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vibrational contribution to the Helmholtz energy predicts a 
solid solution’s critical temperature of some 950 K, remark-
ably larger than olivine’s and Mg–Fe garnet’s. All this 
points to a more difficult Mg–Fe mixing in periclase-like 
structure than olivine and garnet, which, in turn, provide 
more structure degrees of freedom for atomic relaxation. 
From ΔF(T,x)mixing, we have then derived ΔH(T,x)excess and 
ΔS(T,x)excess. The former, characterized by a quasi-regular 
behaviour, has been parametrized through W × x × (1−x), 
obtaining WH,Mg–Fe of 17.7(5) kJ/mol. ΔS(T,x)excess, in turn, 
increases as a function of temperature, showing absolute fig-
ures confined within 0.1 J/mol/K. Mixing Gibbs energy, cal-
culated combining the present issues with earlier theoretical 
determinations of the magnesio-wüstite’s elastic properties, 
has shown that the HS configuration is stable and promote 
Mg–Fe solid solution up to ≈15 GPa.

Keywords Mixing energy · Ab initio and semi-empirical 
modelling · (Mg,Fe)O

Introduction

The Mg–Fe mixing is a complex phenomenon, important to 
form solid phases that participate in many a natural process 
over a wide pressure–temperature (P–T) range. The sub-
solidus MgO–FeO binary has motivated a relevant interest 
as magnesium-wüstite solid solution, (Mg,Fe)O with per-
iclase-like crystal structure (Fm-3m), and is a major min-
eral constituent of the lower mantle of the Earth, along with 
(Mg,Fe)SiO3 perovskite, and of other terrestrial planets of 
the Solar System, as deduced by geochemical and miner-
alogical studies of meteorites (Jeanloz and Knittle 1989; 
Lee et al. 2004; Jeanloz and Lay 1993; Righter et al. 2006). 
Remarkable efforts have been steered to the study of MgO 

Abstract Thermo-chemical properties and T–X phase 
relations diagram of the (Mg,Fe)O solid solution are mod-
elled using mixing Helmholtz energy, ΔF(T,x)mixing, 
calculated by quantum mechanical and semi-empirical 
techniques. The sub-solidus MgO–FeO binary has been 
explored as a function of composition, with iron either in 
high-spin (HS) or low-spin (LS) configuration. Only the 
HS model provides physically sound results at room pres-
sure, yielding a correct trend of cell edge versus composi-
tion, whereas LS’s issues are at variance with observations. 
Mixing Helmholtz energy has been parametrized by the 
following relationship: ΔF(T,x)mixing = x × y × [U0(T) + 
U1(T) × (x – y) + U2(T) × (x − y)2]−T × S(x,y)config,  
where y = 1−x and Uj(T) are polynomials in T of the sec-
ond order. ΔF(T,x)mixing exhibits a quasi-symmetric behav-
iour and allows one to build the T–X phase relations dia-
gram over the MgO–FeO join. The HS model including 

Electronic supplementary material The online version of this 
article (doi:10.1007/s00269-014-0725-6) contains supplementary 
material, which is available to authorized users.

M. Merli · L. Sciascia 
Dipartimento di Chimica e Fisica della Terra e Applicazioni 
alle Georisorse e ai Rischi Naturali, Università degli Studi di 
Palermo, Via Archirafi 36, 90123 Palermo, Italy
e-mail: marcello.merli@unipa.it

L. Sciascia 
e-mail: luciana.sciascia@unipa.it

A. Pavese (*) 
Dipartimento Scienze della Terra “A. Desio”, Università degli 
Studi di Milano, Via Botticelli 23, 20133 Milan, Italy
e-mail: alessandro.pavese@unimi.it

A. Pavese · V. Diella 
National Reseach Council (CNR), IDPA, Section of Milan,  
Via Botticelli 23, 20133 Milan, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/53303291?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s00269-014-0725-6


348 Phys Chem Minerals (2015) 42:347–362

1 3

and FeO at such a P–T regime as is representative of the 
interiors of the Earth (Duffy et al. 1995; Karki et al. 1997; 
Fischer et al. 2011; Mao et al. 1996; Fang et al. 1998; Jean-
loz and Ahrens 1980; Yagi et al. 1985, 1988; Fei and Mao 
1994). An increase of pressure on (Mg,Fe)O could lead to 
a gradual ex-solution from the rock salt phase (McCammon 
et al. 1983; Duffy et al. 1995; Dubrovinsky et al. 2000) 
into magnesium-rich and iron-rich oxide components, with 
relevant bearings to the formation of the mantle heteroge-
neity (van der Hilst et al. 1997; Garnero 2000). A further 
complexity is added by that the (Mg,Fe)O solid solution’s 
properties, Fe spin states and high-to-low spin transition 
triggered by P are strictly related to each other (see, for 
instance: Jacobsen et al. 2002; Kondo et al. 2004; Spe-
ziale et al. 2005; Kantor et al. 2006; Persson et al. 2006; 
Goncharov et al. 2006; Yoshiasa et al. 2009; Crowhurst 
et al. 2008; Lyubutin et al. 2009; Lin et al. 2013). Besides, 
the spin-switch affects the partitioning of Fe between 
(Mg,Fe)SiO3 and (Mg,Fe)O with depth, and such an effect 
may (Cohen et al. 1997; Badro et al. 2003) or may not 
(Irifune et al. 2010) result in a stratified lower mantle and 
change elastic moduli, compressibility, radiative thermal 
conductivity, electrical transport, sound velocities and other 
physical–chemical properties of Fe–Mg-bearing minerals 
(Lin et al. 2009, Pasternak et al. 1997; Badro et al. 1999; 
Crowhurst et al. 2008; Antonangeli et al. 2011; Mao et al. 
1996). Beside the role played by (Mg,Fe)O solid solution 
as a phase of the Earth mantle, magnesio-wüstite is also an 
accessory phase of reducing-condition contact metamor-
phism involving high-temperature reactions in which car-
bonatites undergo transformations (Wallmach et al. 1989; 
Cook and Bowman 2000; Wenzel et al. 2002; Müller et al. 
2009; Ganino et al. 2013). The partitioning of Fe2+–Mg 
between ferromagnetic mineral phases is then relevant to 
geo-thermometry at large, and, in such a context, atten-
tion has been paid to (Mg,Fe)O as a means to infer infor-
mation about the activity–composition relations of olivine 
solid solutions (O’Neill et al. 2003; Sreçec et al. 1987). In 
addition to all this, (Mg,Fe)O solid solution exhibits a high-
temperature behaviour that makes it of interest to techno-
logical aims, such as those meant to ceramics, steel pro-
duction and ionic-conductivity (Bennet and Kwong 2010; 
Kwong et al. 2009; Smolin and Schmalzried 2003).

In view of the magnesio-wüstite’s wide geological 
and technological scope, it is important to achieve as full 
an understanding as possible of the principles underlying 
the stability of the (Mg,Fe)O solid solution, as a func-
tion of those aspects that primarily affect its reactivity in 
the variety of the transformations in which it participates. 
In particular, modelling (Mg,Fe)O’s thermo-chemical 
properties and T–X phase relations diagram as a func-
tion of composition and iron spin configuration repre-
sents a step to help interpreting both high-temperature and 

high-pressure–high-temperature natural reactions. In gen-
eral, one has to take into account that for complex assem-
blages of interest to geologic processes the Gibbs energy of 
a phase is calculated as

where: P0 and T0 are reference pressure and temperature 
values (conventionally room conditions); and G(P0,T0) is 
the Gibbs energy at P0 and T0, or the formation energy with 
respect to elements, or oxides. Hence, G(P,T) is computed 
by two path integrals (Pavese and Diella 2007), the first of 
which is a P0-isobaric from T0 to T and requires a detailed 
knowledge of the energetics of a system at P0 as a function 
of temperature.

