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1
Introduction

1.1 Motivation

How would changes in the production rate of an electricity producer may influence
the entire electricity sector? How can replenishment policy applying by a supply
chain’s member causes disruptions in the whole supply-chain systems? How does dis-
turbance in the production of a gas producer influences other stakeholders involved
in the system? All these questions - though are from the different domains- are
addressing similar type of problem. These questions are typical from socio-technical
systems, which involve networks of actors and networks of physical-technical ele-
ments. Furthermore, these questions are mainly concerned about the technical and
operational part of these systems where activities of agents determine the dynamic
of systems in terms of flow of material, energy, money, etc.

Socio-technical systems include both physical-technical elements, and interde-
pendent agents (De Bruijn and Herder, 2009). On the one hand, the state of these
systems, changes due to behavior of actors which is itself influenced by institutions
and social rules- and on the other hand, it changes due to behavior of physical sys-
tems (Ottens et al., 2006). Therefore, the dynamics of a socio-technical system can
be because of either actor-actor or actor-artifacts interactions. For example, actors
involved in a socio-technical system, can compete, negotiate and cooperate which at
the end results in the social dynamics. Simultaneously, they interact with artifacts
producing, transferring, changing materials, and shaping the technical dynamics.
Understanding this dynamics is a prerequisite for decision making and call for sci-
entific tools, which facilitate the analysis of these complex systems. Furthermore,
the change within these systems is very costly, in terms of financial and social cost,
and once a decision has been made it is relatively hard to reverse it. Social scient-
ist advocate using computational simulation to overcome these complexities helping
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1. Introduction

decision-makers to get insight into, and test different scenario in these systems.

Agent-based modeling (ABM) is one of the popular simulation approaches, which
has been used to study socio-technical systems. In ABM a socio-technical system is
modelled by decomposing a systems into some heterogeneous entities, called agents
which continuously interact with each other and with their surrounding environment.
The global behavior of these systems is the result of interaction between agents and
environment. Although ABM has become steadily a popular approach in the social
science and in the modeling of socio-technical systems, its application has been facing
several important issues. An issue with current ABM practice is that studying the
feedback from emergence features of systems on the behavior of agents is not part
of design steps of agent-based models (Sawyer, 2001). Particularly, in the case of
Agent-Based Generative social simulation (ABGSs) proposed by Epstein (2006), this
problem is very bold since in ABGSs- by definition- it is assumed that the macro
behavior of a system is only the result of agent’s behavior, and their interaction with
each other (Epstein, 2006). Conte (2009) states that the ABGSS’ view prevents it to
take into account downward causation so that no full account of social phenomena
is provided, since the causal autonomy of social systems is ignored.

The properties of the system at the emergent level can be classified to quant-
itative and qualitative properties. Qualitative features refer to the societies, rules,
organization, localities, which may be emerged through the interaction of agents.
Quantitative features refer to the aggregated state or statistical characteristics of the
observable variable of a system (e.g., the number of people having a opinion) which
influence agent’s behavior . Apparently much of the research that addresses the
importance of considering downward causation in ABM (e.g.,Conte (2009)) primar-
ily focuses on the effect of qualitative properties such as norms on the behavior of
agents. However, there are many of social examples (and theories), which evidence
that quantitative properties of systems influence the behavior of individuals as well.
For example, Sherif (1936); Asch (1956) present that opinion of an individual not
only changes through the individual interaction with other agents but also the num-
ber of people as majority may also influence the actors opinion. These social theories
which will be further discussed in the next chapter- illustrate that there are some
feedback between quantitative properties of systems and behavior of agents that
need be considered in developing agent-based models.

Another issue with current ABM practice is that there is a controversy about
the explanatory of agent-based models. Grüne-Yanoff (2009) claims that ABM and
particularly micro-macro modeling approaches (like ABGSs) are not explanatory
since they cannot provide causal explanation. Richardson et al. (2003) argues that
since there is a possibility that the result obtained in a simulation be generated in
a number of alternative ways, ABM cannot be explanatory. Although this problem
can be a generic problem of any computer simulation, it is more controversial in the
case of ABM with emergence outcome where modelers may not be able to provide
any insight into the chain of events. Conte (2009) believes that the generative
explanation requires causal explanation, otherwise the explanation is irrelevant.

Marchionni and Ylikoski (2013) argue that to increase the understanding from
the agent-based models, modelers should show how the assumption made about
the agents result in the global behavior of the system; ABM models should be
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1.2. Terminology

supported by making explicit the causal mechanisms driving the phenomena. Causal
mechanism is a type of explanation, which has roots in the social science as well as
philosophy of science (Hedström and Ylikoski, 2010). The core idea behind the
mechanism approach is that to explain an event referring to the cause is not enough.
We must provide the causal mechanism as well. Although, providing the causal
explanation of agent-based models seems critical for enhancing their explanatory
power, it has not received enough attention in ABM studies. ABM suffers from the
lack of procedure, notation, and tool that help the task of capturing and presenting
causal-mechanism involved in the agent-based models.

The last issue - that we address in this study- is that ”ABM may impose a heavy
computational and parametric burden. Tracking and scheduling a large number
of interacting agents leads to serious computational requirements and analytical
challenges.” (Bobashev et al., 2007). Furthermore, ”The complexity of agent-based
models may easily reach a level that makes it almost impossible for a researcher
to deduce any understanding form the simulations.” These limitations have already
been pointed out by many researchers arguing that to use ABM in scientific way,
modelers should keep agent-base models simple following the KISS (Keep It Simple,
Stupid!) slogan (Yücel, 2010). However, this simplification sometimes cost the
accuracy of the models. Edmonds and Moss (2005) argue that ”the difficult part in
science is not finding attractive abstract models, but of relating abstract models to
the world.” The trade-off of simplicity and accuracy is a critical issue in the field of
ABM. How can we simplify a model without losing the main dynamics driving the
behavior of that system?

There are also some practical drawbacks for current ABMS practice. First,
as Pavon et al. (2008) argue, while the actual users of ABMS are policy makers
and social scientists who are usually not skilled in computer programming, agent-
based models are complex to build and require substantial programming knowledge.
Second, while a number of research advocates participatory modeling of ABM (e.g.,
Gilbert and Troitzsch (2005)), with current ABM tools, it is hard to involve dif-
ferent stockholders in the conceptualization and process of simulation. Currently,
once an agent-based model has been implemented, we can present the out come of
the simulation, whereas the structure of the model and the process involved in the
system are implicit in the programming code. Getting involved stockholders in the
process of modeling before implementation helps the process of validation of models
through the expert validation, and it can reduce the cost of making change in the
simulation (Ghorbani et al., 2013).

Using ABM for studying socio-technical system is insightful. However, by over-
coming the aforementioned limitation (conceptual and practical) we can indeed in-
crease the usability of ABM.

1.2 Terminology

Before continuing our discussion, it is necessary to make clear the definition of some
words that will be used through this study.

• Paradigm: ”A paradigm is a very general set of philosophical assumptions
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1. Introduction

that define the nature of possible research and intervention.” (Mingers and
Brocklesby, 1997). Paradigms are fundamental assumptions which every meth-
odology is built upon them (Lorenz and Jost, 2006). For instance, Emergence
is the critical paradigm or in other word fundamental assumption in ABM.
Whereas, In System Dynamics Modeling (SDM) feedback has been recognized
as the main paradigm (Scholl, 2001).

• Methodology: ”A methodology is a structured set of guideline or activities to
assist people in undertaking research or intervention. Generally, a methodo-
logy will develop, either implicitly or explicitly, within a particular paradigm”
(Mingers and Brocklesby, 1997). In this study ABM and SDM are example of
simulation methodologies. Every methodology can comprise some phases. For
instance, an agent-based modeling study may comprise following phases: Con-
ceptual model building, Computer implementation, validation, Experimenta-
tion.

• Technique-tool: ”A technique is a specific activity that has a clear and well-
defined purpose within the context of methodology.”; ”tool is an artefact, often
computer software. that can be used in performing a particular technique.”
(Mingers and Brocklesby, 1997). Every phase in a methodology has particular
techniques or tools that help accomplish them. For example, Causal Loop Dia-
grams (CLD) is a tool which can be used in the phase of conceptual modeling
of SDM.

1.3 Multi-paradigm simulation: an Alternative to

Cope with These Issues

As we will extensively discuss and demonstrate in this thesis, multi-methodology
simulation is an emerging solution to address the aforementioned issues. There are
different types of simulation and modeling (S&M) methods which have been used to
study Socio-technical systems. All of these methods have their special characteristic
and assumption stemming from different paradigms. Meadows and Robinson (2002)
point out that ”Different modeling paradigms cause their practitioner to define dif-
ferent problems, follow different procedures, and use different criteria to evaluate the
results.” Adapting a specific paradigm is like seeing the world through a particular
lens which reveals certain aspects of a situation overlooking others. Although dif-
ferent paradigms may be used to investigate the same problem, each paradigm may
result in different explanation of the situation and seemingly incompatible policy
advice. Hence, ”adapting one paradigm inevitably gaining only a limited view of
the problem situation” (Mingers and Brocklesby, 1997).

In recent years, developing multi-methodology has been the subject of several
studies. Mingers and Brocklesby (1997) state following arguments in favor of multi-
methodology: first, ”real-world problems are inevitably highly complex and multi-
dimensional. Different paradigms each focus attention on different aspects of the
situation so multimethodology is necessary to deal effectively with the full richness
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1.3. Multi-paradigm simulation: an Alternative to Cope with These Issues

of the real world.” Second, Given that each method has some phases to be con-
ducted, each method tends to be more useful in some phases of than others. So,
combining them makes an immediate appeal. To combine different methodologies,
Mingers and Brocklesby (1997) propose that methodologies can be combined at the
paradigm level, methodology phases, and techniques.

To overcome the mentioned limitation of ABM, we propose to take advantage
of System Dynamics Modeling (SDM) as a complementary tool for ABM. System
dynamics and agent-based modeling are popular and widely used S&M methodology
and their potential complementary use has been discussed in many recent studies
(e.g., Wakeland et al. (2004); Schieritz and Milling (2003); Borshchev and Filippov
(2004); Schieritz and Grobler (2003) ). Scholl (2001) calls for cross studies and
joint research of SDM and ABM to find ways that they can complement each other.
He argues that ”Individual-based modeling and aggregate feedback modeling may
complement each other in ways that are unimaginable from today’s perspective”.

SDM and ABM can be combined at the paradigm level. Furthermore, the tools
and techniques of SDM can be used at the different phases of ABM. In order, to com-
bine SDM and ABM at the paradigm level we, should first recognize their paradigm
then we justify how their combination can result in more reliable simulation method.
Given that the phases involved in an agent-based model include the four main steps:
Conceptual model building, Computer implementation, validation, Experimentation
(Pidd, 1998), SDM tools and techniques can be used in some of these phases. As we
will discuses later in more details, Combining SDM with ABM will help to address
the first mentioned issue with ABM. Furthermore, Combining SDM with ABM at
the technique level will help to alleviate the second and third mentioned issues with
ABM.

ABM follows the bottom-up approach in investigating systems and the emergence
is the key concept in ABM. Epstein (2006) states that ”ABM is, by its very nature,
the canonical approach to modeling emergent phenomena: in ABM, one models
and simulates the behavior of the systems constituent units (the agents) and their
interactions, capturing emergence from the bottom up when the simulation is run.”
In the contrary, SDM is considered as a top-down approach. In contrast to the
concept of emergence, the scientific concept of feedback is the core of SDM (Scholl,
2001). To combine SDM and ABM at the paradigm level, we need to position
the notion of feedback in the context of ABM. Feedback approach of SDM which
is supported by using Causal Loop Diagram (CLD) and its focus on capturing the
dynamics of the systems specially among the quantitative properties of the system at
the macro level helps addressing the above-mentioned ”downward causation” issue
in agent-based modeling.

Agent-base Modeling: Computer simulation as a field of research which
is at the intersection of social, mathematical, and computer science has been
able to benefit from Multi Agent Systems (MAS) and Distributed Artificial
Intelligence (DAI) which provide architecture and platform for implementing
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autonomous agents (Conte et al., 1998). The use of agent-based approach
enhanced potential of computer simulation in studying, and theorizing social
science issues (Conte et al., 1998).

ABM is suited for studying complex systems of interacting entities, like
social system (Klügl et al., 2004). During the last decades it has been used
to study in a broad range of disciplines such as economy (e.g.,Tesfatsion
(2003)), socio-technical system (e.g., Van Dam et al. (2012)) and business
(e.g., North and Macal (2007)). This growing interest in applying ABM
indicates its advantages in comparison to other simulation approaches. We
should emphasize that in this research we are referring to Agent Based Social
Simulation (ABSS) as ABM.

Drogoul et al. (2003) point out that the power of ABM is in ”its ability
to cope with very different models of individuals, ranging from simple en-
tities (usually called reactive agents Drogoul (1995)) to more complex ones
(cognitive agents Jennings (2000))”. ABM attempts to model the behavior
of individual which is contrasted to macro simulation techniques (e.g., SDM)
”that are typically based on mathematical models where the characteristics
of a population are averaged together, and the model attempts to simulate
changes in these averaged characteristics for the whole population” (Dav-
idsson, 2001).

The main elements of ABM are individuals, which are called agent (North
and Macal, 2007). Each agent evaluates its situation and makes decision
based on set of rules. Agents may carry out different behaviors, for example
buying, selling, or producing (Bonabeau, 2002). There is no common agree-
ment on the precise definition of agent in literature (Macal and North, 2005).
Some researchers consider agents as ”self contained program that can con-
trol their own action based on their perception of their operating system”
(Gilbert and Troitzsch, 2005). One of the main reasons that there is some
confusion about the term of ”Agent ” is that this term has been used in many
different fields of study in addition with social science (Gilbert and Troitzsch,
2005). Multi Agent System (MAS) uses the term of agent for software agents
who interact in the real environment such as the Internet. Wooldridge and
Jennings (1995) define 5 properties for computer agents in the point of view
of MAS:
• autonomy: agents operate without intervention of other agents, and

they control their actions.

• social ability: agents have the ability to communicate and interact with
other agents

• reactivity agent perceive their environment and respond to its changes.

• proactivity agents not just response to environment, they are able to
take initiative and engage in goal-directed behavior.

Macal and North (2005) address five properties for agents in ABM which
is somehow different from the characteristics of agents in MAS:

6



1.3. Multi-paradigm simulation: an Alternative to Cope with These Issues

• An agent is identifiable. having set of characteristics, rules which gov-
ern its behavior, and decision making capability.

• An agent is situated, living in and interacting with other agents through
the environment.

• An agent is goal-directed, having goal with respect to its behavior.

• An agent is autonomous and self-directed. carrying out actions inde-
pendently in its environment.

• An agent is flexible, having the ability to learn and adapt its behaviors.

SDM is one of the best ways to picture causal mechanism explanation Olaya
(2009); this characteristic of SDM can help to address the second mentioned issue
of ABM regarding the explanatory power of agent-based models. One of the main
characteristics of SDM which makes it a powerful method for capturing and present-
ing the mechanism involved in the system is that SDM takes advantage of Stock and
Flow Diagram (SFD) tool to describe the dynamics involved in a system. To en-
hance the explanatory power of ABM in terms of mechanism-based explanation, we
will present a meta-model for conceptualizing the mechanisms involved in agent-
based models. This meta-model, will help the process of capturing and presenting
the mechanisms in ABM. Based on this meta-model, we will illustrate the types of
mechanism which can be described by the help of SFD.

System Dynamics Modeling: System Dynamics Modeling (SDM) was
introduced by Jay Forrester in 1950 at Massachusetts Institute of Techno-
logy (MIT). At the early stage, it was called ”industrial dynamics” approach,
mainly because for the first time it was used to study dynamics of industrial
activity in an organization (Forrester, 1961a). It was defined as: the study of
information feedback characteristics of industrial activity to show how organ-
izational structure, amplification (in policies), and time delays (in decisions
and actions) interact to influence the success of the enterprise (Forrester,
1961a). Later on through this fact that this approach has the ability to be
applied in studying the dynamics of different systems it was called system
dynamics. System dynamics root goes back to the control theory principal.
Jay Forrester showed how control theory approach by the help of simulation
can be useful to study social systems.

The main elements of SDM are stocks and flows. Sterman (2000) point
out that “Stocks and flows, along with feedback, are the two central concept
of system theory”. He discussed that we can build a system by a network of
these two elements. Stocks are the accumulation of flows which themselves
are determined by the decision rules. System dynamics modeling commonly
starts with creating a causal loop diagram in which the interaction between
variables and especially the feedback between them is identified. Then Stock-
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Flow model of systems are developed.
One of the main assumptions in SDM is that “The behavior of a system

arises from its structure. That structure consists of the feedback loops, stocks
and flows, and nonlinearities created by the interaction of the physical and
institutional structure of the system with the decision-making processes of
the agents acting within it” (Sterman, 2000).

The aggregate approach of SDM can help to address the third mentioned issue
of ABM. According to Ghaffarzadegan et al. (2011),”aggregation reduces the size of
the model, thereby decreasing the cost of developing and running models and allow-
ing for more experimentation. Given limitations in individuals cognitive capacity,
aggregation also allows users to focus on feedback ahead of agent level detail and
therefore develop a more holistic and endogenous perspective to the problem.” to
apply the aggregate perspective of SDM in ABM, we propose to use SFD to model
some parts of the agent-based models. SFD can be used as simulation technique,
using equations to calculate the quantitative behavior of the system applying the
aggregated approach of SDM. At the implementation level of an agent-based mod-
eling study, SFD can be used to decreases the computational power usage of ABM.
As we will discuss later, SDF can help ABM models to be simple and descriptive
following the both KISS (Keep It Simple, Stupid!) and KIDS (Keep It Descriptive,
Stupid) paradigm (Axelrod, 1997a; Edmonds and Moss, 2005).

1.4 Research Question

Governing and developing effective policies for socio-technical systems require de-
cisions makers and policy analysts to understand the systems by testing and explor-
ing the different scenarios. ABM can provide this unique opportunity. However,
there are some limitations for ABM that should be overcome to increase the explan-
atory power and usability of this modeling approach. Therefore, the main question
in this research is.

How can we decrease the complexity of agent-based modeling process
while increasing the explanatory power, and considering the effect of
feedback from macro-properties on agents behavior in agent-based mod-
els using SDM as complementary approach for ABM?

To address this research question, some sub-questions needed to be addressed:

• What is the role of feedback in social systems and how it influences the mod-
eling in ABM?

• How can we capture and explain the causal mechanisms (processes) involved
in agent-based models?

• How can we simplify an agent-based model without losing the main dynamics
driving the system?
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1.5 Theory and methodology

Figure 1.1 demonstrates the methodology followed to answer the question of this
research. The methodology is summarized in five phases: analysis, development,
implementation, case study, and conclusion. The analysis (phase I) focuses on
per-forming a literature review on the state of the art of modeling and simulating
socio-technical systems. Issues of focus are agent-based modeling, system dynamics
modeling, and hybrid simulation.

In phase II, three major components are identified. These are the cores of the
developed hybrid simulation method and are addressed as follows. First, A frame-
work for combining ABM with SDM at the paradigm level. Second, A framework
that represent how SDM tools can be used for depicting causal mechanisms at the
conceptual phase of a simulation study. Third, appropriate discrete-time system
dynamics method is proposed that facilitates integrating ABM with SD method at
the implementation level.

Phase III involves designing a software that integrates the simulation components
of ABM and SDM on a single platform. Phase IV presents different aspects of
proposed hybrid simulation by the help of one case study. Finally, Phase V presents
the research conclusion. The challenges found in the research and lessons learned
through the research will be presented in this section.

Figure 1.1 – Overview of the Research Methodology
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1.6 Scope

1.6.1 Scientific Relevance

This a multidisciplinary research that aim to enhance the ABM as policy analysis
tool by integrating Agent-based Modeling and System Dynamics Modeling. We
identify the limitation and strong points of these two simulation methods and we
present how they can be complementary to each other. A integrated method has
some mutual benefits for both methods since ABM can take advantage of SDM
strong points and SDM can benefits form the ABM.

1.6.2 Contribution

The contribution of this research can be classified into three areas:

Agent-Based Modeling This research will add to ABM research by providing
a conceptual modeling tool which enhance the explanatory power of ABM by high-
lighting the mechanism involved in systems. It further contributes to ABM by
facilitating the process of validation of Agent-based models.

System Dynamics Modeling This research will add to SDM by extending SDM
with object oriented modeling which enhance the re-usability of SDM models.

Policy analysis This research contributes to the policy analysis field by providing
a tool to get insight into the systems by presenting the underlying cause and effects
and dynamics of the systems. It facilitates communication between modelers and
other stockholders about the underlying dynamics involved in the systems.

1.7 Outline

The structure of this thesis is as follows. This thesis is organized in three part.
The first part is dedicated to answer the firs sub-question of this research. the first
part includes two chapters. In Chapter 2 we introduce the concept of quantitative
and qualitative properties of systems at the macro level and we discuses about the
importance of considering feedback from macro-level properties in ABM. In Chapter
3, we use a case study (opinion dynamics) to explore the effect of feedback from
quantitative properties of systems in agent-based models.

The second part of the manuscripts is aimed to answer the second sub-question
of the this study. In this part, Chapter 4 presents a how we can make explicit the
process involved in the environment of agents using SFD; this chapter mainly focus
on the dynamics between macro-level propoerties of systems and agents. In Chapter
5 we explain the importance of mechanism based explanation for agent-based models
and we present a framework for using SFD to make explicit the mechanism involved
in agent-based models at the operational, social , and macro level; We take advantage
of a Bio-gas case study to illustrate our proposed framework.
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The last part of this thesis is dedicated to answer the third sub-question. This
part includes three chapters. In Chapter 6, we introduce Discrete-time System
Dynamics Modeling (DT-SDM) that we use it later to combine with ABM. Chapter
7 is aimed to take advantage of a case study (The Bullwhip effect phenomenon)
to explore the advantage of DT-SDM. In Chapter 8 we propose a framework for
combining SFD with ABM; We presents how SFD can be used to simplify ABM
models without loosing the main dynamics of the systems.

In Chapter 9, we introduce the software that we have developed for combining
SDM with ABM called HybSim. In the Final chapter, we conclude by discussing
our contribution and we give direction for future research.
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Part I

Combining SDM with ABM
at the paradigm level
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2
Emergence and Feedback in Agent-based

Modeling

2.1 Introduction

When we face a traffic jam on a road, we are likely to find a new road to reach our
destination. During the time, we will learn about the pattern of traffic jam in the
roads, and we try to avoid them in advance. However, the process of learning can
be accelerated by some devices. For example, we can be informed about the traffic
jam through the digital sign in the road or through the news which help us to avoid
traffic jam. Traffic jam is a higher-level pattern which influences our decision to
select or change our way to reach the destination. In fact, traffic jam is an example
of emergence phenomena arising from the behavior of autonomous entities, which
influence our decision to select or avoid a specific road. There is a feedback between
the properties of traffic jam, as a higher-level pattern, on the micro level entities
(Drivers) behavior.

Emergence is the result of upward causation arising from the individual’s beha-
vior and their interaction. However, there is also a top-down causation that limits
individuals behavior (Sawyer, 2004). Gilbert and Conte (1995) argues that ”not only
do the agents’ actions at the local level, when aggregated and observed at the global
level, constitute the emergent behavior, but also the global emergent behavior can
also be said to influence the local actions of the agents, in a form of feedback.” Gil-
bert (2002) emphasizes that a fundamental characteristic which make the societies
of human different from other complex systems is the fact that ”people are routinely
capable of detecting, reasoning, about and acting on the macro-level properties (the
emergent features) of the societies of which they form part.”
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In agent-based models, ”emergence is often viewed only as a bottom-up process,
without effective downward causation” (Ferber et al., 2008). This problem is particu-
larly highlighted in Agent-Based Generative social simulation (ABGSs) proposed by
Epstein (2006). In ABGSs, by definition it is assumed that the behavior of systems
is solely the result of agent’s behavior and their interaction. Epstein (2006) states
that to model a phenomenon ”situate an initial population of autonomous agents
in a relevant environment; allow them to interact according to simple local rules,
and thereby generate–or ”grow”– the macroscopic regularity from the bottom up.”
A quick search of the main key words of ”downward causation”, ”immergence”, and
”second order emergence” in the Journal of Artificial Societies and Social Simulation
(JASSS), which is one of the few journals focusing on social computer simulations,
reveals that only 25 paper use these keywords. However, non of these papers models
the downward causation in a simulation study. In the next chapter, we will address
some famous opinion dynamics models (e.g., Deffuant et al. (2000); Hegselmann and
Krause (2002)) which do not consider the downward causation from the state of the
systems at the macro level on the formation of agent’s opinion.

In this study we propose to classify the properties of systems at the macro-level
(the features of emergence phenomena) to the quantitative and qualitative proper-
ties. While the structure, rules, norms, organizations, etc. are qualitative properties,
quantitative properties refer to the aggregated state or statistical characteristics of
the observable variable of a system which influence agent’s behavior. Apparently,
much of the research that addresses the importance of considering downward caus-
ation in ABM (e.g.,Gilbert (2002)) primarily focuses on the effect of qualitative
properties such as higher-level structure and norms on the behavior of agents. For
example, Conte (2009) states that immergence is the effect of social properties and
entities such as norm, authorities, leaders on forming expectations of agents and rules
of interpreting others. Sawyer (2001) introduce the effect of norm on the behavior
of agents as downward causation.

