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Introduction

Extreme precipitation events have large impacts on society and are likely to

continue to do so under global warming (Tebaldi et al., 2006). Indeed, extreme

precipitation shows intensification in many regions and this is of key importance to

society as a result of the large impact through flooding (Trenberth et al., 2003). For

design and management decisions, particularly around hydraulic works, accurate

estimates of precipitation magnitudes at different durations are needed.

Most of the typical hydrological applications need estimation of the physical

quantity (e.g. precipitations or discharge) where measurements stations either

are not available or the data provided result inadequate for the application to be

implemented. Such a last case is often verified when the probability distributions

adopted for the modelling of a physical process linked to measurements needs

the knowledge of the parameters estimated using high-order statistics that can be

obtained only if the sample is wide and purposeful.

Frequency analysis is related to an information problem. Indeed when the

dataset of flood flows, rainfall, or low flows is available with a sufficiently long

record, the frequency distribution for a site could be precisely determined, so

long as change over time due to urbanization or natural processes did not alter

the relationships of concern. Frequently the historically available rainfall series

are unsuitable for this estimation process. This forces hydrologists to exploit the

practical knowledge of the processes involved, and the adoption of efficient and

robust statistical techniques, to develop the best estimates of hazard. Among

these techniques, Regional Freqeuncy analysis is one of the most useful tool.

Extreme rainfall has been classically estimated using rain-gauge data at single

point locations to fit extreme value distributions to annual maxima series to define

extremes with given return periods on an annual basis and then interpolating these

estimates bin the space (Prudhomme and Reed, 1999). More recently, regional

frequency analysis has been more widely used (Hosking and Wallis, 2005, Lo Conti

et al., 2007, Nguyen et al., 2002, Norbiato et al., 2007, Stedinger and Vogel, 1993).
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2 Introduction

Such an approach involves the regional pooling of standardized annual maxima

for different duration to allow the estimation of long return-period rainfall events

when individual records are too short to allow their reliable estimation (Fowler

and Kilsby, 2003a, Hosking and Wallis, 2005). However, this methodology relies

on the identification of homogeneous regions which share the same extreme rainfall

characteristics: the assumption made is that the shape of the growth curve is the

same for every site in the region, and only the magnitude of the events differs

among different sites.

The Regional Frequency Analysis (RFA) has been shown to reduce the uncer-

tainties in quantile estimation of extreme events (Hosking and Wallis, 1988) and

plays an important role for several civil structure designs and non-structural prob-

lems involving natural hazards associated with extreme rainfall events. RFA uses

data derived from a number of measuring sites belonging to a “region”, defined

as a group of sites, each of which could be modelled from the same frequency

distribution. Therefore, the analysis involves the identification of such regions,

testing whether the proposed regions are really homogeneous, and the choice of

appropriate distributions to fit each region’s data.

An important strength of the RFA approach is that the parameters of the prob-

ability model could be estimated with a wider historical observation dataset, using

all the stations belonging to the same region. Previous works have demonstrated

that RFA is able to provide more reliable estimates of extreme rainfall quantiles

for different return even in the case when the dataset is very large (Hosking and

Wallis, 1988). RFA is also able to resolve the problem of the evaluation of precip-

itation extremes at ungauged sites within the same region without interpolation

processes involving quantiles at gauged sites.

Advantages and features of the regional analysis have been described by Hosk-

ing and Wallis (1988) and further exploited by Gabriele and Arnell (1991). These

last authors have applied an hierarchical approach for the RFA to extreme rain-

fall data using different combinations of probability distributions and parameters

evaluation methods. Through Montecarlo simulations the authors were able to

retrieve the efficiency of the assessment achieved identifying regions where respec-

tively the skewness coefficient and the coefficient of variation are assumed to be

constant; furthermore the same authors have observed that in the regions where

the skewness coefficient is not constant, it can be worthy to use the same hier-

archical approach that can be considered an alternative to the identification of

completely independent regions.
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Estimating of the regional frequency distribution can be achieved by the L-

moments statistics. Hosking and Wallis (2005) stated that L-moments are an

alternative system of describing the shapes of probability distributions. Histori-

cally they arose as modifications of the probability weighted moments (PWMs)

of Greenwood et al. (1979). RFA based on L-moments has been implemented in

several studies of extreme precipitation ( Fowler et al., 2005, Fowler and Kilsby,

2003a,b, Schaefer, 1990, Zwiers and Kharin, 1998).