Quantum mechanical and semi-empirical calculations, 
in combination with lattice dynamics and statistical ther-
modynamics, have proven a powerful tool to model the 
energetics of solid solutions (for instance: Vinograd et al. 
2013, and references therein; De La Pierre et al. 2013; Sca-
navino and Prencipe 2013; Haider et al. 2012; Ruiz-Her-
nandez et al. 2010; Meyer et al. 2009. See for fundamen-
tals of the Virtual Crystal Approximation: Bellaiche and 
Vanderbilt 2000. See for an introductory presentation to the 
double defect method: Vinograd and Winkler 2010).

In the light of the discussion above, we have decided to 
undertake the present work, in which we model thermo-
chemical properties and T–X phase relations diagram as a 
function of iron spin configuration (low spin, S = 0: dia-
magnetic, LS; high spin, S = 2: antiferromagnetic/para-
magnetic, HS), composition and temperature of (Mg,Fe)O.  
We aim to contribute to shed light on the magnesium-
wüstite solid solution’s mechanisms of stability and to 
provide a parametrization of the Helmholtz free energy as 
a function of T and X for practical uses. HS and LS iron 
states are here not mixed with one another, so that we treat 
Fe either in low or high-spin state, only. To our knowledge, 
the thermo-chemistry of the (Mg,Fe)O solid solution at 
room pressure and high temperature is still suffering from a 
general dearth of data, though its relevancy.

The present work is organized as follows: (1) calculation 
of energy (lattice energy by a hybrid approach based on 
Hartree–Fock and DFT; vibration energy by semi-empiri-
cal modelling) for a significant number of non-equivalent 
atomic Mg/Fe configurations and related compositions of 
magnesium-wüstite; (2) extraction of the parameters of a 
cluster expansion-type model and determination thereby 
of the partition function for different Mg/Fe compositions 
(ZMg–Fe); and (3) calculation of the Helmholtz free energy 
and parametrization as a function of T and X; determina-
tion of the T–X phase relations diagram for the (Mg,Fe)O 

(1)

G(P, T) = G(P0, T0)+

P0T
∫

P0T0

dG(P0, T
′)+

PT
∫

P0T

dG(P′, T),
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solid solution. As a by-product, we investigate the effects 
of pressure on the MgO–FeO binary’s stability at high tem-
perature exploiting earlier studies on elastic properties of 
(Mg,Fe)O.

Theoretical

Cluster expansion and solid solutions

We remind here some fundamentals for a cluster expansion-
type approach to describe the energetics of solid solutions, 
using the discrete Chebyshev polynomials method (Sanchez 
et al. 1984). Let us represent by α(j) a variable defining the  
chemical content of the tenant of the jth site in a crystal 
solid solution, and assume that α can take (2m + 1) val-
ues, i.e. –m, …, −1, (0), 1,…m. In general, an observable, 
A, is a function of the site occupancy configuration, hereaf-
ter {α}, so that A({α}) = A(α (1),…, α(S)), where S is the 
number of sites involved. Expanding in the canonical way 
the discrete A({α}) function as a series of discrete Cheby-
shev polynomials (Barnard et al. 1998) for each site, i.e. 
ξj(k)(α(k)) where j(k) is the polynomial order referred to the 
kth site and ranges from 0 to (2m + 1), one obtains:

The terms of the series above can be rearranged as 
follows

(2)
A({α}) = Σk(1),...,k(S)Φk(1),k(2),...,k(M) × [ξk(1)(α(1))

× ξk(2)(α(2))× · · · × ξk(S)(α(S))]

where lpq…Φk(1)…k(S) is the coefficient of [ξk(1)(α(1)) × ξk(2) 

(α(2)) × ··· × ξk(S)(α(S))], i.e. the term of l + p + q + ··· 
order, assuming 0 < l ≤ p… and such that l, p… indicate 
polynomial orders other than zero. lpq..A({α}), in turn, is the 
corresponding contribution to the A observable; 11A({α}), 
for instance, represents the contribution due to all configu-
rations which involve two sites described by discrete Che-
byshev polynomials of degree one, i.e. two-atom clusters of 
total degree two, whereas for the other S-2 sites polynomial 
expansions of 0-order are used. For each lpq..A({α}) term, 
we gather the addends sharing the same [ξk(1)(α(1)) × ξk(2)

(α(2)) × ··· × ξk(S)(α(S))] value in sets, which are then par-
titioned as a function of n-atom clusters, Ω(n), defined by a 
threshold distance, r[Ω(n)], between the involved atoms. In 
so doing, one can rewrite the summations above as follows:

0A({α}) = 0A

1A({α}) = Σ1
αCα × [ξ1(α)]×

1nα = Σ1
αAα × 1nα

11
A({α}) = Σα,βΣ

11
Ω(2)Cαβ,Ω(2) × [ξ1(α)× ξ1(β)]

× 11
nαβ,Ω(2) = Σα<βΣ

11
Ω)(2)Aαβ,Ω(2) ×

11
nαβ,Ω(2)

2A({α}) = Σ2
αCα × [ξ2(α)] ×

2nα = Σ2
αAα ×2 nα

(4)

111
A({α}) = Σα,β,γΣ

111
Ω(3)Cαβγ ,Ω(3) × [ξ1(α)

× ξ1(β)× ξ1(γ )] ×
111

nαβγ ,Ω(3)

= Σα,β,γΣ
111
Ω(3)Aαβγ ,Ω(3) ×

111
nαβγ ,Ω(3)

 where

A({α}) = 0A({α}) + 1A({α}) + 11A({α}) + 2A({α}) + 111A({α}) + 3A({α}) + · · · ,

0A({α}) = {0Φ0(1),0(2),....,0(S) × [ξ0(1)(α(1))× ξ0(2)(α(2))× · · · × ξ0(S)(α(S))]}

1A({α}) ={1Φ1(1),0(2),...,0(S) × [ξ1(1)(α(1))× ξ0(2)(α(2))× · · · × ξ0(S)(α(S))] + · · ·

+1 Φ0(1),...1(L),....,0(S) × [ξ0(1)(α(1))× · · · ξ1(L)(α(L))× · · · × ξ0(S)(α(S))] + · · · }

11A({α}) ={11Φ1(1),1(2),....,0(S) × [ξ1(1)(α(1))× ξ1(2)(α(2))× · · · × ξ0(S)(α(S)] + · · ·

+11 Φ0(1),...,1(L),...,1(I),....,0(S) × [ξ0(1)(α(1))× · · · ξ1(L)(α(2))× · · · × ξ1(I)(α(I) · · · × ξ1(I)(α(S)] + · · · }

2A({α}) ={2Φ2(1),0(2),....,0(S) × [ξ2(1)(α(1))× ξ0(2)(α(2))× · · · × ξ0(S)(α(S))] + · · ·

+1 Φ0(1),0(2),....,2(S) × [ξ0(1)(α(1))× ξ0(2)(α(2))× · · · × ξ2(S)(α(S))] + · · · }

(3)

111A({α}) ={111Φ1(1),1(2),...,0(S) × [ξ1(1)(α(1))× ξ1(2)(α(2))× ξ1(3)(α(3))× · · · × ξ0(S)(α(S)] + · · ·

+111 Φ0(1),...,1(L),...,1(H),...,1(I),...,0(S) × [ξ0(1)(α(1))× · · · ξ1(L)(α(2))× · · · ξ1(H)(α(2))× · · · ξ1(I)(α(2))× · · ·

