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Abstract: This paper presents the sensitivity and uncertainty analysis of a mathematical model for greenhouse gas emission (GHG) and
energy consumption assessment in wastewater treatment plants. A sensitivity analysis was carried out (using two different methods) to
determine which model factors have the greatest effect on the predicted values of the GHG production. Further, an uncertainty analysis
was carried out to quantify the uncertainty of the key model outputs, such as carbon dioxide production from activated sludge treatment.
The results show that influent fractionation factors, which characterize influent composition, have an important role on direct and indirect
GHGs production and emission. Moreover, model factors related to the aerobic biomass growth show a relevant influence on GHGs in terms
of emission from off-site power generation (mCO2eq;PG). Further, model factors related to the autotrophic biomass growth were found to
strongly interact with other factors especially in modeling mCO2eq;PG. Finally, nitrous oxide (N2O) emission associated with the effluent
has the highest uncertainty, suggesting the need for a mechanistic model for N2O production in biological treatment. DOI: 10.1061/
(ASCE)EE.1943-7870.0001082. © 2016 American Society of Civil Engineers.
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Introduction

Within the last decade, the interest in greenhouse gas (GHG) pro-
duction and emission from wastewater treatment plants (WWTPs)
has increased considerably (Monteith et al. 2005; Kampschreur
et al. 2009; Ahn et al. 2010; Flores-Alsina et al. 2011; Corominas
et al. 2012; Law et al. 2012). WWTPs involve three different sour-
ces of GHGs emission: direct, indirect internal, and indirect exter-
nal (GRP 2008). Direct emissions from WWTPs are mainly linked
to biological processes [carbon dioxide (CO2) emission from
biomass respiration; biogas fugitive emissions from anaerobic
digesters, sludge processing units, and biogas lines] with physical-
chemical units (e.g., pumping, grit removal, sedimentation) con-
tributing to a minor extent (Czepiel et al. 1995). Indirect internal

emissions are associated with the consumption of imported electric
or thermal energy. Finally, indirect external emissions are related to
all sources not directly controlled inside the WWTP boundary
(e.g., sludge disposal, production of chemicals that are used in
the plant, and transportation by contractors and haulers). The main
GHGs emitted from aWWTP are CO2, methane (CH4), and nitrous
oxide (N2O). The fraction of short-lived carbon in the wastewater is
not of concern for CO2 emission; however, attention must be given
to long-lived carbon and the other GHGs (Law et al. 2013). Among
the GHGs emitted from WWTPs, N2O merits investigation and
should be reduced due to its high global warming potential
(GWP) that is approximately 298 times higher than CO2 GWP
(IPCC 2006). Therefore, even low amounts of N2O emission are
undesirable and raise concern. Moreover, although current attention
is focused on the N2O emission, the CH4 fugitive emission remains
an open question, and to date there is no survey or study available
with limited uncertainty (IPCC 2006).

A quantification of GHGs, regardless of their origin, is neces-
sary to improve the understanding of carbon flows within treatment
and the sustainability of WWTPs (Caniani et al. 2015). Further-
more, the estimation of GHGs should be considered during the
design, operation, and optimization of treatment processes (Flores-
Alsina et al. 2011). Several recent attempts have been made to bet-
ter understand GHG production (Foley et al. 2010; Daelman et al.
2012), to quantify and measure GHG emission (LGO 2008; GWRC
2011; Townsend-Small et al. 2011), and to predict and control their
production (Flores-Alsina et al. 2011; Corominas et al. 2012; Ni
et al. 2013b, a). However, literature shows that knowledge of the
dynamics and magnitude of N2O production and emission is still
poor and that further investigation is needed (Ni et al. 2013b).
With regard to GHG quantification and measuring techniques, lit-
erature shows a wide range of measured GHG emissions (inter alia,
Czepiel et al. 1995; IPCC 2006; Ahn et al. 2010; GWRC 2011;
Daelman et al. 2012). This wide range reveals the need to improve
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the understanding of process dynamics as well as the measurement
techniques and tools for GHG quantification.

Mathematical models may allow for the identification of key
processes and operational conditions that merit further investiga-
tion or modification in order to reduce GHG emission. Different
types of mathematical models (i.e., empirical, mechanistic, or
simple comprehensive process models) are available for estimating
GHG emission (e.g., Monteith et al. 2005; Hiatt and Grady 2008;
Rosso and Stenstrom 2008; Foley et al. 2010; Flores-Alsina et al.
2011; Gori et al. 2011; Ni et al. 2011; Mannina and Cosenza 2015).
All of these models have provided a valuable contribution to the
understanding of how to reduce the GHG emission from WWTPs.
Plantwide mathematical models may help the understanding of the
effect of operational parameters on GHG emission and can be used
to develop strategies aimed at reducing GHG emission and improv-
ing environmental protection (Flores-Alsina et al. 2014). In fact, a
plantwide modeling approach that includes GHG emission as state
variables enhances the overall sustainability of the process control
or operational strategies (Flores-Alsina et al. 2014). However, de-
spite the useful insights derived from mathematical models of GHG
emission from WWTPs, the results are likely to be subjected to a
high degree of uncertainty (Sweetapple et al. 2013). The assess-
ment of the most relevant sources of uncertainty in GHG emission
modeling can be useful for improving the model prediction. In this
context, both sensitivity and uncertainty analyses can be useful
tools for identifying the key sources that control model outputs
(Pagilla et al. 2009). Specifically, the use of global sensitivity
analysis (GSA), which gives information on the interaction among
model factors, should be preferred. Despite such potentialities, only
a few studies have been carried out estimating uncertainty and sen-
sitivity of GHG models, mainly focusing on complex mechanistic
ones (among others, Sweetapple et al. 2013).

