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Simulation models of economic, financial and business risk factors are widely used to assess
risks and support decision-making. Extensive literature on scenario generation methods aims at
describing some underlying stochastic processes with the least number of scenarios to overcome
the ‘curse of dimensionality’. There is, however, an important requirement that is usually overlooked
when one departs from the application domain of security pricing: the no-arbitrage condition. We
formulate a moment matching model to generate multi-factor scenario trees for stochastic optimization
satisfying no-arbitrage restrictions with a minimal number of scenarios and without any distributional
assumptions. The resulting global optimization problem is quite general. However, it is non-convex
and can grow significantly with the number of risk factors, and we develop convex lower bounding
techniques for its solution exploiting the special structure of the problem. Applications to some
standard problems from the literature show that this is a robust approach for tree generation. We use
it to price a European basket option in complete and incomplete markets.

Keywords: Scenario trees; Global optimization; Convex lower bounding; Stochastic programming;
Pricing in incomplete markets

1. Introduction

Simulation models are widely used to assess risk exposures
and support financial decision-making. Risk management, in
particular, is often based on simulations of the risk factors
(or assets) of the balance sheet (see, e.g. Jamshidian and Zhu
1997, Rebonato et al. 2005). Scenario trees are widely used
in multistage stochastic programming, where the time dimen-
sion and non-anticipativity of future events are key features of
the model (Mulvey and Vladimirou 1992, Carinõ and Ziemba
1998, Zenios et al. 1998, Consiglio et al. 2006, Consigli et al.
2010). The trend for risk management at an enterprise-wide
level, Dembo, Aziz, et al. (2000), broadens the risk factors to
include not only financial but also economic and business risks
and their inter-dependencies. For a review of literature on sce-
nario methods for risk management and portfolio optimization
see Dupačová et al. (2000), Kaut and Wallace (2007) and chap.
9 in Zenios (2007).

In synthesis, we identify three approaches¶:

∗Corresponding author. Email: andrea.consiglio@unipa.it
¶We leave out the literature on simulations for security pricing, see,
e.g. Glasserman (2004), which focuses on a specific problem and
hence may take advantage of specific stochastic process structures;
we take up this issue in the application section.

(1) The moment matching approach describes the joint
distribution of scenarios in terms of moments,
including cross-moments to take into account inter-
dependencies. It solves a set of non-convex equa-
tions to match the mathematical expressions of the
factor moments to exogenously given values. The
main idea is found in the seminal paper by Høyland
and Wallace (2001). Refinements suggested by Date
et al. 2008, Høyland et al. (2003) reduce the compu-
tational complexity of the underlying optimization
problem. Chen and Xu (2014), Xu et al. (2012) use
K -means clustering of historical observations and
linear programming to approximate moments, al-
lowing also subjective estimates of future scenarios
to be included.

(2) The copula approach postulates the distribution func-
tion of the marginals and then, by imposing an as-
sociative structure, determines the multivariate joint
distribution.This method became popular as the ‘cop-
ula approach’ since the copula function is used to
model dependencies among the variables, Cherubini
et al. (2004).

(3) The distance minimization approach approximates
the true distribution (continuous or discrete) with

© 2016 Taylor & Francis
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a few mass points that minimize the (Kantorovich)
distance between an original stochastic optimiza-
tion model and the approximated one. The algo-
rithmic implementation usually starts from a set of
points generated by a discrete reference process or
by discretizing a continuous process and then, using
specific metrics, partitions the points at each stage
into disjoint subsets that reduce the total number of
scenarios and shape the tree structure (Hochreiter
and Pflug 2007, Dupačová et al. 2003).

A common aim of these methods is to approximate the un-
derlying stochastic process or probability distribution with the
least number of scenarios. However, an important require-
ment is usually overlooked when one departs from the secu-
rity pricing literature: the scenario approximation should not
present arbitrage opportunities. The generation of arbitrage-
free scenarios is complicated by the need to use two probabil-
ity measures—the objective and the martingale—and returns
compatible with both, to match the approximated process to
the original.

The significance of no-arbitrage scenarios is well understood
in the pricing literature. The problem has resurfaced in more
complex forms in recent works where pricing options in the
context of multiperiod stochastic models for risk management
(Consiglio and De Giovanni 2008, Topaloglou et al. 2008).
Even with simple asset classes, the absence of arbitrage is a
key property, and Geyer et al. (2010) show that scenario trees
with arbitrage opportunities can produce spurious results when
used in portfolio optimization.

In a commentary to Høyland and Wallace (2001), Klaassen
(2002) suggests two alternatives to handle arbitrage oppor-
tunities. One is to re-apply the scenario generation method
from a different starting point, and/or increase the number of
scenarios, in the hope that the newly generated set of scenarios
is free of arbitrage. The other is to explicitly add no-arbitrage
constraints to the original set of equations.Adding a set of equa-
tions to generate arbitrage-free scenarios is a viable approach,
but it leads to a system of non-convex equations whose solution
is prohibitive. To solve real-world applications, Høyland et al.
(2003) propose a heuristic that does not guarantee the arbitrage-
free property (although it works well for their applications).

Arbitrage opportunities are usually eliminated by re-sampling
and/or increasing the number of scenarios. Such an approach
is not free of faults or limitations. As shown in Geyer et al.
(2014a), increasing the number of scenarios does not neces-
sarily produce arbitrage-free scenarios, as that depends on the
structure of the expected returns and the covariance matrix, and
they characterize three regions for the existence of no-arbitrage
scenarios using Mahalanobis distances. Moreover, increasing
the number of scenarios may not be viable for multistage fi-
nancial planning models, as the dimensionality of the model
grows exponentially with the size of the tree. In a follow-up
paper Geyer et al. (2014b) show how to generate arbitrage-free
random samples by rotating a simplex, thus avoiding the need
for re-sampling, but this is done only for matching the first two
moments.