The main characteristics that distinct qualitative properties form quantitative
is that the qualitative properties can be initially be determined as rules of agent’s
behavior. However, qualitative features cannot be defined at the beginning, and they
should be emerged. Quantitative features will not have a direct effect on the micro
properties of the system through; they will influence the micro system through the
behavior of agents. In other words, they are perceived by the agents and decisions of
agents are influenced by these properties. To provide a full description of the social
phenomena, agent-based modelers should explicitly model the effect of quantitative
features of emergence phenomena on the behavior of individuals.

2.2 Emergence: a Closer Look

There have been many debates and discussion about the definition of emergence in
the field of philosophy. The following definitions are the most popular definition of
emergence: ”Emergence is understood to be a process that leads to the appearance of
structure not directly described by the defining constraints and instantaneous forces
and functions that control a system” Crutchfield (1994). ”a property is emergent if it
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cannot be explained from the properties and interactions of the lower-level entities”
Boschetti et al. (2005). Some researchers criticize these definitions arguing that
such definitions show that we are unable to make links between lower level entities
and emergence phenomena. They argue that it is mainly because of lack of our
knowledge, and in the future we may be able to make the links concept.

Although the concept of emergence first appeared in philosophy, it has been
widely used in the domain of complex adaptive system, computer science (Deguet
et al., 2006; Holland, 2000), multi agent systems, and consequently, in artificial
society and agent-based modeling. Gilbert et al. (2005) in their pioneer book on
agent-based modeling emphasize that emergence is a key concept in this field. They
state that ”emergence is one of the most interesting issues to have been addressed
by computer scientists over the past few years and has also been a matter of concern
in a number of other disciplines, from biology to political science.” A comprehensive
discussion about the emergence and the role of emergence in ABM can be found in
(Gilbert and Conte, 1995; Sawyer, 2001; Ferber et al., 2008).

There are different classifications of emergence in the literature. Bedau (1997)
propose the most common classification of emergence: week emergence in contrary
to strong emergence. According to Chalmers (2002), the notion of emergence, which
is common in philosophical discussions, refers to the strong emergence. In contrary,
weak emergence is the notion of emergence which is most popular in complex ad-
aptive systems and computer science. He argues that, for example, the emergence
of pattern in cellular automata is a weak emergence. Although the pattern at the
higher level is unexpected, but the formation of this pattern is deducible from the
basic rules and initial condition.

Weak emergence is the view that a systems macro properties can be explained by
its micro properties but only in an especially complicated way” (Bedau, 2008). Weak
emergence has some characteristics: weak emergence is underivability without sim-
ulation, explainable only in an incompressible way. Bedau (1997) argue that ”Weak
emergence applies in contexts in which there is a system, call it S, composed out of
micro-level parts; the number and identity of these parts might change over time.
S has various macro-level states (macrostates) and various micro-level states (mi-
crostates). Ss microstates are the intrinsic states of its parts, and its macrostates
are structural properties constituted wholly out of its microstates. Interesting mac-
rostates typically average over microstates and so compress microstate information.
Further, there is a microdynamic, call it D, which governs the time evolution of Ss
microstates. Usually the microstate of a given part of the system at a given time is
a result of the microstates of nearby parts of the system at preceding times; in this
sense, D is local” Given these assumptions, Bedau (2008) defines weak emergence
as the following:

Macrostate P of S with microdynamic D is weakly emergent if P can be
derived from D and Ss external conditions but only by simulation

In Bedau (2008), Bedau gives a new definition for the weak emergence. In this
new definition he replace macro-states which are underivable except by simulation
with macro-states that are explainable only in an incompressible way.
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If P is a macro-property of some system S, then P is weakly emergent if
and only if P is generatively explainable from all of S’ s prior micro-facts
but only in an incompressible way”

A main concept in the majority of existing research that provides a classification
or definition of emergence is the existence of level. For example, Deguet et al. (2006)
identify tow principal conception regarding to the level. They distinguish between
Design/Observation and Macro/Micro or Local and global levels. Gilbert and Conte
(1995) argue though to sake of simplicity many researchers distinct between Micro
and Macro level, due to complexity of systems it is not always applicable to make a
clear distinct between these two levels. They propose that ”it is better to consider
a complex hierarchy of levels of emergence, rather than a straightforward division
between Micro and Macro.

In order to avoid any confusion about the term of emergence in this study, es-
pecially because of exciting contradiction regarding the characteristics of this phe-
nomenon, we follow the argument of Gilbert and Conte (1995) which emphasizes
that ”if we define emergence in terms of an inability to find an analytical solution,
any particular emergent property stands the risk of being demoted from the status
of emergence at some time in the future. This suggests that emergence may be
neither a stable nor a specially interesting property of complex systems: what are
interesting are the systems’ macro properties and the relationship of those macro
properties to the micro one.”

2.3 Downward Causation: Feedback from Macro

Properties in ABM

Sugarscape: Epstein and Axtell (1996) ”models an artificial society in
which agents move over a 50∗50 cell grid. Each cell has gradually renewable
quantity of ’sugar’ that the agent located at that cell can eat. However,
the amount of sugar at each location varies spatially and according to how
much of the sugar has already be eaten (most Sugarscape experiments are
conducted on a landscape in which there are two ’peaks‘ of high sugar values
in opposite quadrants of the grid). Agents have to consume sugar in order
to survive. [...] Agents can look to the north, south, east and west of their
current locations (but not diagonally) and can see a distance that varies
randomly according to the agents’ genetics endowment. [...] Agents not only
differ in the distance they can see, but also in their ’metabolic rate‘, the
rate at which they use sugar. If their sugar level ever drops to zero, they
die. New agents replace the dead ones with a random initial allocation of
sugar.”(Gilbert and Troitzsch, 2005).

The role of feedback from the emergence features on the behavior of agents have
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been addressed by some researchers (e.g., Gilbert (2002),Sawyer (2001)). Gilbert
(2002) introduced the notion of second order emergence. He argues that ”second or-
der occurs when the agents recognize emergent phenomena, such as societies, clubs,
formal organization, institution, localities, and so on, where the fact that you are a
member, or not a member, change the rules of interaction between you and other
agents.” Sawyer (2001) points out that the activities and interaction among the
agents result in social structures and systems as artifacts which feedback on agents.
Gilbert (2002) argues that second order emergence (immergence) is a specific char-
acteristic of social systems since peoples can perceive the macro properties of the
systems.

Top-down effect is part of reality, which cannot be captured by modeling agent’s
behavior. For example, in the famous work of segregation Schelling (1971), the
emergence behavior of the system initially is determined by the preference of agents.
However, these might be reinforced due to downward causation as soon as agents
perceive the macro properties of segregation (Gilbert, 2002). Conte (2009) argues
that this downward causation happens due to the process of social learning, which
cannot be captured by the generative paradigm focusing on the bottom-up Proper-
ties.

In agent-based models, feedback from macro properties of systems is often ig-
nored. This is mainly because they are often concerned with agent’s behavior and
interaction (Sawyer, 2001); studying the feedback involved in the systems is not part
of design steps of ABM. The point is though some feedback are inherent in ABM
model, some of them should be explicitly modeled. For instance, in the case of Sug-
arscape Epstein (2006), there is no need to model the feedback from the aggregated
state of the system (the amount of sugercape) on the behavior of agents since the
feedback is intrinsic in the system. On the contrary, in the case of opinion dynamics,
we need to encounter the feedback of the majority opinion on the formation of opin-
ion of an individual. In the case of opinion dynamics, it is impossible to capture the
feedback for macro level of the system through the only interaction of individuals.

2.4 Quantitative Properties VS. Qualitative Prop-

erties

We can classify the properties of the systems at the macro (emergent) level to quant-
itative and qualitative properties while both influence the behavior of agents through
the feedback. However, there is a difference between the form of applying this feed-
back. Qualitative properties can be applied initially in the models as rules that
influence the behavior of agents. In this case though we have somehow downward
causation, but it is not from the emergent properties of the system which are mod-
ified through the simulation. Sawyer (2001) emphasize that ”these representations
are not themselves emergent, but are part of the initial condition of simulation.”
Although applying the effect of qualitative properties as the initial condition makes
the models somehow far from reality, this approach has been accepted in the ABM
field.

In contrary to qualitative properties, quantitative properties should be emerged
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through the simulation and be available for agents to be perceived. Qualitative
properties are not similar to qualitative properties - such as norms- which can be
applied as rules or initial condition. They are observable states of systems at the
macro level which are modified through the simulation. Hence, it is necessary to be
modeled and be perceived by the agents through the simulation.

Normative agent-based social simulation models consider the feedback from
norms which are qualitative properties of the system at the emergence level. How-
ever, in normative systems norms are implemented as built-in mental object. Even
those studies that try to emerge the norm (e.g.,Savarimuthu et al. (2007)), start with
some preexisting norms, and emergence happens through the integrating the initial
norms (Conte et al., 2013). Andrighetto et al. (2007) reports the Emil (Emergence
In the Loop: simulating the two way dynamics of norm innovation) which was aimed
to address this problem of normative systems by investigating how new conventions
and norm emerge and how they immerge in the mind of agents. To have a normative
system in which norm immerge in the mind of agents, Conte et al. (2013) propose a
new architecture for normative agents which is based on architectures of cognitive
agents and has its roots in Artificial Intelligence. Since Emil project only focus on
the feedback from norms and it contribute to the filed of normative agents, the out
put of this project can not be used by the modelers which develop more simple agents
without getting involved in cognitive science. We propose that in the absent of a
true feedback from qualitative properties which modified through the simulation, at
least quantitative properties should be modeled properly.

Although the quantitative properties of the systems at the emergent level can
be representative of the norms, they are not only the representative of norms. The
number of people who obligate a norm (a quantitative proportion at the emergent
level) will result in social pressure which force agents to obligate the norm. However,
all the social pressure are not due to norms. For example, In the case of opinion
dynamics (see next chapter for more details), the number of people, who has the
same opinion, either at the group or at the society level will influence the formation
of opinion of an agent through the social pressure; in this case the number of people
which has a opinion, which is different from the norms, effect the behavior of agents.

Some quantitative properties of the systems at the macro level can be assumed as
information of descriptive norm. Norms can be injunctive or descriptive. Injuctive
norms refers to what people approve while descriptive norm refers to what people
do. Information about the descriptive norm (the average of people who conducting
a action) influence the behavior of people (Cialdini and Goldstein, 2004). Schultz
et al. (2007) study the effect information of descriptive norm on the electricity con-
sumption of a group of householders. In this study, the householders with higher
consumption of electricity were informed about the actual energy consumption of
the average household in their neighborhood. The result of this study, presents that
targeted householders reduced their energy consumption due to the effect of these
information. Information about the descriptive norm which can be provided as aver-
age or majority number of people doing a specific action are quantitative properties
of the system at the macro level which influence the behavior of agents.

Quantitative properties at the macro level can influence the behavior of agents
trough the learning. In the case of traffic jam, mentioned at the introduction, drivers
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are influenced by the congestion of cars in a road, which can be modeled as aver-
age of cars , through the learning. Drivers will learn through the time where and
when traffic jam happen so they can avoid them. This process of learning can be
accelerated by the use digital sign in the road or the news.

2.4.1 Example of Feedback From Social Theories

There are some social theories that prove the existence of quantitative properties of
systems at the emergent level and feedback from these properties on the behavior
of agents. In the following, we introduce them briefly.

Bystander effect

The bystander effect refers to the phenomenon in which the probability of offering
help to a victim by other individuals inversely related to the number of people who
are present there (Darley and Latane, 1968). In other words, in the emergency case
people are more likely to help a victim if there are few or no other by stander.

Darley and Latane (1968) study this effect through the conducting laboratory
experiments. The found that the number of bystander had a major effect on the
amount of time that participants take to report the emergency situation and to help
the victim. They argue that bystander effect is due to diffusion of responsibility.
Presence of other people reduces the individual’s feeling of responsibility. Besides
the diffusion of responsibility, ambiguity is another variable, which helps to explain
why bystander effect occurs.

conformity

Social pressure is the influence of groups’ behavior that encourages an agent to
change his behaviors to follow the group norms. First attempts to study the effect
of groups behavior on individuals behavior have been done by Asch (Asch, 1956)
and Sherif (Sherif, 1936) Asch (1956) called this phenomena social pressure. Cialdini
and Goldstein (2004) describe social pressure (conformity) as the act of changing
one’s behavior to group norms.

Aronson et al. (2005) explain that in many situations where individuals are un-
certain how to act or think, they refer to the behavior of others to figure out what is
going on in the situation and what is right to do. Deutsch and Gerard (1955) argue
that ’Informational social influence’ is a psychological phenomenon where people
follow the action of other people in order to do the correct action. Aronson et al.
(2005) argue that “Informational social influence” occurs when individuals see other
people as a source of information.

2.5 The role of Feedback In ABM

In general, we can classify the feedback from quantitative properties at the macro
level of agent-based models into two types. First, feedback which is inherent in
agent-based models. For instance, in the modeling of diffusion of disease, there is
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no need to model the feedback from the number of infected people to determine the
rate of becoming infected people because this feedback is intrinsic in the model, and
people get infected through the individual interaction. Second, feedback which is
not intrinsic in agent-based models and should be explicitly modeled. For example,
in the case of opinion dynamics, opinion of agents is not only influenced through the
individual interactions but also agents are influenced by the opinion of the majority
through the social pressure (Sherif, 1936). Therefore, we need to model the effect of
feedback from the number of people having an opinion (quantitative properties) on
the opinion of an individual agent.

One of the reason that we emphasis on considering the role of feedback in ABM is
that capturing and modeling inherent type of feedback is not always straightforward.
Related on how in details we model a system they maybe captured. For example,
there is a famous phenomenon calledeconomic scale in the economic studies. These
phenomena address the fact that ”The cost per unit of product decreases with in-
creasing scale since the fixed costs are spread over more products.” This phenomenon
can be captured through the ABM if we model the system in more details which
involve the process regarding the pricing of the products. However, modelers often
do not have the intention to model such details of the systems to keep the model
simple. Consequently, they may miss this type of feedback which has critical role in
formation of global behavior of systems. To capture this kind of feedback, modelers
should be aware of their existence in advance, otherwise there is a high possibility
that they be ignored in the simulation study.

2.5.1 Recognizing Feedback

A question may arise that how we can recognize feedback in ABM to see whether
we can capture them through the simulation or we need to explicitly model them.
System Dynamics Modeling (SDM) tools such as CLD has been approved as powerful
tool for recognizing feedback involved in social systems. Jonassen and Ionas (2008)
argue that CLD will help to recognize and figure out the causal loop and feedback.
CLD is not only a presentation tool for depicting causal loops but also it help the
process of recognizing feedback involved in the system.

2.6 Discussion and Conclusion

In this chapter, we discussed the importance of considering feedback in ABM. We
addressed the issue that that studying the feedback from emergence features of
systems on the behavior of agents is not part of design steps of agent-based models.
Particularly, in the case of Agent-Based Generative social simulation (ABGSs).

We proposed to classify the properties of the systems at the emergent level to
quantitative and qualitative. We discussed the important role of considering feed-
back from quantitative proprieties in the agent-based models. We provide some
evidence from the social theories which prove the effect of quantitative properties of
the system at emergent level on the behavior of agents.

In the next chapter, we will use a opinion dynamics models, to present the
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challenge of considering feedback from emergent properties: The way they would be
perceived by the agents and how they get involved into the decision making process
of the agents. Addressing these issues become more challenging when agents are not
influenced by multiple emergent level at the different group and society level.
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3
Opinion Dynamics Modeling - Case Study

This chapter is based on Hesan et al. (2014b)

3.1 Introduction

When faced with a decision (e.g. buying a new car) many people seek the opinion
of others in order to support their decision. This is specially true, when people
are not certain about their choices and options due to lack of information. Besides
seeking the support of their peers and close relations, people are also influenced by
the choices made by reference groups (e.g. celebrities, or experts). Social entities
however, are not only influenced by direct contact with other entities, they are also
affected by their own perception of the global trends whether in the society as a
whole, or within their own local groups.

In agent-based models, the agents and their interaction determine the behavior
of the system (Bandini et al., 2009). However, perceiving the global situation in a
simulation is not the task of the agents in the simulation. Therefore, since the data
is not available to the agents, they cannot take the over all perceptions into account
while making decision about their activities. This limitation is partly due to the
bottom-up nature of this simulation approach, but also related to the fact that it
is difficult to capture run-time behavioral patterns in the simulation and allow the
agents to take them into account in their subsequent decisions.

To overcome this problem, modelers take various approaches. For example, Jiang
et al. (2009) implement agents that adopt identical average social strategies. In
reality, however, agents are influenced differently by common behaviors based their
own characteristics.

Furthermore, besides the aggregate behavior of the society, the agents are also
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influenced by the various groups they belong to, ranging from their families, to the
work environment or even their neighborhood. The local aggregate behaviors in
these groups may even be conflicting. Therefore, depending on which group has
more priority, the agent behaves differently. Jadbabaie et al. (2003); Jiang and
Ishida (2006) address this issue by defining neighborhoods and assigning average
strategies as the overall behavior of each neighborhood.

Given the current state of art, the challenge still lies in the computational repres-
entation of aggregate behaviors, the way they would be perceived by the agents and
the way these perceptions would be incorporated into the decision making process of
the agents. The problem becomes even more challenging when we see that there are
multiple groups, even with conflicting aggregate values, all being taken into account
by individuals.

In order to represent aggregate values belonging to groups of agents in a simula-
tion we present a framework for agent decision making where agents are exposed to
different options for performing a behavior. The number of agents performing each
option in every group the agent belongs to, influences the decision of that agent.
Inspiring from TRA (Theory of reasoned Action) Ajzen and Fishbein (1977), we use
the concept of intention that would lead to behavior in agents. Attitude toward a
behavior and social pressure are the factors that influence intention. To illustrate
how this framework can be applied, we use an example case of consumer lighting.

The structure of this chapter is as follows. In Section 6.2, we present the concepts
that we will be using to define our proposing method. In section 4.4 we explain our
proposed method. In Section 6.3, we will explain a working example based on our
proposed method. In Section 8.8 we will finish with some discussion and concluding
remarks.

3.2 Background

In order to find out how the aggregate behaviors of a system influence agent decision
making, we need to (1) formalize how agents’ decision is influenced by external
factors, and (2) select a method for decision making that consider the aggregated
behaviors of systems as a variable in the decision making process of individuals in
addition to other factors that influence the decision.

The literature on opinion dynamics can helps us explain how the agents are
influenced by external factors. Besides, for explaining the decision making process
of the agents, we will use the theory of Reasoned Action.

3.2.1 Opinion Dynamics

Deffuant et al. (2000) and Hegselmann and Krause (2002) present two well cited
continuous opinion dynamics models. In the first one, Deffuant and his colleagues
present a model in which an agent readjusts his opinion with other agents when the
differences between his opinion and one of his neighbors opinion is smaller than a
threshold. In the second model, Hegselmann and his colleagues develop a model
in which, in every iteration, agents take into account the opinion of all neighbors
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instead of one agent. None of these models consider the effect of group opinion as a
whole on the formation of agents opinion. Since continuous opinion dynamics models
see communication between agents as the source of changes of opinion Urbig (2003),
they propose that opinion of agents change through the individual communication
with other agents. Therefore, they do not consider the effect of groups opinion or
opinion at the macro level of system (society) on the behavior of agents.

Among the discrete opinion dynamics models that have received more attention
such as Ising modelGalam et al. (1982), voter model Holley and Liggett (1975),
majority rule Galam (2002), Social impact theory Nowak et al. (1990), and Sznajd
model Sznajd-Weron and Sznajd (2000), only Galam (2002) consider the effect of
group opinion on the opinion formation of agents. Galam (2002) present a model
in which agents take the opinion of majority instead of modifying their opinion
through the individual interaction. However, Galam (2002) present the effect of
group opinion in a linear way. For instance, there is no difference between the effect
of a group with 99 percent similarity and a group with 51 percent on the formation
of an agents’ opinion.

3.2.2 The effect of group behavior on individuals

Social pressure is the influence of groups’ behavior that encourages an agent to
change his behaviors to follow the group norms. First attempts to study the effect
of groups behavior on individuals behavior have been done by Asch (Asch, 1956) and
Sherif (Sherif, 1936) where people were found to follow the rest of group opinion.
Asch (1956) called this phenomena social pressure. Cialdini and Goldstein (2004)
describe social pressure (conformity) as the act of changing one’s behavior to group
norms.

Aronson et al. (2005) explain that in many situations where individuals are un-
certain how to act or think, they refer to the behavior of others to figure out what
is going on in the situation and what is right to do. Deutsch and Gerard (1955) ar-
gue that ’Informational social influence’ is a psychological phenomena where people
follow the action of other people in order to do the correct action. Aronson et al.
(2005) argue that “Informational social influence” occurs when individuals see other
people as a source of information.

Besides the informational social influence, the “normative social influence” is
the second psychological phenomena that social psychologist defined as the source
of conformity. Normative social influence is conformity in order to be liked and
accepted by others (Deutsch and Gerard, 1955).

Individuals don’t always follow the behavior of groups. In the following situations
the effect of social pressure is more powerful than normal situation Aronson et al.
(2005):

• Ambiguous situation Ambiguity is the most crucial parameter that increases
intention of people to follow others behavior.

• Crisis situation In the case of Crisis situation as people do not have time to
evaluate multiple option they will look at other people actions.

27



3. Opinion Dynamics Modeling - Case Study

• When Other People Are Experts When people are not expert in a topic they
will follow experts.

• When People are Member of a Group Self-categorization theory Turner and
Oakes (1986) explains that individuals are more likely to follow the group be-
havior when they perceive collections of people (including themselves) as a
group.

In the next section we will classify the influential parameters of social pressure
and explain how social pressure along with internal attitude determine the behavior
of agents in a society. In order to do that we use the theory of reasoned action
(TRA).

Theory of reasoned action Ajzen and Fishbein (1977) is an attitude-behavior the-
ory. It explains that when a person has the intention to do an action, he/she should
be in favor of doing it (attitude). Furthermore, the person may feel social pressure
to do the action(subjective norm). Attitude and norm will shape the intention of
individuals towards a behavior. Figure 3.1 presents the conceptual framework of
TRA.

Figure 3.1 – The theory of reasoned action (Ajzen and Fishbein, 1977).

3.3 Modeling the Effect of Multiple Social Groups

Inspired by TRA, in this section we propose a framework for decision making process
of agents which follows the idea that the behavior of agents is the consequence of
their decision making process which is influenced by two parameters: social pressure
and attitude towards the alternative options of a behavior. The framework classifies
multiple parameters which influence the formation of attitude and the power of social
pressure on the behavior of agents. As it is depicted in Figure 3.2 decision making
of agents are influenced by the attitude and social pressure from multiple groups
towards the multiple option of a behavior.
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In the following, we explain every part of the model and their relationship in
details based on social psychology literature.

Figure 3.2 – Agent decision making with group influence

3.3.1 Attitude

Attitude towards a behavior is individual’s positive or negative feelings about per-
forming that behavior. When agents have multiple option to choose from, they will
evaluate different attributes of every option and perform one with higher advantage
and lower disadvantage. In reality, individuals do not give same weight to the dif-
ferent attributes of options. For instance, while a person may see an attribute of an
option as an advantage, it may be seen as a disadvantage by another person.

Let n be the number of attributes of option j that agent i will be faced to perform
one action. AttV alue1 and AttWeight1 are value and weight of Attribute1 from the
point of view of agent i. Ai is the attitude of agent i towards option j.

Aj
i =

n∑
x=1

AttV aluejx ∗AttWeightjx (3.1)

The value and weight that agents give to the different attributes of an option
change due to interaction and communication between agents. During communica-
tion agents share their information and experiences which result in changes in the
value and weight given to options. Consequently, the attitude of agents towards
different options change.
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3.3.2 Social Pressure

Social pressure is the influence of groups’ behavior that encourages an agent to
change his/her behaviors to follow the group norms.

Norm refers to what is commonly done (what is normal) or to what is commonly
approved (what is socially sanctioned). Despite the common label, these norms have
different effects on the behavior of individuals. Cialdini et al. (1991) point out that
“Descriptive norm” refers to what people do and “injunctive norm” refers to what
people approve. Schultz et al. (2007) argue that descriptive norm information

in a society influences the behavior of people.

We use the descriptive norm information (information about the number of
people who perform a behavior) as the main parameter that shapes social pres-
sure towards a behavior. Since in reality we are influenced by different groups,
characteristics of each group is an important parameter which determines the power
of social pressure. Furthermore, some agents are more influenced by social pressure
due to their own internal characteristics which has to be taken into account when
calculating the power of social pressure.

In the following, we present group characteristics and internal properties of agents
which influence the power of social pressure.

Agent properties

Since in society not every one conforms to social pressure some researchers study the
effect of different factors that affect the tendency of individual to conform with soci-
ety. In our proposed framework we call these kind of factors “Influential Properties”
of agents. As an example of such properties, people who belong to individualistic
cultures, such as American and British cultures, are more likely to behave inde-
pendently than those from collectivist cultures such as China and Japan (Bond and
Smith, 1996). In collectivist cultures, group decision making is highly valued, while
in individualistic cultures people are more concerned with their independent success
than the well-being of their community. Besides the culture, gender and age also
influence the tendency of people to conform with groups (Eagly and Chrvala, 1986).
Women and younger people are more likely to follow the group’s behavior than men
and older people. Influential Properties of agents determine to what extent agents
stick to their own attitude or be influenced by the social pressure.