As far as the authors are aware, modelers dealing with simple
comprehensive process models for GHG assessment often do not
apply sensitivity and uncertainty analysis as a common practice.
Such an aspect would allow assessment of the robustness of the
results versus model assumptions. Further, the model results, espe-
cially for the case of simple comprehensive process models, could
be further improved by means of sensitivity and uncertainty analy-
sis. Indeed, by selecting important, noninfluential, or interacting

model factors, the modeler will be able to determine the model
factors on which the attention should be focused on.

This paper is aimed at pining down the key sources of uncer-
tainty in modeling the GHG emissions and energy requirement
from WWTPs. Further, the study has the additional goal of dem-
onstrating the importance in the estimation of the sensitivity and
uncertainty for getting robust model results.

To accomplish such an aim, a plantwide simple comprehensive
process model for carbon and energy footprint of WWTPs was
adopted. Further, sensitivity and uncertainty analyses were per-
formed to better understand the role of each model factor in influ-
encing GHG production. Factors is a term widely used in the
sensitivity analysis literature and includes model parameters and
model input variables (Saltelli et al. 2008). The results make it
possible to specify which model factors have a dominant role (also
in terms of interactions) in key model outputs, and thus deserve to
be accurately evaluated for model calibration and application.

Materials and Methods

Plant and Mathematical Model Description

The model used for the analysis employed in this study was
developed for modeling the carbon and energy footprint of a
conventional activated sludge WWTP based on a modified
Ludzack-Ettinger process for denitrification, with primary sedi-
mentation, anaerobic stabilization of the sludge, and energy recov-
ery from biogas (Gori et al. 2011, 2013). Fig. 1 depicts a model
layout. The model evaluates the total equivalent CO2 (CO2;eq) emis-
sion (kgCO2eq=day or gCO2eq=treated volume) as the sum of direct
CO2 emission from biological processes [activated sludge process
(ASP) and anaerobic digestion (AD)] (mCO2;ASP þmCO2;AD),
direct CO2 emission from biogas combustion (mCO2;CH4;comb), indi-
rect CO2 emission from biogas combustion (mCO2eq;CH4;comb),
indirect CO2 emission from off-site power generation (mCO2eq;PG),
CO2;eq offset from biogas energy recovery (mCO2eq;offset), and
CO2;eq emission due to CH4 fugitive emission (mCO2eq;fugitive). In
contrast to the previous version (i.e., Gori et al. 2011), the model
calculates the contribution of CO2;eq due to the N2O discharge
(mN2O;eff ) with the effluent (mCO2eq;N2O;eff ) and to the total biosolids
(TB) discharge (mCO2eq;TB) as in the following:

Fig. 1. Wastewater treatment plants layout and depiction of chemical oxygen demand and energy flows
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mCO2eq ¼ mCO2;ASP þmCO2;AD þmCO2;CH4comb þmCO2eq;CH4comb

þmCO2eq;PG −mCO2eq;offset þmCO2eq;fugitive

þmCO2eq;N2O;eff þmCO2eq;TB ð1Þ

wheremCO2eq;fugitive contains the CO2;eq emission due to CH4 fugitive
emission (mCO2eq;CH4;fugitive) and due to CH4 released during biosol-
ids dewatering (mCO2eq;CH4;dewatering). Regarding the energy demand
(eD, kJ=day), the model estimates the contributions from primary
sedimentation (eD;PS), activated sludge process aeration (eD;ASP),
secondary sedimentation (eD;SS), anaerobic digestion (eD;AD),
and other equipment (eD;O) by means of the following equation:

eD ¼ eD;PS þ eD;ASP þ eD;SS þ eD;AD þ eD;O ð2Þ

The energy recovery (eR, kJ=day) is calculated from the biogas
(BG) production (mBG, kg=day) multiplied by the efficiency of
the energy unit recovery (ER) ηER (-) and the caloric value of
the biogas hBG (kJ=kgBG):

eR ¼ ηERhBGmBG ð3Þ

The model was applied to a municipal water reclamation plant
(Q ∼ 60,000 m3 day−1) located in the United States in a warm area

(Tww;avg ¼ 20°C) with process schematic matching that of Fig. 1,
with the addition of head works and disinfection. The WWTP in-
fluent is characterized by [average� standard deviation (SD)]:
chemical oxygen demand (COD) 541� 100 mg=L, biochemical
oxygen demand (BOD5) 243� 48 mg=L, total suspended
solids (TSS) 308� 56 mg=L, volatile suspended solids (VSS)
263� 50 mg=L, and ammonia (NH4-N) 28.8� 3.8 mg=L. The
WWTP is operated with an average mean cell residence time of
8.5 days.