× ξ0(S)(α(S)] + · · · }
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where nα is the number of sites hosting the chemical spe-
cies defined by the α value; 11nαβ,Ω(2), for instance, is the 
number of αβ pairs placed in two sites r[Ω(2)] apart, and it 
is the analogue of a two-site interaction; 111nαβγ,Ω(3) refers 
to the αβγ triples fixed as a function of their pair distances, 
and it can be associated to three-site interactions. If one 
assumes that A({α}) is sufficiently approximated by the 
first three terms of Eq. (4), then

where 11nαβ,1, 
11nαβ,2……, 11nαβ,W are the numbers of two-

site clusters defined by the pair distances r[Ω1(2)] < r[Ω2 

(2)] < ··· < r[Ω2(W)], i.e. first–second…, Wth-order shells. 
The coefficients 0A,1Aα,

11Aαβ,1,
11Aαβ,2…

11Aαβ,W depend 
in general on composition, and can be Taylor expanded in 
terms of

where xγ’s are composition variables, such as the usual 
mole fractions of each component.

Mixing energy

The composition of a solid solution formed by two end-
members, a and b, is described in terms of their mole 
fractions, i.e. xa and xb. A given composition is in turn 
compatible with many configurations (Λ), i.e. structure 
arrangements of the atoms involved in the mixing. The par-
tition function of a solid solution allows one to infer the 
thermodynamic properties of the related system and can be 
written as

where k = Boltzmann constant, LT = lattice energy and 
vib = atomic vibrations dependent component of the 
partition function. Note that we are assuming that room 
pressure renders it reasonable to neglect P × V(xa,xb,Λ)
and use therefore the NVT ensemble. In our case, we 
have observed that Z(T,xa,xb,Λ)vib, in the limit of the 
harmonic approximation (1) yields a small contribu-
tion to the Helmholtz free energy, F, in comparison 
with its lattice counterpart (see “Parametrization of the 
mixing/excess Helmholtz free energy” section) and 
(2) is comparatively little sensitive to configuration 
(sampling over different configurations shows σ(Fvib)/ 
〈Fvib〉 ≪ 1 %). In this view, we have chosen to replace 
Z(T,xa,xb,Λ)vib with its zero-order approximation, i.e. 
〈Z(T,xa,xb,Λ)vib〉Λ-configurations = Z(T,xa,xb)vib, which 

(5a)

A({α}) ≈ 0
A+Σ1

αAα × 1
nα + Σα,β

[

11
Aαβ,1 ×

11
nαβ,1

+11
Aαβ,2 ×

11
nαβ,2 + · · · + 11

Aαβ,W × 11
nαβ,W

]

(5b)lqAαβ,W = lqA0,αβ,W +Σ lq
γ A0,γ ,αβ,W × xγ + · · ·

(6)
Z(T , xa, xb) = ΣΛ exp[−E(xa, xb,Λ)LT/kT ]

× Z(T , xa, xb,Λ)vib,

depends on composition only. Equation (6) is therefore 
decoupled and factorized in terms of

 and the Helmholtz free energy turns out to be

F can be split into the following contributions:

 where the subscripts stand for HT = explicitly T-depend-
ent harmonic energy, Hpz = zero point energy, A = anhar-
monic contribution; HT and Hpz contributions are deter-
mined by atomic vibration frequencies from lattice 
dynamics formalism.

For a solid solution of two end-members, one writes

where F(T)j is the contribution of the jth end-member to 
F and the linear part of the right-hand side of the equa-
tion above accounts for a Vegard-like term, whereas 
ΔF(T,xa,xb)mixing represents the “mixing” free energy and 
cancels out at the ends of the join. Such term of Eq. (7) can 
be further split as follows:

The partition function related to the lattice configuration 
part of the mixing free energy of a solid solution is

where

ELT,a−b being the end-members’ static lattice energies, 
and therefore,

Moreover,

Z(T , xa, xb) ≈ ΣΛ exp[−E(xa, xb,Λ)LT/kT ]

× Z(T , xa, xb)vib = Z(T , xa, xb)LT × Z(T , xa, xb)vib,

F(T , xa, xb) = −k × T × ln
[

Z(T , xa, xb)LT
]

− k × T × ln
[

Z(T , xa, xb)vib
]

.

F = FLT + FHT + FHpz + FA,

FLT = −k × T × ln
[

Z(T , xa, xb)LT
]

,

FHT + FHpz + FA = −k × T × ln
[

Z(T , xa, xb)vib
]

,

(7)
F(T , xa, xb) = xa × F(T)a + xb × F(T)b

+∆F(T , xa, xb)mixing,

∆F(T , xa, xb)mixing

= ∆F(xa, xb)LT-mixing +∆F(T , xa, xb)HT-mixing

+∆F(xa, xb)Hpz-mixing +∆F(T , xa, xb)A.

(8a)
Z(T , xa, xb)LT-mixing

= ΣΛ exp[−∆E(xa, xb,Λ)LT-mixing/kT ],

∆E(xa, xb,Λ)LT-mixing

= E(xa, xb,Λ)LT − xa × ELT ,a − xb × ELT ,b,

(8b)

∆F(T , xa, xb)LT-mixing = −k × T × ln[Z(T , xa, xb)LT-mixing].
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where Nconfig = NAvogadro!/[(xa × NAvogadro)! (xb × NAvogadro)!].
All calculations related to the lattice energy have been 

carried out by quantum mechanical methods, using the 
CRYSTAL code (Dovesi et al. 2009). Among the earlier 
works in which such code is used to treat thermodynamics of 
solid solutions, though with different approach, we mention 
here Meyer et al. (2009) and Scanavino and Prencipe (2013).

ΔF(T,xa,xb)HTpz-mixing = F(T,xa,xb)HT + E(xa,xb)Hpz−xa  
× F(T)HT,a−xb × F(T)HT,b−xa × FHpz,a-xb × FHpz,b, in 
turn, has been calculated by means of standard statistical 
mechanics via atomic vibration frequencies determined by 
harmonic lattice dynamics, using the GULP program (Gale 
1997), adopting the configuration sampling scheme that is 
being discussed in the computational section and neglect-
ing the anharmonic part. ΔF(T,xa,xb)HTpz-mixing is obtained 
as 〈ΔF(T,xa,xb,Λ)HTpz-mixing〉Λ-configurations that corresponds to 
a zero-order approximation. For the sake of simplicity, we 
describe hereafter the solid solution’s composition by xFe 
only, which indicates the molar fraction of FeO, and hence,

Lastly, we use the Helmholtz free energy to discuss stabil-
ity as an approximation of the Gibbs energy, i.e. ΔF(T,xFe) 

mixing ≈ ΔG(T,xFe)mixing, neglecting the P × ΔVmixing term 
that is immaterial to our purposes at room pressure.

Accuracy of the Helmholtz free energy calculation

The calculations here done at high temperature are based 
on the (Mg,Fe)O structure equilibrated by static relaxation 
and excluding the FA contribution. Therefore, one commits 
two errors due to (1) using a volume value out of equi-
librium and (2) making a truncation on energy. Let V and 
V + δV be the equilibrium volume at T and Pr, i.e. room 
pressure, and the value used for calculations, respectively; 
then,

Manipulating the expression above, one can estimate the 
total error, δF, committed on free energy as follows:

(8c)

Z(T , xa, xb)LT-mixing

= Nconfig ×
{(

1/Nconfig

)

×ΣΛ exp[−�E(xa, xb,Λ)LT-mixing/kT ]
}

= Nconfig × z(T , xa, xb)LT-mixing,

∆F(T , xFe)mixing = ∆F(T , xFe)LT-mixing

+∆F(T , xFe)HTpz-mixing.