Group Characteristic and states

Individuals are influenced by two kinds of groups in their decision makings. Those
that they belong to and have direct connection with (e.g, family, colleagues, neigh-
bors) and those groups that the agents don’t belong to, but indirectly influence their
behavior (e.g, movie stars, political groups). Although, the effect of both kinds of
groups (direct, indirect) on the behavior of agents is almost the same, for more clar-
ity, we formulate the effects of them separately. Every group has different level of
influence on the behavior of individuals which is dependent on the characteristics of
that group:
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• Unanimity when the behavior of the rest of the group is unanimous, individuals
are more likely to follow the group behavior.

• Cohesion groups with high cohesion result in more conformity of individuals.

• Status individuals are more interested to follow high status groups.

In the case of direct groups, as agents have more information about the char-
acteristics of the group and the choice of other group members, all the mentioned
characteristics hold and thus make direct groups more influential. In Formula 3.2,
DEf ik presents the effectiveness of direct group k on the behavior of agent i.

Let m be the number of direct-groups which surround agent i. The direct social
pressure (DSP) that forces agent i to choose option j is determined by Formula
3.2. In every group the number of agents which have chosen option j is multiplied
by the effectiveness of this group from the point of view of agent i determines the
social pressure of that group towards option j. Summation of every group pressure
towards option j on agent i calculates DSP j

i .

DSP j
i =

m∑
k=1

DEf ik ∗ (N j
k/Nk) (3.2)

In the case of indirect-groups, the effects of these groups is mostly due to imit-
ation of agents from these groups. The status of groups and the average number of
groups members which adapt a option are most important parameters which shape
the effect of these groups towards an option.

Let T be the number of indirect-groups which influence agent i. The indirect
social pressure (IDSP) that encourage agent i to choose option j is determined by
Formula 3.3. The average number of agents which have chosen option j is multiplied
by the importance of a group from the point of view of agent i determines the social
pressure of that group towards option j. IDEf ik is the effectiveness of indirect-group
k on the behavior of agent i. Summation of every group pressure towards option j
on agent i calculates IDSP j

i .

IDSP j
i =

T∑
k=1

IDEf ik ∗ (Avejk) (3.3)

Besides the two mentioned groups that influence agents opinion, the opinion of
agents may be influenced by individual interaction. Every individual can be assumed
as a group with one member. Therefore, the only parameter that influences an
individual is the status that this individual has from the point of view of the agent.

3.3.3 Decision Making

Although TRA is aimed to study the intention of people towards a behavior, it can
be applied to situations where people have multiple choices (Sheppard et al., 1988).
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Individuals form intentions towards each alternative based on their attitude and
subjective norm towards that alternative. The alternatives will be compared and
the alternative with the strongest intention will be selected.

In our proposed framework, we assume that every agent has multiple choices to
perform (e.g., voting for group A or group B, Buying LED lamp or incandescent
lamp). Agents will form their intention towards each alternative based on their
attitude and social pressure. They will then compare the strength of their intentions
towards each of the alternatives and will choose and perform the alternative with
the strongest intention.

Intention of agent i towards option j is determined by Formula 3.4. Attitude

Weight (AW) and Direct Social pressure Weight (DSPW) and Indirect

Social pressure Weight (IDSPW) determine how much an agent follows his or
her attitude or is influenced by social pressure of direct-groups and indirect-groups.
We already mentioned that Influential Properties of an agent and the situation
that an agent is in (e.g, ambiguity and crises) influences the amount of “Attitude
Weight” and “Social pressure Weight”.

Iji = AW ∗Aj
i +DSPW ∗DSP j

i + IDSPW ∗ IDSP j
i (3.4)

3.4 Working Example: Consumer Lighting Choices

As an example,we take a consumer lighting case to explain our approach for modeling
the effect of group behavior on the decision making of agents. This example is chosen
because of the high level of uncertainty in choosing between different kinds of lamps
specially because of the emerging technologies in the market.

Case description Developments in electric lighting technology have increased the
life time of the bulbs and their energy efficiency (Gendre, 2003). For example, over
98% of the electricity used in the traditional incandescent bulbs is converted into heat
and not into light. However, Compact Fluorescent Lamp (CFL) or Light-Emitting
Diod (LED) are nowadays the more efficient alternative lighting products. Nonethe-
less, consumers have only partially adopted CFL and LED technology because of
a number of obstacles (Menanteau and Lefebvre, 2000). First, CFL and modern
LED saving lamp are characterized by high up-front costs for consumers and poor
light quality. Second, halogen lamp are more attractive than CFL and LED lamps
because they fit in popular designs and have favorable color and size.

Model Specification We model the changes in behavior of 2000 agent towards
three options (buying Light Emitting Diod (LED) lamps, Compact Fluorescent
Lamp (CFL) lamps, and traditional incandescent lamps). Attitude of agents towards
these three options can be calculated based on the AttV alue and the AttWeight
every agent gives to the attributes of lamps such as price, light quality, and effi-
ciency. Since this chapter aims to study the effect of group behavior on the behavior
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of agents, we assume that attitude of agents towards the three options will not change
during the simulation and for every agent we assign three random numbers (uniform
number between 0 and 1) as attitudes toward the three options. We assume that
in the sake of social pressure agents will choose the option with highest attitude.
Then they will shape their intention which is composed of their attitude and social
pressure from the different groups towards the options.

In this example agents are influenced by the states of two direct-groups (family,
and colleagues) and by two indirect groups (e.g, movie star) with different effect-
iveness. In order to evaluate the behavior of agents, we run the model with differ-
ent effectiveness of groups (0.4, 0.6) which is similar for direct and indirect groups
and different weights that agents give to their attitudes (AW) and social pressures
(DSPW, IDSPW). We assume SPW as the summation of DSPW and IDSPW as
the weight that an agent gives to the social pressures from both direct and indirect
groups.

Model Results At the beginning of the simulation the number of people that have
chosen every kind of lamp is almost equal. Figure 3.3 presents the effect of different
AW and DSPW and IDSPW on the behavior of agents. As it is depicted, when
AW is higher than SPW (DSPW+ IDSPW) although some agents at the beginning
of the simulation modify their opinion due to social pressure but a number of them
will stop to converge to a specific opinion and will keep their opinion. The increase
in AW, results in more agents keeping their original opinion which is based on their
own attitude.

Figure 3.3 – The number of people choosing different kind of lamps with AW higher than

SPW

As it is depicted in Figure 3.4, increasing the SPW will result in the convergence
of agents behavior to a certain opinion. The increase of the weights of social pressure
will result in agents converging faster to a specific opinion.

In the case of equal AW and SPW , agents will converge to a specific opinion
during a longer time of simulation in comparison with the cases that SPW is higher
than AW .

33



3. Opinion Dynamics Modeling - Case Study

Figure 3.4 – The number of people choosing different kind of lamps with SPW higher than

AW

3.5 Discussion and Conclusion

In order to explore the role of aggregated states of systems on the behaviors of
agents, we proposed a method which presents how the decision making process of
agents is influenced by the overall behavior of groups.

In agent-based modelling, it is common that agents do not take into account the
aggregated behaviors of system and mainly focus on interactions or environmental
states. However, in reality agents are influenced by the overall behavior of not only
the system as a whole but also groups of agents whether they belong to them or no.
In fact, the system can be considered as the biggest group that the agent belongs
to. These groups may overlap. Furthermore, the overall behaviour of these groups
may even be in conflict and thus the agent would need to prioritize the group that
is most influential to her.

In order to implement the role of group behaviors on the behavior of agents, we
proposed a conceptual framework that is mainly inspired from Theory of reasoned
Action (TRA). We also used the literature on opinion dynamics to explain how
agents choose from various options based on their own attitudes as well as the social
pressure coming from groups.

To build this framework, we made several assumptions based on the psychological
literature we studied. First, we assumed that the number of people in every group
that has chosen a specific option will determine the amount of social pressure towards
that option. Second, we also assumed that agents have perfect information about
the behavior of other agents. However, we are aware that in reality, individuals may
underestimate or overestimate the prevalence of a behavior in a society.

As this chapter aimed to study the effect of groups behavior on the behavior
of agents, we did not focus on the role of interaction between agents. Interactions
result in changes in the value and the weight of different options which consequently
influences agents’ decision. Besides looking more into interactions, in our future
work, we will also look at how agents would only look at groups and individuals
with close attitude and intention, referred to as bounded confidence (Deffuant et al.,
2000).

34



Part II

Combining SDM tools with
ABM at the Conceptual

Modeling Phase

35





4
Modelling Environments in ABMS: a

System Dynamics approach

This chapter is based on Hesan et al. (2015)

4.1 Introduction

Agent-based models provide insights into the social systems they represent. A social
system consists of social and physical structures, external to the actors, that facilitate
or constraint actors behaviors and interactions. These components, and their link
with the agent however, are often implicit in agent-based models.

The social and physical components of an agent-based model make up the envir-
onment which is generally defined as independent abstraction providing the condi-
tions for the agents to exist, enabling access to resources and facilitating interaction
between agents (Weyns et al., 2007). Even though, environment is commonly viewed
as a purely spatial entity in ABMS literature (e.g., in Netlogo), some researchers have
defined the social and physical aspects of agent-based models (Gilbert and Terna,
2000; Pavon et al., 2005; Garro and Russo, 2010a; Ghorbani et al., 2013). For
example, Ghorbani et al. (2013) defines physical environment in terms of physical
components (e.g., computer, street, house). These components are connected to each
other and to the agents. The social environment in these models is defined on the
basis of institutions (e.g., eating norms, driving rules). These concepts define the en-
vironment around an individual agent. The limitation of their conceptual definition
however, is in defining environment variables, whether social and physical, that are
global to the whole simulation, influencing all agents behaviors and being influenced
by them. This limitation also holds for other research in the literature because in
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ABMS, the system is generally viewed as bottom-up and global variables that define
the overall state of the system are not explicitly defined.

Besides the lack of definition for global state variables, another drawback of the
current practices for modeling agent environments, is that the interrelation between
the global level and individual level is also not captured. According to Coleman’s
bathtub model Coleman (1986) however, global variables influence the perception of
individuals in a social system, which in turn affect their decision making behavior
that changes the initial state of the environment. Therefore, to provide a compre-
hensive definition of environment in agent-based models, we need to have an explicit
definition of social and physical environment variables that show the global state
of the system. In addition, we also need to capture the interrelation between these
variables and the agents.

To define global state variables and their interrelation with the agents, we propose
to look at the variables and relations in terms of stocks and flows. For example, if
food resource is an environment stock, we define flow of food that goes to the agents
which in turn influences the availability of food in the environment. Likewise, a
social environment stock such as fashion, affects agents perception about a certain
product, and the agents behavior in turn determines what stays in fashion. In fact,
this can also be considered as an indirect interaction between agents through the
environment (Gilbert and Terna, 2000; Weyns et al., 2007).

In this chapter, we propose an approach to model global environment variables
and their interrelation with agents using a system dynamics perspective. The reason
we propose this solution is that system dynamics views the system in terms of
aggregate values (Sterman, 2000). Tracking these type of values would help us
study the influence of individual behaviour on global parameters of interest (e.g.,
resource availability, general acceptance of a product). These parameters show the
general behaviour of a social system which are commonly the points of interest for
many simulations and policy problems in general.

The structure of this chapter is as follows. In Section 6.2, we look into environ-
ment modeling more in depth, we explain system dynamics and present the concepts
that we will be using to define our modeling approach. In Section 4.3, we present
an example case which we will be using in Section 4.4, to explain our proposed ap-
proach. In Section 4.5, we will explain the consumer lighting model. In Section 8.8
we will finish with some discussion and concluding remarks.

4.2 Background

4.2.1 Environment in Agent Systems

In ABMS, agents interact with each other and with the environment to perform
tasks that represent actual events in the system. Although the concept of agent as
a social entity is relatively clear for modelers, the concept of the environment and
its function and responsibility remain unclear (Bandini and Vizzari, 2007).

The common approach in ABMS considers environment as a spatial entity
that facilitates interaction between agents and enables different forms of networks
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between agents. In fact, Amblard and Mailliard (2007) emphasize that environment
in ABMS is a first order entity when the spatial dimension are important to be con-
sidered. Furthermore, Gilbert and Terna (2000) introduces environment in ABMS
as a physical environment that imposes restriction on the location of agents. This
kind of environment can be built by defining a 2D or 3D virtual space which is
especially important in cases where spatial dimension is important (e.g., land use
modeling). Besides the spatial definitions of the environment, Bandini and Viz-
zari (2007) investigate the role of environment in agent-based models by assigning
regulation functions to the environment.

In contrary to ABMS, in multi-agent systems (MAS) literature, many studies
have been conducted that indicate the role of environment as a first-class abstraction
for the modeling of MAS (Weyns et al., 2007). Some of these studies propose con-
ceptual models of the environment similar to the work of Ghorbani et al. (2013) for
ABMS (e.g., Amblard and Mailliard (2007)). Bandini et al. (2005) proposes a multi-
layered framework called: Multi Agent Situated System (MMASS) which provides
a representation of the environment. In MMASS, an environment is modeled as a
set of interconnected layers so that every layer’s structure is an indirect graph of
sites. These layers can be abstraction of the physical environment or can also be
related to the logical aspects. In addition, connections can be specified between
layers. Ricci et al. (2006) proposes a model of agents and artifacts. Artifacts are
dynamically constructed and shared by the agents. Their research eventually lead
to the CArtAgo (Common Artifacts for Agents Open framework) for prototyping
artifact-based environmentRicci et al. (2007) which emphasizes the functionality of
tools and objects (artifacts) and how agents work with these objects and tools in a
system.

In both ABMS and MAS literature, besides the spatial representation, environ-
ment is viewed and used at the level of individuals through the definition of entities
such as artifacts, physical components, norms and institutions. Such physical and
social components are recognized by individual agents as entities that they can use
or posses, or ones that for example restrict them. Therefore, although these concepts
are external to the agents, they are viewed locally by them and they do not represent
the global state of the environment in terms of aggregate variables (e.g., sum of all
light bulbs in society, general perception about LED lamps). Nor do these concepts
provide insights about how aggregate values in the environment would influence the
agents or be influenced by them.

4.2.2 System Dynamics

System dynamics modeling is an equation-based approach for constructing simula-
tions especially at the macro level. We use the general concepts of system dynamics
modeling Forrester (1961a); Sterman (2000), namely stock and flow to extend the
conventional environment in agent-based models.
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Stocks

represent specific elements of a system whose values depend on the past behavior of
the system. Stocks accumulate inflow minus outflow and their value represents the
state of system.

Flows

represent the rate that changes the value of stocks in a system in every instance of
time. Flows can be either inflow, increasing the stocks value or can be outflows,
decreasing the stocks. The value of stocks are changed by their related flows.

The concepts of stock and flow are familiar concept that are being used in our
daily lives. For instance, bank balance is a stock that is increased by the flow deposit
and decreased by the flow money expenditure.

A global state variable of an agent-based environment can also be defined using
stocks and flows at the macro level because the aggregation of agents’ behaviors
results in emergent states that are at a higher level than the agents themselves.

4.3 Working Example

As a running example,we take a consumer lighting case to explain our approach for
modeling global state variables and their interrelations with the agents in ABMS.

Developments in electric lighting technology have increased the life time of the
bulbs and their energy efficiency (Gendre, 2003). For example, over 98% of the
electricity used in the traditional incandescent bulbs is converted into heat and not
into light. However, Compact Fluorescent Lamp (CFL) or Light-Emitting Diod
(LED) are nowadays the more efficient alternative lighting products.

Nonetheless, consumers have only partially adopted CFL and LED technology
because of a number of obstacles (Menanteau and Lefebvre, 2000). First, CFL and
modern LED saving lamp are characterized by high up-front costs for consumers
and poor light quality. Second, halogen lamp are more attractive than CFL and
LED lamps because they fit in popular designs and have favorable color and size.

Different studies have been conducted about how different policy may change
the people’s preference to buy more efficient lamp (Chappin, 2011). The European
Union’s phase-out of incandescent lighting is a clear strategy that will change the
sector. It involves regulations designed to remove the cheapest forms of inefficient
household lighting from stores. Afman et al. (2010) developed an agent-based simu-
lation to study adoption of LED and CFL lamp technology by consumers in a virtual
society. This model encompasses consumers that buy lamp, based on the available
luminaries in their houses, their personal preferences and the preferences of their
acquaintances. Furthermore, retailers sell different lamps and producers produce
lamps in the model. The behavior of all these agents is affected by the government
agent who implements different policies in the system with the goal of moving the
society towards more efficient lighting choices. Afman et al. (2010) investigate three
policy in their work: banning light bulbs, taxing light bulbs, or subsidizing energy
efficient alternative.
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In this chapter, we explain how our proposed method can be used to model global
environment variables in an agent-based model of the consumer lighting example in
order to study the effect of various policies on the global outcomes of the system.

4.4 A System Dynamics Agent Environment

In conventional ABMS, environment refers to the spatial space in which every agent
has a location or is connected to other agents via a network (Gilbert and Terna,
2000). This definition however, does not provide an explicit representation of social
and physical variables that represent the global state of the system.

We use the definition of social and physical structures in Ghorbani et al. (2013),
to extend environment for ABMS by defining global variables and specifying their
interrelation with the agents in the system.

Physical Environment The physical environment is composed of physical com-
ponents (Ghorbani et al., 2013). Physical components have properties such as shape,
color and price. These physical components may be used by agents to perform ac-
tions. We define physical state variables as variables that show the global state of
the aggregation of such physical components. Therefore, while at the individual
level, a physical component such as a lamp can be produced, bought, and sold by
the agents, at the global level, the sum of all these lamps, which is affected by the
same agent actions, influences their availability in the market or their popularity.
For instance, when a producer agent produces a lamp, he decreases the amount of
different raw material (stock) and increases the number of products in his inventory
(stock).

Social Environment We consider institution as the building block of the social
environment (Ghorbani et al., 2013). An institution is a rule, norm or strategy that
is followed by agents in a simulation. We use institutions as flows that change the
social state variables. Therefore, to define a social state variable, we define a variable
that is influenced by a number of institutions. For example, if an institutional rule
says that “the government must give subsidy to producers who produce LED lamps”,
we define a social state variable that has an inflow of subsidy based on this institution
and name it as government support. The rule “the government bans production of
light bulbs” also relates to this social state variable. As another example, if a norm
in the society is that “consumers talk to their neighbors about their experiences with
lamps”, a social state variable that would take this norm as a flow, is awareness.

Both social and physical state aspects of the environment are defined as stock
and linked to agents as we will explain in the next section. While the physical
elements of an environment are tangible, the social elements are the less tangible
part of the system. For instance, in our working example awareness about a product
in society is an intangible part and the amount of products which are available in
shops or market are the tangible part of the environment. The physical and social
state variables are both essential for modeling and testing policies which are in fact
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the goal of many agent-based models. We will discuss this issue later on in the
chapter.

Another point to mention here is that besides the immediate outcome of local
interaction between agents (e.g., immediate outcome of buying lamp = ownership of
lamp by buyer), agent interaction may also have global outcomes that are important
to capture as state variables. For instance, the awareness variable defined previously,
is the global result of agents communicating their opinion about lamps among each
other.

The Conceptual Model

Figure 4.1 shows the UML class diagram of our proposed model of the environment.
For the purpose of this chapter, we assume that the physical components owned by
the agents or the institutions they follow are defined in the agent class 1, in order to
have a clearer focus on how we define the state variables and how they are connected
to agents.

Figure 4.1 – The class diagram of the system dynamics environment

The environment consists of agents, stocks and flows. There are two types of
stocks: physical state variable and social state variable. Flows are the means to
connect these variables to the agents. The agents are the active entities whose

1Following the definition of Ghorbani et al. (2013), physical components and institutions are
external to the agents. However, since in this chapter we are making a distinction between local
and global entities, for now, we assume that all the local entities are within the agents.
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actions, and perceptions of environment lead to changes in the physical and social
stocks of the environment.

The state of the environment in every instance of time is a series of stocks’ value
that can be characterized as St = {s1t, s2t, s3t, ...}. For example s1t is the value
of stock number 1 at time t. Agents perceive the environment state and perform
actions based on their decision mechanism. Agents’ actions will change the value
of stocks through the flows. We have two kind of flows: inflow, which increase the
value of stocks, and outflow, which decrease the value of stocks. We can represent
environment’s state as the following:

{s1t+1, s2t+1, s3t+1, ...} = {s1t +
∑
i=1

inflow1ai −
∑
j=1

outflow1aj , s2t+∑
i=1

inflow2ai
−
∑
j=1

outflow2aj
, s3t +

∑
i=1

inflow3ai
−
∑
j=1

outflow3aj
, ...}

(4.1)

Figure 4.2 illustrates how the state of the environment is changed by the agents
activities. We use the consumer lighting example in the next section to show how
this method works in more detail.

Figure 4.2 – Perception and Action Sequence

4.5 Consumer Lighting Model

Figure 4.3 illustrates the consumer lighting model. In this model, the rounded
rectangles represent the stocks, the arrows show the flows and the dashed arrows
show where the perceptions of the agents from the environment is coming from.

There are four types of agents in the model: consumer, retailer, producer and
government. Awareness, government support, retailer price and produ-

cer price are the social state variables in the system. Available lamps in shops,
available lamps in market and lamps in society are the physical state vari-
ables in the environment of the consumer lighting model. The goal of the consumers
is to buy lighting products in order to have pleasant light in their house. The goal
of the producers is to produce different kinds of lamps to offer in the market in
order to have income. Retailers will sell lamps to consumers in order to increase
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their income. Government wants to reduce electricity consumption through differ-
ent policy implementations. The agents actions which are defined according to their
goals affect the environment’s flows which in turn result in changes in the state of
the system (environment stocks)

Figure 4.3 – Lighting Case Model

Consumers consider several criteria in their lamp purchase decision: preference
for subjective lamp qualities (color, price, efficiency, and life time), opinions (per-
ception) on the lamp’s characteristics (lamp model, brand, and technology type),
and popularity of LED lamps which is defined as awareness in the environment.
Consumers buy lamps which declines available lamps in shops and they will
change the awareness about the new efficient lamp by word of mouth. Consumers
are influenced by the price of products, and awareness about the product in the
whole environment.

Retailers will decrease available lamps in market by buying products and
transferring them to shops. They will change the retailer price in shops and they
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will also affect the awareness about a product in the environment by advertising
(shown as a flow between retailer and awareness). producer price influences
the retailers decision making process about setting a price on the lamps in the
shop.

Producers increase the available lamps in market by producing more lamps.
They will change the producer price and influence the awareness about a product
in the environment by advertising, similar to the retailers. The amount of
government support is changed by the government by providing subsides to the
producers. Besides, the amount of government support will encourage produ-
cers to produce more subsidized products. There is also a link between lamps in

society and the producer which we will discuss later.

Government will intervene in society to support efficient lighting products. The
link between the government and awareness shows that the government can in-
crease awareness in society by some activity like advertising. In addition, the
government increases available lamp in society by buying efficient lighting
products for public area which triggers some important dynamics in the consumer
lighting system.

Dynamics of the Model

Feedback is an important feature of a dynamic system: a system whose behavior
changes over time (Aström and Murray, 2010). The notion of feedback refers to a
situation in which two or more variables of the system are influencing each other
which may lead to growth or decaying behavior. As we are studying the dynamic
behavior of the lighting case, it is worthwhile to study the feedbacks which determine
the dynamic behavior of system.

The first clear feedback happens between consumers and awareness in society.
More awareness in society about efficient products results in increased popularity
of the products, which will in turn increase the awareness in the environment. The
second feedback is between consumers and the available lamp in society either
in consumer’s home or in public places. Ubiquity of a technology in society can
influence the preference of consumer about a product. Therefore, if the government
buys efficient lighting products, this triggers the feedback between amount of lamp
in society and the preference of consumers.

One of the obstacles that discourages people to buy new efficient lamps is their
high up front costs. Since people do not buy these new costly products, producers
cannot produce them in an economic scale. Economic scale has a significant effect
on the price of products. The cost per unit of product decreases with increasing
scale since the fixed costs are spread over more products. The final important
feedback that we will mention happens between consumers, the available lamps

in society, the producers, and the retailers. Due to economic scale, when
people buy more products, the price will go down which will then encourage people
to adopt new efficient lamps instead of non-efficient ones.
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Modeling Policies

As previously mentioned, many agent-based models are built for testing policies.
Policies are implemented with a set of policy instruments which can be social (e.g.,
speed limit rule) or/and physical (e.g., speed camera) (Ghorbani et al., 2014).
Policies also have goals which are usually aimed at achieving desired global out-
comes through individual behavior (e.g., decrease number of deaths by car acci-
dents) (Ghorbani et al., 2014). Both the instruments and the goals are covered in
an agent-based model that is extended with the state variables.

Afman et al. (2010) propose three policies: banning light bulbs, taxing light
bulbs, or subsidizing energy efficient alternatives. All these three policies were aimed
at intervening in the supply part of the system. Along with these three policies, we
propose two new policies in order to influence the demand part of the system: (1)
increasing the awareness about the new lighting products by advertising and (2)
increasing the number of lamps in society by installing efficient lamps in public
areas. These policies can activate the word of mouth dynamics and economics scale
dynamics which we discussed in the previous section.

4.6 Discussion and Conclusion

In this chapter, we proposed a method for modeling the global aspects of the envir-
onment in agent-based models and capturing the interrelation between the global
states and local entities including the agents. We illustrate this method by applying
it to a consumer lighting scenario.