For further details, refer to Gori et al. (2011, 2013). Table 1
summarizes the symbol, description, unit, default value at 20°C,
variation range, and literature references of each of the model
factors. Specifically, Table 1 summarizes emission factors (EFs)
and stoichiometric, kinetic, conversion, and fractionation factors.
These latter factors characterize the wastewater composition with
respect to the total COD. Table 2 summarizes the model outputs.

Sensitivity Analysis Methods

In order to gain insights in the evaluation of GHG at plantwide
scale, two GSA methods have been applied: standardized regres-
sion coefficient (SRC) and extended Fourier amplitude sensitivity
test (Extended-FAST). The application of the Extended-FAST

Table 1. Summary of Symbols, Units, Range, and Literature References for Each Model Factor

Symbol Description Unit
Default

(T ¼ 20°C) Minimum Maximum Reference

μ Maximum growth rate of heterotrophic biomass day−1 5.9850 4.0000 8.0000 Hauduc et al. (2011)
ks Half-saturation parameter for heterotrophic biomass gCODm−3 19.9500 19.0000 21.0000 Hauduc et al. (2011)
kd Decay rate for heterotrophic biomass day−1 0.1197 0.0500 1.6000 Hauduc et al. (2011)
YH Yield for heterotrophic biomass growth gVSS gCOD−1 0.3990 0.3800 0.7500 Hauduc et al. (2011)
μN Maximum growth rate of autotrophic biomass day−1 0.4988 0.2000 1.2000 Hauduc et al. (2011)
KN Half-saturation parameter for autotrophic biomass gNH4-Nm−3 0.4988 0.5000 1.5000 Hauduc et al. (2011)
kdN Decay rate for autotrophic biomass day−1 0.1197 0.0400 0.1605 Hauduc et al. (2011)
YN Yield of autotrophic biomass growth gVSS gNH4-N 0.1197 0.1200 0.2520 Brun et al. (2002)
kd;dig Decay rate for biomass during digestion day−1 0.0299 0.0150 0.0300 Cakir and Stenstrom

(2005)
YH;dig Yield for heterotrophic biomass growth during digestion gVSS gCOD 0.0798 0.0400 0.0800 Cakir and Stenstrom

(2005)
pCOD=VSS Ratio between particulate COD and volatile suspended solids — 1.4663 1.0700 1.8700 Gori et al. (2011)
nbsCODIN Fraction of soluble nonbiodegradable COD in influent

wastewater
— 0.0339 0.0340 0.1200 Mannina et al. (2011),

Gori et al. (2011)
pbCODIN Fraction of particulate biodegradable COD in influent

wastewater
— 0.4479 0.1000 0.4500 Mannina et al. (2011),

Gori et al. (2011)
npbCODIN Fraction of particulate nonbiodegradable COD in influent

wastewater
— 0.2454 0.0500 0.2500 Mannina et al. (2011),

Gori et al. (2011)
bsCODIN Fraction of soluble biodegradable COD in influent wastewater — 0.2728 — — —
nbsCODPI Fraction of soluble nonbiodegradable COD in the primary

effluent
— 0.0698 0.0340 0.1200 Mannina et al. (2011),

Gori et al. (2011)
pbCODPI Fraction of particulate biodegradable COD in the primary

effluent
— 0.3082 0.1000 0.4500 Mannina et al. (2011),

Gori et al. (2011)
npbCODPI Fraction of particulate nonbiodegradable COD in the primary

effluent
— 0.1357 0.0500 0.2500 Mannina et al. (2011),

Gori et al. (2011)
bsCODPI Fraction of soluble biodegradable COD in the primary effluent — 0.4863 — — —
Q_dewa Fraction of the influent flow that achieves the dewatering section — 0.0100 0.0090 0.0110 Gori et al. (2011)
EFN2O N2O emission factor due to the effluent gCO2eq L−1 0.0038 0.0038 0.0780 IPCC (2006)
EFCO2 CO2 emission factor due to the headworks gCO2 L−1 0.0045 0.0041 0.0050 Czeplel et al. (1993)
EFCH4 CH4 emission factor due to the headworks gCO2eqL−1 0.0001 0.0001 0.0002 Czeplel et al. (1993)
INVSSPS N content of biomass in the primary sludge kgNkgVSS−1 0.0858 0.0665 0.1200 Brun et al. (2002),

Gori et al. (2011)
INVSSSS N content of biomass in the secondary sludge kgNkgVSS−1 0.1197 0.0665 0.1200 Brun et al. (2002),

Gori et al. (2011)
iCOD;NOx Conversion factor for NOX in COD kgO2kgN−1 4.3192 3.8970 4.7630 Gori et al. (2011)
iCOD;N2 Conversion factor for N2 in COD kgO2kgN−1 2.8529 2.5740 3.1460 Gori et al. (2011)
CH4 SE CH4 specific energy MJm−3 35.7105 32.2200 39.3800 Gori et al. (2011)

© ASCE 04016017-3 J. Environ. Eng.
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method is aimed at quantifying model factor interactions. In the
following, a brief description of each GSA method applied here
will be presented.

SRC Method
The SRC method consists of running a Monte Carlo (MC) simu-
lation by using a randomly sampled factor matrix. A multivariate
linear regression is then performed between the model output (y)
and the factors (xi) (Saltelli et al. 2008) [Eq. (4)]

y ¼ b0 þ
Xn

i¼1

bi · xi þ ε ð4Þ

where n = number of factors; bi = regression slopes; and ε =
random error of the regression model.