Our paper resolves the limitations of existing literature pro-
viding a general methodology that applies to higher moments.
We formulate the moment matching scenario generation model

with no-arbitrage constraints as an optimization problem whose
global minimal value is zero, if a solution exists, using the
method of Maranas and Floudas (1995). The resulting opti-
mization problem is non-convex and local search algorithms
can be trapped in local minima with non-zero value, thus lead-
ing to the erroneous conclusion that no solution exists. To
overcome this difficulty, we develop a global optimization
approach based on convex lower bounding techniques (see
Floudas and Gounaris 2009, for a review) that take advantage
of the problem structure and is computationally tractable.

Our paper makes two innovations: first, it formulates a global
optimization model to generate moment-matching arbitrage-
free trees for an arbitrary number of risk factors (or, assets)
and moments. Second, it develops an algorithm to exploit the
special structure of the model, thus showing global optimiza-
tion to be a robust tool for scenario generation. As a result of
the model we obtain both objective (P) and risk neutral (Q)
probability measures. Therefore, extensions of pricing models
to distributions with general moments become straightforward,
as the state price density is readily obtained by the ratio Q/P
for each node of the tree (see Section 4 and Pliska (1997)).

The model satisfies the principles of parsimony, see Vandek-
erckhove et al. (2015), in the sense that it uses only available
observed information (the moments) and fits them using the
minimal number of scenarios. It makes no assumptions about
the underlying distribution. Also, if for a given application
it is known that only the first few moments are relevant, the
model can fit only those. If, on the other hand, an underlying
distribution is known to apply—perhaps from empirical studies
or theoretical arguments—then a tree with minimal number
of scenarios can approximate the distribution by matching as
many of its moments as needed.

The paper is organized as follows. Sections 2 and 3 formulate
the model and develop the solution method. Section 4 reports
on the implementation to solve some standard models from
the literature and to the pricing of a European basket option in
complete and incomplete markets. Section 5 concludes.

2. Notation and model set-up

We assume that asset returns follow stochastic processes in
discrete space and time. We have J assets (or risk factors) with
returns labelled by index set J = {1, 2, . . . , J } which are
observed on a finite number of time stages, t = 0, 1, 2, . . . , T :

R =
(

R1
t , . . . , R J

t

)T

t=0
. (1)

(If some portfolio decision needs to be made at each stage t ,
such as in portfolio replication or portfolio optimization, these
are called decision stages. Time stages for asset prices and
decision stages for portfolios do not need to coincide, but for
simplicity we assume they do.)

The return process is modelled on the probability space
(�,F , P), where the sample space � is assumed to be finite.
Such a formulation allows for market representation through
scenario trees, Pliska (1997). We denote by Nt the set of nodes
at stage t . Each node n ∈ Nt corresponds one-to-one with an
atom of the filtration Ft . Every node n ∈ Nt , t = 1, . . . , T ,
has a unique ancestor node a(n) ∈ Nt−1, and every node
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A parsimonious model for scenario trees 203

Figure 1. A finite filtration (left panel) and its associated tree (right panel).

n ∈ Nt , t = 0, . . . , T − 1, has a non-empty set of child
nodes C(n) ⊂ Nt+1. The collection of all nodes is denoted
by N ≡ ⋃T

t=0 Nt .
In the probabilistic context, if we assume that the sample

space � is finite, every algebra F corresponds to a partitioning
of � into mutually disjoint subsets (the F-atoms). In a scenario
tree, there is a one-to-one map between the nodes n ∈ Nt

and the partition sets At , for each t = 1, . . . , T . A filtration
simply corresponds to a sequence of algebras generated by
successively finer partitions of �, see left panel of figure 1.

The tree in the right panel of figure 1 is general, allowing the
branching factor to vary in each stage. To simplify notation,
we work with trees having the same number of child nodes per
ancestor.

To form a tree for a given set of stages, we match the
moments of the sub-tree emanating from each node, and repeat
the matching procedure for each non-final node. The model
can be extended to match multiple sub-trees simultaneously in
case there are significant inter-temporal dynamics, although it
becomes large. In general, any temporal relationship between
the moments, such as autocorrelation or GARCH effects, can
be accounted exogenously by specifying the dynamics of the
input data, Høyland and Wallace (2001).

We describe now the equations and the variables for match-
ing a generic sub-tree. L is the number of child nodes with
ancestor a(n) and L = {1, 2, . . . , L} denotes the set of indices
for the scenarios in the next period. Since we focus on matching
generic sub-trees, we drop the subscript t and let R jl be the
return of each asset j ∈ J and scenario l ∈ L for the sub-tree,
and let pl be the corresponding objective probability.