F(V + δV , T)LT + F(V + δV , T)HT + F(V + δV , T)Hpz

+ F(V + δV , T)A ≈ F(V , T)−

(

∂F

∂V

)

V ,T

× δV

= F(V , T)− Pr × δV

(9)

δF = F(V , T)− F(V + δV , T)LT − F(V + δV , T)HT

− F(V + δV , T)Hpz ≈ Pr × δV + F(V + δV , T)A.

Using the thermal expansion data from Fei (1995), one 
obtains a figure as large as ~7 × 10−5 kJ/mol, for the former 
term of the right-hand side of Eq. (9), and ~5 × 10−1 kJ/
mol, for the latter one that is estimated as an average over 
the interval 300–2,500 K (the largest and smallest FA values 
are 1.3 and 0.02 kJ/mol; Oganov and Dorogokupets 2003). 
Above the Neel temperature (TN), i.e. ~200 K (Kittel 2005), 
FeO passes from anti-ferromagnetic to paramagnetic; TN is 
lower for (Mg,Fe)O because of fewer super-exchange Fe–
O–Fe interactions (Speziale et al. 2005). We here model 
the paramagnetic state as a disordered anti-ferromagnetic 
spin arrangement. We have determined that the energy dif-
ferences between (1) ideally anti-ferromagnetic FeO, i.e. 
having Fe atoms with upward and downward spin orien-
tations in alternate (111) planes; (2) disordered anti-ferro-
magnetic FeO, i.e. such as the total sum of spins is zero; 
and (3) ferromagnetic configuration, lie within 1 kJ/mol 
from each other, and such figure reduces further in Mg–Fe 
solid solution where the content of iron is smaller than in 
the FeO end-member. Altogether, on the basis of the dis-
cussion above, we take ~1 kJ/mol as an upper estimation 
of the average uncertainty committed on the ΔFmixing that 
is being discussed in the ensuing sections. Lastly, note that 
mixing entropy is not affected by a spin-disorder contribu-
tion as that of (Mg,Fe)O, i.e. xFe × R × ln (2), cancels out 
with FeO’s of the Vegard-like part.

Computational

Ab initio linear-combination-of-atomic-orbitals calcula-
tions (HF/DFT-CRYSTAL09 program; Dovesi et al. 2009) 
have been performed to determine the lattice energy for 
configurations over the compositional range from peri-
clase to wüstite, relaxing the structure to its equilibrium 
at ambient pressure and 0 K. A Hamiltonian based on the 
WC1LYP scheme (Scanavino et al. 2012), which con-
tains a hybrid Hartree–Fock/density functional exchange–
correlation term that mixes the WCGGA exchange com-
ponent (Wu and Cohen 2006) with the exact nonlocal HF 
exchange contribution and models correlation energy via 
the Lee–Yang–Parr GGA functional (Lee et al. 1988), has 
been adopted in the present work.

Several schemes of hybridization rate (ℑ: Hartree–
Fock fraction of exchange energy) have been tested, in the 
wake of Alfredsson et al. (2004) who have discussed how 
ℑ affects the ability to model specific properties. We have 
here tried out hybridization models using ℑ constant and ℑ 
dependent on composition, ℑx. In the end, we have chosen 
to adopt the unorthodox approach based on ℑx. Note that 
Cremer (2001) provides a thorough survey over the role of 
hybridization and the contributions it yields to exchange 
energy of a multi-electron system as a function of the func-
tional used, paying special attention to the BLYP-class. 
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ℑ1 and ℑ0 have been chosen as a compromise to correctly 
reproduce the experimental Γ–Γ electronic energy band 
gaps, geometry and heat capacity of the end-members 
(see “Experimental data versus calculations” section; Ani-
simov et al. 1990; Taurian et al. 1985; ℑMgO = 0.20 and 
ℑFeO = 0.16). ℑx, in turn, is supposed to take intermediate 
values and is expressed as ℑx = (1−xFe) × ℑ0 + xFe × ℑ1  
+ xFe × (1−xFe) × Θ(ℑ0,ℑ1). The first two terms of the 
right-hand side member stand for a Vegard-like contribu-
tion to ℑx; the third one accounts for a coupling. Θ(ℑ0,ℑ1) 
is taken to be symmetric in ℑ0 and ℑ1, and such that it 
cancels for both ℑ0 = 0 and ℑ1 = 0. This has led us to 
consider expansions based on Aα × (ℑ0 × ℑ1)

α terms, 
where α’s are generic exponents and Aα the related coeffi-
cients. Following a trial-and-error scheme, aimed at giving  
Mg–Fe solid solutions’ electronic energy gap values well 
fitted (R = 0.997) by Eq. (8) of Zhao et al. (2012), see also 
Hill (1974), and smooth curves of mixing properties as a 
function of xFe, we have concluded that α = 1, and Aα = 1 
is a satisfactory choice for the purposes of this work. Our 
choice of following an ℑx-based approach is dictated by a 
wealth of preliminary tests we did using 27 and 8-cation 
super-cells, in which constant hybridization rates have 
been explored, from 0.15 to 0.20. In so doing, we observed 
that (all the quantities mentioned below are obtained as 
averages over 6–12 independent configurations.): (1) the 
cell volumes delivered by the different ℑ formulations do 
not change significantly from each other and with respect 
to the available experimental values (Fig. 1); (2) the Γ–Γ 
Egap trends show features that range from incongruous to 

congruous with respect to those expected in alloys or semi-
conducting systems based on solid solutions, and ℑx gives 
the best results. By way of example, fitting the Zhao et al. 
(2012) function to our Egap’s obtained byℑ = 0.16 (yield-
ing the best results among calculations with constant 
hybridization rate) and ℑx, one has R = 0.940 and 0.997, 
and t(Student) = 12 and 36, respectively. However, the ΔE 
(corresponding to solid solution’s lattice energy from which 
the Vegard part is subtracted) trend as a function of xFe with 
constant hybridization rate exhibits characters in contrast 
with observations (Baiocchi et al. 2001), and points to a 
remarkable difficulty to replace Mg with Fe and modest 
easiness for the reverse exchange; (3) inferences about the 
T–X phase relations diagram show consistency with experi-
mental evidences or expectations from other investigations 
(for instance: temperature of solid solution’s stability, criti-
cal temperature, and spinodal/binodal decompositions. See 
“Results and discussion” for references about) only if one 
takes ℑx. We are conscious of the heuristic character of 
the way chosen to treat hybridization, which, although it 
has proven the only one able to yield consistent results for 
(Mg,Fe)O, yet requires a solid statistical basis over more 
materials for a substantiation and generalization.

The following values have been used for the toler-
ances governing the accuracy of the integrals of the self-
consistent-field cycles: 10−6 for coulomb overlap, 10−6 
for coulomb penetration, 10−6 for exchange overlap, 10−6 
for exchange pseudo-overlap in direct space and 10−12 for 
exchange pseudo-overlap in reciprocal space. A threshold 
of 10−9 a.u. has been chosen for SCF cycles’ convergence, 
replaced by a 10−10 threshold for frequencies calculation. 
The reciprocal space has been sampled according to a regu-
lar sub-lattice with a shrinking factor IS equal to 12 and 
corresponding to 189 k points throughout the irreducible 
Brillouin zone. The structure relaxation has been assumed 
to converge when ∇E, i.e. gradient of energy at atomic 
positions, and Ds, i.e. the related atomic displacements vec-
tor, have root mean square and largest component smaller 
than chosen thresholds, i.e. 0.00120–0.00180 and 0.00030–
0.00045 a.u., respectively.