The SRCs are the standardised regression slopes [Eq. (5)]

SRCðxiÞ ¼ βi ¼ bi · σxi=σy ð5Þ

where βi = regression slope; and σxi and σy = factor and model
output standard deviation, respectively. βi is a valid measure of
sensitivity if the coefficient of determination (R2), which indicates
the portion of total variance explained by the regression model,
is higher than 0.7 (Saltelli et al. 2008). The sign of βi indicates
its positive (sign þ) or negative (sign −) effect (Saltelli et al.
2008). A high absolute value of βi indicates a relevant effect
of the related ith factor on the model output. In case of linear
models

P
β2
i ¼ 1, otherwise this sum, which represents the

model coefficient of determination R2, is lower than 1 (Saltelli
et al. 2008).

The SRC method does not provide information about the inter-
action among factors. Therefore, by adopting the SRC method the
important (factors prioritization) and noninfluential (factors fixing)
factors may be correctly distinguished only in case of linear
models.

Typical numbers of MC simulations found in literature are
between 500 and 1,000 (Cosenza et al. 2013b; Neumann 2012).

Variance-Based Method
Variance-based methods are based on the variance decomposition
theorem and provide a measure of sensitivity for every relationship
between the model output and model factors: nonlinear, nonmonot-
onous, or nonadditive (Neumann 2012).

The Extended-FAST method, as proposed by Saltelli et al.
(2008), provides two sensitivity indexes for each model factor:

the first-order effect index (Si) and the total-effect index (STi).
Si measures how the ith factor contributes to the variance of the
model output [var(Y)] without taking into account the interactions
with other factors; it is expressed as

Si ¼
varxi½Ex−iðYjxiÞ�

varðYÞ ð6Þ

where E = expectancy operator; Y = model output; and var =
variance. The subscripts indicate that the operation is either applied
over the ith factor Xi or over all model factors except the ith model
factor X−i (Saltelli et al. 2008).

STi is expressed as

STi ¼ 1 − varx−i ½ExiðYjx−iÞ�
varðYÞ ð7Þ

The difference between STi and Si represents the interaction
among the model factors.

In the context of factor fixing, the analysis of STi has to be
performed. If the Si value is small, it does not necessarily mean
that the factor may be fixed anywhere within its range because
a high STi value would indicate that the factor is involved in
interactions.

The Extended-FAST method requires n × NR simulations,
where n is the number of factors and NR is the number of repetition
of MC simulations per factor within its range [NR ¼ 500 to 1,000
according to Saltelli et al. (2008), Neumann (2012), Cosenza et al.
(2013b), and Mannina et al. (2014)].

GSA Results Analysis

The results of the two GSA methods have been compared in terms
of similarity and differences of classification into important and
noninfluential factors. This comparison has been conducted by an-
alyzing the Venn diagram of the results. This diagram will be de-
veloped by drawing circles containing the results of each GSA
method, and the overlapping area or intersection among the circles
contains the same results. It must be stressed that such a compari-
son helps identify the model factors that contribute significantly to
GHG emissions for wastewater treatment.

Uncertainty Analysis

The uncertainty analysis has been performed by running the MC
simulations; results of the uncertainty analysis for each variable
have been interpreted by analyzing the cumulative distribution
function (CDF).

Simulation Conditions and Numerical Settings

Sensitivity analysis has been performed by considering 26 model
factors (Table 1) and 10 model outputs (Table 2). Variables
bsCODIN and bsCODPI were indirectly varied in the random sam-
pling procedure for the sensitivity analysis. Indeed, bsCODIN and
bsCODPI represent the complement of the fractionation factors re-
lated to the influent and the effluent, respectively.

Due to the lack of knowledge about the distribution of the model
factors, each of the two GSA methods was applied considering a
uniform distribution for all factors (Freni and Mannina 2010). The
widest variation range found in literature has been used for each
model factor (Cosenza et al. 2013a). The two GSA methods were
applied using the sensitivity package developed in the R environ-
ment (Pujol 2007).

Table 2. Symbol and Description of Each Model Output

Symbol Description

mCO2;ASP CO2 emission due to biomass respiration
mCO2;CH4;comb CO2 emission due to biogas combustion
mCO2eq;CH4;comb Equivalent CO2 due to CH4 emission during biogas

combustion
mCO2eq;CH4;fugitive Equivalent CO2 due to fugitive CH4 emission
mCO2eq;CH4;dewatering Equivalent CO2 due to CH4 emission in the

dewatering unit
mCO2eq;N2O;eff Equivalent CO2 due to N2O emission with the

effluent discharge
mCO2eq;PG Equivalent CO2 emission due to plant power

requirements
mCO2eq;offset Equivalent CO2 emission credit due to energy

recovery
mCO2eq;TB Equivalent CO2 emission related to total biosolids

discharge
ηCODPS COD removal efficiency of the primary settler

© ASCE 04016017-4 J. Environ. Eng.
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To classify important, noninfluential, and interacting factors, the
thresholds of the sensitivity measures were selected.