We formulate the model for most practical applications,
whereby we are interested in matching up to the first four
central moments of the asset return distributions and pair-
wise correlations. Let μ j , σ j , γ j and κ j denote, respectively,
expected return, standard deviation, skewness and kurtosis, for
j ∈ J , and ρ jk the correlations for pairs j, k ∈ J with j �= k.
The arbitrage-free moment matching problem is formulated as
the system of non-linear equations:

Problem 1 Arbitrage-free moment matching.∑
l

pl R jl = μ j , j ∈ J , (2)

∑
l

pl
(
R jl − μ j

)2 = σ 2
j , j ∈ J , (3)

∑
l

pl
(
R jl − μ j

)3 = γ j σ 3
j , j ∈ J , (4)

∑
l

pl
(
R jl − μ j

)4 = κ j σ 4
j , j ∈ J , (5)

∑
l

pl
(
R jl − μ j

)
(Rkl − μk) = ρ jk σ j σk, j, k ∈ J , k > j,

(6)∑
l

ql R jl = r, j ∈ J , (7)

∑
l

pl = 1, (8)

∑
l

ql = 1, (9)

ql > 0, pl ≥ 0, l ∈ L. (10)

Problem 1 describes the matching of moments and cross-
moments of the joint probability distribution to exogenously
given values μ j , σ j , γ j , κ j and ρ jk . Equation (7) are the
no-arbitrage constraints, Pliska (1997), where, without loss
of generality, we assume that r is the deterministic risk free
rate. For stochastic risk free rate, equation (7) are modified
according to Pliska (1997) as∑

l

ql
R jl − rl

1 + rl
= 0. (11)

This model does not make any assumptions on the proba-
bility distributions. It simply matches observed moments con-
sistently with the no-arbitrage theory. In this sense the model
is general. This is an advantage for cases where no theoretical
arguments or empirical observations can justify any assump-
tion on the underlying distributions, such as is the case for
models that include both financial and economic random vari-

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

i P
al

er
m

o]
 a

t 0
1:

37
 0

2 
Fe

br
ua

ry
 2

01
6 



204 A. Consiglio et al.

ables, or when business random variables are included. When
something more is known, this could be incorporated in the
model through additional constraints. For instance, Cochrane
and Saa-Requejo (2000) argue for ‘good deal’ bounds for in-
complete markets, and such considerations fit naturally in our
model set-up. However, we point out that the computational
tractability of such extensions is not necessarily the same as
we demonstrate in this paper and a suitable solution method
would have to be devised. An important advantage of our
approach is that the model may admit more than one arbitrage-
free solutions and therefore it produces a range of plausible
prices instead of a point estimate. We illustrate this point in the
applications section.

3. A global optimization approach

We now develop a solution method for Problem 1 based on
Maranas and Floudas (1995). They employ a partitioning strat-
egy of the interval of the variables, and convex relaxations of
the non-linear terms of each equation, and we specialize this
approach to the structure of Problem 1.

3.1. Variable bounds and scaling

First, we standardize the variable of the problem. In particular,
denote by

z jl = R jl − μ j

σ j
(12)

the standardized returns R jl to obtain R jl = μ j + σ j z jl , and
substitute in equations (2)–(10).

Second, we specify bounds on each variable. This is im-
portant as the solution search proceeds through successively
finer partitions of the hyper-rectangle specified by the vari-
able bounds, and the smaller this initial range, the faster the
convergence. Natural bounds are available for the variables pl

and ql since they are probabilities and pl , ql ∈ (0, 1].† Less
obvious are the bounds on z jl since z jl ∈ (−∞,∞). However,
as z jl denotes standardized returns we set R jl > −1 to rule
out negative prices, and the lower bound for the standardized
variable is

z j = −1 − μ j

σ j
. (13)

Further restrictions of the range of z jl can be imposed by
analysis of historical price series. In general, we bound the
variable to stay within 3 to 5 standard deviations from the
mean, with larger bounds being appropriate for higher kurtosis,
although algorithmic efficiency deteriorates.

With these transformations, we can now develop a solution
procedure using convex relaxation of posynomial functions
(see appendix 1 for a formal definition). Such functions are
characterized by strictly positive variables. The positivity of
pl and ql is rooted in their meaning as probabilities but for z jl

a suitable transformation is needed. Furthermore, to enhance
numerical stability of the algorithm, we scale all variables to
have the same range with pl and ql .

†According to theory, risk neutral probabilities have to be strictly
greater than zero.

The transformation of z jl is given by

z jl = z j + t jl(z j − z j )

= z j + t jl� j , (14)

where 0 < t j ≤ t jl ≤ t j = 1 and � j = z j − z j .‡ Substituting
equation (14) in the standardized equations (2)–(7), and after
some algebra, reported in appendix 2, we obtain the following
model:

Problem 2 Arbitrage-free moment matching with scaled
variables. ∑

l

pl t jl = A j , j ∈ J , (15)

∑
l

pl t2
jl = B j , j ∈ J , (16)

∑
l

pl t3
jl = C j , j ∈ J , (17)

∑
l

pl t4
jl = D j , j ∈ J , (18)

∑
l

pl t jl tkl = Fjk, j, k ∈ J , k > j, (19)

∑
l

ql t jl = Hj , j ∈ J , (20)

∑
l

pl = 1, (21)

∑
l

ql = 1, (22)

0 < p
l
≤ pl ≤ pl = 1, l ∈ L, (23)

0 < q
l
≤ ql ≤ ql = 1, l ∈ L, (24)

0 < t j ≤ t jl ≤ t j = 1, j ∈ J , l ∈ L. (25)

3.2. The branch and bound algorithm

Finding all the solutions of Problem 2 is now re-formulated as a
global optimization problem. Following Maranas and Floudas
(1995), we index by m ∈ M the equations of the model, i.e.
M = {1, 2, . . . , M} is the index set of equations (15)–(22). We
denote by β a vector stacking the variables pl , ql , t jl , and by β,
β, respectively, their lower and upper bounds. We also denote
by em(β) the difference between the value of the equation at
β and its right-hand-side term.