In ABMS, the environment in which agents behave and interact in, is commonly
considered as a spatial space to visualize agents and their interaction in the system.
Nonetheless, some researchers define an agent-based model in terms of the social
and physical aspects surrounding the agents, influencing their behavior and being
influenced by them. However, even when the social and physical aspects are defined
in the agent-based model, their level of abstraction is at the individual level.

The global aspects of the environment are essential for studying social systems
because they provide insight into how individuals influence the system as a whole
and how the global state of the system is perceived by the agents and influences their
behavior. Therefore, in this chapter, we proposed a method to add global social and
physical variables to agent-based models in order to address this requirement. Since
system dynamics modeling also has a global perspective on the system, we were
inspired from this modeling approach in our proposed method.

The proposed method contributes to ABMS is several aspects. Firstly, since we
extended the definition of physical components and institutions in Ghorbani et al.
(2013), our definition of an agent environment now has two levels: one at the agent
level with concepts like house, driving norm etc, and one at the global level where
aggregate concepts such as general awareness are defined. We have also defined the
relationship between these two levels to show how the local environment can lead to
aggregate states in the system. Secondly, the global outcomes of agent interaction
can also be captured with our proposed method, which provides further insights
into how individuals influence the system as a whole. Thirdly, the method provides
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enhancement in implementing policies and testing them. As mentioned previously,
with the global state variables introduced in this chapter, the modeler can study
how individuals influence the goal of a policy which can in fact be modeled as (a)
stock(s). Of course, agent-based modeling platforms such as Netlogo and Repast
already facilitate the definition of global variables. However, our contribution lies
in the fact that we are using system dynamics as the method to implement such
variables. Fourthly, by providing a visual representation of the environment as
illustrated in Figure 4.3, it becomes easier for modelers to study the interrelations
and feedbacks in the system.

One final contribution of this method is that since we are taking two fundamental
elements of system dynamics modeling (stocks and flows), ABMS can become more
within the reach of the system dynamics community. Although system dynamics
modeling, as a macro-level approach, is traditionally constructed by stocks that are
changed by flows, we propose that the concept of stock and flow is compatible with
agent based modeling and can be integrated with the concept of agent. In practice,
system dynamics modeling assumes agents to be all homogeneous and therefore takes
one representative for the whole population. However, with our proposed method,
system dynamics modelers can use the advantage of considering heterogeneous agents
and different decision making processes.

In this chapter, we viewed agents as black boxes and did not go into the details of
decision making processes or local interaction. However, it appears that the concept
of stock and flow can also be considered in the decision making process of agents
and their local interactions. Therefore, our next goal is to find out how the internal
perception of the agents and their decision making behavior can be captured through
this perspective.

47



4. Modelling Environments in ABMS: a System Dynamics approach

48



5
Mechanisms in Agent-based Models

5.1 Introduction

Modeling and simulation is an powerful method for designing, and studying com-
plex systems from all disciplines. Shannon (1998) defines simulation as the process
of conducting experiment with a model for the purpose of understanding, analyzing,
or examining different strategies for the operation of the system. Several methodo-
logies have been proposed for a simulation study . Despite the differences between
the terms, a generic procedure for a simulation study can be broken down to five
main phases: Conceptual model building, Computer implementation, validation,
Experimentation (Pidd, 1998).

Conceptual modeling is the first and probably the most critical phase - of a
simulation study. Robinson (2006) defines Conceptual modeling as ”the abstraction
of a model from a real or proposed system”. Robinson (2008) argues that conceptual
modeling is most important phase of a simulation project which influence all other
aspects of the study, in particular: ”the data requirement, the speed with which the
model can be developed, the validity of the model, the speed of experimentation and
the confidence that is placed in the model results”. In general, conceptual models
presents an abstract view of systems without referring to the implementation de-
tails.A Conceptual model describes the elements, relationships, and assumptions in
modeling a specific system (Robinson, 2006). A conceptual model may also facilit-
ate the communication between dierent stockholders involved in a simulation study
which consequently help in the validation of models and the simulation results (
Pidd (1998), Robinson (2006)).

Although, the role of conceptual modeling is vital in the process of simulations,
it is acknowledged as least understood phase of a simulation study (Robinson, 2006;
Van der Zee et al., 2010). There is little study on a standard procedure and tool
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for this purpose. Just recently, the conceptual modeling has received some atten-
tion; still it suffers from the lack of a standard in procedure, notation, and tool.
To cope with this challenge, some studies advocate using some tools which have
been developed in Information Systems domain (Guizzardi and Wagner, 2012). Un-
like the M&S, the field of Information systems and software engineering developed
many modeling standards such as Unified Modeling Language (UML) for developing
conceptual models.

Agent-based Modeling and simulation (ABMS), as a new simulation method- also
suffers from the lack of a standard conceptual modeling tool. Although the model-
ing is part of the name of ABMS, in practice, often modelers overlook the modeling
phase and jump from their mental model to implementation phase. ABMS tools
has a limited support for the conceptual modeling and conceptual design of models.
Guizzardi and Wagner (2012) address this problem by arguing that integration of
conceptual models with execution information of simulation tools prevent replicab-
ility of the models. Sansores and Pavón (2005); Heath et al. (2009) state that a
proper conceptual model help better understanding of the systems and contributes
the process of validation of models.

Determining the causal links and the mechanism involved in a phenomenon is
an essential part of a scientific study (Hedstrom and Swedberg, 1998; Little, 1991).
Highlighting the causal mechanism involved in the system at the conceptual mod-
eling phase will increase the understanding of the system and it can provide the
opportunity for molders to involve stockholders in the core of simulation process.
At the same time, highlighting the causal mechanisms will contribute to a better
description of agent-based models. Furthermore, knowing about the mechanisms
and cause and effects relations at different level of a system will help to interpret
the holistic behavior of a system which consequently leads to a better policy design.
Common practice in ABM, often do not specify the causal links and mechanism
involved in the a system separate from the programming code. Consequently, causal
links and mechanism are implicit in the agent-based models. Conte (2009) argues
that to increase the explanatory power of agent-based models the cause and eect
relationship involved in the phenomenon should be determined at the conceptual
modeling phase of a simulation study.

How can one capture and present mechanism involved in a system? Although
UML offers some valuable diagrams helping the process of conceptual modeling of
agent-based models, non of its diagrams are aimed to present the causal relations
in the systems. Given that a mechanism-based explanation is aimed to describes
the causal process selectively and It does not aim at an exhaustive account of all
details but seeks to capture the crucial elements of the process by abstracting away
the irrelevant details. (Hedströ m, 2008), there is a need for a tool which supports
modellers to present an abstract model of the underlying causal processes. However,
non of the UML diagrams is aimed to present the causal process.

As we discussed in the previous chapter, using the Stock and flow Diagram (SFD)
is useful to make the dynamics explicit in the agent-based models. In the previous
section, we mainly focus on to present the dynamics involved in the global environ-
ment of agents, ignoring the process at the level of social agents where individuals
interact with artifacts. In this chapter we provide a meta-model for describing the
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mechanisms involved at different levels of a system: mechanisms involved at the
operational, social, and macro level of the systems and the inter layer mechanisms.
Furthermore, we address the types of mechanism which can be explained through
the use SFD.

UML For Causal explanation: UML provides a number of graphical
notations which are used to to describe and design object oriented software
systems (Fowler, 2004). UML offers more than 26 different types of diagrams
which can be classified into two structural diagrams (e.g., Class Diagram,
Composite structure Diagram) and behavioral diagrams (e.g., state machine
diagram, use case diagram, sequence diagram). While Structural diagrams
depicts the elements of a system, Behavioral Diagram are used to specify
dynamics aspect of a system. Among these diagrams probably the class
diagram, use case diagram, sequence diagram, and state machine diagram
are the most useful diagrams.

Since we are focusing to explains the causal process in the systems, The
behavioral diagrams may contribute to our aim. As following we describe
briefly these diagrams
• Use case diagram:

• state machine diagram

• sequence diagram
Although state machine diagrams address the activity of the agents, but

they do no depict what is the consequence of the actions on the states of the
systems. In other word, they mainly present the causes, without specifying
the effects. the relationship between the actions of agents and the observ-
able state of the systems (specially in the form of aggregated states) is not
specified by state machine diagrams.

5.2 Why Causal Explanation is important?

Unlike physical systems which underpinned by well established theories and univer-
sal mathematical laws, social systems are complex systems which their rules may be
violated during the time. This characteristic of social systems questions the accur-
acy of models in social systems. One of the pervasive uses of models and simulation
in natural science and engineering is to predict the behavior of the systems under
different condition. However, in social systems -due to the mentioned problem-, it
is mostly difficult if not impossible to use modelling and simulations for the aim of
prediction. In social systems, models are mainly used to enhance our understanding
of (and subsequently, explaining) the social phenomena (Rossiter et al., 2010). Gil-
bert and Troitzsch emphasize that ”[...] social scientists tend to be more concerned
with understanding and explanation. This is due to skepticism about the possibility
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of making social predictions, based on both the inherent difficulty of doing so and
also the possibility, peculiar to social and economic forecasting, that the forecast
itself will affect the outcome. (Gilbert et al., 2005, p. 6).

According to Abbott (1998), discovering the causal relationships is the main aim
of social science that makes social science a real type of science. Hypothesizing
about the cause of a phenomenon is the fundamental aspects of an explanation.
Little (1996) states that ”an important class of social explanations are causal ex-
planations: to explain an outcome, we attempt to identify the causal circumstances
that brought it about.” The notion of causation and causal explanation has re-
ceived considerable attention among the philosophers of science. However, there is
a long debate regarding the relationship between causation and explanation. Some
philosophers believe that social phenomena can be explained through the social law.
On the contrary, other believe that there is no such covering law in social science
(Sawyer, 2004).

Mechanism-based explanation is one of the relatively new approach among the
casual explanation approaches which has recently received considerable attention. It
is argued by several researchers that the central idea of causal explantion is the idea
of causal mechanism (Little, 1991). ”to assert that A causes B is to assert that A in
the context of typical causal fields brings about B through a specific mechanism.”
(Abbott, 1998). Mechanism-based explanation tends to produce more precise and
intelligible explanation by identifying the details of underlying mechanisms. A phe-
nomenon can be well-understood and be explained by referring to the mechanisms
that give rise to it (Hedströ m, 2008).

One of the fundamental attribute of ABM which make it so close to mechanism-
based explanation is the bottom-up approach of ABM; both ABM and mechanism-
bases explanation approach look for connecting the link between micro-level of the
systems to the macro-level behavior. The association of ABM and mechanism-based
explanation has been addressed by some researchers (e.g.,Gilbert and Ahrweiler
(2009); Hedström and Ylikoski (2010)). For example, Sawyer (2004) found striking
the parallels between causal mechanism approach and artificial society simulation
foundations. In the same paper Sawyer emphasizes that ”ABM model the mechan-
isms.” adding that ”when we write a set of computational algorithms (the program),
formalizing the generative hypotheses of which are to be studied, what we are doing
is hypothesizing a series of generative mechanisms.”

Although the mechanism are modeled in the ABM, they are implicit in the pro-
gramming codes. In an agent-based simulation study, modelers often make explicit
what agents do which are the causes in the system. However, what would be the
effect of these causes and the chain of cause and effects are implicit in the codes.
Making these causal links and mechanisms of a model explicit improve our under-
standing of the systems, And help in analyzing the simulation results.

Meanwhile, there is an ongoing debate among the researchers about the explan-
atory power of ABM. It is often claimed that ABM are explanatory (Epstein, 2006;
Axelrod, 1997b). However, there is an ambiguity about how they are explanatory.
Grüne-Yanoff (2009) claims that agent-base simulations are not explanatory since
they cannot provide causal explanation of social phenomena. He further argues that
ABM cannot contribute to our understanding by only providing partial explanation
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of a phenomenon. For understanding a phenomenon, we need to know its possible
causal history.

Mechanism-based explanation - which is a type of causal explanation - enhance
the explanatory power of ABM. However, we should emphasize that when we are
dealing with complex systems such as soci-technical systems, ”mechanisms interact
with one another forming concatenations of mechanisms.” (Gambetta, 1998) and
this characteristic make it some how impossible to interpret the behavior of these
systems based on the causal links and mechanisms. However, it does not mean that
we should not make the mechanisms explicit. Making the mechanism involved in the
system explicit in our models help the explanatory process of agent-based models.
As it is argued by Hedström and Ylikoski (2010), to have a proper explanation of
a phenomena, we should understand the casual mechanism which are involved in
the system. This argument is in the line with the suggestion of Conte (2009) which
suggests that ”producing causes and their link to effects must be hypothesized in-
dependent of generation: rather than wondering which are the sufficient conditions
to generate given effect?”, the scientists should ask ”what is a general, convincing
explanation, and only afterwards”, they should translate it into a generative explan-
ation.” Determining the cause and effect relationships and process involved in the
system at conceptual modeling phase will enhance the understanding of the modelers
and is helpful in interpreting the quantitative outcomes of the simulation study.

Moreover, Mechanism-based explanation contributes to a better description of
agent-based models. Grimm et al. (2006) argue that while ABM become a widely-
used tools in many disciplines, it suffers from the lack of a standard protocol for
describing models; Agent-based models are often described verbally that make them
difficult to understand and to duplicate. In the favor of Mechanism-based explana-
tion for describing systems, Marchionni and Ylikoski (2013) argue ”Scientific under-
standing is constituted by knowledge of dependencies [...] and mechanisms can be
understood as description of the networks counterfactual dependencies that charac-
terize the system in question”. Explaining the mechanisms involved in the system
especially by the help of SFD, which is a diagramming tool, will help the process
of describing agent-based models which consequently enhance understanding of the
models.

5.3 Meta-Model

In order to make the causal mechanism involved in socio-technical systems explicit
in an agent-based model, we first develop a meta-model for studying these systems.
Ferber (1999); DeLoach and Valenzuela (2007) define a multi-agent system as having
six basic element.

• An Environment, E

• A set of objects (artifacts) that exist in E.

• A set of agents, A.
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• A set of relationship, R, which defies the relationship between objects and
agents.

• a set of operation, O, which agents can use to affect objects.

• A set of universal law which determine the reaction of the environment to
agent operations.

While these elements are essential for defining a socio-technical systems, it is
also critical to highlight the hierarchy among the different level of environment and
distinguish between social agents and nonsocial agents. Besides, It is also important
to provide a meta-model which presents these elements in a abstract form. We
first present a comprehensive topology of agent-based models. In this topology, we
make a distinction between the environment of agents at the operation level where
individuals interact with artifacts and the social level where social agents interact
with each other (See Figure 5.1).

In line with Ricci et al. (2006) in describing environment, we use the notion of
Workspace to extend the topology of environment. Workspaces are containers of
agents and artifacts. They are at the same time- the nodes of an infrastructure
network (Ricci et al., 2007). We classify workspaces into the two types: operational
level workspaces, and social level workspaces. At the operational level, a workspace
comprises simple agents and artifacts. However, social level workspaces includes
artifacts and social agents. At the operational level workspaces, agents are involved
in pragmatic actions interacting with artifacts. However, at the higher-level social
agents are involved in communication action interacting with other social agents.
Social agents are involved in communication actions they may negotiate, corporate,
or compete with other social agents. We use the term of communication action
for specifying activities of agents related to communication between agents and
pragmatic action term for addressing the interaction between agents and artifacts.
Communication actions can be carried out at the both level while Pragmatic actions
are mainly carried out at the operational level workspaces.

Environment in ABM: Since the beginning of agent-based research, the
term of agents has been along with environment. However, there have been
conducted less research regarding the characteristics of the environment in
comparison with agent part of systems. According to Maes (1995) ”agents
are computational systems that inhabit some complex, dynamic environ-
ment, sense and act autonomously in this environment.” Wooldridge and
Jennings (1995) define some characteristics for agents which are directly re-
lated to the environment. For instance. They argue that agents are reactive
perceiving their environment. Odell et al. (2003) define environment as a
world that ”provide conditions under which an entity (agent or object) ex-
ists.” Despite the important role of environment in agent-based models, it is
often an implicit part of agent-related research, and it is commonly treated
in an ad-hoc way (Weyns et al., 2007).
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Most of the studies regarding the characteristic and role of environment
have been conducted in the field of Multi-Agent Systems (MAS). Although
traditionally environment is treated as ”given” Okuyama et al. (2005), but
recent research especially those that study situated multi-agent systems em-
phasize that environment needs to be modeled and provided for agents as
it can help them to behave more appropriate. Due to this fact, Despite
the fundamental difference between MAS and MABS that ”MABS is a vir-
tual representation of another system (including individuals, objects, etc.),
whereas a MAS is an artifact that interact with environment”, we can use the
concepts of the environment in MAS for specifying environment in MABS
(Klügl and Davidsson, 2013).

In the following we review, some of the meta-models regarded the envir-
onment of agents. Okuyama et al. (2005) introduce ELMS as a description
language for specifying multi-agent environment. ELMS allows modeler to
specify agents’ perception, and the kind of interaction that a agent can have
with the objects and perceptible representation of other agents involved in
the environment. ELMS define the environment with the help Grid construct
while grid can be defined two or three dimensional, and Resources construct
which is used to define objects of environment. ELMS uses the XML syntax
to specify environment.

Gouäıch et al. (2005) introduce MIC (movement, interaction, computa-
tion) to support interaction between agents. MIC assumes that autonomous
agents sense and act through the deployment environment by sending and
receiving interaction objects, interaction space is used to define interaction
between agents. And the whole dynamics of deployment environment is the
result of the movement, the interaction, and the computation functions.

Artifacts-based environment is the most cited approach for modeling the
environment which has been introduced by Alessandro Ricci and his colleges.
In Ricci et al. (2006) they introduce the notion of artifact as a first-class
abstraction to model environment in MAS. It is argued that ”Artifacts are
runtime devices providing some kind of function or service which agents can
fruitfully use both individually and collectively to achieve their individual
as well as social objectives. Artifacts can be conceived (and programmed) as
basic building blocks to model and build agent (working) environments”. In
Ricci et al. (2007) they provide a framework for prototyping artifact-based
enviornmnet in MAS (CArtAgO). In Omicini et al. (2008) they define three
abstractions for agent-artifacts meta-model:”
• Agents, to represent pro-active components of the systems, encapsu-

lating the autonomous execution of some kind of activities inside some
sort of environment;

• Artifacts, to represent passive components of the systems such as re-
sources and media that are intentionally constructed, shared, manipu-
lated and used by agents to support their activities, either cooperatively
or competitively;
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• Workspaces, as conceptual containers of agents and artifacts, useful
for defining the topology for the environment and providing a way to
define a notion of locality.”

Ferber et al. (2005) introduce AGRE based on the AGR (Agent, Group,
Role) plus the environment. AGRE is based on the idea that agents are
situated in different spaces: physical or social. A physical space like geomet-
rical space is called ”areas’. And social space is represented by the ”group”.
AGRE defines two modes for agents: body and role. Agents perceive and
act through their bodies in the areas which are spaces that construct the
physical world. In addition, Agents perceive and act through their roles in
groups, which are spaces that construct organization. Agents may belong
simultaneously to both social and physical world. While the number of role
that a agent can take is not restricted, an agent can only has one body acting
through the physical world.

In order to focus mainly on the characteristics of environment in ABM,
at the following, we address the definition and attributes of environment in
four ABM meta models, INGENIAS, Easyabms, MAIA, and AMASON. IN-
GENIAS (Pavón and Gómez-Sanz, 2003) is a meta-model originally designed
for supporting MAS then it was extended to cope with issues of ABMS as
well. INGENIAS introduces five meta-models that describe a system: Agent
model, interaction model, tasks and goals model, organization model, en-
vironment model. Environment in INGENIAS includes resources and con-
textual space. Pavon et al. (2008) argue that ”The environment concept in
INGENIAS is basically what agents can perceive or actuate, such as other
agents, resources, etc. This concept has been extended to include space and
scheduling considerations”.

easyABMS (Garro and Russo, 2010b) is a methodology to support agent-
based simulation defining an iterative process with seven subsequent phase
for agent-based simulation. easyABMS structure a system with three models:
society model, agent model, and artifacts model. In contrary to INGENIAS
which clearly addresses the term of environment, easyABMS does not directly
address it in its proposed conceptual structure. However, easyABMS define
the artifacts model which can be assumed as the environment of agents.
Garro and Russo (2010b) explain that artifact model ”describes the behavior
of an Artifact as a set of triggered Activities related to the offered services
(Artifact Behavioral Model), and its interactions with other Artifacts and
Agents (Artifact Interaction Model)”.

MAIA (Ghorbani et al., 2013) is a meta-model which provide set of con-
cepts for developing agent-based models based on the IAD (Institutional
Analysis and Development) framework. MAIA proposes five structures for
conceptualizing an agent-based system:

• Collective Structure: actors (referred to as participants in the IAD)
and their attributes.
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• Constitutional Structure: the social context.

• Physical Structure: the physical aspects of the system.

• Operational Structure: the dynamics of the system.

• Evaluative Structure: the concepts that are used to validate and meas-
ure the outcomes of the system.

MAIA does not directly address the notion environment of agents. How-
ever, it defines Physical Structure, which can be defined as environment of
agents. Ghorbani et al. (2013) explain that physical structure comprises
physical components which ”can be accessed/used only by agents having a
capability associated with the affordances of the component. Besides prop-
erties and affordance, physical components may also have behaviours (e.g.,
ageing of a computer). A physical component may be open for every agent
to use or fenced (i.e., restricted). All the physical components in the e-waste
example (computers, gold, etc.) are fenced, but a public road would be an
example of an open physical component.”

AMASON Klügl and Davidsson (2013) is a meta model aimed to capture
the basic structure and dynamics of MABS model. AMASON recognizes
three types of components for an agent-based model: Body, Mind, Region.
Body represents a physical entity in a model; A body needs Mind to become
an agent; Region represents the spatial environment where agents and objects
are located. AMASON directly addresses the spatial environment and the
objects which are situated in it. Klügl and Davidsson (2013) emphasize
capturing the dynamics of environment. They argue that ”Environmental
dynamics happen without being triggered by an agent. Processes such as
seasonal temperature dynamics, a tree growing, or rain starts to fall or a
stone is heating up are examples. In the meta-model we associate such
dynamics with regions. One can distinguish between dynamics that just
affect the state of the region, and dynamics that affect the state of bodys
that are located on the region.”

As it is depicted in Figure 5.1, there are three different types of links which
connect the elements of a system. Dashed links represent the interaction between
agents. These links can either present the authority relationship or the communica-
tion channel between two agents. The interaction between agents and the artifacts
are shown as straight lines. The last kind of link is part of the networks which con-
nects different workspace as nodes. For instance, in the context of socio-technical
systems, these links can be representative of gas pipeline, road, or electricity wires,
which connect together multiple corporations, factories, etc.

In the Chapter 2, we had a discussion about the importance of considering feed-
back between properties of systems at the emergent level on the behavior of agents.
Considered that argument, we need to emphasize that every workspace has a macro
level. However, For the sake of simplicity, we take the social level workspace as
macro level of operational levels. And we just assign a macro-level workspace for
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Figure 5.1 – Three layers meta-model

the social level workspace.
In a nutshell, we propose to break-down a system in three layers (see Figure 5.1):

operational level, social level, and macro level so that social levels are the emergence
level of the operational levels and macro levels are the emergence level of social
levels. In the next section, we will use the meta-model proposed in this section to
indicate different type of mechanisms involved in agent-based models.

5.4 Mechanisms in Agent-based Models

Inspired by the well known model of james Collman for conceptualization of so-
cial action, Macro-micro-macro model, Hedstrom and Swedberg (1998) define three
different types of mechanisms which should be explained in order to have a proper ex-
planation of a phenomena: Situational mechanisms, Action-formation Mechanisms,
and transformation Mechanisms (see Figure 5.2). Those mechanism that explain
the effect of macro properties on micro level are situational mechanisms. Action
Formation mechanisms explain those mechanism that only operate at the micro
level. Finally, those that explain how micro-level factors influence the macro level
properties are transformational mechanisms.
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Figure 5.2 – A typology of social mechanisms

Inspired by this classification of mechanism, we present the structure and linkage
of different types of mechanisms in a system- Based on the our proposed meta-
model- to capture and present the underlying mechanisms of a socio-technical system
(see Figure 5.3); we distinguished between mechanism in social layers, where social
agents are involved in communication action, and operational level where agents are
involved in pragmatic actions, and macro level which is the emergent level for social
layer.

Figure 5.3 – typology of social mechanisms based on the proposed meta-model

At the operational level, we have three different mechanisms which can be clas-
sified as action-formation mechanisms.
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• mechanisms in the mind of agents.

• internal mechanism of artifacts. The process of producing gas in a digester is
a good example for this kind of mechanisms.

• mechanism which involve pragmatic action of agents. For example, the process
of changing the number of cows on a farm which is determined by the action
of the farmer (e.g., buying, selling).

Mechanisms at the social level can be classified into two types:

• mechanisms in the mind of social agents.

• mechanism which involve communication action of social agents.

In order to present a comprehensive picture of social systems we should specify
how Macro-level properties will influence the social agents (Situational mechanisms).
Furthermore, we need to show how social agents can influence the operational level
properties. For instance, in the Biogas case, how the number of farmer who choose
a technology will influence the opinion of other regarding the technology selection,
or at the social level, customers choose their appropriate gas supplier (farmer), or
they determine the price of gas while these activities influence the structure and
dynamics of the system at the operational level.

5.5 How SDM can help Mechanism-based explan-

ation

SDM is a special kind of causal mechanism explanation, which focuses on presenting
the causal process involved in a system and capturing the feedback between its
elements by using Causal Loop Diagram (CLD) and Stock-flow Diagram (SFD).
Olaya (2009) states that SDM is one of the best ways to picture causal mechanism
explanation. SDM tries to highlights that main mechanism (dynamics) of the system
by implying an aggregated approach.