The thresholds for the assessment of the important factors were
chosen according to previous studies (Sin et al. 2011; Cosenza et al.
2013b; Neumann 2012; Mannina et al. 2014). More specifically,
the threshold value of 0.1 was employed for the absolute value
of βi. All factors having the absolute value of βi higher than
0.1, at least for one model output, were considered important
for the SRC application. For the Si a threshold of 0.01 was selected,
and this choice was related to the fact that for a linear model Si ¼
β2
i (Cosenza et al. 2013b; Neumann 2012; Mannina et al. 2014).

Factors with a Si value greater than 0.01, at least for one model
output, were classified as important. Interacting model factors were
selected using the normalized index value (SNi), which corresponds
to the ratio between the interaction of the ith model factor related
to one model output and the maximum value among the interac-
tions for that model output (Cosenza et al. 2013b; Mannina et al.
2014). By considering SNi, it is possible to fix the same threshold
for all model outputs and at least one factor will be classified as a
factor with high interaction for each model output (Weijers and
Vanrolleghem 1997; Cosenza et al. 2013b; Mannina et al. 2014).
Factors with SNi greater than 0.5 for at least one model output
were considered to be interacting. Model factors with SNi and
Si values lower than 0.5 and 0.01, respectively, were considered
to be noninfluential.

The uncertainty analysis was performed by considering the
results of GSA applications. In particular, uncertainty analysis
has been performed after applying each method and considering
only the important model factors and fixing the noninfluential
factors.

Results and Discussion

Sensitivity Analysis

The SRC method has been applied by running 600 model simula-
tions and generating a model factor matrix having 600 × 26 dimen-
sion. These model simulation runs have been derived verifying
the convergence of the sensitivity analysis method (Cosenza et al.
2013b; Vanrolleghem et al. 2015). Results show that the SRC
method is applied within the applicability range (R2 > 0.7) sug-
gested in literature, indicating that the βi is a valid measure of sen-
sitivity (Table 3). Indeed, for each model output, the R2 value is
almost always greater than 0.9. Furthermore, the model can be con-
sidered linear to select important and noninfluential model factors
by means of the βi value. Indeed, even though the SRC method
does not provide information about the interaction among factors,
the high degree of linearity of the model enables adoption of the
value of βi to distinguish important (factor prioritization) and non-
influential factors (factor fixing). The lowest value of R2 (0.89) has
been obtained for the model output mCO2eq;PG, and this result is
likely due to the higher interaction among factors for this model
output (Table 3).

The Extended-FAST method has been applied by running
26,000 model simulations and generating a model factor matrix
with NR = 1,000. The sum of Si explains more than 90% of the
total variance for all model outputs except for the mCO2eq;PG
(Table 3). These results indicate that the model is linear and addi-
tive. This statement is also confirmed by the value of the sum of STi,
which is always close to 1 except for the mCO2eq;PG model output.
Indeed, results related to the mCO2eq;PG show that for this model
output a quite high degree of interaction among factors takes place

Table 3. Symbol and Important Model Factors Selected on the Basis of βi for Each Model Output

Factors

mCO2;ASP mCO2;CH4;comb mCO2eq;CH4;comb mCO2eq;CH4;fugitive mCO2eq;CH4;dewatering mCO2eq;N2O;eff mCO2eq;PG mCO2eq;offset mCO2eq;TB ηCODPS

βi βi βi βi βi βi βi βi βi βi

μ −0.001 0.013 0.013 0.013 0.000 0.000 0.006 0.009 −0.008 0.000
ks 0.003 −0.018 −0.018 −0.018 0.000 0.000 0.008 −0.011 0.006 0.000
kd 0.405 −0.317 −0.317 −0.317 0.000 0.000 0.321 −0.312 −0.146 0.000
YH −0.008 0.085 0.085 0.085 0.000 0.000 −0.246 0.081 0.229 0.000
μN 0.006 0.023 0.023 0.023 0.000 0.000 0.020 0.019 −0.015 0.000
KN 0.001 −0.006 −0.006 −0.006 0.000 0.000 −0.003 −0.004 −0.005 0.000
kdN 0.016 −0.033 −0.033 −0.033 0.000 0.000 0.018 −0.036 −0.014 0.000
YN −0.018 0.014 0.014 0.014 0.000 0.000 −0.046 0.011 0.018 0.000
kd;dig −0.019 0.036 0.036 0.036 0.000 0.000 −0.003 0.032 −0.005 0.000
YH;dig −0.011 −0.023 −0.023 −0.023 0.000 0.000 −0.007 −0.022 −0.012 0.000
pCOD=VSS −0.001 0.380 0.380 0.380 0.000 0.000 0.072 0.373 0.014 0.000
nbsCODIN −0.226 −0.033 −0.033 −0.033 0.000 0.000 −0.217 −0.031 −0.049 0.000
pbCODIN −0.642 0.451 0.451 0.451 0.000 0.000 −0.502 0.446 −0.739 0.890
npbCODIN −0.567 −0.572 −0.572 −0.572 0.000 0.000 −0.614 −0.562 0.532 0.508
nbsCODPI 0.008 −0.005 −0.005 −0.005 0.000 0.000 0.021 −0.007 −0.003 0.000
pbCODPI 0.010 −0.176 −0.176 −0.176 0.000 0.000 −0.068 −0.173 −0.031 0.000
npbCODPI −0.008 0.175 0.175 0.175 0.000 0.000 0.045 0.166 0.035 0.000
Q dewa 0.009 −0.011 −0.011 −0.011 0.798 0.000 0.036 −0.016 0.001 0.000
EFN2O 0.002 0.012 0.012 0.012 0.000 1.000 −0.007 0.014 0.010 0.000
EFCO2 0.031 −0.028 −0.028 −0.028 0.000 0.000 0.020 −0.028 0.001 0.000
EFCH4 0.019 −0.009 −0.009 −0.009 0.576 0.000 0.017 −0.008 −0.007 0.000
iNVSSPS 0.000 −0.023 −0.023 −0.023 0.000 0.000 0.020 −0.023 0.000 0.000
iNVSSSS 0.006 0.005 0.005 0.005 0.000 0.000 −0.024 0.004 −0.019 0.000
iCOD;NOx −0.012 0.005 0.005 0.005 0.000 0.000 0.179 0.006 0.002 0.000
iCOD;N2 0.010 −0.002 −0.002 −0.002 0.000 0.000 −0.120 −0.003 −0.006 0.000
CH4 SE 0.006 0.002 0.002 0.002 0.000 0.000 −0.014 0.174 0.000 0.000
R2 0.920 0.900 0.900 0.900 0.999 0.999 0.890 0.900 0.960 0.999
Σβ2

