pathways involved in the nitrous oxide production result from the 

heterotrophic denitrification, that normally occurs in the anoxic reactor, and the denitrifying P removal process, 

that is promoted by DPAOs, in the anaerobic reactor. 
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Figure 6. Correlation betweenN2O-N gaseous concentration and nitrate concentration in the anoxic reactor (a), nitrate 

concentration and N2O-N flux in the anoxic reactor (b), N2O-N gaseous concentration in the anoxic reactor and nitrate 
concentration in the permeate flow (c) 

 

4. Conclusions 

This paper reports the results of experiments carried out in a MBBR-based IFAS MBR pilot plant operated 

according to the UCT design. The goal of the experiments was to investigate the nitrous oxide production. 

These results indicate that the anaerobic and the anoxic reactors represent the main source of nitrous oxide 

production. The physical effect of aeration that caused N2O stripping was noticed in the aerobic as well as in the 

MBR reactor. The N2O flux emitted from the aerated reactors was up to two order of magnitude higher than that 

of the not aerated (anaerobic and anoxic) reactors. Furthermore, due to the absence of the aeration, the 

concentration of N2O in the non aerated reactors was an order of magnitude higher than the concentration in the 

aerated reactors and in the permeate flow. The N2O concentration measured in the permeate flow was 
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Figure 7. N2O-N mass balance for anaerobic (a), anoxic (b), aerobic (c) and MBR reactors (d); maximum, minimum and 

mean value of N2O-N production/consumption over the reactors (e); mean percentage of N2O-N production over the reactors 
(f) 

 

comparable to the concentrations measured in the aerobic and MBR reactors and thus not negligible. The 

emission factor assessment showed that only  around 1% of the influent nitrogen  was emitted as N2O from the 

whole pilot plant. 

By taking into account the biological parameters of the pilot plant, the nitrate concentration within the anoxic 

reactor turned out to be a key factor in the influence of the N2O production. The experiments demonstrate that 

further studies are required in order to better understand the influence of the operational parameters, as well as 

of the biomass feature, in the N2O production. Indeed, in the reported experiments a net contribution of the 

attached biomass or of the suspended biomass was not noticeable. 
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