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i Results and discussion

Phenomenological description of the RED process

The governing phenomena were accurately predicted, as confirmed by

the fields of the main computed quantities. Some examples (computed
with the single-cell approach) are reported here, related to the case of - = s

PROCESS PERFORMANCE a 10-cells empty-channels stack, fed with 4M—0.5M NaCl solutions. Computed velocity field  Computed pressure field
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Developing a multi-physics modelling tool for the Reverse ElectroDialysis process, being able to
describe the main phenomena involved and evaluate the process performance.
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Mass balance V-N;=0 compared. In this part of the study, the channel length was reduced to 1.2 mm and the number of grid nodes
Current balance v 7=0 increased to about 30,000 per cell. This allowed to efficiently compare the four scenarios.
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The system is completed by the algebraic equations for the cell pair potential, the average current density
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module, the stack potential and the power density (Figure 3): s s = :
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. ~ What happens when changing dilute concentration in profiled membranes?
Power density P; = Egtacklcenn/N SR . o SR S
AEM Concentrate Ch. CEM Diluate Ch. AEM A/m; AEM Concentrate Ch. CEM Diluate Ch. AEM A/nlz AEM Concentrate Ch. CEM Dilua_lte Ch. AEM A/nlz
Boundary conditions ) ) = )
The boundary conditions are reported in Figure 2. Periodic conditions for concentrations and fluxes were ) ) | = |.
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ziF C ; R Conclusions and future remarks
Interface sorption equilibrium LP;I;;;G;Q—E;;;; A multi-physics model for the RED process was developed as a powerful tool for the thorough
Partition coefficients were adopted to relate the characterisation of the complex process phenomenology and for the prediction of the stack performance.
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membrane-side co-ions concentration to the Q The behaviour of different spacers and profiled membranes was analysed and compared, highlighting
solution-side one: e Y advantages and limitations of each case.

stack o . . . ° °
1 [ N S Future developments: (i) 3D simulations for accurate predictions with complex spacers/channels geometry;
cm. 7\/Cfix + 4Cc0iCeou — Crix - 3 Eauival | S (i) structural mechanics analysis to simulate membranes bending and channel geometry deformation;
s — Beq = C igure 3. Equivalent electric circuit. (iii) implementation of an all-embracing model for the process design and optimisation.
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