i 0.952 0.851 0.851 0.851 0.968 1.000 0.905 0.852 0.909 1.051

Note: Important model factors are in bold.
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(sum of STi ¼ 4.761) (Table 3). Except for mCO2eq;PG and ηCODPS,
all important model factors are interacting with each other. Hence,
the high degree of linearity flattens the selection of interacting
factors for the greater part of the model outputs analyzed.

For the sake of conciseness, only the results related to mCO2;ASP,
mCO2eq;CH4;comb, mCO2eq;CH4;dewatering, and mCO2eq;PG will be dis-
cussed in detail (Fig. 2). These model outputs have been selected
because they are the most representative of the major processes
occurring inside the modeled system.

By analyzing Fig. 2, one may observe that four factors have
significant impact on mCO2;ASP [Fig. 2(a), Tables 3 and 4], both
for SRC and Extended-FAST application. Specifically, kd,
nbsCODIN, pbCODIN, and npbCODIN have for mCO2;ASP the abso-
lute value of βi and the value of Si higher than 0.1 and 0.01, re-
spectively. Moreover, factor kd is also interacting with having the
SNi value equal to 1. Among these four factors, three (nbsCODIN,
pbCODIN, and npbCODIN) are related to the influent wastewater
COD fractionation and one (kd) is related to the heterotrophic bio-
mass kinetics. The effect of influent COD fractionation is certainly
the most interesting from a process point of view. In fact, the
influent fractionation factors influence the bCOD available for
biomass growth and consequently themCO2;ASP value. For example,
the higher the nbsCODIN fraction, the lower the availability of

substrate to be degraded during the biomass metabolism. Hence,
mCO2;ASP is reduced as a result of the conservative nature of
nbsCODIN. The factor kd represents the specific decay rate of
heterotrophic biomass and significantly influences mCO2;ASP be-
cause it regulates the endogenous decay of heterotrophic biomass.
The higher is kd, the higher is the mCO2;ASP as underlined by the
positive value of βi.

For mCO2eq;CH4;comb [Fig. 2(b), Tables 3 and 4], kd, pCOD=VSS,
pbCODIN, npbCODIN, pbCODPI, and npbCODPI appear to have
the most significant impacts on the basis of both βi and Si. Fur-
thermore, all of these, except pbCODPI and npbCODPI, are also
interacting. The interaction of these two latter model factors is
likely due to the fact that the amount of COD removal in the pri-
mary settler is strongly related to the COD influent fractionation
factors (e.g., pbCODIN and npbCODIN).

Among these factors, the most relevant for process diagnostics
are pCOD=VSS, pbCODIN, and npbCODIN. The fraction of
pbCOD or npbCOD strongly influences the amount of CH4 pro-
duced during anaerobic digestion due to the different nature of
the bCOD removed in the primary settler. In fact, higher particulate
in the influent wastewater entails higher bCOD removal in the pri-
mary settler, whose sludge is typically higher in COD per unit VSS
mass removed than secondary sludge (Gori et al. 2011). This cir-
cumstance leads to an increase of the CH4 production in the anaero-
bic tank and consequently of the equivalent CO2 emitted during the
combustion of CH4 (Gori et al. 2013).

Two factors have a significant impact on mCO2eq;CH4;dewatering,
both in terms of βi and Si value [Fig. 2(c), Tables 3 and 4], namely
Q dewa and EFCH4. Indeed, these factors represent, respectively, the
percentage of flow (with respect to the influent wastewater flow)
that reaches the dewatering section and the emission factor of
CH4 from the dewatering. These two model factors have a positive
influence on mCO2eq;CH4;dewatering as underlined by their positive
sign of βi. Such a result shows that a linear relationship exists
among the mCO2eq;CH4;dewatering, Q dewa, and EFCH4. This statement
can be corroborated by the value of R2 (for SRC application) and
the sum of Si and sum of STi (for Extended-FAST application),
which are very close to 1.