Let s be a scalar slack variable. Then the following inequality
constrained problem solves Problem 2 if an optimal solution
(β∗, s∗) satisfies s∗ = 0:

Problem 3 Inequality-constrained minimization

min
β,s

s (26)

s.t. (27)

em(β) − s ≤ 0, m ∈ M, (28)

− em(β) − s ≤ 0, m ∈ M, (29)

β ≤ β ≤ β. (30)

‡Note that lower bounds of t jl —and also of pl , ql —are strictly greater
than zero. There is no rule to determine them and we use 1E−04.
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A parsimonious model for scenario trees 205

Table 1. Percentage of no-arbitrage scenarios generated using the heuristic of Høyland et al. (2003). NA indicates that arbitrage-free scenarios
are not possible because the number of scenarios does not exceed the number of assets.

Number of Scenarios
Problem 10 15 20 30 50 100

HKW-8 0% 6% 25% 63% 93% 100%
HKW-12 NA 0% 0% 11% 56% 100%
HKW-20 NA NA NA 0% 0% 0%
FINLIB-15 NA NA 0% 0% 0% 12%
FINLIB-20 NA NA NA 0% 0% 6%

Note that a non-zero s∗ means that Problem 2 is infeasible.
However, since the equations involved are, in general, non-
convex, a local optimization algorithm could lead to solutions
which are locally optimal thus missing the global optima. Even
worse, if a local minimum has a non-zero objective value, we
erroneously conclude that no feasible solutions exist to the
original system. Hence we need a solution method that can
identify all solutions. In practice we may terminate once a zero
solution is found.

Global optimization algorithms to solve non-convex prob-
lems have been widely studied. They are mainly subdivided
in three classes: deterministic, stochastic and meta-heuristic.
Deterministic global optimization algorithms are usually based
on a branch and bound search strategy, where the bound phase
is implemented by minimizing a convex relaxation of Prob-
lem 3. On each sub-rectangle [β ′

,β
′ ] ⊂ [β,β], obtained in

the branching phase, the constrained global minimum of the
convex relaxed problem can be routinely found with any local
optimization algorithm. Note that, since the convex relaxation
is obtained by a convex underestimation of each non-convex
term of the model equations, the minimum of the relaxed prob-
lem will be an underestimation of the global minimum. This
implies that if the relaxed global minimum is positive, then the
relative partition can be fathomed, as the slack variable s cannot
be driven to zero, and therefore the moment matching model
has no solution in this specific partition. On the other hand, if
the relaxed global minimum is negative, then no conclusion can
be drawn and the interval is further partitioned. The algorithm
terminates when all the hyper-rectangles with a negative lower
bound cannot be further partitioned, or, in practice, when their
norm is within a given tolerance, i.e. ‖β ′ − β

′ ‖ ≤ εd .
In appendix 1, we give a convex reformulation of the model

that exploits its special structure to allow for efficient solutions.
The reformulation is essential for the solution of the model, but
not for the model itself.

4. Applications

In this section, we apply the method to generate scenarios for
some problems from the literature and to price a basket option
in complete and incomplete markets. We carry out experiments
to assess the performance of our approach, compare to avail-
able software for scenario generation and assess the quality of
the scenarios when used for security pricing.

The data-sets are taken from real problem instances and they
contain asset classes ranging from cash to stock. In particular,
we perform the experiments on data-sets from Høyland et al.

(2003) and the FINLIB library of Consiglio et al. (2009),
and label them, respectively, HKW-X and FINLIB-Y, where
X = 8,12,20 and Y = 15,20 denote the number of assets.
All experiments are carried out on a Linux machine with 2.00
GHz Xeon Quad-Core. The convexified problems are solved
with GAMS/CONOPT. (Some problems were also solved with
GAMS/SNOPT, and in general we found the GAMS solvers
for convex optimisation robust for our test problems).

4.1. Checking for arbitrage

As noted earlier, neither re-sampling nor increasing the number
of scenarios are foolproof methods for generating arbitrage-
free scenarios. Table 1 summarizes results with the generation
of no-arbitrage scenarios using the heuristic of Høyland et al.
(2003).† For a given number of scenarios, we re-sample 100
different instances and check for arbitrage using the model
of King (2002). An unbounded solution signals arbitrage. The
table summarizes the success rate of producing arbitrage-free
scenarios by re-sampling. When matching only the first two
moments, the percentage of no-arbitrage scenarios depends on
the structure of the covariance matrix; Geyer et al. (2014a,
2014b). Our test problems match higher moments and are
therefore more complex.

Increasing the number of scenarios, as suggested by Klaassen,
improves the success rate (although for problem HKW_20 it
was not possible to generate arbitrage-free scenarios). The
success rate is lower for problems with more assets and the
number of scenarios needed are on average more than double
the number of assets. This is crucial for practical applications.
As we will see in the next section, to price an option in complete
or incomplete markets, we need to build scenario trees that
grow exponentially with the number of time steps and scenar-
ios. Therefore, a desirable property of arbitrage-free scenarios
is to match the moments of the distribution with the minimum
number of scenarios. According to theory, Pliska (1997), for
complete markets the number of scenarios should be equal
to the number of assets plus one, L = J + 1. Note that if
it is possible to generate trees such that each sub-tree has a
number of scenarios equal to J + 1, then the option price can
be determined by simply discounting the final payoff under the
risk neutral measure, given in our model by the probabilities
ql for l ∈ L.