In Italy, the diffusion of the RFA methodology for the streamflow and the

extreme rainfall was used from the VAPI (VAlutazione delle Piene in Italia; Flood

evaluation in Italy) realized by GNDCI (a national group for the hydrological risk

assessment). In this project the RFA was applied for the extreme rainfall modelling

of different regions: Calabria (Ferro and Porto, 1988), Sardinia (Cao et al., 1991),

Puglia (Copertino et al., 1992), Sicily (Cannarozzo et al., 1995), Campania (Rossi

and Villani, 1994) and Veneto (Villi et al., 2001) and other regions.

Approaches used to identify homogeneous regions (Alexander et al., 2006,

Coelho et al., 2008) usually consider all extremes of a station before applying

spatial clustering, in order to identify regions which display similar behaviour,

(e.g. Maraun et al., 2008). A final tool, adopted by several authors (e.g. Dales

and Reed, 1989, Neal and Phillips, 2009, Wigley et al., 1984) for RFA analysis, is

to simplify the rainfall characteristics through the Principal Component Analysis

(PCA) followed by a clustering analysis to exploit regional groups (e.g. Blenkinsop

et al., 2008, Jones et al., 2014).

The aim of this work consists in the design and the development of a RFA

procedure for the area of Sicily, Italy, based on the selection of suitable procedures

considering the data availability and the meteoclimatic features of the area. In the

previous works related to the same area (Cannarozzo et al., 1995, Lo Conti et al.,

2007), the choice of the number and the extension of the homogeneous regions were

made with hydrological criterions related principally on watersheds boundaries. In

this work, an objective method will be adopted to achieve the identification of the

homogeneous regions with the research of the best distribution able to represent

the characteristics of the regions identified. A procedure aimed to assess the

quantile accuracy has been carried out to confirm the goodness of fit of proposed

method.

The response of precipitation extremes under climate change has also been

studied in this thesis using an ensables of climate models provided from Coor-

dinated Regional Climate Downscaling Experiment (CORDEX). The CORDEX
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project essentially has the twofold purpose of providing a framework to evaluate

and benchmark model performance (model evaluation framework), and design a

set of experiments to produce climate projections for use in impact and adaptation

studies (climate projection framework). The evaluation of extreme precipitations

will be carried out for two different climate scenarios, related to the increase of

the CO2, assessing the impact of the climate change on the extreme rainfall.

The manuscript is divided into six chapter: a theoretical part which includes

the state of the art, the description of the phenomena and the tools used for

the analysis (three chapters); a description of the area of study and the dataset

used(one chapter) and an experimental part in which the two applications are

described and discussed (two chapters). A detailed description of each chapter is

given below.

Chapter 1 provides a general description of the extreme event analysing the dif-

ferent type of meteorological phenomena, focusing the attention on Mediterranean

area that shows unique characteristics which condition the extreme precipitation

events. Chapter 2 describes the state of the art and general principles of the

frequency analysis, essential for the examination in depth of the peculiarities of

this kind of approach. Chapter 3 describes the regional frequency analysis and

the statistical tool that will be integrated in the different steps of the RFA; this

approach will provide a new objective approach to regionalization procedure in

Sicily. In chapter 4 the area of study, the Sicily, will be described together with

its climatic and morphologic characteristics, showing the dataset used in the case

of study as well. Chapter 5 will present the case study about RFA with the evalu-

ation of the performance of identification of the new regions obtained after fitting

the appropriate probability of distribution. Finally, Chapter 6 will derive the pos-

sible effects of climate change on the extreme precipitation through the use of

the regional climate models (CORDEX project) that provide an indication of the

possible evolution of the climate until the end of the 21th century.



Chapter 1

Extreme events

Human society is particularly vulnerable to severe weather and climate events

that may cause damage to property and infrastructure, injury, and even loss of

life. Although generally rare at any particular location, such events cause a dis-

proportionate amount of loss.