For the mCO2eq;PG model output, seven factors proved to be im-
portant in terms of both βi and Si value: kd, YH , nbsCODIN,
pbCODIN, npbCODIN, iCOD;NOx, and iCOD;N2. Among these
factors, the first two are directly related to the kinetic and stoichio-
metric characteristics of heterotrophic biomass. Thus, because the
WWTP energy demand is mainly due to the activated sludge proc-
esses (WEF 2009), the influence of kd and YH on the mCO2eq;PG

model output is associated with their influence on regulating the
heterotrophic active biomass in the aerobic tank and consequently
on the aeration energy requirements. A comment can be made on
the relationships among temperature, biokinetics, and carbon foot-
print: as global temperature rises, the wastewater temperature rises,
and hence so does the value of kd. Because kd has a nonlinear re-
sponse with temperature increase (it increases by nearly an order of
magnitude between 10 and 30°C), and because in the same temper-
ature range the bacterial efficiency in removing bCOD from the
influent changes by a small adjustment, the consequence is that
increasing temperatures should result in CO2 emission from endog-
enous respiration (driven by kd) that is higher in proportion than the
CO2 emission from aerobic respiration, in essence a positive feed-
back mechanism for CO2 emission. The influence of nbsCODIN,
pbCODIN, and npbCODIN is mainly due to the ability of these
factors to regulate the availability of soluble COD required for
the biological processes. For example, as the fraction of sCOD de-
creases, the oxygen required for the aerobic processes decreases,

Fig. 2. Sensitivity (jβij, Si, and STi) of all factors for (a) mCO2;ASP;
(b) mCO2eq;CH4;comb; (c) mCO2eq;CH4;dewatering; (d) mCO2eq;PG
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thus influencing the mCO2eq;PG of the aeration process and of the
entire WWTP.

The influence of the conversion factors iCOD;NOx and iCOD;N2

is mainly related to the variation of the oxygen requirement on
the basis of the COD availability for heterotrophic biomass growth
at low dissolved oxygen concentration. Furthermore, the influence
of μN in terms of Si is related to the oxygen requirement for auto-
trophic biomass growth.

High interaction among factors has been found for themCO2eq;PG
model output (Table 4), as confirmed by the high value of the ΣSTi
(4.761). The high interaction is mainly due to the complexity of
the model in terms of mCO2eq;PG. The total mCO2eq;PG are computed
by summing the single processes’ power requirements. Among the
interacting factors, those having the highest contribution to the total
model variance are kN and kdN . These two model factors are related
to the kinetics of the autotrophic biomass. In fact, autotrophic
biomass growth influences the aeration requirement inside the
aerobic tank.

As discussed previously, the slight difference between the re-
sults of SRC and Extended-FAST application for the four model
outputs taken into account are a result of the selection of the im-
portant and noninfluential model factors (Fig. 3). Indeed, for each
GSA method applied, model factors that were important (and in-
teracting for the Extended-FASTapplication) for at least one model
output have been considered important for the entire model; all the
other factors have been considered noninfluential. An analysis of
Fig. 3(a) shows that the Extended-FAST method overestimates the
number of important factors due to the inclusion of the interacting
factors that cannot be selected by means of the SRC method.
Indeed, while 20 model factors have been classified as important
for the Extended-FAST application, only 14 model factors have the
same classification for SRC. Consequently, the SRC application
provides a higher number (12) of noninfluential model factors than
the Extended-FAST (6) [Fig. 3(b)]. Specifically, the role of nitrogen
removal processes in producing GHGs is emphasized by
applying the Extended-FAST method with the inclusion of the im-
portance of factors μN , kd, kdN , INVSSPS, and INVSSSS. Indeed,
these factors can directly (μN , kd, and kdN) or indirectly (INVSSPS
and INVSSSS) regulate the activity of the autotrophic biomass.
Thus, results obtained by using the Extended-FAST method sug-
gest that the modeler should be attentive to the processes that in-
volve autotrophic biomass in view to control the GHG production
at plantwide scale.

The important model factors reported in the Venn diagram
have been classified on the basis of βi (for SRC) and Si and
SNi (for Extended-FAST).

Uncertainty Analysis

The uncertainty analysis was performed by fixing the noninfluen-
tial factors at their default values (Table 1) and considering only the
model factors that are important for at least one model output. The
uncertainty analysis was conducted twice, first using the results of
the SRC application, and then the results of the Extended-FAST.
Each time the same number of simulations carried out for the
GSA method application has been performed.

The comparison of the uncertainty analysis results among the
model outputs has been performed by means of the relative uncer-
tainty bands width values. These latter were evaluated dividing
the bandwidth—calculated as the difference between the 5th and
95th percentile of the perturbed output distribution, by the 50th
percentile.

Fig. 4 shows the CDFs, obtained by running simulations using
the results of SRC and Extended-FAST applications for mCO2;ASP,T
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mCO2eq;CH4;comb, mCO2eq;CH4;dewatering, and mCO2eq;PG. The 5th and
95th percentiles of each CDF have been also calculated.

A visual inspection of Fig. 4 reveals that the uncertainty band-
width values change with the model output and with the results of
GSA applications used for the analysis. The difference among
model outputs is mainly due to the fact that some of the model
outputs entail a different level of complexity in terms of involved
phenomena. The difference between the two uncertainty analysis
applications (using the results of SRC and Extended-FAST) is
mainly due to the different set of factors involved during the
analysis.