System dynamics modelers use the aggregated approach to abstract the model.
One of the main characteristics of SDM which makes it a powerful method for cap-
turing and presenting the mechanism involved in the system is that SDM tries to de-
scribe the dynamics using CLD and SFD tools. Although, in implementation phase
of SDM lifecycle, modelers try to study the quantitative behavior of the system using
equations, still one of the main aims of modelers is to enhance the understanding of
the dynamics of the system using the CLD and SFD as a conceptual modeling tool.

Stocks represent observable states of the system which change through the flows.
For instance, the number of cows and the amount of manure in a digester are two
possible stock in a farmer workspace. Flows represent the rate that changes the
value of stocks in every instance of time. The rate of flows changes due to either
action of agents or through the equations which describe the internal process of
artifacts or exogenous process. Auxiliary variable is the third element of SDM
models, which are traditionally used to clarify the model. Exogenous variables- i.e.,
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some attributes of artifacts, or parameters which are involved in decision-making
process and consequently, the action of agents- can be presented by the auxiliary
variables. For instance, in the Biogas case, Birth Rate is an attribute of cows that
is presented as an auxiliary variable in the model.

Figure 5.4

At the social level workspaces, Stocks and flows have different uses. While at
the operational level, stocks and flows are used to show the process initiated be
the pragmatical actions of agents or internal process of artifacts, at the social level
workspace, stocks and flows are used to present the process which involve the ag-
gregated state of lower-level workspaces. In other words, SDF is used to present
the mechanisms arising from operational level workspaces (transformational mech-
anisms). Similar to the social level, at the macro level, SDF are used to present
the aggregated state resulted from the action of social agents at the social level
workspace (transformational mechanisms).
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5.6 Biogas Model

The aforementioned environment topology is highlighted with a case of Biogas in
this section. Biogas that is produced from cattle manure, is an emerging source of
green energy in the Netherlands (Verhoog, 2013). It is especially a promising source
for gas production because of its abundance in the Netherlands. To produce this
type of gas, manure is collected from farms and digested to produce gas. However,
the challenge is that producing bio-gas does not solve the problem of the excess of
manure because the volume is not decreased as a result of gas production, leaving a
material called digestate that is almost the same as manure.

System Description

Figure 5.5 illustrates the structure of Biogas case using SDM to depict the mechanism
involved in workspaces. We define two kinds of workspaces at the operation level,
and one workspace at the strategic level. At the farmer workspace, we defined two
agents: Manager, and manager of financial activities (Accounting Clerk). At the
social level, Manager do action on behalf of Farmer agent (Social agent) as well.
At the consumer workspace, an agent has the role of gas consumer. At the social
level, a farmer agent enact the role of a negotiator who interacts with a consumer’s
representative agent who can be a consumer as well.

System Elements

Farmers have four stocks:Cows, Manure Inventory, Gas Inventory, Digestat

Inventory, Asset, Debt, Receivable bill, Incomes. Flows caused by farmers
which change the level of stocks are: Buy Cows, Loose Cows, Collect Manure,

Transport Gas, Invest, Depreciate, Pay Debt, Cash Inflow, Payment. They
also have six auxiliary variables: Selling Price, Depreciation time, Time to

Reimbursement, Billing Delay, Direct Investment, Operation Cost.
The internal process of Digesters and upgraders, which are artifacts in the farmer

workspace, is modeled by SDM elements (Manure Inventory, Digestat Inventory, Use
Manure, produce digestat, produce gas). In Figure 5.5, we distinguish their structure
from the rest of the model with a dashed rectangular.

Consumers have two stocks: Consumption and Gas Cost which change through
Consume, Pay flows. At the social level workspace, Agents interact with each other
using negotiation artifacts or contract for determining the fee of gas or the term
related to fine, in the case that a farmer does not provide enough gas. At the
higher-level representative of consumer has access to the aggregated state of the
consumer’s consumption and production of gas. This information may be used to
charge gas provider when there is imbalance in stock of gas.

Mechanisms Involved in BioGas

As it is depicted in Figure 5.5, in the production sector of farmers, the number of cows
is increased and decreased through the farmer flows: Buy cows, lose cows. The
number of cows along with Rate of Manure determines the amount of manure which
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Figure 5.5 – Biogas System Dynamics Model

farmers are able to collect in every time step, aggregated in the Manure Inventory.
Digestaters and upgraders, transfer Manure to Digestate and biogas through the
Produce Digestate flow. The rate of digestate production determines the volume
of Manure in the Manure Inventory. Digestater and upgraders cause another flow
named Produce Gas. The Rate of gas production is dependent to the amount of
manure in Digestat system. The amount of gas is aggregated in Gas Inventory

stock which is decreased through the Transfer Gas flow.

In the finance sector of the Farmers, the amount of money that the Farmer
receives through the Receive Fee flow is determined by the amount of gas which has
been transferred and the Selling Price. After a Billing Delay Farmers will receive
their receivable bills which will be aggregated in their Income stock. Through the
payment Farmers pay Operation Costs which is determined by the cost of having
cows and cost of producing gas. Fine is another cost, which might be required to
be paid by the Farmer. Farmer use two sources for investing in production facilities,
which are depicted in the finance sector. The amount of assets are increased through
the Invest activity, and it will be decreased due to depreciation. Asset has its
own behavior, which is Depreciate and is dependent to Depreciation Time. The
amount of Debt is determined by the Borrow Investment activity and Pay Dept

which happen based on Time to Reimbursement.
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5.7 Discussion and Conclusion

In this chapter, we presented a meta-model for explaining the mechanisms involved
in agetn-based models. We distinguish between three level of a system (operational,
social, and macro) then we introduce the mechanisms involved in each of these levels
and the inter-level mechanisms. Furthermore, we showed how SFD, can be used to
describe some of these mechanisms. Using SFD, in the one hand, help to do abstract
the mechanisms through the applying aggregated approach of SDM, and on the other
hand, it help to describe the mechanisms visually.

This chapter contributes to ABM practice in the following aspects:

• The presented meta-model facilitate conceptualization of socio-technical sys-
tems by distinguishing between different level of the system (hierarchy) and
different interaction between element of the system (See the extended version
of this meta-model in Chapter 8).

• The classification of mechanisms presented in this chapter facilitate the process
of explaining the mechanism involved in agent-based models in more structured
manner.

• Using SFD to depict the mechanisms in ABM visualizes conceptualization of
socio-technical systems models through the stock, flow, and auxiliary variable.

• Using SFD in combination with agent-based models assists participatory model
development. SFD is the means of communication between between the
modeler and other stakeholders involved in the simulation study. Highlighting
mechanism through the SFD, produce a structured representation of the per-
ception of modelers regarding the system which can be presented to different
stakeholders and experts for verification before implementation phase.

Besides these contributions we see an additional benefits for using SFD in the pro-
cess of conceptualizing agent-based models. Using SFD help to increase the ability
of system thinking of modelers. System thinking is a holistic approach which focus
on how systems work over time by studying how elements of a system interrelate to
each other. The importance of system thinking for studying complex systems was
recognized by many researchers. for more information we can refer to Mingers and
White (2010) which review some of these studies. The fundamental concepts of sys-
tem thinking in general include ”parts/whole/sub-systems, system/boundary/envir-
onment, structure, process, emergent properties, hierarchy of systems, positive and
negative feedback, information and control, open systems, holism, and the observer”
(Mingers and White, 2010).

The next part is dedicated to explain how we can decrease the complexity of agent
based models using system dynamics tools. We start with introducing Discrete-time
System Dynamics Modeling (Dt-SDM) that we will use to implement hybrid models
in chapter 8.
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Combining SDM tool with
ABM at the Implementation

Phase
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6
Discrete-time System Dynamics Modeling

This chapter is based on Hesan et al. (2014a)

6.1 Introduction

In the field of social sciences, simulation is accepted as a powerful tool that helps
researchers to get more insight into the system, especially in cases where practical
experiments are not feasible. However, depending on which approach and tool we
select to model a system, the quantitative and qualitative results of the simulation
may vary.

Dealing with time is one of the main issues that every modeler should think
of, before selecting a tool for simulation. Some researchers see social systems as
continuous-time systems and therefore use differential equation-based tools to simu-
late a system. In the contrary, other researchers consider social systems as discrete
time systems. Therefore, they select discrete-time simulation tools.

System dynamics modeling (SDM) takes a continuous-time approach and con-
structs models with differential equations. While flows that get in or out of stocks
can be represented continuously or in discrete points of time Sterman (2000), system
dynamic modelers argue that it is an “acceptable approximation” to consider indi-
vidual items as continuous streams that can be divided infinitely (Sterman, 2000).
For instance, in a organization, people are individuals and are hired in discrete man-
ner, but system dynamic modelers assume that the flows of people are continuously
divisible.

Besides the approximation that is caused by assuming discrete flows as continuous
streams, another source of approximation is using average delay instead of pure delay.
For instance, system dynamic modelers assume that since in a post office with a large
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number of letters, all the letter are not delivered at once and there is a distribution
around the average delivery time, it is an acceptable approximation to use average
delay to model such cases.

System dynamics modeling is aimed to study long term behavior of systems at the
macro level. This modeling approach is commonly used to study large organization
or global phenomena. Therefore, these approximations are acceptable. However, the
concepts of stock and flow have the potential to be used for studying systems at the
micro level and to explore behavior of small organizations or phenomena (e.g, hiring
system in a small organization, a supply chain system constructed by a few people).
However, the problem is that the main characteristic of these kinds of system is that
their flows are discontinuous and most of the time there are not many items in delay.
Therefore, using differential equation to construct these kinds of system can lead to
inaccurate quantitative results. In order to avoid these inappropriate approximation,
we propose using difference equations instead of differential equations as the basic
mathematical operator that determines the relation between a stock and its flows.
This method of constructing system dynamics models allows us to model discrete
flows and pure delay.

The structure of this chapter is as follows. In section 6.2, we look into difference
equation and differential equation modeling. In section 6.3 we present a example
case which we will be using to illustrate difference between the quantitative result of
both approaches. In section 6.4, we propose our method. In section 6.5, we rebuild
the working example with the help of the method. In section 6.6, we compare the
quantitative results of the working example. In section 6.7, we will finish with some
concluding remarks.

6.2 Background

6.2.1 Difference Equations and Differential Equations

Control theory classifies dynamical systems, whose state varies during time, into
two subdivisions: continuous-time (CT) dynamical system and discrete-time(DT)
dynamical system. In CT-systems, the state of the system changes after every
infinite short interval of time while in DT-systems the state of the system varies at
distinct points in time.

Differential equation is the basic operator for modeling continuous time systems.
A simple population model with the growth rate r in the CT approach is modeled
by the differential equation(integral) as following:∫ t

0

r × p(t)dt (6.1)

Difference equation is the basic operator for modeling discrete time systems. The
simple population model that we already represent with differential equation can be
modeled by a difference equation in discrete time approach as following.

pn = (1 + r)× pn−1 (6.2)
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Population in time n is equal to population in previous time pn−1 plus r ∗ pn−1.

Difference equation as the main operator of discrete-time modeling has been used
recently, especially after developing digital computers(Oppenheim et al., 1983).

6.2.2 Discrete-time modeling in Literature

System dynamics literature rarely addresses discrete-time modeling. Sterman (2000)
emphasize that instead of first order systems in continuous time modeling which can
not generate oscillated behavior, first order systems in discreet-time approach can
oscillate or even generate chaotic behavior. Barlas (2007) points out that the equa-
tions which construct a system dynamics model can be either differential equations
or difference equations. Barlas (2007) argues that although a system dynamics model
can be continuous, discrete or hybrid, in practice, SD takes discrete systems as con-
tinuous system since continuous-discrete hybrid model can be cumbersome to build
and analyze. Barlas and Gunduz (2011); Barlas and Özevin (2001) point out that by
replacing dt of a system dynamics model with 1 we can have a discrete-time version
of system dynamics.

Besides system dynamics literature, social simulation literature addresses differ-
ent approaches for modeling discrete time systems with the help of difference equa-
tions. Inspiring from control theory studies, some researches use Z-transform to build
and analyze discrete-time models. Burns and Sivazlian (1978) analyze a discrete-
time model of a four echelon supply chain system with the help of Z-transform.
Disney and Towill (2002) study the dynamic stability of a vendor managed invent-
ory supply chain by constructing a discrete transfer function of the system.

Besides the Z-transform approach to study discrete-time systems, some re-
searcher use mathematical representations and state space approaches. Mathem-
atical representations of a system is mostly used when the system is constructed by
one equation. Cvitanovic et al. (2005) develop a mathematical model of a simple
population model called Logistic model. Allen (1994) develop a discrete-time version
of epidemic model. Neubert et al. (1995) study pattern formation of the discrete-
time predator prey model. The state-space approach is a mathematical represent-
ation which is used where the system is constructed by a few number of difference
equations. Papanagnou and Halikias (2005) applied the state-space approach to
study bullwhip effect in a simplified supply chain. Lalwani et al. (2006) represent a
generalized order-up-to policy in supply chains using the state-space approach.

Discrete event simulations (DES) may also be considered as discrete time meth-
ods, as they are suitable for modeling the systems in which variables change in
discrete-times (Özgün and Barlas, 2009). DES view systems as discrete sequence of
events in time. In other words, DES is an event-based modeling approach that is
different from the other mentioned approaches that are equation-based.

So far, we mentioned changing dt of system dynamics modeling, z-transform,
mathematical and state-space approach as the main approaches for discrete-time
modeling. We will later explain that although the first approach: changing dt = 1
in system dynamics modeling, seems a acceptable way to model a system with
discrete time, it may result in inaccurate behavior of system. Using Z-transform and
mathematical representation of discrete time system are suitable for linear system.
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However, constructing system dynamics models with difference equations can be
used for both linear and nonlinear system. Besides, our proposed method takes
the advantage of the diagramming aspect of the formal system dynamics modeling
which can be more powerful than Z-transform or other mathematical approaches for
participatory modeling and for giving insights to the clients.

6.3 Working Example

As a running example, we take a one-echelon supply chain adopted from beer game
distribution Sterman (2000, 1989) to present the innovative aspects of our method.
The reason for selecting this example is due to the fact that in the beer game
distribution model we study the micro behavior of a small group of individuals.
Therefore, we can show how difference equation can benefit the result of simulation.
Figure 6.1 depicts the stock and flow diagram of this case.

Figure 6.1 – Beer Game Example
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Description of System The system under study is a typical cascade production-
distribution system consisting of one retailer. Customer demand is exogenous and
retailer must supply the amount of product requested by the customer. If there
is insufficient product in stock, the retailer will keep surplus order in backlog until
delivery can be made. All the retailer’s orders will be fully satisfied after delay (4
weeks) and there is no limitation for the wholesaler to supply the retailer.

Order Policy The retailer tries to keep the level of inventory at the desired level
(1.5 times of order received). Every order is determined by the number of orders
that the retailer has received and two adjustments (correction) for inventory and
supply line.

OrderP lacedRate = MAX(OrderReceivedRate+DesEffectiveInventory

Correction+DesOrderP lacedCorrection, 0)
(6.3)

DesEffectiveInventoryCorrection = (DesiredInventory − Effective
Inventory)/DelT ime

DesiredInventory = OrderReceivedRate× InventoryCoverage
EffectiveInventory = Inventory −Backlog

(6.4)

DesOrderP lacedCorrection = WeightOnSupplyLine× (DesiredOrderP lac

ed−OrderP laced)/DelT ime

DesiredOrderP laced = OrderReceivedRate×DelT ime
(6.5)

Shipment and Demand Policy The desired shipment rate is the accumulation
of the backlog and the order that the retailer has received. Due to limitation in
inventory, it is not always possible to satisfy desire shipment. Shipment rate is
determined by the minimum of desired shipment rate and inventory. It means if
inventory is lower than the desires shipment rate, the retailer will support a part of
order and backlog equal to the level of inventory. Otherwise, he can satisfy all the
order and backlog.

In order to put the model in the steady-state, we set OrderReceivedRate to
4 and InventoryCoverage to 1.5. The initial amount of inventory is 6 equal to
DesiredInventory. The initial amount of OrderP laced would be 16. At time 4 we
increase OrderReceivedRate to 8 in order to analyze the behavior of model.

ShipmentRate = Min(DesiredShipmentRate, (Inventory/dt) +AcquisitionRate)
(6.6)
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6.4 System Dynamics Modeling with Difference

Equation

Although, differential equation is traditionally used as the mathematical operation
that determines the relation between stocks and flows, difference equation is also
compatible with the concept of stock and flow (Ossimitz and Mrotzek, 2008). There-
fore, it can also be used as the basic operator of SDM.

Using differential equation (Formula 6.7) in order to study the micro level beha-
vior of systems or the short term behavior of small organization in which flows are
not changed in every instance of time, renders the model far from reality and leads
to in inaccurate quantitative results of the simulation. For instance, when modeling
the process of ’making orders by retailers’, if there are many retailers in the model,
assuming that an order takes place every instance of time is reasonable. However,
when there is only one retailer in the system (or a limited number of them), making
the assumption that an order is taking place in every instance of time is unrealistic.
Therefore, for such cases, using difference equation is a more reasonable option.

Time delays often play an important role in the dynamics of systems. How we
model delay in systems is very crucial in determining the behavior of models. Using
average delay (Formula 6.8) instead of pure delay to model a system at the micro
level or study short term behavior of a small system or organization can bring some
inaccuracy in quantitative result of simulation. For instance, in our working example,
as we are modeling the behavior of a individual retailer, there is no distribution of
delay time. The retailer will receive his product after a constant delay of time.
Therefore, it would not be appropriate to use average delay in these kind of cases as
it is far from reality.

stock(t) =

∫ t

0

(inflow(t)− outflow(t)) dt+ stock(0) (6.7)

outflow(t) =
stock(t)

D
(6.8)

In order to avoid the mentioned inappropriate approximation, we propose to
use difference equations to construct system dynamics models. In this approach,
the amount of stock is calculated by Formula 8.1 which calculates the amount of
stock based on the inflow and the outflow and the previous amount of stock in every
discrete point of time. In order to model D step time pure delay depicted in Formula
8.2, the amount of delayed outflow is equal to amount of inflow in time t−D. The
amount of the stock that is linked to the delayed outflow is equal to summation of
all inflow which are in queue to become outflow.

stock[t] = stock[t− 1] + [inflow − outflow] (6.9)

outflow(t) = inflow[t−D]

stock[t] =

t−1∑
t=t−D

inflow(t)
(6.10)
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Although, in practice, all simulation software use difference equation to calculate
differential equation with the help of Rungg Kutta or Euler numerical method,
it does not mean that we can change a system dynamics model constructed by
differential equation to the difference equation version by setting dt to 1. Due to the
fact that changing the sequence between events in discrete time modeling changes
the numerical result of models, setting dt = 1 may result in chaotic behavior of
formal system dynamics model as we do not consider the sequence between events
during the steps of time. Even if we set dt to 1 in formal system dynamics models
because we cannot model pure delay the numerical result of our model would be
different from the difference equation version of that model.

DT-SDM approach has some distinctive characteristics in the modelling of
secrete-time systems as summarized in the following:

Simplicity in Modelling:

A major characteristic of System Dynamics modelling is its simplicity in the model
development process. The core concepts in this approach - i.e., Stock and Flow - are
so generic that System Dynamics can be conveniently used to model a wide range
of systems/problems in different application domains (Sterman (2000)). It is also
well-equipped with different tools for the conceptual modelling - like Causal Loop
Diagrams and Stock and Flow Diagrams - which also make it easy to formulate the
model and explain the results. DT-SDM is primarily defined based on the main
concepts in the System Dynamics approach. Therefore, most of these tools can also
be used for the conceptualization and analysis of simulation results.

Modelling Nonlinearities:

One of the main characteristics of DT-SDM -which is also originated in the prin-
cipal features of the formal System Dynamics approach - is the capability to model
the nonlinearities in the system. Other discrete-time modelling approaches - like
Z-transform and mathematical modelling - are mainly useful in modelling a linear
system. Using these analytical methods can become easily too complicated when
nonlinearities are involved in the system modelling. However, building System Dy-
namics models with difference equations can support modelling both linear and
nonlinear aspects of a system.

Modelling of Logical Statements:

In the formal System Dynamics Modelling, the logical statements such as if...then...else
cause sharp discontinuities and must be avoided in the modelling process (Sterman
(2000)). On the contrary, modelling such logical statements in DT-SDM method is
very straightforward. This provides a significant degree of flexibility in the model
development, especially, in modelling the actual decision making processes in a sys-
tem.
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Modelling Memory in the Decision Processes:

Traditional System Dynamics approach assumes dt as an infinite short step of time.
Therefore, it cannot represent the notion of the previous time step in the modelling
process. On the other hand, in most actual cases, the states of the system in the
previous time steps is the basis for making a specific decision at the present time
step. In DT-SDM, however, the state of system in every time step is available. This
provides a suitable context for the development of more flexible/realistic models of
a system.

Modelling Event Sequences:

As mentioned in Section 6.2, replacing dt with “1” in the traditional System Dynam-
ics approach is sometimes discussed as an option to model a discrete-time system.
The rationale for this choice is that - in practice - most of simulation packages for
System Dynamics Modelling use a numerical method - like Eulers or Runge-Kutta
method- to compute the differential equations. By setting dt to “1”, the continuous-
time model can be transferred to a discrete-time one - especially in the case of Eulers
method. However, this can be sometimes inadequate - or even problematic - because
the temporal sequence of events is not explicitly addressed in the model. In some
cases, this sequence of events may have a direct influence on the simulation results.
For instance, in a stock management process - which is, in fact, the representative
of decision in each stage of the beer game - the sequence of “fulfilling an order of a
customer”, “receiving the products from a supplier for a previous order” and “pla-
cing a new order with a supplier” may influence the quantity of next orders and
subsequently, the overall behaviour of the system. This logic is primarily defined by
the logic of the operation in a real case. This point is further elaborated by a simple
numerical case in Figure 6.2. In this case, we assume that the value of “flow2” is
dependent on the quantity of “stock1” (as presented in Equations 6.11). The initial
amount of both stocks is set to zero. The value of “flow1” is fixed and is equal to
5. To calculate the stock variables, two sequences of events are considered here. In
the first case - i.e., case A in Table 6.1 - at every time step, we first calculate the
amount of “stock1” and consequently, the updated value (stock1(t)) is used in the
calculation of “flow2”. The simulation results for this system would be different if we
calculate “stock2” before updating “stock1” - case B in Table 6.1 - because “flow2”
uses the amount of “stock1” in the previous time step (stock1(t− 1)).

flow1 = 5

flow2 = stock1
(6.11)

If we model this illustrative case in the continuous-time System Dynamics
paradigm with a standard package (like Ithink) - by setting dt to “1” - the sim-
ulation results would be similar to those of case A in Table 6.1. In these software
packages, the amount of stocks in time t − dt is usually used to calculate the flow
variables or auxiliary variables whose values are dependent on the stock levels. Dif-
ferent settings for dt result in different values for “flow2” (and consequently, different
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Figure 6.2 – The structure of illustrative case

Table 6.1 – Result of illustrative case for two sequences of events

results for “stock2”), as shown in Figure 6.2. This has two implications for the sim-
ulation results. Firstly, setting dt to “1” in the formal System Dynamics approach
has an inherent assumption about the sequence of events which is not necessarily the
same as the ones in a real case. Furthermore, the accuracy of results is dependent on
the value of dt - instead of the real structure and sequence of decisions in a system.

In the next section, we will rebuild our working example with the proposed
method.

6.5 Working Example Constructed by Difference

Equation

In Section 6.3, we described our working example which has been developed with
differential equation. In this section, we will rebuild this model with the help of
difference equation and we will compare the quantitative results of both approaches.
In order to apply this new approach, we developed software in Python program-
ming language. As in most SD tools, this software supports graphical definition of
equations.
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Table 6.2 – Result of the illustrative case in traditional System Dynamics approach with

different values for dt

The order, shipment and demand policy of this new model is the same as the
differential equation based model. The only difference is the stock and flow relation
and delay construction. Since inventory and backlog are both stocks that are not
used to model delay, we determine the mathematical relation between these stocks
and their flows using Formula 8.1.

To model the delay between OrderP lacedRate andOrderFulfillmentRate, For-
mula 8.1 is used to construct pure delay, depicted in Formula 6.12:

OrderFulfillmentRate(t) = OrderP lacedRate[t− 4]

OrderP laced[t] =

t−1∑
t=t−d

OrderP lacedRate[t]
(6.12)

Besides defining mathematical operations for constructing a model, another issue
that is important to determine, is the sequence between the events in every step of
time. Depending on how we define the sequence between events during the time
steps, the quantitative results of our model will change. For instance, in our case
we have three main events: placing new order, shipping and backlogging, receiving
previous order. How we arrange the sequence between these events will result in
different behaviors in the system. The final issue that must be considered is about
the steady state of the system. The steady state of the model must be determined
based on the arrangement between events.

6.6 Results Comparison

We assume that the retailer at the beginning of the week will receive their previous
order in the supply line. Then, he will calculate the order that needs to be placed
and will satisfy costumer’s order by shipping and will adjust the backlog. In order
to put system in the steady state, we set the initial value of inventory to 2 based
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Figure 6.3 – System Dynamics Supply Chain Example constructed by difference equation

on the assumption that a retailer will ship all OrderReceived during the week and
what will be left in inventory would be half of OrderReceived which is equal to 2.