The Mg basis set has been taken from Causà et al. 
(1986) and extended by the addition of diffuse sp and d 
shells so as to obtain a 85-11G* contraction; the original O 
basis set is that of Ottonello et al. (2008, 2010) modified by 
the addition of a d shell to obtain a 84-11G* contraction; 
the basis set of Valerio et al. (1995) has been adopted for 
Fe corresponding to a 86-41G* contraction scheme. A re-
optimization of the exponents of the outer Gaussian func-
tions of Fe–Mg–O has been performed.

Solid solutions have been modelled by 64-cation sites 
super-cells, in which random Mg–Fe occupations have 
been simulated for a total of 40–50 independent magne-
sium–iron arrangements with compositions strewn between 

Fig. 1  Primitive cell volume (Å3) as a function of composition. 
Empty diamonds refer to experimental data on quasi-stoichiometric 
(Zhang 2000; Fjellvag et al. 1996) and non-stoichiometric (Jacobsen 
et al. 2002; Simons 1980; Rosenhauer et al. 1976) (Mg,Fe)O samples. 
Empty squares (linear regression: full line) and triangles (dashed 
line) represent theoretical volume values for HS and LS configura-
tions, respectively. Stars refer to values from HS configuration with 
hybridization equal to 0.20, by way of example
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xFe = 0 and 1. Pure HS or LS iron states have been sim-
ulated, leaving aside mixed configurations. In the case of 
the HS configuration, the paramagnetic state has been 
modelled by disordered anti-ferromagnetic Fe arrays (see 
“Accuracy of the Helmholtz free energy calculation” sec-
tion ). Expansions like Eq. (5a, b) have been fitted to the 
lattice energy difference between each Mg/Fe configura-
tion and the related Vegard contribution to determine the 
lA0,α and lmA0,αβ parameters. Taking into account that xFe 
is the only independent composition variable, given that 
xMg = 1−xFe, we have eventually gathered of adopting the 
expression beneath

Equation (10) is composed of (1) a first term such as to 
fulfil limx→0,1

0A(xFe) = 0 (see also Ferreira et al. 1988); (2) 
a linear residue, 1A(xFe), which acts as a Vegard-like correc-
tion to account for deviations from quadratic/cubic/etc. xFe 
forms and is then excluded for pure mixing energy calcula-
tions; and (3) a series of pair interaction terms. Note that 
Eq. (10) was chosen after tests made using shells from 2 to 
12 Å, and seeking for as simple an expression as possible. 
In so doing, we have observed that Eq. (10) (i.e. truncation 
up to 5.5 Å) provides for (Mg,Fe)O’s mixing lattice energy 
a description numerically comparable to that achievable 
by more shells and a more complex xFe dependence of the 
A0 coefficients, which turn out to be highly correlated with 
each other. Table 1 displays the HS state’s A0 coefficients 
(for the sake of brevity we show HS, only, it being the spin 
configuration that makes sense at low pressures), which 
lead to a quasi-regular MgO–FeO solid solution; note 
that such conclusion would be achieved, for the present 
instance, even using an extended expansion with composi-
tion dependent coefficients.

We have then simulated, for a given composition, ran-
dom Mg/Fe configurations in 1728-cation sites super-
cells and, via the A0s of Table 1, calculated the related 
ΔE(xa,xb,Λ)LT-mxing values, which have then allowed one to 
build the Helmholtz free energy. The super-cell’s size has 

(10)

xFe × (1− xFe)× [0A0 +
0
A0,Fe × xFe ]+[

1
A0 +

1
A0,Fe × xFe]

+Σ11

j=1,4
A0,Fe−Mg,j ×

11
nFe−Mg,j

been chosen on the basis of tests with xFe = 0.5 in order 
that an increase of the mixing sites’ number does not sig-
nificantly affect the Helmholtz free energy. z(T,xa,xb)LT-mix-

ing of Eq. (8c) has been estimated by generating different 
random configurations, whose summation has been trun-
cated according to the ensuing principle. Let us indicate 
by ΔF(T0,xFe)LT-mixing(N) the free energy attained using N 
random configurations; when the ratio between expected 
standard deviation and average value over the set given 
by {ΔF(T0,xFe)LT-mixing(M); with T0 = 300 and 2,000 K; 
N < M < N + 1,000 and N > 106–108} is smaller than 10−7, 
convergence is assumed to be achieved.

Calculations of thermal properties involving atomic 
vibrations have been carried out by GULP (Gale 1997), 
using for Fe–Fe, Fe–O, Mg–Mg, Mg–O and O–O the 
Buckingham-type interaction potentials from the program’s 
repository (Lewis and Catlow 1985). Such an approach 
is not able to distinguish between spin states and pro-
vides an average description only. For each composition 
explored, we have performed calculations to model the 
atomic vibrations dependent part of the Helmholtz energy 
adopting a 4 × 4 × 4 sampling grid in the reciprocal space 
and 216-cation sites super-cells. The generation of differ-
ent configurations has been interrupted following a crite-
rion similar to the one discussed above, though with a less 
dense sampling (~15,000–20,000 configuration points, as a 
function of composition). Further calculations of thermal 
properties have been carried out for the sake of complete-
ness using also the ab initio approach, but paying attention 
to the end-members only, on account of the huge comput-
ing time required to achieve a statistical representativeness 
and the comparatively small contribution of the vibrational 
terms with respect to lattice energy.

Results and discussion

Experimental data versus calculations

In Fig. 1, the primitive cell volume, V, is displayed as a func-
tion of xFe. Measured V values (Jacobsen et al. 2002; Zhang 

Table 1  Interaction parameters (Hartree), as in Eq. (10)

0A0, 
0A0,Fe (Hartree/atom) and 11A0,Fe–Mg,n (Hartree/pair) parameters as in Eq. (10). Hartree to kJ/mol conversion factor = 2,625.5. They refer to 

the HS model only, as it is the one making physical sense at room pressure

HS

0A0
0A0,Fe

1.2638646E – 02 −1.915913E − 03

I-shell II-shell III-shell IV-shell
11A0,Fe–Mg,1

11A0,Fe–Mg,2
11A0,Fe–Mg,3

11A0,Fe–Mg,4

−3.031710E − 04 −1.980510E – 04 −1.484700E − 05 −5.777800E − 05
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2000; Fjellvag et al. 1996; Simons 1980; Rosenhauer et al. 
1976) refer to quasi-stoichiometric and non-stoichiometric 
samples; whereas, the theoretical volumes, determined by 
static energy structure relaxation, are shown for HS and LS 
configurations. LS leads to a shrinking of V upon an enrich-
ment in Fe, at variance with observations at room pressure; 
HS yields results in good agreement with experiments, in 
particular for Mg-rich compositions. An overestimation 
of volume with respect to measurements seems to affect 
the V predictions for Fe-rich structures; we are inclined to 
think this might be reflective of the samples’ non-stoichio-
metric character, which leads to smaller Vs than the ideally 

stoichiometric counterparts’. The pressure contribution due 
to vibrational energy and zero point energy yields negligible 
V value corrections, estimated of about 0.001–0.002 Å3.