Specifically, the uncertainty bandwidth of mCO2;ASP (605 and
567 gCO2 m−3 by using SRC and Extended-FAST results, respec-
tively) and mCO2eq;CH4;comb (498 and 513 gCO2eq m−3 by using
SRC and Extended-FAST results, respectively) are higher than
mCO2eq;CH4;dewatering (4.4 and 4.2 gCO2eq m−3 by using SRC and
Extended-FAST results, respectively) and mCO2eq;PG (179 and
164 gCO2eq m−3 by using SRC and Extended-FAST results,
respectively). In general, results obtained after applying SRC pro-
vide a higher uncertainty bandwidth for the model outputs
mCO2;ASP, mCO2eq;CH4;dewatering, and mCO2eq;PG. Thus, except for
mCO2eq;CH4;comb, including the effect of the interacting factors (with
the Extended-FAST application) the model uncertainty decreases.
For example, including the model factors μN , kd, kdN , iNVSSPS,

and iNVSSSS selected as interacting by means of the Extended-
FAST method, the modeler can optimize the contribution of the
GHG production due to the autotrophic activity. However, the in-
clusion of these model factors can have a negative influence on
mCO2eq;CH4;comb uncertainty due to the different autotrophic biomass
activity a different carbon to nitrogen (C=N) ratio of the secondary
sludge causes, thus influencing the quality of the biogas produced.

The uncertainty analysis based only on the width of the uncer-
tainty band can be misleading because this width is influenced by
the order of magnitude of the considered model output.

Thus, in order to provide a quantitative assessment of the model
uncertainty and to make the results comparable among the model
outputs, the relative uncertainty bandwidth for each model output
has been computed.

Fig. 5 shows the relative uncertainty bandwidth for each model
output and for each uncertainty analysis application. An analysis of
Fig. 5 shows that the highest uncertainty for both applications is
related to the mCO2eq;N2O;eff (the relative uncertainty bandwidth is
equal to 1.63). This fact may be due to the value of the EFN2O used
to quantify N2O emitted with the effluent.

EF is based on the Intergovernmental Panel on Climate
Change (IPCC) (2006) recommendation. However, as reported
in literature, the EFs suggested by the IPCC are highly uncertain
due to the wide range of measured values used for EF definition

Fig. 3. Venn diagram related to the comparison of (a) important and (b) noninfluential factors obtained by applying SRC and Extended-FAST

Fig. 4. CDF of (a) mCO2;ASP; (b) mCO2eq;CH4;comb; (c) mCO2eq;CH4;dewatering; (d) mCO2eq;PG
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(Flores-Alsina et al. 2014). Within this context, the N2O emission
quantification could be improved by including the processes occur-
ring in the receiving water body. In fact, if bCOD or nutrients
are not removed inside a process they undergo inexorable (albeit
slow) biodegradation in the receiving environment, which is the
carbon footprint of no treatment (Rosso and Stenstrom 2008).

Fig. 5 also reveals that a high and comparable uncer-
tainty degree was found for mCO2;CH4;comb, mCO2eq;CH4;comb,
mCO2eq;CH4;fugitive, and mCO2eq;offset (the relative uncertainty band-
width is approximately 1.12 and 1.15 using the SRC and
Extended-FAST results, respectively). The high uncertainty for
these latter model outputs can be attributed to the complexity
of the processes and consequently of the algorithms that describe
their dynamics. These algorithms involve several model factors
such as the influent COD fractionation, pCOD=VSS, and COD
fractionation factors related to the primary effluent. Future studies,
based on measured data, should be performed in order to clearly
split the role of the uncertainty of each factor involved in the
mCO2;CH4;comb, mCO2eq;CH4;comb, mCO2eq;CH4;fugitive, and mCO2eq;offset
model outputs.

In order to provide an overall effect of each process in terms of
total equivalent CO2 production, Fig. 6 reports the percentage pro-
duction related to the processes taken into account.

As shown in Fig. 6, the two greatest CO2 emissions are related
to the total biosolids discharge (40.24%) and to the biomass res-
piration (30.45%). This result suggests optimizing the biological
processes in order to reduce the percentage of the total CO2

emitted.

Conclusions

Sensitivity analysis methods have revealed that model factors char-
acterizing influent and primary wastewater in terms of COD
(e.g., nbsCODIN and pbCODIN) have a significant impact in mod-
eling GHGs. The role of factor pCOD/VSS was found to be rel-
evant especially in terms of factor interaction. Model factors
related to the autotrophic biomass growth were found to strongly
influence the total model variance in terms of interaction, especially
regarding the indirect GHG emission. Model factors selected as
influential or interacting should be better quantified (e.g., by means
of ad hoc laboratory tests) in order to improve model predictions.

The uncertainty analysis shows that mCO2eq;N2O;eff has the high-
est uncertainty in terms of relative uncertainty band (1.63). This
result suggests that EF adopted for the N2O effluent quantification
should be improved to provide accurate results.

The derived results have to be interpreted in the context that
has been herein formulated—thus not having a universal validity.
Despite such a limit, the results demonstrate the paramount impor-
tance in the evaluation of sensitivity and uncertainty analysis in
order to get robust results by identifying the key uncertainty sour-
ces and designing ad hoc laboratory test.
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