Figure 6.4 – Inventory in both approaches

Figure 6.4 shows the difference between the level of Inventory in both approaches.
As it is depicted, inventory in the first approach shows a smooth oscillation while in
the second approach there is no sign of oscillation.

Examining different WeightonSupplyLine in both approaches shows the fact
that in the differential approach, the more WeightonSupplyLine gets close to 1, the
more the system presents behavior with lower oscillation. While in the difference
approach the more WeightonSupplyLine closer to 0.5, the more the system shows
lower oscillation. Figure 6.5 and Figure 6.6 present the level of inventory for 3
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different values of WeightonSupplyLine parameter of the differential and difference
approach models.

Figure 6.5 – Inventory with different values for WeightonSupplyLine in the differential

approach

Figure 6.6 – Inventory with different values for WeightonSupplyLine in the difference

approach

Comparing the results of both approaches indicates that with the same
WeightonSupplyLine setting, in first approach the retailer is placing order more
than what he needs to adjust the inventory and therefore it causes oscillation in
inventory behavior. However, in the second approach the oscillation in inventory
behavior is not as strong as it is presented in the differential approach which means
that the retailer take in to account the existence of delay and the amount of product
in delay more than the retailer in the differential approach.

Besides the different quantitative results, we observe qualitative differences es-
pecially when defining hypotheses for simulations. For example, as it is depicted in
Figure 6.4, in the difference equation model with the WeightonSupplyLine equal to
0.5, inventory does not oscillate. This fact can challenges the hypothesis that oscil-
lation in the behavior of beer game distribution is because of ignoring the amount
of product in supply line.
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6.7 Discussion and Conclusion

In this chapter, we proposed constructing SDM models with the help of difference
equations instead of differential equations. We illustrated this new approach by
applying it to a supply chain system.

In SDM, the mathematical relationship between stocks and flows is commonly
determined by the differential equation. However,the stock and flow concept is also
compatible with difference equation and therefore, we can use difference equation
as the basic operator of SDM which leads us to more accurate quantitative result
where we study the micro level behavior of a system or small organization.

The proposed approach contributes to SDM in several aspects. Firstly, it provides
the opportunity to apply the SDM concept at micro level systems where individual
activities change the flows of systems in discrete points in time. Secondly, it can res-
ult in more accurate quantitative result for cases that are not large enough to assume
their flows as continuous streams. Thirdly, opportunities to use logical statements
and memory as explained in Section 6.4, enhance our ability to model complex
systems.

Another contribution of this approach is that since we are constructing discrete-
time models with the stock and flow concepts instead of using Z-transform or math-
ematical representations, it will contribute to the field of discrete-time modeling as
it gives an opportunity to modelers to construct a model graphically and allow them
to model and analyze nonlinear discrete-time models.

One final contribution of our proposed method is that since our proposed method
and discrete event simulation both study the behavior of systems in discrete points
in time and use queues to model systems, it may be possible to merge the system
dynamics approach with the discrete event modeling. In discrete event simulation,
flows of entities that get through the process are determined by random numbers
which means that we are dealing with passive entities. However, by merging both
concepts, we can develop more deterministic behavior for the flows of entities so that
they can be effected by the state of system due to feedback.

As this method is proposed for the first time, it needs more evaluation process
to be proved as a reliable approach for constructing system dynamics models. In
order to use the ability of this approach for studying the micro behavior of systems
a possible option for future work can be merging this method with agent based
modeling.
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7
Avoiding Bullwhip Effect - Case Study

This chapter is based on a paper submitted to the International Journal of
Production Economics (IJPE)

7.1 Introduction

Bullwhip effect is a famous phenomenon in the world of logistics and supply chain
management which influences the productivity of supply chain members in a negat-
ive way. The rational behavior of supply chain members in determining the quantity
of orders results in oscillating behavior of inventories amplifying through the sup-
ply chain from downstream members to upstream members. Empirical evidence
from the real supply chain clearly shows the existence of this phenomenon. Due to
negative effect of this phenomenon on productivity of supply chain members it has
been subject of many studies (Lee et al., 2004). ”The bullwhip effect occurs when
the demand order variabilities in the supply chain are amplified as they moved up
the supply chain” (Lee et al., 1997). Bullwhip effect distorts demand information
from downstream of supply chain to upstream, which leads to tremendous inefficien-
cies. Lee et al. (1997) argue that relying on distorted demand rate for production
forecasting and capacity planning may result in enormous problems such as excess-
ive inventory, poor product forecasts, inefficient or excessive capacities, and poor
customer service due to long backlog.

Many different approaches have been exploited for studying the bullwhip ef-
fect. Lee et al. (2004); Warburton (2004); Lee et al. (1997) study the bullwhip ef-
fect through analytical approaches.Sterman (1984); Laugesen and Mosekilde (2006);
Mosekilde and Laugesen (2007) use System Dynamics Modeling to study the dynam-
ics of supply chain. They specifically focus on the effect of lead-time on decision-
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making of supply chain members as the main cause of bullwhip effect. Dejonck-
heere et al. (2004); Disney and Towill (2002); Disney et al. (2004) take advantage of
discrete-time control theory approach to study bullwhip effects. Miragliotta (2006)
identifies two schools of thought regarding the bullwhip effects: system thinking
school, operation manager school. System thinking school sees the bullwhip effect as
a result of irrational behavior of supply chain members who ignore the feedback of
the systems. On the contrary, operation manager school views the bullwhip effects
as a result of rational reactions of supply chain members. These schools come up
with different suggestions for reducing the bullwhip effects. For instance, Sterman
(1989), from the system thinking school, proposes that if actors involved in a supply
chain do consider the amount of products in supply line in their ordering policy
rules, it will prevent bullwhip effects and oscillation in the supply chain. Lee et al.
(2004), from the operation manager school, propose centralized demand information
method. They argue that providing each member of supply chain with actual in-
formation of their customer demand can reduce the bullwhip effect. According to
Lee et al. (2004) there are four main factors contribute to the bullwhip effect:

• Demand forecasting. Forecasting methods are the only tools that managers
can predict the future trends of demands in a supply chain. However, these
methods are not always reliable and give some results which are far from reality.

• Order batching refers to a popular behavior of companies in a supply chain
trying to order a large amount of products in order to decreasing the cost of
transportation or receiving discount.

• Rationing game happens when there is a shortage of products in a market so
that manufacturer provides a ratio of demands. In this situation, customers
will exaggerate their actual demand in order to receive a sufficient amount of
products.

• Price variation causes bullwhip effects since when price changes dramatically
due to, for example, price promotions, the demand will be increased when
products are cheap, and it will be decreased when the price of products is
normal or high.

Investigating the role of different factors in formation of bullwhip effects, reveals
that the role of demand forecasting and ordering policy are more significant than
the other factors. The effective factors such as order batching and price variation
distort the information that upstream supply chain members use in the formulation
of their ordering policy. The point is when a bullwhip effect is initiated by some
reasons (e.g., order batching, price variation), the orders which are received by the
upstream members are based on distorted demand information which are not reliable
for determining future demands and placing orders. Avoiding the use of distorted
demand rate information helps reduce the bullwhip effects. In general, one can
avoid using distorted information either through the information sharing or through
the use of an ordering policy which do not relay on the past behavior of demands.
Current ordering polices which have been used to study bullwhip effects often use
the information about the past behavior of demand. For instance, Lee et al. (2004)
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use average forecasting method as part of an order-up-to policy while this ordering
policy relies directly on the past behavior of demands. Sterman (1984) employs a
more complicated formulation as order-up-to policy which indirectly relies on the
past behavior of demands.

In this chapter, to minimize the bullwhip effects, we propose a new ordering
policy, called Shipment-Refined (SR) policy, which does not relay on the past beha-
vior of demands. To formulate this ordering policy, we follow the approach of control
theory in controlling systems. Control theory uses feedback to close the loop of a
system and to eventually control its behavior. We develop a controller to reduce the
error between input (demand rate) and output (shipment rate) of every echelon in
a supply chain. SR policy is based on a hypothesis that the main problem of sup-
ply chain members is not oscillation on their demand rate. Their main problem is
that they do not have enough information regarding the behavior of their upstream
members; they cannot predict the time and the amount of products that they will
receive when they place an order. SR policy helps get feedback form the behavior of
upstream members of every supply chain members which helps the process of their
ordering policy. In order to test the effectiveness of SR policy, we will use simu-
lation. Furthermore, in order to show the effectiveness of our proposed SR policy,
we compare the results of using two different kinds of ordering policy (Order-up to
policy) with the result of SR policy.

The structure of this chapter is as follows. In Section 2 we illustrate control
theory principles and our simulation technique, Discrete-Time System Dynamics
Modeling (DT-SDM), that we use to develop SR policy. In Section 3, we illustrate
the specification of the working example that we use to test the SR policy. Section
4 is dedicated to explain the concept of SR policy. In Section 5, we study the
behavior of the working example using two different order-up-to policies. Section
6 is dedicated to compare the results of applying SR policy with the results two
other policies calculated in the previous section. Finally, the chapter is concluded
in Section 7.

7.2 Methodology

The methodology used in this chapter is based on control theory (Oppenheim et al.,
1983). The history of using control theory to study supply chains goes back to
the work of (Simon, 1952). He applied continuous-time control theory principles
to control production rate in a simple system with one product. One of the main
characteristics of the Simons work was using continuous-time approach in studying
supply chains. Later on, Vassian (1955) applied discrete-time control theory prin-
ciples to study supply chains (in continuous-time approach, it is assumed that the
state of system varies after every infinite short interval of time, while, in discrete-
time approach, the state of system changes at distinct point in time). Vassian (1955)
takes advantage of Z transform methodology to control the level of inventory in a
system (Ortega and Lin, 2004). Forrester (1961b) introduced the methodology of
industrial dynamics, which is now referred to as system dynamics. System dynamics
has its root in servomechanism and control theory. The approach of control theory
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in conceptualizing a system by the help of two main elements: rate (flow) and source
(stock) is applied in system dynamics modeling. However, in contrary to the control
theory practices which use transformation functions changing the domain of systems
from time to frequency, system dynamics study systems in the time domain by the
help of computer simulation. This characteristic of system dynamics makes it a
powerful tool for studying nonlinear systems whereas control theory has limitation
in studying nonlinear systems. Towill (1982) presented a model called Inventory
and Order-Based Production Control System (IOBPCS) for studying supply chains
using S transform methodology . Later on Disney and Towill (2002) developed a
discrete-time version of this model using Z transform methodology. So far, different
versions of IOBPCS model have been presented in the literature. As an example
we can name Variable Inventory and Order Based Production Control System (VI-
OBPCS) (Towill, 1996), and Automatic Pipeline Inventory and Order Based Pro-
duction Control System (APIOBPCS) (Dejonckheere et al., 2003). There are some
common components which are used in the construction of these models (Sarimveis
et al., 2008):

• Lead time, which represents the time between placing an order and receiving
the goods.

• The target inventory, which can be a multiple of average of sales rate or a fixed
number.

• The demand policy is a forecasting method, which makes an average of the
market demand.

• The inventory policy, which is a feedback to control the rate of depletion of
inventory (difference between desired inventory and the actual inventory).

• The pipeline policy, which is a feedback loop to control the rate of changes in
work in process (differences between orders in pipeline and the actual level of
work in process).

In this study, we take advantage of feedback approach of control theory method
in designing controllers for influencing the behavior of systems. However, to apply
this approach we do not change the domain of the system to the frequency. We
take advantage of simulation to apply this approach in the time domain. We deal
with supply chain as a discrete-time system and we take advantage of Discrete-
Time System Dynamics Modeling (DTSDM) as simulation method. We decided to
adopt this approach mainly because there is an innate advantage for discrete-time
modeling approach over continuous-time modeling in supply chains studies which is
due to the fact that supply chains are discrete-time systems in essence. There is
often sharp discontinuity in the behavior of supply chains which cannot be modeled
properly by using continuous-time models. Furthermore, continuous-time approach
has limitation in modeling pure-time delay involved in supply chain systems. Due
to this compatibility, using DTDM will result in more accurate quantitative result
of supply chains (Hesan et al., 2014a).
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7.2.1 Control Theory

Control theory is a well-established filed of research, which focuses on analyzing and
controlling dynamic systems specially engineering systems (Oppenheim et al., 1983).
The main objective of control theory is to control a system by closing the loop of
system through feedback. In order to make the output of a system, y, in a desired
way, it is usually done by manipulating the input of systems, u (Doyle et al., 1992).
Depending on the system subject to the study, one may try to keep y close to a
reference point r or keep it close to the u by feed-backing the error signal (e) to the
system (see Figure 7.1).

Figure 7.1 – Feedback approach (Doyle et al., 1992)

For instance, to control and keep the behavior of an electrical motor, similar
to a reference signal, at first, the output of the motor, which is the velocity of the
motor, is captured by the sensors. Then it will be feed backed to the system. The
error between the output signal and the reference signal will get back to the system
through a controller. PID controller is one of the most popular controllers, which
has been extensively used to control engineering systems. As it is depicted in Figure
7.2, PID generates proportional, integral, and derivative signal of error to control
the system by minimizing the error signal. Depending on the underlying process of a
system, a system can be controlled by one of the three controllers or a combination
of two or three of them. Kp,Ki,Kd are parameters which are used to tune the
controller.

In the next section, inspired by control theory, we develop a controller to reduce
the bullwhip effects in supply chain.

7.2.2 Discrete-Time System Dynamics Modeling

In Hesan et al. (2014a), inspiring from the principal of discrete time systems in the
control theory and System Dynamics Modeling principal developed by (Forrester,
1961b), the concept of Discrete-Time System Dynamics Modeling (DTSDM) was
developed. DTSDM is a discrete version of the traditional SDM using three elements:
stock, flow, and auxiliary variables to construct a model, which are briefly introduced
as follows.
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Figure 7.2 – PID controller (Doyle et al., 1992)

Stocks represent specific elements of a system, values of which depend on the past
behavior of the system. Stocks accumulate inflow minus outflow and their values
represent the state of the system.

Flows represent the rate that changes the value of stocks in a system in every
instance of time. Flows can be either inflow, increasing the stocks value, or outflows,
decreasing the stocks. The values of stocks are changed by their related flows.

Auxiliary variables are commonly used to clarify the model and ease the commu-
nication. An auxiliary variable can be a function of stock, constant, or an exogenous
output, which contributes to formulation of the flows (Sterman, 2000).

The cornerstone of this modeling approach is using difference equations (as
presented in Equation 7.1) instead of differential equations (as shown in Equation
7.2) to construct stocks-flow relationships in a system. Furthermore, the proposed
method uses pure delay to model the time lags, d in a system (Equation 7.3, 7.4).
Those who are interested to know more about different aspects of DT-SDM, may
refer to (Hesan et al., 2014a).

stock [t] = stock [t− 1 ]+[ inflow − outflow] (7.1)

stock (t) =
t

∫
0
(inflow (t)− outflow (t)) dt+ stock (0) (7.2)

outflow (t) = inflow [t− d] (7.3)

stock [t] =

t−1∑
t=t−d

inflow (t) (7.4)
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7.3 Working Example

Here we use an example of a three-echelon supply chain to test the results of imple-
menting our proposed ordering policy and to compare these results with the results
of using two different ordering policies. In order to test the effect of different or-
dering policies, we first put the system at the steady-stat. We assume that all the
echelons receive a stable demand. Then we increase the demand of first echelon.

7.3.1 Description of the system

Figure 7.3 depicts the structure of the model. A supply chain with three players: a
retailer, a wholesaler, and a manufacturer. Figure 7.4 shows the structure of each
player using stocks and flows diagram. Every player has three stocks (OrderPlaced,
Inventory, Backlog), which represent the states of the players system influenced by
the associated flows. There are two material and information delay between each
echelon which are presented through Material Delay and Information Delay. The
Manufacturer, as the last echelon, will have a production delay equal to summation
of both information and material delay. The structure of shipment policy of the
model is specified now. However, the structure of ordering policy will be determined
later based on the ordering policy that we choose to implement.

Figure 7.3 – Structure of the Supply Chain

In each period t, the following sequence of events happens. All the players first
receive their orders, then the demand is observed and shipment of products will be
arranged. Next, players observe the state of system (e.g., level of inventory) and
finally place a new order based on their ordering policy. In the case that there is
not enough inventory, all the unfilled demand will be backlogged; players will satisfy
them when they receive enough amount of products.

7.3.2 Shipment policy

In order to calculate the Shipment Rate we use the term of Desired Shipment Rate
which is determined by Equation (7.5). Desired Shipment Rate is the accumulation
of the backlog and the demand that players have received. In every step of time, the
players try to satisfy both backlog and the demand rate if there is enough products
in inventory. Otherwise, they will satisfy part of it which is equal to the available
inventory.
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Figure 7.4 – Internal System of Every Player

DesiredShipmentRate = Backlog +DemandRate (7.5)

ShipmentRate = Min(DesiredShipmentRate, Inventory) (7.6)

7.3.3 Testing Scenario

In order to test the effectiveness of our proposed ordering policy in the formation
of bullwhip effects, we use a step function as Demand Rate of the retailer changing
from 4 to 8 at the time 4 of simulation. The simulation will be started with the
steady state situation in which the demand rate of the retailer and the orders of all
players are 4. Besides, the inventories have an initial quantity equal to 2. When the
demand rate of retailer gets to 8, the players will increase their orders to compensate
the shortage of their inventories. However after some time the system will reach its
steady state where all the orders are equal to the demand rate of the retailer. In
order to compare the effects of different ordering polices on the bullwhip effects,
inspired by the work of (Chen et al. 2000) ,we use the order rate variance ratio
which is the ratio between the variance of orders at the downstream and upstream
of supply chain (Cannella et al., 2013; Miragliotta, 2006).
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7.4 Shipment-Refined: An ordering policy to min-

imize the bullwhip effect

Following the approach of control theory in closing the feedback of a system and
using controllers to control its behavior, we propose a new ordering policy which
helps us to control the behavior of supply chain minimizing the bullwhip effects.
One of the challenges we face in applying this approach to the case of supply chain
is that we are not dealing with a simple system with one input and one output.
Every echelon has different inputs and outputs interconnected to each other while
the configuration of one echelon influences the others. For each echelon, we should
have a controller to control the whole behavior of the supply chain. It becomes clear
that the only part of the system that the players have the power to change is the
ordering part of their system, which is why we use the error signal as a part of Order
Placed Rate.

In order to control such interconnected system, we develop a simple proportional
controller for every player. Equations 7.7 and 7.8 present the formulation of the
SR policy. error is defined as the positive difference between Demand Rate and
Shipment Rate, which is, indeed, the shortage of products in each time period.
Equation 7.8 defines Order Placed Rate as the summation of Demand Rate and the
error multiplied by the proportional parameter kp, which is used to determine the
amount of orders and consequently, control the level of inventory by the players.
Figure 7.5 shows the structure of the retailer with SR policy.

error = Max (DemandRate− ShipmentRate, 0) (7.7)

OrderP lacedRate = MAX (DemandRate+ (kp ∗ error) , 0) (7.8)

The logic behind this formulation is that with this policy players try to fill out
the gap between Demand Rate and Shipment Rate instead of bridging the gap
between Inventory and a desired inventory level which is used in order-up-to policy.
Furthermore, this formulation is based on a (more realistic) hypothesis that the
problem of the supply chain members is not always oscillations in the demands;
the problem is that they cannot predict how many products they will receive when
they place an order. Actually, the players who use moving average and APIOBPCS
ordering policy rely on the past behavior of demands to place a new order; they do
not take into account any feedback from the part of the system that really causes
the problem. However, in SR policy we provide an opportunity for players to have
feedback from their upstream system.

To study this SR policy, we first investigate the behavior of a one-echelon-supply
chain with one retailer; next we model our three echelon case-study. Figure 7.6
presents the behavior of inventory of the retailer with different Kp. For Kp = 1,
the retailer will add what he needs to satisfy the backlogged demand to the actual
demand which is the differences between DemandRate and ShipmentRate. In this
configuration, the retailer will lose the safety inventory, and the inventory will be
stable at zero. As it is depicted, there is no oscillation or over ordering in the
behavior of the system.
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Figure 7.5 – Structure of the retailer with SR ordering policy

Increasing Kp will increase the level of inventory As its shown, the level of invent-
ory is very sensitive to the amount of Kp. In order to adjust the level of inventory
at the desired level, we should calculate the related Kp. To do that we use an op-
timization with target function equal to the holding cost of the inventory and one
constrain to keep the level of inventory at the desired level. AS it is shown, With
Kp = 1.28572 the inventory will reach the desired level which is the half of Demand
Rate.

Since in this simple case, the retailer will receive the amount of products equal
to his orders after four-week delay, with Kp = 1 the system works well as the error is
equal to actual shortage of products. However, in the two-echelon or three-echelon
systems, a retailer will not receive the exact amount of products that he has already
ordered due to limitation in the inventory of the upstream players. We expect a
lower-than-one Kp for these cases.

In our three echelon working example, to determine the amount of Kp for each
player, we use an optimization method as well (In this case Generalized Reduced
Gradient (GRG) Nonlinear optimization method). Due to connectivity of the play-
ers, changing Kp of one player will influence the results of the others. Therefore Kp

of each player should be determined related to the other Kp’s. By using the GRG
method with a target function equal to the holding cost of all players inventories,
We try to minimize the holding cost of all the players by changing the Kp. There are
three constraints in the systems which are designed to keep the level of inventories
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Figure 7.6 – Inventory level of one-echelon model with different Kps

at the steady state level.

Figure 7.7 depicts the level of Inventory of each player using the SR policy. As it is
shown, inventories reach the desired level without any oscillation. Table 7.1, presents
the amount of orders that each player places during the forty-week time horizon. As
we discussed earlier, to measure the bullwhip effect as an increasing variability of
orders from the retailer to manufacture, we calculate the variance of the orders for
each player. The ratio between Demand Rate of retailer and OrderPlacedRate of the
manufacturer presents the strength of bullwhip effect, which, in this case of applying
SR policy, is equal to 10.21.

In the next section we first investigate the behavior of our working example using
different ordering policies. Then we make some comparisons between the results of
applying two other policies with SR policy.

7.5 Bullwhip effect caused by order-up-to policy

In this section we investigate the role of two popular kinds of order-up-to policy in
generating bullwhip effects. So far, two different formulations of this policy have
received more attention for studying the bullwhip effects. Chen and Samroengraja
(2000) use moving average forecasting policy; Disney and Towill (2002); Dejonck-
heere et al. (2003) use an ordering policy called Inventory and Order Based Produc-
tion Control System (APIOBPCS). In the following, we briefly present the related
formulation of these policies and we study the effect of these policies on bullwhip
effect through the simulation.
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Figure 7.7 – Inventories level using SR policy with Kp = 0.428571, Kp1 = 0.45, Kp2 =

0.62096

7.5.1 Order-up-to policy based on moving average forecasting

Moving average forecasting method is a popular method which has been used for
studying bullwhip effects (Lee et al., 2004). Here, the formulation of this method
is presented; for more information and detailed discussion see, for instance (Chen
et al., 2000; Lee et al., 2004).

D̂L
t = L

(∑P
i=1Dt−i

P

)
(7.9)

σ̂L
et = CL,p

√∑P
i=1 (et−i)

2

P
(7.10)

yt = D̂L
t + zσ̂L

et (7.11)

Ot = yt − yt−1 +Dt−1 (7.12)

In Moving average method, it is assumed that supply chain members follow a
simple order-up to inventory policy in which yt(order up-to point) is estimated from
the observed demand through the Equation 7.11 and its related equations 7.9 and
7.10 and orders are calculated through the Equation 7.12. Where:

• D̂L
t : estimated mean of demand for period t considering lead time L

• σ̂L
et: estimated standard deviation of forecast error for L periods at the time t.

• z: standardized z value

• et: forecast error for period t.
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Table 7.1 – Quantity of orders using SR policy with Kp = 0.428571, Kp1 = 0.45, Kp2 =

0.62096

• CL,p: constant function of L, p,

• P : number of previous periods of time

• Ot: order quantity for period t (Order Placed Rate)

• D̂t: the amount of demand (DemandRate) for period t

Figure 7.8 depicts the structure of the first echelon of our working example using
the moving average method. The structure of other echelons is the same as the first
one. We use a simplified version of this method by setting z to zero. Besides, since
in our working example the sequence between events is different form the work of
(Chen et al. 2000; Lee et al. 2004), we use Formulation 7.13 instead of 7.12.

Ot = yt − yt−1 +Dt (7.13)

The behavior of inventories of each player is depicted in Figure 7.9. As it is shown,
while the level of inventory at the steady state situation is equal to 4, inventory of
manufacturer, in some points, reaches the level of 64 which is 16 times higher than
the desired level. Although, the behavior of both orders and inventories are along
with severe changes, the supply chain reaches the steady state situation after 25
week. Table 7.2 shows clearly the consequence of using moving average forecasting
method in the formation of bullwhip effect. While the desired amount of orders
is eight, the wholesaler order reaches the level of 20 and the manufacture, in some
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Figure 7.8 – Structure of the retailer with moving average ordering policy

points, plans to produce 36 products which is 4 times more than the desired order.
As it is shown in Figure 7.9, both wholesalers and manufactures orders are along
with severe oscillation. Particularly, the manufacturer, its orders in some points get
negative values. The negative order means that the manufacturer needs to cancel
its previous plan of production due to over producing. The ratio between Demand
Rate of the retailer and OrderPlacedRate of the manufacturer presents the strength
of bullwhip effect, which in the case of applying this policy is equal to 90.95.