†The error tolerances for the heuristic εX and εY are set to 1E−03
(default value) and to 5E−02. We choose these values after an
exploratory phase, where we tried different tolerance values and
picked values such that the heuristic converges for all test problems.
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206 A. Consiglio et al.

Table 2. Mahalanobis distances and arbitrage bounds delimiting the no-arbitrage and arbitrage regions for the case of complete markets.

Mahalanobis No arbitrage Arbitrage
Problem distance region region

HKW-8 1.62E+00 1.25E−01 8
HKW-12 1.73E+00 8.33E−02 12
HKW-20 1.20E+01 5.00E−02 20
FINLIB-15 1.29E+01 6.67E−02 15
FINLIB-20 1.86E+01 5.00E−02 20

Table 3. Average maximum error over 10 different trees.

Problem μ σ γ κ ρ r

HKW-8 1.08E−06 4.20E−06 2.84E−05 1.40E−04 4.88E−06 3.87E−07
HKW-12 1.38E−06 9.14E−06 6.45E−05 2.51E−04 5.71E−06 2.70E−07
HKW-20 7.22E−06 8.91E−06 7.86E−05 3.34E−04 1.50E−05 2.60E−07
FINLIB-15 1.41E−06 3.83E−06 5.26E−05 2.49E−04 5.56E−06 1.12E−07
FINLIB-20 2.13E−06 7.38E−06 6.00E−05 1.58E−04 8.03E−06 3.66E−07

Table 4. Standard deviation of the maximum error of 10 different trees.

Problem μ σ γ κ ρ r

HKW-8 8.67E−07 3.67E−06 2.34E−05 1.30E−04 7.83E−06 5.89E−07
HKW-12 1.52E−06 8.11E−06 3.06E−05 1.70E−04 9.43E−06 3.94E−07
HKW-20 9.69E−06 6.62E−06 1.71E−05 1.07E−04 1.40E−05 2.43E−07
FINLIB-15 2.49E−06 5.38E−06 3.38E−05 2.06E−04 7.04E−06 1.34E−07
FINLIB-20 2.46E−06 5.40E−06 3.37E−05 1.13E−04 6.76E−06 7.64E−07

To establish the difficulty of the test problems, and to provide
a link of our work with that of Geyer et al. (2014a), we report
in table 2 the Mahalanobis distances and the arbitrage bounds
in case of market completeness (L = J + 1). We set r = 0 to
obtain a conservative value of the Mahalanobis distance. Geyer
et al. prove that, for a given variance-covariance matrix, the
space of the expected excess returns can be partitioned in three
region: (i) a no-arbitrage region, whose bound is given by 1

L−1 ;
(ii) a region where to rule out arbitrage opportunities, the sce-
nario set obtained has to be checked via linear programming;
(iii) the arbitrage region, whose bound is given by L − 1.

From table 2, we observe that all test sets have Mahalanobis
distance inside region (ii), where arbitrage opportunities de-
pend on the set of generated scenarios. Hence, all test problems
are feasible, but not trivial. For test HKW-20, we see that even
if the Mahalanobis distance is within region (ii), all scenarios
generated by the heuristic have arbitrage. We point out that the
general results of characterizing three regions is valid when
matching the first two moments. Matching of higher order mo-
ments could introduce incompatibilities with the arbitrage-free
constraints and that’s where our model is uniquely applicable.

4.2. Accuracy of the solution

In this section, we show that the global optimization approach
is a feasible alternative to re-sampling procedures, that, as
seen above, perform poorly in terms of success rate and in

terms of number of scenarios needed to guarantee absence
of arbitrage. Our objective is to generate sets of scenarios
with the minimum number of branches, possibly satisfying
the completeness hypothesis whereby the number of scenarios
equals the number of assets plus one. We point out that the
global optimization approach is able to locate all the global
minima of the problem. If the system of equations is consistent,
the moment matching problem could have infinite solutions
and in our experiments we terminate after 10 solutions.

In table 3, we display the average maximum error for each
set of equations of the moment matching problem. That is,
for each set of equations corresponding to the moment to be
matched, we record the maximum error obtained over the set
of assets, where error is the difference between the value of
the expression on the left-hand-side of the equation and the
parameter on the right-hand-side.† This value is then averaged
over the 10 generated trees. For example, column ρ displays the
maximum mismatch over all the equations describing correla-
tions, averaged over the 10 solutions. The average maximum
error is negligible and the solutions found match closely the
empirical moments. Moreover, the trees generated have the
minimum number of scenarios required to exclude arbitrage.

To confirm robustness of the solution algorithm, we display
in table 4 the standard deviations of the maximum error for

†The symbols of the columns correspond to the equations of Problem
1. For readability, we omit the errors for the normalization constraints
for pl and ql , which are in the range 3.26E−6 to 9.33E−7.
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Table 5. Solution times for one (T1) and ten (T10) solutions in h:min:s.

T1 T10

HKW-8 0:00:09 0:01:41
HKW-12 0:02:00 0:15:02
HKW-20 0:43:41 4:50:14
FINLIB-15 0:00:53 1:08:57
FINLIB-20 0:04:58 2:51:31

Figure 2. The range of prices obtained from 20 calibrated trees for
different strike prices and volatilities; the Montecarlo estimate under
Gaussian assumptions is indicated by a bullet.

each moment matched over the 10 different trees. In table 5,
we report the computational times to find one and ten solutions.
We observe that these models are solved with modest compu-

tational resources. Solution times increase with the number of
assets due to the exponential nature of the branch and bound
algorithm, and solving multiple instances of a model may
require substantially different computational times due to the
complexity of global optimization models.