Figure 2 shows a comparison between the room tem-
perature heat capacity values at constant volume (CV) 
here determined by the CRYSTAL (for end-members 
only) and GULP codes via lattice dynamics and statis-
tical mechanics, and those predicted by other authors 
(Scanavino et al. 2012; Wu and Cohen 2006) or meas-
ured (Zhang and Kostak 2002; Grønvold et al. 1993; 
Stølen et al. 1996). We confine the present analysis to 
the HS configuration that we have proven above to pro-
vide physical V(xFe) trends at room pressure. CV values 
exhibit a considerable scattering, in our opinion because 
of the likely non-stoichiometric character of Fe-bearing 
samples and consequent defectiveness. Observed CV of 
quasi-wüstite differs from the predicted ones by 9, 15 
and 14 %, for HS, LS and semi-empirical modelling, 
respectively. In the case of MgO, for which reliable and 
abundant data are available, the degree of accord between 
our determinations and experimental issues is satisfac-
tory. Figure 3 reports a comparison between the observed 
and calculated CV(T) curves. Experimental CP(T) val-
ues (Holland and Powell 1998) have been converted 
into CV(T)s by the classic thermodynamic relationship 
linking CP(T) to CV(T) via volume thermal expansion 
(Dubrovinsky and Saxena 1997; Fei 1995) and bulk mod-
ulus (Scanavino et al. 2012; Fei 1999). The discrepancy 
between measurements and calculations, estimated over 
the interval for which we have been able to find experi-
mental data, amounts to 0.3 %, in the case of semi-classic 
modelling, and to 1.2 %, for quantum mechanical simu-
lations. As to the entropy calculations, MgO experimen-
tal S298 K, i.e. 26.9 J/mol/K (Kubaschewki et al. 1993), is 

Fig. 2  Heat capacity values at constant volume (J/mol/K) and room 
temperature, over the MgO–FeO join. Empty diamonds (linear regres-
sion: full line): data from semi-empirical simulations; empty circles 
issues of quantum mechanical modelling. Experimental determina-
tions are shown by filled circles, whereas  empty squares stand for 
theoretical values other than ours

Fig. 3  Heat capacity at constant 
volume (J/mol/K) of MgO as a 
function of temperature. Experi-
mental data (empty diamonds) 
have been attained from the 
Holland and Powell (1998) data 
base. CP is converted into CV 
using bulk modulus and volume 
thermal expansion from Fei 
(1995, 1999 and Dubrovinsky 
and Saxena (1997). Full line  
CV from semi-empirical calcula-
tions; dotted line CV from LS 
quantum–mechanical modelling
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to be compared with 24.4 J/mol/K, from semi-empirical 
modelling, and 23.5 J/mol/K, from ab initio.

Parametrization of the mixing/excess Helmholtz free 
energy

Mixing free energy has been parametrized as a function of 
xFe and T, using a composition–temperature grid over the 
full FeO–MgO join and ranging from 50 to 3,000 K. Such 
a choice is due to our aim of providing a deliverable use-
ful for any further application requiring thermo-chemical 
energy values. In so doing, we have chosen to expand the 
actual field of stability to guarantee a smooth interpolation, 
free of discontinuities at the boundaries.

Over the interval 50–3,000 K, ΔF(T,xFe)HTpz-mixing con-
tributes on average to ΔF(T,xFe)mixing for xFe = 0.25, 0.50, 
and 0.75 in terms of 13, 17 and 10 %, respectively, with the 
largest figure smaller than 2 kJ/mol, which is of the same 
magnitude of the uncertainty discussed in “Computational” 
section. This aspect, along with that ΔF(T,xFe)HTpz-mixing 
has been calculated by a semi-empirical approach, suggests 
to pay due care in using the harmonic contribution to the 
Helmholtz free energy; in such a light, we have chosen to 
separately discuss the composition–temperature thermo-
chemical properties derived from mixing lattice energy 
only and those from total mixing energy. Yet note that even 
a small contribution to mixing free energy may have rel-
evant bearings on the T–X phase relation diagram and criti-
cal temperature.

Given that ΔF(T,xFe)HTpz-mixing < 0 for any composition 
and temperature explored, we gather the harmonic part of 

the mixing free energy promotes formation of solid solu-
tion, which is, in some cases, stymied, in other cases, 
boosted by ΔF(T,xFe)LT-mixing that takes positive and nega-
tive values as a function of T and xFe.

We tested several xFeyMg function to model mixing free 
energy and observed that the one giving the most satisfac-
tory results, in terms of fitting figures of merit in combi-
nation with formal simplicity, is the Redlich–Kister-type 
expression (Stølen and Grande 2004)

 where

 and

In Table 2, the pjk parameters are set out for 
ΔF(T,xFe)LT-mixing, using the HS and LS models, 
and ΔF(T,xFe)mixing, restricted to the HS configura-
tion given that (1) it is the one making sense at room 
pressure and (2) one can derive LS-ΔF(T,xFe)mixing 

�F(T , xFe)mixing

= xFe × yMg × [U0(T)+ U1(T)× (xFe − yMg)

+ U2(T)× (xFe − yMg)
2]

+ R× T ×
[

xFe × ln (xFe)+ yMg × ln
(

yMg

)]

,

yMg = 1− xFe,

�F(T , xFe)excess = xFe × yMg × [U0(T)+ U1(T)

× (xFe − yMg)+ U2(T)× (xFe − yMg)
2],

Uj(T) = Σk=0,2pjk × Tk .

Table 2  Helmholtz free energy (kJ/mol) as a function of composition and temperature (K)

x is the mole fraction of FeO; y = 1 − x. See text for definition of Uj(T)

The use of a large number of digits allows an accurate reproduction of the curves here discussed

p0 p1 p2

�FLT−excess = x × y×
[

U0(T)+ U1(T)× (x − y)+ U2(T)× (x − y)2
]

Z

 HS

  U0(T) 18.2043182144 0.0000936572182865 −0.0000000243421184957

  U1(T) 0.357364723303 −0.00000691673540265 0.00000000178134134229

  U2(T) −1.33522525326 −0.0000536329464692 0.0000000136172021797

 LS

  U0(T) 28.4445905153 0.000253581685406 −0.000000065391665275

  U1(T) −11.257466176 −0.00711243288403 −0.000000321846428917

  U2(T) −25.052895446 −0.0143218654633 −0.000000618753883058

�Fexcess = x × y×
[

U(T)0 + U(T)1 × (x − y)+ U(T)2 × (x − y)2
]

Z

 HS

  U0(T) 17.3682200605 −0.00125828910357 −0.000000254046117247

  U1(T) 0.551495057519 0.000269405967138 0.0000000478722696912

  U2(T) −0.48873957368 0.00119708716955 0.000000204305028065
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as LS-ΔF(T,xFe)LT-mixing + [HS-ΔF(T,xFe)mixing−HS-
ΔF(T,xFe)LT-mixing]. Note that hereafter we address the ideal 
mixing entropic contribution, i.e. −R × [xFe × ln(xFe) + yMg  
× ln(yMg)], by S(xFe)ideal mixing.

First of all, one observes that the HS model yields ΔF 
values systematically smaller than the ones derived for LS, 
this pointing to that the former better promotes (Mg,Fe)
O solid solution. Note that HS provides absolute energy 
smaller than LS, and therefore, HS leads to a definitely 
more stable magnesio-wüstite system, at room pressure.

ΔF(T,xFe)excess has allowed one to determine the activ-
ity of the FeO, which has then been compared with val-
ues obtained from emf (electromotive force) and gas 

measurements by Sreҫec et al. (1987) and Hasegawa et al. 
(2006). Figure 4a, b display at 1,373 and 1,573 K our 
results from computational modelling and experimental 
data. Theoretical modelling provides activity figures that 
lie in-between the experimental curves, in slightly better 
agreement with Hasegawa’s issues (average discrepancy 
4 %) than Sreҫec’s (average discrepancy 14 %). Using 
data from Sreҫec only, Fig. 5 shows that the disagreement 
between theoretical and observed activity decreases upon 
increasing T. We think this is attributable to that the semi-
empirical potentials used to model the vibrational contri-
bution have not been optimized and partly fail to reproduce 
with precision low-frequency modes, important at modest 
temperatures and sensitive to the quality of the force field. 
Things improve at high temperature where error compen-
sations can occur owing to involvement of an ever wider 
vibrational range.