Figure 7.9 – Inventories level using moving average ordering policy
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Table 7.2 – Quantity of orders using moving average ordering policy

7.5.2 Order-up-to policy based on APIOBPCS method

Inventory and Order Based Production Control System (APIOBPCS) method is a
modified version of the anchoring and adjustment heuristic introduced by (Sterman,
1984). ”Anchoring and adjustment is a common strategy in which an unknown
quantity is estimated by first recalling a known reference point (the anchor) and
then adjusting for the effects of other factors”. According to Dejonckheere et al.
(2003), the quantity of order, Ot, is given by the following formula:

Ot = D̂Ta
t +

1

TS
(TSt − St) +

1

TSL
(TSLt − SLt) (7.14)

where:

• D̂Ta
t is the foretasted demand of period t using moving average forecasting

method with

• parameter Ta.

• St: net stock (Effective Inventory) of period t.

• TSt: target level of stock (DesiredInventory) for period t.

• SLt: amount of products in supply line(OrderPlaced) for period t.

• TSLt: target level of SLt (DesiredOrderPlaced) for period t.
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• TS : adjustment time for the level of stock.

• TSL : adjustment time for supply line.

In line with the formulation of anchoring adjustment method introduced by Ster-
man (1989) and to simplify the model, we assume the players use their actual amount
of demand instead of the foretasted demand D̂Ta

t in the formulation of their next
order. To make the model more understandable, we use different notation for para-
meters of the system. In this formulation, we assume that the players try to keep
the inventory at the DesiredInventory level which is determined through Equation
7.16).

DesiredOrderP laced = DemandRate×DelT ime (7.15)

DesiredInventory = DemandRate× InventoryCoverage (7.16)

EffectiveInventory = Inventory −Backlog (7.17)

DesEffectiveInventoryCorrection =
1

TS
(TSt − St) (7.18)

DesOrderP lacedCorrection =
1

TSL
(TSLt − SLt) (7.19)

Figure 7.10 shows the structure of the retailer. The structure of the other players
is similar to the first one connected to each other. We have set some of the variables
of the model as follows:

• InventoryCoverage = 0.5

• DelTime = 4

• TS = 4

• TSL = 8

Figure 7.11 presents the level of inventory in the model. As shown, there is
a severe oscillation in the inventories of the players so that the retailer and the
wholesaler still after 40 weeks cannot reach the steady state situation. The Inventory
of the manufacture and the wholesaler reaches the point of 90, which is ten times
bigger than the desired level.

Table 7.3 depicts the amount of OrderPlaced of each player. The ratio between
Demand Rate of retailer and OrderPlacedRate of the Manufacturer presents the
strength of bullwhip effect, which in this case of applying this policy is equal to
134.38.

7.6 Results Comparison

In order to show the effectiveness of our proposed SR policy in reducing the bullwhip
effect, as mentioned before, we selected two other popular ordering policies for the
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Figure 7.10 – Structure of the retailer with APIOBPCS ordering policy

comparison purpose. That is to say, we consider a three-echelon supply chain (re-
tailer wholesaler - manufacturer). We then randomly generate demand (a number
between 0 and 16) for the retailer for a forty-week time horizon. We then apply the
three ordering policies (SR, Moving Average (MA), APIOBPCS), and run the three
policies for 43 runs. We then calculate the variance for demand and for the three
ordering policies for the three different players.

As the variance of demand for each run for each ordering policy is different,
due to generating the initial demands randomly, we normalize the variance of each
method for the three players by dividing the variance of the orders of the players by
the variance of the initial corresponding demand. We call this normalized variance
variance ratio.

Table 7.4 shows the mean and standard deviation of variance ratios of the three
ordering policies for 43 runs. We used t-test to compare the results of applying
the three policies, to see if the ratios found from different policies are statistically
different. The results of t-test are shown in Table 7.5.

As can be seen from Table 7.5, SR significantly performs better than both MA
and APIOBPCS.
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Figure 7.11 – : Inventory level using APIOBPCS ordering policy

7.7 Discussion and Conclusion

Bullwhip effect is one of the famous phenomena in the world of supply chain man-
agement, which has received a great deal of interest in the past decades. Numerous
studies have made an attempt to provide answer to the very important question of
how the effect of this phenomenon can be reduced. Despite its popularity, there is
still no consensus among the researchers on how we can avoid or reduce the bullwhip
effect. In this chapter, we introduce a new ordering policy method called Shipment
Refined (SR) policy, and illustrate how this policy can alleviate the bullwhip effect
in supply a chain. Our approach to ordering policy is based on the control theory
principle using feedback to control the behavior of a system. We propose a propor-
tional controller (P-controller) in which the difference (error) between the shipment
rate, as output of the echelons in supply chains, and demand rate, as input, is used
in the formulation of the SR policy. The controller attempts to reduce the error
over time. The coefficient kp of the P-controller is targeted to reduce the error and
keep the level of inventory of supply chain members at a desired level, which is de-
termined using optimization. SR policy is based on two hypotheses. First, the main
cause of bullwhip effect is using distorted information of demand rate in calculation
of future orders. Second, the main problem of supply chain members is not only the
lack of information about the future demand rate but also the lack of information
about the behavior of their suppliers, so that they cannot predict what percent of
their orders will be satisfied on time. Respectively, SR policy avoids using the past
behavior of the demands in its formulation and attempts to take into account the
behavior of the suppliers through the feedback. We examined the effectiveness of SR
policy on reducing bullwhip effects in a three echelon supply chain using discrete-
time simulation. We assess the extent, SR policy influences the bullwhip effect and
we compared the results of the two different popular ordering policies with SR policy.
We use order rate variance ratio to measure the bullwhip effects in the models. The
results show that SR policy significantly reduces the bullwhip effect so that order
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Table 7.3 – Quantity of orders using APIOBPCS ordering policy

rate variance ratios applying SR policy is almost ten times lower than the two other
ordering policies.

In this chapter, we assumed that all the echelons of supply chain follow an
identical ordering policy. However, one might argue that this assumption is not
realistic in some situations. Therefore, as a future research direction, we suggest
studying SR policy in such cases. We also suggest studying how we can calculate
the kp of every echelon of real supply chains using their data regarding the demand
and shipment rate. Another suggestion would be to study the influence of SR policy
approach on the behavior of the players of a serious game experiment similar to Beer
Distribution Game (BGD) (Sterman, 1989, 2000).
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Table 7.4 – Mean and standard deviation of variance ratios of the three ordering policies

for 43 runs

Table 7.5 – t-test for SR-MA and SR- APIOBPCS
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8
Combining ABM with SDM in Practice

This chapter is based on Hesan and Behdani (2015)

8.1 Introduction

Finding a related model to the real world phenomena is one of the main challenge
of simulation studies. Edmonds and Moss (2005) argue that ”the difficult part in
science is not finding attractive abstract models, but of relating abstract models
to the world. There is a famous slogan which advocate that modelers should keep
their model simple. However, this simplification sometimes cost the accuracy of the
model. Although, very complex behavior may be emerged form the simple rules, but,
of course, it does not mean that complex phenomena are reducible to simple models.
Edmonds and Moss (2005) suggest a new slogan ”Keep It Descriptive Stupid”. They
suggest that one should start with a descriptive model and then simplifies it if there
is a justification for doing it.

Aggregation is a popular way of simplification which has a long history in the field
of modeling and simulation. For instance, a large number of models in economy such
as supply-demand follow the aggregation approach by considering the average of de-
mand of whole society instead of individuals’ demand. Aggregation helps to focus on
the main dynamics of the system, and it help to decrease work effort, execution time
of the simulation, and computational power usage Moris et al. (2008). However, it
may cost the accuracy in the simulation result because of over-simplification. For ex-
ample, Bobashev et al. (2007) argue that in a number of situation such as the spread
of a disease, it is important to avoid aggregation and capture the more detailed micro
level process mainly because that ”aggregated equation-based representations may
be too general and hence misleading”.
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In contrary to aggregation view, which is inherently taken by SDM, systems
can be studied at the micro level where heterogeneous entities interact with each
other. This approach, which is taken by ABM, enables Modelers to capture the
global behavior of the system through modeling the behavior and interaction of
entities. ABM approach help modelers in capturing the local interaction of entities
and providing a natural representation of systems as well. However, these advantage
are along with cost. ”ABM may impose a heavy computational and parametric
burden. Tracking and scheduling a large number of interacting agents leads to
serious computational requirements and analytical challenges.” (Bobashev et al.,
2007). Furthermore, ”The complexity of agent-based models may easily reach a
level that makes it almost impossible for a researcher to deduce any understanding
form the simulations.” These limitations have already been pointed out by many
researchers arguing that to use ABM in efficient way, modelers should keep agent-
base models simple following the KISS(Keep It Simple, Stupid!) slogan (Yücel,
2010).

Aggregation is an efficient and reliable way to simplify agent-based models. The
process of simplification is so sensitive as it may cause missing some dynamics which
are fundamental in determining the behavior of the system. Aggregation helps to
simplify agent-based models without missing the main source of dynamics. In this
study we propose combining SDM with ABM as an efficient way to simplify ABM
through the aggregation. We argue that the combination of SDM with ABM, on the
one hand, keeps models simple and, on the other hand, keeps them descriptive.

ABM and SDM are widely-used simulation methods which have different ap-
proaches in dealing with complex systems. ABM follows a bottom-up approach in
studying the behavior of entities at the micro level and letting the global behavior
to be emerged from the interaction of entities. SDM follows a top-down approach
studying the feedback between different elements of systems. However, both are
aimed to study the complex systems. Although so far there has been little discus-
sion between two these two modeling schools (Lättilä et al., 2010), in the last few
years, much more research have been conducted to explore the synergies between
ABM and SDM. It is also recognized that they have the capacity to deliver com-
plementary insight to deal with complex problems (Duggan, 2008). For example,
Akkermans (2001) developed a hybrid model to study dynamics of networked cor-
porations. Schieritz and Grobler (2003) study the dynamics of a supply chain case
study. Borshchev and Filippov (2004) use Bass diffusion model to demonstrate how
two approaches can be combined. A recent review on hybrid simulation can be found
in (Lättilä et al., 2010).

How can one combine these two approaches? In terms of architecture, there are
many different possibilities for this combination. For instance, Bobashev et al. (2007)
suggest that in the case of epidemic disease modeling, modelers should use ABM
at the start of their simulation where uncertainty is high but when the emergent
properties have established they should switch to SDM. Schieritz and Grobler (2003)
use SDM to present internal system of agents. Borshchev and Filippov (2004) use
SDM to present the global structure of the system at the macro level. Although these
architectures are valuable works, none of them present a comprehensive architecture
which presents the corresponded elements of two approaches. For instance, although
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Schieritz and Grobler (2003) use SDM to model internal system of agents but they
don’t specify which part of the agents can be modeled through the SDM. Do SDM
models present the decision making process of agents? Or they just model the
interaction between agents and artifacts. Furthermore, some of them are not generic
enough which can be used in different situations. For example, the former approach
is applicable when one study the diffusion phenomena or spread of disease.

In this section, we will propose a generic architecture for combining SDM and
ABM; we present how SDM elements can be used at different level of a system
corresponded to different part of agent-based models. Furthermore, we will address
the difference between SDM and ABM in dealing with time as an important barrier
to combine these two approaches in one platform. While SDM is a continuous-
time modeling approach - using differential equations to specify the relationship
between stocks and flows-, ABM is a discrete-time modeling approach. To tackle
this problem, we propose using DT-SDM instead of SDM in combination with ABM.
Using a case of a supply chain, we will also illustrate our proposed hybrid method.

8.2 A review of literature on Hybrid simulation

There are three main streams in the literature that use the notion of hybrid simula-
tion. The first approach proposes the combination of continuous systems, and dis-
crete systems as hybrid simulation (Mosterman, 1999), the second one concerns with
integrating analytical modeling with simulation Shanthikumar and Sargent (1983),
and the last one proposes merging different modeling approach (SDM, ABM, Dis-
crete event simulation). The literature that is related to the topic of this chapter is
indeed the last one.

Scholl (2001) tried to introduce areas in which SD and ABM complement each
other, and where they overlap. He calls for cross studies and joint research of two
approaches. He emphasizes that ”Agent-based modeling and complexity theory
on the one hand, and System Dynamics on the other hand, have both produced
rich bodies of research and literature on widely overlapping fields of application.
Both have a high capacity of explanatory power. The cross study of these bodies
of literature is overdue”. Wakeland et al. (2004) compare two approaches in the
context of modeling cellular receptor dynamics to find out how ”two paradigms may
help to generate complementary insights and increase the researchers’ understanding
of the dynamics of systems and processes”.

Rahmandad and Sterman (2008) conduct a cross study of a epidemic case using
SDM and ABM in parallel to investigate the differences between their result and
study the compatibility of these approaches to different situation. As a highly-cited
works in this domain, Parunak et al. (1998) discussed that ”within an individual
agent in an ABM, behavioral decisions may be driven by the evaluation of equations
over particular observables (stocks), and one could implement an agent with a global
view whose task is to access system-level observables and make them visible to local
agents”. Schieritz and Milling (2003) conduct a cross study of SDM and ABM
contrasting primary predisposition of both approaches and identifying potential of
integration of them. They conclude that ”an integrated approach possibly has the
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potential to help decision makers develop the capacity of thinking at one and the
same time of both” approaches.

Schieritz and Grobler (2003) developed a hybrid model in the field of supply
chain. The SD part of their work was developed in Vensim software, and the ABM
part is conducted by using Repast software. They provide a software for interacting
both models. Bobashev et al. (2007) propose combining two approaches in order to
decrease computational demand in a epidemic modeling case. Borshchev and Filip-
pov (2004) illustrate the ability of Anylogic software to develop hybrid simulation
by combining SD,ABM, and Discrete Event Simulation.

Vincenot et al. (2011) discuss three typical pattern of combination of SDM and
ABM in the field of ecology. First, individuals interact with a single SD model.
An example of fishes living in a lake is a good example of this case in which the
behavior of fishes is determined by the ABM models while the characteristics of
lake (e.g, water level, temperature) are modeled by a SDM model. Second, SDM
submodels embedded in individuals. In this case, some properties of individuals are
calculated dynamically with SDM models. The last case represents models in which
individuals interact with a space made of SDM models. In parallel to these research
studies, several software tools have also presented modules for hybrid simulation in
the recent versions. For instance, Vensim which is one of the famous SDM software
has recently introduced the new features of Vensim software to deal with the hetero-
geneous agents in the context of system dynamics. They called their new approach
”Entity-based System Dynamics” which support object-oriented modeling. Collec-
tion of entities, attributes, relation-ships, aggregation and allocation functions, and
actions are the new elements which are added to the existing elements of SDM in
this new approach. Myrtveit (2000); Tignor and Myrtveit (2000) propose extend-
ing SDM with the object-oriented modeling. They mainly focus on enhancing the
reusing ability of SDM models.

Despite the some of the interesting work in the field of hybrid simulation, this
field still suffer from the lack of a conceptual framework. Our work will explicitly
defined the concepts that allow the combination of ABM and SDM at the different
level of a system.

8.3 Advantage of Hybrid Simulation

Besides the advantage of combining SDM with ABM in decreasing the complexity
of agent-based models, this combination help each of these modeling approaches to
take advantage of the strong points of other approach.

8.3.1 Applying Control Theory Techniques in ABM

Constructing agent-based models by the help of of flow (rate) and stock (sink) will
provide a opportunity for modelers to take advantage of control theory principles
in ABM. Control theory has a long history in studying the behavior of dynamical
systems and has been approved as powerful technique for studying the behavior
and controlling dynamical systems. Presenting the the process involved in agent-
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based models as flow and stock will reveals the input, output, and specially the
feedback involved in the system helping to apply the control theory techniques in
agent-based models. In the Chapter 7, we present the advantage of using control
theory approach in controlling the behavior of a simple supply chain with three
agents. In this example, stock and flow are used to present the internal system of
agents involved in a supply chain. Making clear the structure, inputs, outputs, and
feedback involved in this system help us to design a proper controller for it. Once we
recognize the structure and feedback involved in a system by the help SFD, we are
able to to extend the control theory approach for studying a more complex system
with higher number of agents. However, applying such approach in pure agent-based
models it is mostly difficult if not impossible- due to the fact that structure and
process involved in the systems are implicit in programming codes.

8.3.2 Changeable structure in SDM

One of the limitation of SDM addressed by Schieritz and Grobler (2003) is that the
structure of the system dynamics models remains constant during the simulation.
This drawbacks of SDM prevents scientists to capture some dynamics of the real
system. For example, once we construct a system dynamics model of a supply
chain system comprising different players (e.g.,retailer, wholesaler, manufacturer)
connected to each other, their connections remains constant during the simulation.
However, in the real supply chain we are dealing with the changeable structure so
that a new corporation may joint the supply chain or some members may change
their suppliers.

8.4 The conceptual model for combining SDM

with ABM

In Chapter 5 we propose to model the environment of agents using the concept of
workspaces inspiring form Ricci et al. (2007). Furthermore, we propose to distinguish
between operational, social, and macro levels of a system (See Figure 8.1). In this
chapter we use the classification and assumption proposed in Chapter 5 to combine
SDM with ABM at the implementation phase. In Section 5, we use SFD as a
modeling tool aimed to describe the mechanism involved in the agent-based systems.
However, in this section we aim to use SFD as simulation tools. In order to reach
this goal we extend our proposed meta-model by adding some new characteristics.

8.4.1 Corresponded Elements

As it is depicted in Figure 8.2, Sterman (2000) distinguish between decision rules
of the participating agents and physical and institutional structure of a system. He
states that ”The physical and institutional structure contains the measurement and
reporting processes and produces the information cues that are then passed on to
the decision maker. The decision maker interprets the available information cues
by applying his/her decision rules (the policies). The output of a decision process,
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Figure 8.1 – Hierarchy of agent-based models

the decision, results in action which then alters the state of the system leading to a
change of the information cues.”

Inspiring by this argument, we propose that flows can be used to present the
actions of agents or behavior of artifacts. Those parameter which are involved in
the action (precondition, decision making, institution, agent or component prop-
erties) are presented as auxiliary variables which contribute to the condition and
formulation part of flows. Eventually, the rate of flows will change the quantitative
property of artifacts (Stock) or the quantifiable properties (Stock) of agents (e.g.,
the financial level).

8.4.2 Social Structure of Workspaces

In a workspace, the agents’ activities change the state of stocks while the sequence
between these activities is critical in determining the systems’ behavior. In order to
consider the sequence of activities, we need to expand the boundary of workspace
to include social aspects of a workspace as well. In agent-based modeling literature,
the social part of the environment is commonly conceptualized through the term of
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Figure 8.2 – Basic Structure of Decision Process

organization (Ferber et al., 2003). The social part of a workspace can be modeled
using existing organization meta-models (Opera (Dignum, 2004), Moise (Hannoun
et al., 2000), AGR (Ferber et al., 2003)) which are very detailed and technical meta-
models in MAS. In order to clearly define the social part of the workspace - without
getting involved in the details of the organization meta-models- we briefly discuss
some important parameters that need to be declared as social part of a workspace.

• Role: is one of the main concepts within a social structure of workspaces
which represents the functional position of an agent. A role constrains the
behavior of agents and specifies what agents have to do. However, the agents
are free to choose how they want to carry out these actions. For example,
as a specification of the retailer role, a retailer agent places an order with an
upstream actor (i.e., a supplier) or ships the products to its downstream actor
(i.e., a consumer), However, the procedure for that (which defines when and
how he will do this) is dependent on his individual decision making.

• Work-flow: determines the process and sequence between activities which are
conducted by different agents in a workspace.

Agents can enact multiple role in different workspaces either at social level or op-
erational level. For example, at the operation level of a supply chain, a retailer must
perform some specific tasks (e.g., placing orders or shipping products) while he can
take the role of a negotiator at social-level workspace and negotiate, communicate
and, cooperate with other retailers or suppliers.

The role of work- flows at the operational level workspace is different from the
social-level workspaces. Social-level workspaces are more agent-centered compared
to operational-level workspace which are organization-centered. Therefore, in con-
trary with the lower level workspace -which can have predefined work-flow -, there is
not always a fixed predefined work flow at the higher level. Despite the agents at the
lower level, agents at the higher level are more autonomous and are not restricted
by their role specification and the rules which dominate their workspace.

Figure 8.3 shows the UML class diagram of our proposed method. In a nutshell,
this diagram shows that every system consists of workspaces which consist of agents,
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stock, flow, role, and work-flow. These workspaces can be at the operational level,
or social level.

Figure 8.3 – The class diagram

8.5 Computer model for hybrid simulation: the

challenge of differences in dealing with time

Although the value of hybrid simulation has been discussed in the existing literature
(e.g., Schieritz and Grobler (2003)), - especially- ABM and SDM are rarely combined
in a common simulation platform. A main difficulty is the difference in how time
is dealt with in the modeling process (North, 2014). While ABM is a discrete-time
approach, SDM is a continuous-time simulation method.

In most of literature, the practical method for combining SDM and ABM is
connecting SDM software (e.g., Vensim) with a ABM software (e.g., Repast) using
a common interacting interface. Therefore, in every time-step, the states of SDM
sub-model are exchanged with ABM sub-model. This can be problematic because
SDM uses differential equations to define the relationship between stocks and flows
and consequently, the states of SDM sub-models change in every dt. In Chapter
6 we have discussed that in cases that the flows in a system do not change in
every dt (e.g., decision making process of an actor), using differential equations
enforces some approximation in the modeling process which may cause inaccuracy
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in the quantitative result. An alternative method to alleviate this limitation, using
Discrete-time System Dynamics Modeling (DT-SDM) as discussed by in Chapter
6 and Hesan et al. (2014a). In this method, we use difference equations - instead
of differential equations - to construct a system dynamics model. This method is
more justified for modeling the dynamics at the operational level of a system in
which flows do not change in every infinite short interval of time. In DTSDM, the
amount of stock is calculated by Equation 8.1 considering the inflow/outflow and
the previous quantity of that stock in every discrete point of time. Furthermore, the
proposed method uses pure delay to model the time lags in a system (Equation 8.2).

stock[t] = stock[t− 1] + [inflow − outflow] (8.1)

outflow(t) = inflow[t−D]

stock[t] =

t−1∑
t=t−D

inflow(t)
(8.2)

Since DT-SDM and ABM are both discrete-time modeling approach, they can
be combined in a hybrid simulation platform. Agents, stocks, flows are the main
element of our proposed hybrid approach. With the help of these three main elements
and auxiliary variables we can construct a model.

8.6 An Illustrative Case

Supply chain system is a network of multiple actors (e.g., retailer, distributors,...)
exchanging information, products, and money through the network. Making decision
in such complex system which action of every actors influence the performance of
other actors is challenging and calls for effective comprehensive tools.

The research in the field of supply chain simulation has been focused on the
analysis of both long-term and short-term decision making. On the one hand, there
are huge literature regarding inventory replenishment policy (e.g., Karimi et al.
(2003), Ben-Daya et al. (2008)) which focus on finding optimum solution for actors
at the tactical and operational level. On the other hand, there are some well-
established lines of research on long-term behavior of actors at the strategic level
such as supplier selection (e.g., De Boer et al. (2001), Ho et al. (2010) ).

There are also several studies that are interested in studying both long-term and
short-term decisions on the behavior of system. For more information we can refer to
a review article by Minner (2003) which review some of these studies. Most of these
studies try to analyze supply chain systems using analytical approaches. However,
using analytical approach to study such complex systems is always along with some
simplification and restriction which may limit the possibility to study the realistic
aspect of a complex supply network.

Simulation techniques can provide a unique opportunity for researchers to study
the effects and results of both short-term and long-term managers’ decision making
in the field of supply chain. We will use a supply chain example to explain different
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aspects of our proposed methods. As the following we describe our case-study in
more details.

8.6.1 Description of systems

We will study the behavior of a two echelon supply using our proposed method. The
supply chain consists of eight retailers and three suppliers. In addition, there are
150 customers who place orders in every time step. The demand for each customer
is a random value in the range of 1 to 50. The average order placement by each
customer is eight orders in a year.

Supplier selection

In this case, every supplier has some specific characteristics which make that sup-
plier distinctive in the market. The retailers select the suppliers based on these
characteristics. We consider three main characteristics here:

• Technological ability

• Price

• Financial stability

We assume that retailers are using a multi-criteria decision making method to
choose their supplier based on the attributes of supplier and the weight which they
give to each of them. For the aim of simulation, we assign the following values to the
attributes of the suppliers and the weight that retailers consider for these attributes.

• Price = random number between 1 and 10.

• Technical ability = random number between 1 and 10.

Ordering Policy

All retailers and suppliers carry out their activity based on a plan that determines
the sequence of their activities. We assume that in each period of time, the fol-
lowing sequence of events happen. First, every actor receives the products; then,
the demand is observed and the shipment of products is arranged. Next, the actors
check the state of system (e.g., the inventory level) and place an order to with an
upstream actor in the chain. In the case that there are not enough products in the
inventories since retailers do not have any backlog - they will lose their customer
sales. For suppliers, there can be a backlog of unfulfilled orders which are satisfied
as they receive enough products.

The lead-time between order placement by a retailer and receiving the products
is 4 time steps. In the case of supplier, we assume that suppliers will receive their
order after a 4 time step delay. However, retailers may receive part of their orders
in the case of the shortage of products in the supplier stage. For the replenishment
policy, we assume that they all will order in discrete points of time when the level of
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their inventory is lower than a reorder point. The amount of the orders is calculated
using the EOQ formulation (Slack et al., 2010).