4.3. Options pricing applications

We showed that it is possible to build trees with a small number
of scenarios to match with high accuracy a given set of mo-
ments and obtain the corresponding objective and risk neutral
measures. Our work was motivated by applications in risk
management, especially when using multiperiod optimization
models. Now we illustrate two additional applications with
options pricing in complete and incomplete markets. We will
see that high-quality solutions are obtained even with the very
small number of scenarios we use.

4.3.1. Complete markets. We start by assessing the quality
of our trees with respect to a financial problem whose solution,
under some assumptions, can be obtained with other methods.
We consider the pricing of a European basket option, written
on J = 4 equally weighted assets with maturity T = 5 years
and correlation among the underlying assets 0.5. The objective
of this experiment is to assess the quality of our scenario trees.
For evaluation of basket options under normality assumptions,
more efficient methods are available; things become more com-
plex if we need to take into account stylized facts, such as fat-
tails or skewness of the distributions of the underlying assets.
We compute the price of a basket option assuming normality
using Monte Carlo simulation with 1,000,000 scenarios drawn
from the Gaussian risk-neutral distribution.

For our method, the Black–Scholes (BS) hypotheses is satis-
fied by generating scenarios with drift μ = r , (without loss of
generality we set the risk free r = 0), standard deviations
σ = 10%, 20%, 30% per year, skewness γ = 0, kurtosis
κ = 3, and correlation among the four assets ρ = 0.5. Note
that γ = 0 and κ = 3 satisfy the Gaussian hypothesis of
the BS model. Matching only these two moments does not
ensure that the distributions of the asset returns is normal (in
theory, infinite moments of the Gaussian should be matched).
For market completeness we set L = J + 1.

The five-year tree is constructed sequentially, that is, at
each branching node a one-year subtree is generated using our
optimization procedure. For consistency with BS, we assume
that the input moments of the conditional distributions are
time independent. Therefore, the five-year tree is obtained by
generating a single one-year subtree and replicating it to each
branching node.
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208 A. Consiglio et al.

Table 6. Montecarlo price MC of the basket option obtained by drawing 1 000 000 scenarios from the risk neutral distribution, average price
‘Opt.’ using twenty 5-year trees, and mean absolute error between the two values.

σ = 10% σ = 20% σ = 30%

MC Opt. Error (%) MC Opt. Error (%) MC Opt. Error (%)

80 20.80 20.81 0.49 25.10 25.17 1.69 30.59 30.36 0.76
85 16.60 16.74 1.04 21.89 21.84 0.97 27.90 27.77 0.79
90 12.87 12.98 1.38 18.99 18.89 0.89 25.43 25.51 1.74
95 9.68 9.72 0.91 16.40 16.43 1.93 23.17 23.45 2.79
100 7.06 7.21 2.16 14.10 14.20 3.06 21.10 21.45 3.17
105 5.00 5.12 2.83 12.08 12.15 3.62 19.21 19.49 2.75
110 3.45 3.37 3.40 10.32 10.29 2.81 17.49 17.55 1.46
115 2.32 2.15 7.99 8.79 8.59 2.24 15.92 15.62 1.84
120 1.52 1.43 7.50 7.46 7.07 5.61 14.49 13.73 5.29

Table 7. Descriptive statistics of the price of a basket option in incomplete markets over a sample of 20 trees.

Strike Price 80 90 100 110 120

Buyer side
Mean 16.44 9.60 4.87 2.25 0.80
St. dev. 1.085 0.815 0.698 0.447 0.218
Min 14.78 8.27 3.95 1.39 0.50
Max 19.16 11.45 6.53 3.13 1.30

Writer side
Mean 24.48 15.97 9.29 4.96 2.03
St. dev. 0.800 0.746 0.528 0.461 0.189
Min 22.82 14.43 8.15 4.04 1.67
Max 24.93 16.46 9.75 5.38 2.34

Following the notation in section 2, we denote by NT the
set of nodes at the final period that coincides with the maturity
of the option. There is a unique path from the root node to
the final nodes, and we denote by H(n) the index set of nodes
which belong to the path leading from the root of the tree to
the final nodes n ∈ NT .

For each final node n, we compute the price of each asset
j ∈ J as follows:

P j
n = P j

0

∏
m∈H(n)

(
1 + R j

m

)
, (31)

where R j
m is the return of the asset j at node m (with R j

0 = 0),
and P j

0 is the price of the asset j at the root node m = 0 (we
set P j

0 = 100 for each j ∈ J ). We compute in a similar way
the risk neutral probabilities of each final node n,

q∗
n =

∏
m∈H(n)

qm, (32)

where qm is the risk neutral probability of each node m ∈ H(n)

and q0 = 1.
The price of the option is now obtained as the present value

of the expected value of the final payoff under risk-neutral
probabilities q∗

n , n ∈ NT ,

C = e−r
∑

n∈NT

q∗
n max(P B

n − K , 0), (33)

where P B
n = ∑

j∈J w j P j
n . We remark that due to the assumed

market completeness, it is possible to price the option by simple
discounting of expected value under q∗.

We fit scenario trees for volatilities σ = 10%, 20%, 30%
and price the basket option for strike prices ranging from 80 to

120 (recall that the initial price of each asset P j
0 = 100). We

generate 20 solutions of the non-convex optimization problem,
and also use Monte Carlo simulation with 1,000,000 scenarios
to estimate the ‘true’ price under normality assumption. The
results are illustrated in figure 2 where we show the range of
prices obtained by the calibrated trees and the Monte Carlo esti-
mate. In all cases—except for deep in-the-money and deep out-
of-the-money options under the extreme volatility scenarios—
the range of prices obtained from the scenario tree brackets the
Monte Carlo estimate, and the range is small.