Extreme weather and climate events are a major source of risk for all human so-

cieties. There is a pressing need for more research on such events. Various societal

changes, such as increased populations in coastal and urban areas and increasingly

complex infrastructure, have made us potentially more vulnerable to such events

than we were in the past. In addition, the properties of extreme weather and cli-

mate events are likely to change in the 21th century owing to anthropogenic climate

change. The definition, classification, and diagnosis of extreme events are far from

simple. There is no universal unique definition of what is an extreme event. This

chapter discusses these issues and presents a simple framework for understanding

extreme events focusing on the extreme rainfall in the Mediterranean area.

1.1 Definition of extreme events

Extreme events are generally easy to recognize but difficult to define. This is

due to several reasons. First, there is no unique definition for what is meant by

the word “extreme”: several definitions are in common use. Second, the concept

of “extremeness” is relative and so strongly depends on context. Third, the words

“severe”, “rare”, “extreme”, and “high-impact” are often used interchangeably.

Here are some definitions of these terms (Stephenson et al., 2008):

• Severe events are events that create large losses in measures such as number

of lives, financial capital, or environmental quality (e.g., loss of species). The

5



6 1.1. Definition of extreme events

severity can be measured by the expected long-term loss, which is known as

the risk. Risk depends on the product of the probability of the event (i.e.,

hazard), the exposure to the hazards (e.g., how many people are exposed),

and the vulnerability (i.e., how much damage ensues when someone is hit

by the event). Severity is a function of not only the meteorological hazard

but also the human state of affairs. The severity of the events has increased

considerably in recent years, mainly owing to increased numbers of people

settled in the zone with more exposure producing increased of it.

• Rare events are events that have a low probability of occurrence. Because of

the rarity of these events, human societies (and other ecosystems) are often

not well adapted to them and so suffer large amounts of damage when they

occur. Hence, despite their rarity, the large vulnerability associated with

such events can often lead to large mean losses (and hence they are a type

of severe event).

• Extreme events are events that have extreme values of certain important me-

teorological variables. Damage is often caused by extreme values of certain

meteorological variables, such as large amounts of precipitation (e.g., floods),

high wind speeds (e.g., cyclones), high temperatures (e.g., heat waves), etc..

Extreme is generally defined as either taking maximum values or exceedance

above pre-existing high thresholds. Such events are generally rare; for exam-

ple, extreme rainfall depth exceeding the 100-year return value, which have

a probability of only 0.01 of occurring in any particular year.

• High-impact events are severe events that can be either short-lived weather

systems (e.g., severe storms) or longer-duration events such as blocking

episodes that can lead to prolonged heat waves and droughts. The World

Meteorological Organization (WMO) uses the phrase “high-impact weather”

rather than “severe weather” to help people avoid confusing the term severe

with only short-lived events such as individual storms.

In addition to this potential source of confusion, extreme events have a variety

of different attributes and so cannot be completely described by a single number.

The multidimensional nature of extreme events is often overlooked in rankings

of the events based on only one of the attributes (e.g., the category numbers for

hurricanes based solely on maximum surface wind speed). Extreme events have

attributes such as:
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• rate of occurrence (probability per unit time);

• magnitude (intensity);

• temporal duration and timing;

• spatial scale (footprint);

• multivariate dependencies.

The temporal duration of extreme events plays an important role in the ex-

posure and hence total losses. Temporal duration also provides a useful way of

classifying extreme events. The duration is implicit when one describes an event as

a “climate” extreme event rather than a “weather” extreme event. The difference

between weather and climate is a measure of time. Weather is the condition of

the atmosphere over a short period of time, and climate is how the atmosphere

“behaves” over relatively long periods of time. Weather is basically the way the

atmosphere is behaving, mainly with respect to its effects upon life and human

activities. The difference between weather and climate is that weather consists of

the short-term (minutes to months) changes in the atmosphere. In most places,

weather can change from minute-to-minute, hour-to-hour, day-to-day, and season-

to-season.

Weather is chaotic, which means that even a microscopic disturbance can lead

to large scale changes. The climate is the long-term average of the weather over a

number of years. It is shaped by global forces that alter the energy balance in the

atmosphere, such as changes in the sun, the tilt of the Earth’s axis, the amount

of sunlight the Earth reflects back into space and the concentration of greenhouse

gasses in the air.