Retailers and suppliers can choose to perform different inventory replenishment
policy and the quantity of the orders can be calculated through the use of EOQ
formulation. For the sake of simplicity,

Shipping Policy

In every time step, the retailers check the list of demands and ship the products
to the customers. Likewise, the suppliers keep track of unsatisfied demands and
they fulfill them when there are enough products in their inventory. The sequence
of process of shipping is as following. The suppliers first satisfy the backlogged
demand. Then - if there are some products left in the inventory- they fulfill the new
demands as well. At the end of a specific time point, all unsatisfied orders should be
backlogged. In the case that part of order can be fulfilled, this part will be shipped
to the retailer and the shortage of the products will be backlogged.

8.7 Supply Chain model

Figure 8.4 shows schematic of the system with two suppliers and four retailers.
Figure 8.5 shows the structure of the system at the operational level using SFD
diagram.

Figure 8.4 – Schematic of the Supply chain
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Figure 8.5 – Structure of the supply chain at the operational level

With multiple retailers and suppliers in the system, the behavior of all the ele-
ments involved in the case study cannot be shown in a figure. In the following,
the behavior of inventory of the suppliers and one random retailer is presented and
analyzed in different scenarios. In the first scenario, we assume that retailers select
their suppliers at the starting point of the simulation and they would not change
them during the simulation horizon. In the second scenario, we consider a case in
which retailers will review their supplier selection every year.

As it is depicted in Figure 8.6, the behavior of the retailers inventory is the typical
behavior of the discontinuous replenishment. At the reorder point, the retailer placed
the predefined order and he receives the requested products before the depletion of
its inventory. In this case, the majority of the retailers select the supplier-1 instead
of other suppliers. Therefore, this supplier faces a lot of stock-outs and a big pile
of backlogged orders. The behavior of the two other suppliers is different and their
inventory is smoothly decreased during simulation

In the second scenario, we assume that the characteristics of suppliers change
every year, and the retailers are going to select the new supplier based on their own
criteria. Figure 8.7 shows the inventory pattern of the actors in the second scenario.
In this case, although some suppliers do not have any demand at the beginning,
they will receive that later as retailers have the choice to change their supplier. To
interpret the behavior of inventories in the second scenario, we need to consider
the dynamic of network formation and the changes in the retailer-supplier network.
Furthermore, many different demand patterns are needed to be modelled before a
generic conclusion can be made. In this section, of course, the goal is to introduce
the hybrid simulation tool and therefore, the thorough analysis of case results is
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(a) Retailer (b) Supplier1

(c) Supplier2 (d) Supplier3

Figure 8.6 – Inventory level of one random retailer and three Supplier applying first scenario

beyond the aim of this section.

8.8 Discussion and Conclusion

In this chapter, we presented how the complexity and computational usage of agent-
based models can be reduced using a hybrid SDM and ABM approach. The meta-
model of Chapter 5 is extended in order to merge ABM with SDM in a simulation
study. We also explained how one can construct a hybrid simulation model using
agent, stock, fow and auxiliary variable as the main elements.

As we discussed, in Section 3, the combination of SDM and ABM contributes to
both ABM and SDM in several ways. It not only helps to decrease the complexity
and computational usage of agent-based models but also provides an opportunity for
modelers to apply the control theory principles in developing agent-based models. A
hybrid simulation contributes to SDM in the way that facilitates having changeable
structure in SDM models.

Furthermore, in this chapter the differences between ABM and SDM in dealing
with time is discussed and to cope with this challenge- the DT-SDM approach is
presented.
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(a) RetailerM (b) Supplier1M

(c) Supplier2M (d) Supplier3M

Figure 8.7 – Inventory level of one random retailer and three Supplier applying second

scenario
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9
HybSim: Hybrid Simulation Software

9.1 Introduction

As part of our research we have developed a software called Hybrid Simulation
Software (HybSimS) which provides an opportunity for modelers to combine ABM
and SDM in one platform. Unlike many simulation tools which proposed their special
modeling constructions (e.g., Netlogo in ABM and Ithink in SDM), HybSim is based
on a universal programing language called Python. Using universal language for
developing simulation has already attract some attention so that some simulation
tools such as AnyLogic and Repast use another universal language called JAVA.
However, Using Python has some advantage in comparison to other language like
JAVA. For instance, python programs take much less time to develop. Besides,
programming with python is much easier than JAVA. This can be a advantage for
a simulation tool that its actual users are social scientist who are not expert in
computer science.

Based on the meta-model presented in the previous section, Agent, Stock, Flow,
and Auxiliary Variable are four main elements of HybSim for developing hybrid
models so that Stocks and flows can be used at the operation level, social, and
macro level. In order to construct hierarchy of the system, Hybsim provides an
opportunity that the operational level can be constructed as internal part of social
agents.

In this chapter we present different parts and feature of HybSim software. We
start with exploring the GUI of the HybSim then we explain the characteristics of
HybSim elements.
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9.2 GUI

In this section we give a short description of every items in the GUI of HybSim. As
it is depicted in Figure A.1, The GUI has four windows: Main (center), Elements
(Left-Top), Element Setting (Right-Downn), and Running Result(Right-Down).

Figure 9.1 – HybSim GUI

9.2.1 Main Windows

The main window includes four Tabs: Canvas, Plot, Table, and Codes.

• Canvas: is the the main window of HybSim dedicated for construction of the
models.

• Plot: this window is used for plotting the graphs (See Figure 9.2). We can
easily choose the name of the property that we are willing to plot form the list
(Data Series) and use the button of show to plot it. There is a table beneath
of the plot which provide a opportunity to zoom, save, etc. the graphs.

• Tables: The result of the simulation can be shown in the form Tables in this
window. Data which depicted in the tables can be selected and saved for the
reason of transforming to another software such as Microsoft Excel.
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• Codes; This windows is used to present the programming code of the model.
Python code of the programs is presented in this windows

Figure 9.2 – plot

9.2.2 Elements and Running Result

The left-up window has two tab: Basic elements, and General Setting. Basic ele-
ments of the system can be added to the main canvas through the drag and drop.
Figure 9.3 depicts the General Setting tab which can be used to configure the time
and speed of the simulation.

Running Result (Left-down) windows is used primarily for testing and tracking
the models. When we use the construction of Print in python program to test or
see the result the output of the program is depicted in this windows. Beside, The
message of the python program such as errors is presented in this windows.

9.2.3 Setting of Elements

In HybSim we construct a model with the help of four elements while each of them
has different characteristics and setting panel. Setting-element window has four
tabs (table, Setup Codes, Code Edit, Element Edit). the Element Setting windows
is updated by pressing the left button of the mouse over the elements. For example,
Figure 9.4 depicts the setting panel of an agent with name of Supplier.
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Figure 9.3 – General Setting Tab

• Table: this tab is used for changing the initial setting of each elements of the
model.

• Setup Code: Sometimes to model a agent we need different functions or vari-
ables be defined before running the simulation. This tab is designed for this
purpose.

• Code Edit: What agents and flows do in a model is defined though the pro-
gramming code by using this tab.

• Element Edit: this tab is used to change the internal element of subsys-
tems(e.g., internal system of social agents).

Figure 9.4 – Element Setting Windows
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9.2.4 Toolbar

Figure 9.5 depicts the toolbar of the HybSim which has nine tab. Forst three tabs
are dedicated to build a new model, open the file of the models which have already
been saved, and save the new models.

• Exit: is used to change the main windows from the Submodel to Canvas.

• Sequence: is used to show the sequence between different element of the system.

• Line: is used for connecting different element of the model by arrows.

• Setup: is used to setup the model by running the setup codes and initialization
of the elements of the model.

• Run: is used to run the model.

• Draw; Is used to show the position of the agents and their movement (See
Figure 9.5)

Figure 9.5 – Toolbar

9.3 Characteristics of HybSim Elements
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10
Discussion and Conclusion

10.1 Overview

This thesis started with considering the challenging task of policy design and decision
making in socio-technical systems. It is argued that due to increasing complexity
and dual nature of socio-technical systems, decision makers often rely on model and
simulation to get insight into the dynamics of these systems. ABM is one of the
modeling methods which has received considerable attention recently. The power
of ABM in providing a natural representation of socio-technical systems proposing
agents as the main element of the simulation is one of the reason that make ABM an
attractive modeling method. However, to increase usability of ABM, it is essential
to overcome conceptual and practical limitations of this modeling method. We
proposed that using SDM as complementary approach can help to overcome the
limitations of ABM. This argument motivated us to define our research question as
following:

How can we decrease the complexity of agent-based modeling process
while increasing the explanatory power, and considering the effect of
feedback from macro-properties on agents behavior in agent-based mod-
els using system dynamics modeling as a complementary approach?

Furthermore, Additional research questions were formulated:

• What is the role of feedback in social systems and how it influences the mod-
eling in ABM?

• How can we capture and explain the causal mechanisms (processes) involved
in agent-based models?
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• How can we simplify an agent-based model without losing the main dynamics
driving the system?

In the next section we address these questions by presenting the outcomes and
key findings of this thesis.

10.2 Research Outcomes

10.2.1 Emergence in ABM

In the first part of the thesis (chapter 2, 3), we addressed the first sub-question
of this research investigating the role of feedback in ABM. One of the issues with
ABM which is argued by many researchers is that due to bottom-up approach of
ABM, considering the feedback from emergence features of systems on the behavior
of agent is not part of design steps of agent-based models. However, in order to
account fully account of social phenomena, the feedback from the emergent features
should be considered.

To deal with this issue, we proposed to classify properties of systems at the emer-
gent level to quantitative and qualitative type. We provide some evidence from the
some well known social theories (e.g., Bystander theory) which prove the existence
of feedback from quantitative properties. We explained though in normative agents
the downward causation is modeled through the norms (qualitative properties), how-
ever, norms often are implemented as built-in mental object so that they are not
emerged through the simulation. Besides, this approach of normative agents is not
applicable in other type of agent-based approaches such as Agent-Based Generative
social simulation (ABGSs) where agents are not cognitive agents.

We proposed that in the normative agents models in which norms are not emerged
through the simulation, and in non-normative agents based models which feedback
from qualitative are not modeled, the feedback from quantitative properties of sys-
tem should be modeled. In Chapter 3, we took advantage of the opinion dynamics
model case to present the challenge of considering feedback from emergent proper-
ties: The way they would be perceived by the agents and how they get involved into
the decision making process of the agents.

10.2.2 Mechanism in ABM

In the second part of the thesis (Chapter 4,5), we address the second issue with
ABM regarding the explanatory power of ABM. We argued although mechanisms
are modeled and implemented in the agent-based models, they are implicit in the
models. When building an agent-based model, the modeler specifies the behavior of
the agents and their interactions that bring about the macro-behavior of the system.
However, the mechanisms which are driving the system are not often explained and
they are implicit in the programming code. What is often explained by the modelers
is ”what agents do” which are the causes in the system. However, the effects of these
causes and the chain of cause and effects are implicit in the programming codes.
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In Chapter 4, we showed how we can use system dynamics tools to capture and
explain the dynamics involved in the agent-based models. We present a conceptual
model for modeling the global environment of agents using stock and flow diagram
(SFD). In this chapter we take advantage of a consumer lighting example to illustrate
our conceptual model. In the Chapter 5, we extended our work by looking at all
the possible mechanisms involved in the agent-based models. We presented a meta-
model for explaining these mechanisms. We distinguish between three level of a
system (operational, social, and macro) then we introduce the mechanisms involved
in each of these levels and the inter-level mechanisms. Furthermore, we showed
how SFD, can be used to describe some of these mechanisms. Using SFD, in the one
hand, help to do abstract the mechanisms through the applying aggregated approach
of SDM, and on the other hand, it helps to describe the mechanisms visually.

The presented meta-model and the classification of mechanisms facilitate the
conceptualization phase and the process of explaining the mechanisms involved in of
agent-based model of socio-technical systems. Furthermore, using SFD to depict the
mechanisms in ABM visualizes conceptualization of socio-technical systems models
through the stock, flow, and auxiliary variable. SFD is the means of communica-
tion between the modeler and other stakeholders involved in the simulation study.
Highlighting mechanism through the SFD, produces a structured representation of
the perception of modelers regarding the system which can be presented to different
stakeholders and experts for verification before implementation phase.

10.2.3 Complexity of ABM

The third part of the thesis is dedicated to address the last sub-question of the
research regarding the complexity of agent-based models. We discussed that the
high complexity of agent-based models may make it impossible for researchers to
deduce any understanding from these models. To solve this problem we propose
using SDM tool (SFD)in combination with ABM which lead to a hybrid simulation
method. We argued that the aggregated approach of SDM which is applied through
the SFD diagram reduce the complexity of agent-based models.

In Chapter 6, we developed Discrete-time System Dynamics Modeling (DTSDM).
Similar to traditional SDM, in DTSDM, we use stock, flow, and auxiliary variable
to construct a model. However, On the contrary to SDM which use differential
equations as mathematical operation defining the relationship between stocks and
flows, the basic mathematical operator in DTSDM is difference equation. DTSDM
lead to the more accurate results where flows of the system subject to study are
discontinuous and when there are not many items in delay. In Chapter 7, we take
advantage of a supply chain example to illustrate the difference between quantitative
results of SDM and DTSDM in such cases. DTSDM is a prerequisite for combining
SDM with ABM. The difference between SDM and ABM in dealing with time is
one of the main barriers for combining these two approaches in one platform. In
Chapter 8 We addressed this problem discussing that this can be tackled by using
DTSDM.

In Chapter 8, we extended the meta-model presented in chapter 5 to be used
for combining SDM and ABM in practice. The extended meta-model is a general
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meta-model which not only can be used for combining ABM with SDM but also
it can be applied to study socio-technical systems using only ABM as well. While
currently the social and technical part of socio-technical systems are studied as two
separate network interacting with each other, this meta-model provide a opportunity
for researchers to merge both social and technical part of the socio-technical systems
in one model. We took advantage of a supply chain example to illustrate different
aspects of our proposed meta-model and hybrid simulation method.

Chapter 9, is dedicated to introduce the HybSimS simulation software. HybSimS
is developed as part of this research to provide a opportunity for modelers to combine
ABM and SDM in one platform. There are two main differences between HybSimS
and other simulation hybrid software simulation such as Anylogic. First, HybSimS
is based on the meta-model presented in chapter 8. Second, In HybSimS, we use
DTSDM instead of SDM which can lead to more accurate quantitative results.

10.3 Future Work

In this section, we will propose several topics for future work.

Studying more case-study Although we have used multiple case studies and
example to develop the presented multi-methodology approach, more case would
help further improve of it. Conducting more case studies also will help to develop the
generic library for HybSimS as well which can be shared between different models.

Advancing tool support Advancing the HybSimS can further ease the use of
the hybrid simulation. HybSimS can become more user friendly by providing auto-
mated code generation and providing tips when constructing a model. The ability
of importing and exporting models form other simulation tools would increase the
usability of HybSimS.

Extend the frame work Although in this thesis we focused on the combination
of SDM with ABM, there is a possibility to combine Discrete Event Simulation(DES)
with these modeling approaches as well. Using DES will facilitate modeling the pro-
cesses at the operational level of systems when we are aimed to model the processes
in detail.
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Case Study Result

A.1 introduction

In Chapter 9, we take advantage of a two echelon supply chain model to explore
different aspects of our proposed hybrid simulation. However, we did not get into
the details of its programming codes. This appendix is aimed to present different
aspects of HybSim using the supply chain case study. This appendix will help those
who are interested to use HybSim.

A.2 Model Description

As we discussed earlier, we model a two echelon supply chain case comprising one
hundred and fifty customer, eight retailers, and three suppliers. The structure and
different policies that we used to model them have already been discussed. In this
section we explain how we can implement this model in HybSim.

To construct the model, as it is depicted in Figure A.1, we add four agents to the
canvas: customers, retailers, suppliers, and dummy agent. Since the role first three
agents have been discussed earlier. We just need to explain what the role of dummy
agent is. Dummy agent is used to model the delay between the time that suppliers
place order and when they receive their products. It is assumed that supplier receive
their products after 4 weeks so we use a dummy agent to receive their orders and
send product to them after the delay.

In the next step we use the Element characteristics table to determine the number
of agents involved in the model. We should determine the sequence between these
agents using the Priority. For example, it is assumed that firs customer place an
order, then retailer and finally suppliers. Elements will be sorted based on the their
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priority numbers so that the code of elements with lower number will be run before
those with higher number.

The next is to define the structure of the agents at the operational level. By
double clicking each of the agent we can reach their operational level canvas. For
the sake of simplicity, we do not define any new agent at the operational level.

A.3 Related Codes

Figure A.1 – Overview of the Supply Chain Case

A.3.1 Retailer

1

e n t i t y = s e l f . i nde l ay . p o p l e f t ( )
3 s e l f . r e c e i v e r . inOrders . append ( e n t i t y )

5 #s t a r t OrderFul f i l lmentRate
s e l f . OrderFul f i l lmentRate = 0

7 removed = [ ]
f o r item in s e l f . inProduct :

9 s e l f . OrderFul f i l lmentRate=s e l f . OrderFul f i l lmentRate+item . amount
removed . append ( item )
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11 s e l f . Orderplaced = s e l f . Orderplaced − s e l f . OrderFul f i l lmentRate
f o r item in removed :

13 s e l f . inProduct . remove ( item )
#end OrderFul f i l lmentRate

15

#s t a r t Acqu i s i t i onRate
17 s e l f . Acqu i s i t i onRate=s e l f . OrderFul f i l lmentRate

s e l f . Inventory = s e l f . Inventory + s e l f . Acqu i s i t i onRate
19 #s e l f . OrderFul f i l lmentRate = 0

i f s e l f . Acqu i s i t i onRate > 0 :
21 s e l f . t r i g g e r = 0

#end Acqui s i t i onRate
23

#s t a r t DesiredShipmentRate
25 s e l f . DesiredShipmentRate=s e l f . OrderReceivedRate+s e l f . Backlog

#end s t a r t DesiredShipmentRate
27

#s t a r t o r d e r r e c e i v e d
29 s e l f . OrderReceivedRate =0

f o r item in s e l f . inOrders :
31 s e l f . OrderReceivedRate = s e l f . OrderReceivedRate+item . amount

#end o r d e r r e c i v e d
33

#s t a r t shipmentRate
35 removed = [ ]

removed1 = [ ]
37 i f s e l f . Inventory > 0 :

f o r item in s e l f . backlogOrders :
39 i f s e l f . Inventory >= item . amount :

s e l f . t e s t 1 ( item , item . amount )
41 s e l f . Inventory = s e l f . Inventory−item . amount

removed1 . append ( item )
43

f o r item in s e l f . inOrders :
45

i f s e l f . Inventory >= item . amount :
47 s e l f . t e s t 1 ( item , item . amount )

s e l f . Inventory =s e l f . Inventory−item . amount
49 removed . append ( item )

e l s e :
51 s e l f . t e s t 1 ( item , s e l f . Inventory )

item . amount = item . amount − s e l f . Inventory
53 s e l f . Inventory = 0

s e l f . backlogOrders . append ( item )
55 s e l f . newbackloged =s e l f . newbackloged+item . amount

removed . append ( item )
57

e l s e :
59 f o r item in s e l f . inOrders :

s e l f . backlogOrders . append ( item )
61 s e l f . newbackloged =s e l f . newbackloged+item . amount

removed . append ( item )
63

f o r item in removed :
65 s e l f . inOrders . remove ( item )

f o r item in removed1 :
67 s e l f . backlogOrders . remove ( item )

#end shipmentRate
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69

#s t a r t backlog
71 s e l f . Backlog = 0

f o r item in s e l f . backlogOrders :
73 s e l f . Backlog = s e l f . Backlog + item . amount

i f s e l f . Backlog <= 0 : s e l f . Backlog =0
75 #end backlog

77 #s t a r t OrderPlacedRate
s e l f . Des i redInventory=s e l f . OrderReceivedRate∗ s e l f . InventoryCoverage

79 i f s e l f . Inventory <= 60 and s e l f . t r i g g e r == 0 :
s e l f . OrderPlacedRate= 80 + s e l f . newbackloged

81 s e l f . t r i g g e r = 1
s e l f . newbackloged = 0

83 e l s e :
s e l f . OrderPlacedRate= 0

85 i f s e l f . OrderPlacedRate <= 0 : s e l f . OrderPlacedRate = 0

87 e n t i t y = Entity1 ( s e l f , s e l f . t r anspor t e r , s e l f . r e c e i v e r , s e l f .
OrderPlacedRate )

s e l f . i nde l ay . append ( e n t i t y )
89 #end OrderPlacedRate

A.3.2 Supplier

1

#s t a r t OrderFul f i l lmentRate
3 s e l f . OrderFul f i l lmentRate = 0

removed = [ ]
5 f o r item in s e l f . inProduct :

s e l f . OrderFul f i l lmentRate = s e l f . OrderFul f i l lmentRate+item . amount
7 removed . append ( item )

s e l f . Orderplaced = s e l f . Orderplaced − s e l f . OrderFul f i l lmentRate
9 f o r item in removed :

s e l f . inProduct . remove ( item )
11 #end OrderFul f i l lmentRate

13 #s t a r t Acqu i s i t i onRate
s e l f . Acqu i s i t i onRate=s e l f . OrderFul f i l lmentRate

15 s e l f . Inventory = s e l f . Inventory + s e l f . Acqu i s i t i onRate
i f s e l f . Acqu i s i t i onRate > 0 :

17 s e l f . t r i g g e r = 0
#end Acqu i s i t i onRate

19

#s t a r t DesiredShipmentRate
21 s e l f . DesiredShipmentRate=s e l f . OrderReceivedRate+s e l f . Backlog

#end s t a r t DesiredShipmentRate
23

#s t a r t o r d e r r e c e i v e d
25 s e l f . OrderReceivedRate =0

f o r item in s e l f . inOrders :
27 s e l f . OrderReceivedRate = s e l f . OrderReceivedRate+item . amount

#end o r d e r r e c i v e d
29

#s t a r t shipmentRate
31 i f s e l f . DesiredShipmentRate < s e l f . Inventory :
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s e l f . ShipmentRate = s e l f . DesiredShipmentRate
33 e l s e : s e l f . ShipmentRate = s e l f . Inventory

removed = [ ]
35 removed1 = [ ]

37 i f s e l f . Inventory > 0 :
f o r item in s e l f . backlogOrders :

39 i f s e l f . Inventory >= item . amount :
s e l f . t e s t 1 ( item , item . amount )

41 s e l f . Inventory = s e l f . Inventory−item . amount
removed1 . append ( item )

43

f o r item in s e l f . inOrders :
45

i f s e l f . Inventory >= item . amount :
47 s e l f . t e s t 1 ( item , item . amount )

s e l f . Inventory = s e l f . Inventory−item . amount
49 removed . append ( item )

e l s e :
51 s e l f . t e s t 1 ( item , s e l f . Inventory )

item . amount = item . amount−s e l f . Inventory
53 s e l f . Inventory = 0

s e l f . backlogOrders . append ( item )
55 s e l f . newbackloged=s e l f . newbackloged+item . amount

removed . append ( item )
57 e l s e :

f o r item in s e l f . inOrders :
59 s e l f . backlogOrders . append ( item )

s e l f . newbackloged=s e l f . newbackloged+item . amount
61 removed . append ( item )

f o r item in removed :
63 s e l f . inOrders . remove ( item )

f o r item in removed1 :
65 s e l f . backlogOrders . remove ( item )

#end shipmentRate
67

#s t a r t backlog
69 s e l f . Backlog = 0

f o r item in s e l f . backlogOrders :
71 s e l f . Backlog = s e l f . Backlog + item . amount

i f s e l f . Backlog <= 0 : s e l f . Backlog =0
73 #end backlog

75 #s t a r t OrderPlacedRate
s e l f . Des i redInventory=s e l f . OrderReceivedRate∗ s e l f . InventoryCoverage

77 i f s e l f . Inventory <= 80 and s e l f . t r i g g e r == 0 :
s e l f . OrderPlacedRate= 80 + s e l f . newbackloged

79 s e l f . t r i g g e r = 1
s e l f . newbackloged = 0

81 e l s e :
s e l f . OrderPlacedRate= 0

83 i f s e l f . OrderPlacedRate <= 0 : s e l f . OrderPlacedRate = 0

85 e n t i t y=Entity1 ( s e l f , s e l f . t r anspor t e r , s e l f . r e c e i v e r , s e l f . OrderPlacedRate
)

s e l f . r e c e i v e r . inOrders . append ( e n t i t y )
87 # end OrderPlacedRate
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A.3.3 Dummy agent

1 remove = [ ]
f o r item in s e l f . inOrders :

3 i f item . de lay == 0 :
s e l f . t e s t 1 ( item )

5 remove . append ( item )
item . de lay = item . de lay −1

7 f o r item in remove :
s e l f . inOrders . remove ( item )

A.3.4 Customer

i f s e l f . parent . currentTimes >=3:
2 s e l f . OrderPlacedRate = randint (1 , 15 )

e n t i t y = Entity1 ( s e l f , s e l f . t r anspor t e r , s e l f . r e c e i v e r , s e l f .
OrderPlacedRate )

4 s e l f . r e c e i v e r . inOrders . append ( e n t i t y )
removed = [ ]

6 f o r item in s e l f . inProduct :
s e l f . OrderFul f i l lmentRate = s e l f . OrderFul f i l lmentRate + item . amount

8 removed . append ( item )
f o r item in removed :

10 s e l f . inProduct . remove ( item )
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