In table 6, we compute the average price over the 20 trees
obtained by equation (33), and report the mean absolute per-
centage difference between the average price from the trees
and the Montecarlo price estimate.

Note that for in-the-money and at-the-money options (strike
prices ≤ 105) the option price error is fairly small. The quality
of the solution deteriorates somewhat for out-of-the-money
and low volatility. On average, the option price is fairly close
to the Monte Carlo price. However, the coarse granularity of
the tree (only 55 = 3125 scenarios vs. 1,000,000 of the Monte
Carlo) yields option prices very close to zero in some tree
instances.

As already pointed out, there are more accurate methods to
price basket options under the BS hypotheses, and the value
of our method is not so much the accuracy of the average
price it computes, but the fact that it generates a range of
prices that bracket the Monte Carlo price. That is, if normality
holds, then our method approximates accurately the Monte
Carlo estimate even with very few (3125) scenarios. But in the
absence of any distributional information and with only the
empirically observed moments to go by, the range of prices is
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A parsimonious model for scenario trees 209

Figure 3. Bid/ask prices of the basket option in an incomplete market for different strike prices and trees and volatility of assets σ = 20%

a better indicator. Furthermore, the methodology can be applied
to pricing more complex instruments, path-dependent options
and in incomplete markets, which we consider next.

4.3.2. Incomplete markets. The representation through trees
of the underlying stochastic process is particularly suitable to

price option in incomplete markets, see, e.g. Dembo, Rosen,
et al. (2000). Market incompleteness arises when the number
of risky factors is greater than the available securities to hedge
them. This is simulated in our experiments by assuming a non-
traded underlying asset.

In case of incompleteness, the martingale measures are infi-
nite, and, therefore, there are infinite prices of the option under
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210 A. Consiglio et al.

scrutiny, lying between a lower (bid price) and an upper (ask
price) bound. Such bounds can be determined by appropriately
modelling of the hedging process. In our experiment, we adopt
a super-replication strategy, where at each node n ∈ Nt , t =
0, 1, . . . , T − 1, the portfolio of assets is self-financing, and at
each final node, n ∈ NT , the hedging portfolio super-replicates
the option payoff. Such a strategy is equivalent to solving a
linear stochastic programming model (one for the buyer and
one for the writer), where the value of the portfolio at the
root node is the option price, King (2002). In this context, a
reference value to serve as the ‘true’ value of the option is
not available, and we assess the quality of the scenario trees
through sensitivity analysis of the option price.

We calibrated multi-period scenario trees using our method
and formulated the linear stochastic programming model of
King (2002) on the calibrated tree. In figure 3 we display
the ask and bid prices of the basket option, with volatility
σ = 20%, and strike prices ranging from 80 to 120. More
detailed statistics are reported in table 7. The low standard
deviation over the sample of 20 trees is evidence that the
scenario generation method we propose is stable in incomplete
markets too; the trees yield very similar option prices.

5. Conclusions

The generation of arbitrage-free scenario trees that match the
moments of a set of risk factors is a prevalent problem in risk
management and in pricing financial instruments, especially
in incomplete markets and for enterprise-wide risk manage-
ment. We proposed a model that casts this problem as a global
optimization problem whose solution is zero if a solution to
the original problem exists. Exploiting the special structure of
the model with linear relaxations of a convex reformulation,
we have shown that the method is robust and computationally
tractable. Experiments highlighted the efficacy of the method-
ology in pricing synthetic options in complete and incomplete
markets. The result is a general purpose parsimonious method-
ology that can generate theoretically correct and accurate sce-
nario trees with a minimal number of scenarios and no more
input requirements than the available moments. It makes no
distributional assumptions, but if the underlying distribution is
known then it can be approximated by matching an arbitrary
number of moments.
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Appendix 1. A convex reformulation of the model

Once Problem 2 is transformed into the equivalent constrained mini-
mization Problem 3, we are faced with a set of non-linear inequalities
of the general form ∑

k

∏
i

xαki
ki − C − s ≤ 0, (A1)

−
∑

k

∏
i

xαki
ki + C − s ≤ 0, (A2)

where each term of the summation is a posynomial and C is a constant.
In particular, a posynomial function is defined as

f (x1, x2, . . . , xn) =
n∏

i=1

xαi
i , (A3)

where αi ∈ IR and 0 < xi ≤ xi ≤ xi , for each i = 1, 2, . . . , m.
Observe that the non-linear terms in equations (15)–(25) are posyn-

omials, and this is exploited in the convex relaxation phase of the solu-
tion algorithm. Convexification of posynomial functions is carried out
through the variable transformation x → f (y), where f (y) : IR →
IR is a suitable mapping carrying the one-to-one relation between
the original variable x and the transformed variable y. For example,
Maranas and Floudas (1997) use an exponential transformation, x →
ey ; Tsai and Lin (2007) use x → y−1, which is a special case of the
power transformation x → yβ . Note that, in general, not all variables
need to be transformed. For example, equations (21)–(22) are linear
in p and q .