Figure 6 shows the Helmholtz energy curves as a func-
tion of T and composition, for static-ΔFs, calculated by 
LS and HS, and total mixing free energy with HS state, 
respectively. LS-ΔF(T,xFe)LT-mixing undergoes a positive-
to-negative energy change between 1,000 and 1,300 K, 
while the HS model predicts such a crossover on the inter-
val 600–900 K. This latter issue is in keeping with the 
attainments of Yao et al. (2013), who observe formation 
of magnesio-wüstite solid solution at some 773 K. HS-
ΔF(T,xFe)mixing, in turn, points to a stabilization of the Mg–
Fe solid solution over the range 600–800 K, consistently 
with HS-ΔF(T,xFe)LT-mixing. Such aspect is reflective of the 
stabilizing action on (Mg,Fe)O of the vibration-dependent 
ΔF-component, as stated above. Taking then into account 
that ΔF(T,xFe)HTpz-mixing < 0, −T × S(xFe)ideal mixing < 0 and 

Fig. 4  a–b Activity–composition relation at a 1,373 and b 1,523 K, obtained in this study (empty circles) compared to experimental results from 
emf measurements: empty diamonds refer to Hasegawa et al. (2006) and empty triangles to Sreçec et al. (1987)

Fig. 5  Temperature dependence of the averaged discrepancy between 
the activity obtained in the present study and those obtained by 
Sreçec et al. (1987)
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Fig. 6  a–c ΔF(T,xFe)LT-mixing from the LS (a) and (b) HS models. ΔF(T,xFe)mixing determined using the HS state (c). Isotherms are spaced by 
100 K

Fig. 7  |ΔF(T,xFe)excess
/T × Sideal mixing| × 100 as a 
function of temperature. Full 
line, dashed line and dotted 
line refer to x = 0.25, 0.50 and 
0.75, respectively. Calculations 
performed by the HS model

Fig. 8  a–c Temperature–composition phase diagram of the sys-
tem MgO–FeO, predicted using LS-ΔF(T,xFe)LT-mixing (a), HS-
ΔF(T,xFe)LT-mixing (b) and HS-ΔF(T,xFe)mixing (c). Empty and filled 

circles represent binodal and spinodal decomposition temperatures. 
Composition region of confidence: 0.2 < xFe < 0.8
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ΔF(T,xFe)mixing is positive/negative as a function of tem-
perature, it ensures that the pure static energy contribution 
tends to favour de-mixing but it is offset by vibrational and 
configuration components of ΔF(T,xFe)mixing.

Eventually, the configuration entropy contribution to 
HS-ΔF(T,xFe)mixing, i.e. −T × S(xFe)ideal mixing, plays above 
600–650 K a fundamental role in promoting formation of 
solid solution versus de-mixing, as it is displayed by Fig. 7 
that reports the ratio ∣HS-ΔF(T,xFe)excess/T × S(xFe)ideal mix-

ing∣ × 100 as a function of T, for xFe = 0.25, 0.50 and 0.75.

Phase relations of (Mg,Fe)O versus T

Figure 8a, b show the T–X phase relations diagram obtained 
by LS and HS configurations, using ΔF(T,xFe)LT-mixing;  
binodal and spinodal boundaries attained by the tangent 
method and sign inversion of the second derivative of 
mixing free energy versus composition. We estimate a xFe 
region of confidence ranging from 0.2 to 0.8. The former 
predicts full solid solution above 1,800 K, whereas the lat-
ter points to a critical temperature (Tc) of some 1,200 K. 
This reflects the relevant difference in terms of lattice 
energy of stabilization played by the two spin configura-
tions explored. Figure 8c displays the T–X phase rela-
tions diagram generated by HS-ΔF(T,xFe)mixing, which 
yields a Tc of some 950 K. For the sake of completeness, 
had one used LS-ΔF(T,xFe)mixing, one would attain a Tc 
about 1,500 K. More differences between the three phase 
relations diagrams can be revealed by analysing the posi-
tion of the binodal boundary with respect to the spinodal 
one. In particular, one observes that Tbinodal−Tspinodal for a 
given composition decreases from LS static, to HS static 
and finally to HS total, taking average values of 439, 280 
and 205 K, respectively. This points to that HS-like mod-
els predict a more abrupt process of de-mixing, namely a 
narrower meta-stability thermal interval, than LS does. We 
have not been able to find out in literature experimental 
studies on the T–X relations phase diagram of (Mg,Fe)O, at 
ambient pressure (Fabrichnaya et al. 2004). Experiments at 
80 GPa and 1,000 K (Dubrovinsky et al. 2000) proved that 
(Mg,Fe)O decomposes into quasi-wüstite and a residual 
(Mg,Fe)O solid solution. Assuming Fe in low-spin state, as 
it is at 80 GPa, either LS model, whether including vibra-
tional contribution or not, points to a spinodal de-mixing 
at 1,000 K giving quasi-symmetrical terms, i.e. somewhat 
of (Mg0.75Fe0.25)O and (Mg0.25Fe0.75)O. Such a discrepancy, 
i.e. an excess of Mg in the Fe-rich phase, with respect to 
observations is ascribable, and we deem, either to pressure 
that is not taken into account in the T–X phase relations 
diagrams here discussed, or to a model deficiency in repro-
ducing enough asymmetry on the MgO–FeO join.

The behaviour of the Mg–Fe solid solutions in olivine 
(forsterite–fayalite) and garnet (pyrope–almandine) is here 

compared with magnesio-wüstite’s; such phases have been 
chosen as in the former Mg–Fe enter octahedral sites, like 
in (Mg,Fe)O, whereas in the latter they occupy large dodec-
ahedrally coordinated positions. Tc of olivine (see Dachs 
and Geiger 2007) ranges from values below 373 K up to 
some 620 K, altogether pointing to figures smaller than 

Fig. 9  ΔH(T,xFe)excess, for (Mg,Fe)O: full line (present work); 
(Mg,Fe)2SiO4: dashed line (Wood and Kleppa 1981); (Mg,Fe)2SiO4: 
dotted line (Kojitani and Akaogi 1994); (Mg,Fe)3Al2(SiO4)3: dot-
dashed line (Geiger et al. 1987)

Fig. 10  ΔS(T,xFe)excess at 300 and 2,500 K, dashed and full line, 
respectively
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those we have here calculated for (Mg,Fe)O. In the case of 
Mg–Fe garnets (Ganguly and Kennedy 1974), i.e. pyrope–
almandine solid solution, Tc has been estimated of about 
750 K, lower than (Mg,Fe)O’s as observed for olivine too. 
We have calculated the excess enthalpy (see Fig. 9) by 
means of

 using the HS-ΔF(T,xFe)mixing parametrization in Table 2 and 
neglecting the P × ΔVmixing contribution at room pressure. 
The bars shown in figure stand for the oscillations of the 
excess enthalpy values because of temperature and hint that 
magnesio-wüstite’s excess energy is mostly governed by 
static lattice contributions and its energy levels, for a given 
composition and as a function of configuration, huddled 
around an average. In this respect, it is possible the present 
static approach misses sensitivity in comparison with those 
methods in which the structure is progressively rearranged, 
in terms of cation distribution, for equilibration with a tem-
perature, using, for instance, Metropolis-like algorithm, and 
adding thereby an intrinsic dependence on T not confined to 
the statistical weight only. ΔH(T,xFe)excess exhibits a quasi-
regular trend as a function of composition, correspond-
ing to WH,Mg–Fe, of 17.7(±5) kJ/mol, against a 5.3 kJ/mol  
for olivine on a one-cation basis (Kojitani and Akaogi 
1994), where ΔH(T,xFe)excess = W × xFe × (1 − xFe).  
The quasi-regularity of the MgO–FeO binary is due to 
that U1(T), which is the cause of a possible break of sym-
metry over xFe, yields a modest contribution in comparison 
with U0(T) and U2(T). Such regular, a behaviour is similar 
to olivine’s, which exhibits a modest sub-regularity char-
acterized by a slight asymmetric bent to Fe-rich composi-
tions according to Wood and Kleppa (1981) and is on the 
whole regular after Dachs and Geiger (2007). Fe–Mg gar-
nets, in turn, show more marked deviations from regular-
ity, probably even related to the unduly large cage host-
ing Fe and Mg. For the sake of completeness, we show in 
Fig. 10 the excess entropy, ΔS(T,xFe)excess, determined as 
−∂ΔF(T,xFe)mixing/∂T−S(xFe)conf = −∂ΔF(T,xFe)excess/∂T, 
using the HS configuration. ΔS(T,xFe)excess ranges from 
negative to slightly positive values upon increasing T and 
exhibits absolute figures smaller than 0.1 J/mol/K, to be 
compared with ideal mixing entropy amounting to 3.9 J/
mol/K on average. Note that comparably small values for 
excess entropy have been found for olivine too (Dachs and 
Geiger 2007).Thorough discussions about the role of inter-
actions and physical meaning of ΔS(T,xFe)excess are found in 
Benisek and Dachs (2012), and Stølen and Grande (2004).

Leaving aside any claim of precision, Fig. 11 quali-
tatively shows how pressure affects the stability of the 
(Mg,Fe)O solid solution, by analysing the mixing Gibbs 
energy, ΔG(P,T,xFe)mixing, calculated for the HS and LS 

�H(T , xFe)excess ≈ �E(T , xFe)excess

= �F(T , xFe)mixing−T × ∂�F(T , xFe)mixing/∂T ,

models, including the vibrational contributions and with 
xFe = 0.50, along the isotherms at 1,800 and 1,600 K (i.e. 
above Tc whichever model one uses). ΔG(P,T,xFe)mixing 
can be split in two parts: (1) Δtherm, which has here been 
modelled and represents the first two terms of the right-
hand side of Eq. (1); (2) Δdeform, which accounts for the 
third term of Eq. (1) and is calculated along an isotherms 
from room pressure to P, by means of the elastic proper-
ties predicted by Persson et al. (2006) and the third order 
Birch–Murnaghan equation of state. In the low-pressure 
regime, (Mg,Fe)O solid solution is stable with respect to 
its end-members, ΔG(P,T,xFe)mixing < 0, and the HS con-
figuration is energetically more efficient than LS, because 
of the Δtherm contribution. At ≈15 GPa and 1,800 K HS-
ΔG(P,T,xFe)mixing and LS-ΔG(P,T,xFe)mixing intersect one 
another, and the LS configuration boosts stability of the 
(Mg,Fe)O solid solution more effectively than HS. At 
higher pressure, Δdeform definitely favours the LS configura-
tion and stabilizes (Mg,Fe)O solid solution that grows ever 
more stable. Conversely, the HS model forecasts a solid 
solution becoming less and less stable upon growing P with 
respect to the end-members, as proven by its increasing 
HS-ΔG(P,T,xFe)mixing trend. At ≈40 GPa, it fails to stabi-
lize magnesio-wüstite, i.e. HS-ΔG(P,T,xFe)mixing > 0, which 
is predicted to decompose into its end-members. The iso-
therms at 1,600 K trails close to that at 1,800 K and yields 
similar results; for such a reason, we do not discuss it in 
detail. In this view, the HS-to-LS transition seems to be a 
mechanism stabilizing the Mg–Fe solid solution versus de-
mixing into end-members at high pressure. Note that more 
complex de-mixing processes involving decompositions 
into spinodal (Mg,Fe)O systems, other than end-members, 

Fig. 11  Mixing Gibbs energy as a function of pressure. Full line and 
dashed line correspond to 1,600 and 1,800 K isotherms
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are here neglected because of the limitation in precision to 
model pressure induced effects onto the sub-solidus solvi.

Conclusions

The ΔF(T,xFe)mixing modelled by the HS configuration 
points to a MgO–FeO solid solution largely controlled by 
static and configuration contributions, i.e. ΔF(T,xFe)LT-

mixing, in terms of more than 80 %.The modest vibration-
dependent component contributes promoting mixing. We 
have chosen to parameterize ΔF(T,xFe)mixing as a function 
of xFe and T using the following expression:

ΔF(T,xFe)mixing = xFe × yMg × [U0(T)  + U1(T) × (xFe  
− yMg) + U2(T) × (xFe − yMg)

2] + R × T × [xFe × ln 
(xFe) + yMg × ln(yMg)], where yMg = 1 − xFe and Uj(T)s  
are polynomials in T of the second order. The U1(T) func-
tion provides a modest contribution to ΔFmixing that has 
a quasi-symmetric behaviour over the MgO–FeO binary. 
The sub-solidus solvi exhibits a critical temperature (Tc) 
of some 950 and 1,200 K, including or neglecting the har-
monic part of free Helmholtz energy and using the HS con-
figuration. For the sake of comparison with other minerals 
hosting Mg–Fe mixing and taking as a reference the for-
mer Tc, such a figure is significantly larger than olivine’s 
and Mg–Fe garnet’s, wherein Mg–Fe species enter octa-
hedral and dodecahedral sites, respectively. All this points 
to an Mg–Fe mixing that is more difficult to be stabilized 
over the MgO–FeO join than that for olivine and garnet. 
The quasi-regular behaviour of the MgO–FeO binary in 
high-spin state leads to a ΔHexcess that can be modelled by 
a xFe × (1 − xFe) × W-like function, yielding WH,Mg–Fe  
of 17.7(±5) kJ/mol. Excess entropy’s absolute figure is 
smaller than 0.1 J/mol/K and monotonically increases as a 
function of T. Hence the stability over the sub-solidus join 
MgO–FeO is mainly governed by lattice energy and ideal 
mixing entropy. High-pressure and high-temperature condi-
tions favour stabilization of the (Mg,Fe)O solid solution ver-
sus end-members with iron in its LS configuration; whereas, 
the HS model, which is energetically more convenient in the 
low-pressure regime, ends up promoting decomposition into 
MgO–FeO surpassing some 40 GPa at 1,800 K. Such condi-
tions correspond to mid lower mantle’s and, as a first approxi-
mation, are consistent with the observed gradient in the ther-
mal boundary layer 150–300 km above the CMB (Hirose 
and Lay 2008). All this contributes to the understanding that 
Mg–Fe mixing and its related spin transition alter the chemi-
cal behaviour in the main iron acceptor lower mantle miner-
als (Mg-wüstite and perovskite), thereby changing the carried 
iron content via a modification of the partition coefficient 
between ferropericlase and perovskite (Badro et al. 2003) 
and impacting onto mantle dynamics through Fe-rich phases’ 
thermo-physical/chemical properties (Lyubutin et al. 2013).
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