The inverse non-linear transformation y → f −1(x) has to be in-
cluded into the transformed problem, thus moving the non-convexities
from the original constraints to the inverse equality constraints. (For
example, by using the power transformation, the non-convex defini-
tional equality y = x1/β has to be associated with each transformed
variable). In this respect, Lundell et al. (2009) approximate the inverse
linear transformation constraint through a piecewise linear function,
thus turning the model to a mixed-integer non-linear programme,
while Lu et al. (2010) adopt an ad-hoc linear relaxation of the bi-
linear equation associated to each transformed variable. Since tree
generation problems are characterized by a medium to high level of
dimensionality, we adopt the approach of Lu et al. that does not require
integer variables that complicate the model. (For example, with J = 4
assets and L = 5 scenarios we obtain a non-linear programme with 30
variables and 37 constraints. In general, the number of variables are

2L + J L , and the number of equations (excluding the box constraints)
2 + 5J + (J 2 − J )/2.)

The starting point of the analysis in Lu et al. is based on the
following proposition:

Proposition 1 A twice differentiable function

f (x1, x2, . . . , xn) =
n∏

i=1

xαi
i (A4)

is convex if αi < 0 and xi > 0, for each i = 1, 2, . . . , n.

Let K = {i |αi < 0, i = 1, 2, . . . , n} and K = {i | αi > 0, i =
1, 2, . . . , n}. A convex reformulation of the posynomial function (A3)
is given by

f
(
{xi }i∈K, {yi }i∈K

)
=

∏
i∈K

xαi
i

∏
i∈K

y
− αi

δi
i , (A5)

where, yi = x−δi
i and 0 < δi ≤ 1, for each i ∈ K.

For those variables xi , i ∈ K, that appears in non-convex terms,
it is necessary to relax the definitional equation yi = x−δi

i . Lu et al.
show that such relaxation is given by the following linear inequality,
for each i ∈ K:

yi ≤ x−δi
i + x−δi

i − x−δi
i

xi − xi

(
xi − xi

)
. (A6)

The parameters δi play an important role in the relaxation. The
smaller the δi the tighter the convex relaxation, but it cannot be chosen
arbitrarily close to zero and has to be determined as a function of the
computer accuracy and bounds xi , xi ; see Lu et al. (2010), section 3.

To convexify Problem 2, we need to transform each variable pl ,
ql and t jl since their exponents are all positive. Accordingly, we set:

πl = p−ξl
l and 0 < ξl ≤ 1, (A7)

χl = q−υl
l and 0 < υl ≤ 1, (A8)

τ jl = t
−δ jl
jl and 0 < δ jl ≤ 1. (A9)

Remark 1 The variables pl and ql are the only ones to be relaxed,
and this is because such variables appear in the linear equations (21)–
(22). So we have to add to the convexified problem the following
inequalities, for each l ∈ L,

πl ≤ p−ξl
l + p−ξl

l − p−ξl
l

pl − p
l

(
pl − p

l

)
, (A10)

χl ≤ q−υl
l + q−υl

l − q−υl
l

ql − q
l

(
ql − q

l

)
. (A11)

Remark 2 The inequality constraints of Problem 3 are of two types:
(28) is the sum of positive terms, also known as posynomial; (29)
is the sum of negative terms, also known as signomial. The trans-
formation yi = x−δi

i turns the posynomials to a convex function,
and, similarly, a signomial is turned to a concave function. We relax
each concave term by underestimating it through an affine function
T (y1, y2, . . . , yn). For example, the concave inequalities correspon-
dent to the transformation of equation (15) are given by

−
∑

l

π
−1/ξl
l τ

−1/δ jl
jl + A j − s ≤ 0, for each j ∈ J . (A12)

Each concave term G jl (πl , τ jl ) = −π
−1/ξl
l τ

−1/δ jl
jl is underesti-

mated by means of the affine function Tjl (πl , τ jl ) = a jl πl+b jl τ jl+
c jl . The coefficients a jl , b jl , and c jl are chosen in such a way that
the affine function, Tjl (πl , τ jl ), is equal to the concave function
G jl (πl , τ jl ) at the vertex of the rectangular domain identified by
the upper and lower bounds of variables πl and τ jl .
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Appendix 2. The model with scaled variables

The derivation of equations (15)–(20) needs some tedious algebra
especially for higher moments. We derive here only equations (15)–
(16) and for the remaining parameters we provide the relations without
the derivation, which follows along the lines described here. By sub-
stituting the scaling relation for z jl in the standardized equation (2),
we obtain: ∑

l

pl (z j + t jl� j ) = z j + � j
∑

l

pl t jl = 0.

By isolating the summation of the last relation, we obtain:
∑

l

pl t jl = −
z j

� j
= A j .

We proceed similarly for the standardized equation (3) to obtain:∑
l

pl (z j + t jl� j )
2

=
∑

l

pl

[
z2

j + t2
jl�

2
j + 2z j t jl� j

]

= z2
j + �2

j

∑
l

pl t
2
jl + 2z j � j

∑
l

pl t jl

= z2
j + �2

j

∑
l

pl t
2
jl + 2z j � j

(
−

z j

� j

)

= z2
j + �2

j

∑
l

pl t
2
jl − 2z2

j

= �2
z

∑
l

pl t
2
jl − z2

j = 1.

Isolating the summation of the last relation, we obtain:

∑
l

pl t
2
jl =

1 + z2
j

�2
j

= B j .

It is possible to verify that:

C j =
γ j − z j

[
z2

j + 3
]

�3
j

, D j =
κ j − z j

[
4γ j − z3

j − 6z j

]

�4
j

,

Fjh =
ρ jh + z j zh

� j �h
, H j =

r − μ j − z j σ j

σ j � j
.
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