If we consider the example of a man with his dog leash, it is possible to link the

weather with the irregular sporadic pattern of the dog. Though it is difficult to

predict where the dog is going, we can know the range of his meandering because

he is on a leash. Conversely, man’s straight path is like the climate, which is

broadly predictable by observing long-term changes in global forces (Figure 1.1).

Climate, however, is the average of weather over time and space.
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Figure 1.1: Weather vs Climate (source: natgeotv.com)

With regard to the space and time scale of weather events, a definition of terms

that describe these characteristics, among different meteorological phenomena, is

essential. Phenomena having short time scales also tend to have small spatial

scales, and vice versa (Figure 1.2).

Figure 1.2: Scale definitions and the characteristic time and horizontal length
scales of a variety of atmospheric processes.
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Before defining what is meant by “mesoscale”, it may be easiest first to define

what is meant by the “synoptic” scale. The adjective “synoptic” is defined in the

American Meteorological Society’s Glossary of Meteorology as referring to meteo-

rological data that are obtained simultaneously over a wide area in order to present

a nearly instantaneous snap-shot of the state of the atmosphere. The early synop-

tic charts displayed the limited amount of data that could be collected routinely

at the same times on a daily basis, and disturbances that could be resolved on

these charts eventually were referred to as “synoptic-scale” disturbances. Thus,

the term “synoptic”, though not initially intended to define a scale, ultimately

became a term used to describe the scale of large-scale weather systems, which

were the only types of meteorological phenomena that could be resolved regularly

by the coarse resolution observing platforms of the middle 20th century.

The term “mesoscale” is believed to have been introduced by Ligda (1951), in

order to describe phenomena smaller than the synoptic scale but larger than the

“microscale”, a term that was widely used at the time (and still is) in reference to

phenomena having a scale of a few kilometres or less.

Today the mesoscale “officially” (according to the American Meteorological

Society’s Glossary of Meteorology) is defined as the 2–2000 km scale, with sub-

classifications of meso-α, meso-beta, and meso-gamma scales referring to hori-

zontal scales of 200–2000 km, 20–200 km, and 2–20 km, respectively. In this

classification scheme, the microscale is reserved for horizontal scales smaller than

2 km.

1.2 Extreme rainfall in the Mediterranean

Mediterranean Sea is located in a transitional zone where mid-latitude and

tropical features variability are both relevant. Thus, the Mediterranean climate

region evolves on the north to the Marine West Coast Climate (from 40◦ to sub-

polar regions) and on the south to the Subtropical Desert Climate (southward of

30◦ or 25◦). Further, the Mediterranean climate is exposed to the South Asian

Monsoon (SAM) in summer and the Siberian high pressure system in winter.

The southern part of the region is mostly under the influence of the descend-

ing branch of the Hadley cell, while the Northern part is more linked to the mid-

latitude variability, characterized by the North Atlantic Oscillation (NAO) and

other mid-latitude interconnections patterns. The NAO is the main cause of win-

ter precipitation variability (and climate generally) in the North Atlantic region
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covering central North America to Europe, extending into Northern Asia. The

NAO is the seasaw of barometric pressure differences between the Azores subtrop-

ical high and the Icelandic polar low (Jones et al., 1997).

However, the climate variability patterns present a large amount of synoptic

to mesoscale spatial variability, inter-seasonal and multi-decade to centennial time

variability. An important consequence is that the analysis of the Mediterranean

climate can be used to identify changes in the intensity and extension of global

scale climate pattern like NAO, ENSO (El Niño Southern Oscillation) and the

monsoons and their region of influence.

On the other hand, the large-scale atmospheric circulation exerts a strong in-

fluence on the cold season temperature and precipitation over the Mediterranean,

though the strength of the relation varies with region. The largest amount of stud-

ies on the effect of the mid-latitude variability refers to the role of NAO which de-

termines a large and robust signal on winter precipitation, which is anti-correlated

with NAO over most of the western Mediterranean region (Xoplaki, 2002). How-

ever, in its Eastern part the advection of moisture from the Mediterranean itself

produces a more complex situation, and eventually other large-scale patterns, like

EA (East Atlantic), play an important role, and, in the central Mediterranean,

the Scandinavian pattern has a strong influence (e.g. Xoplaki, 2002). This is su-

perimposed with the effect of tropical variability, specifically with a reduction of

cyclones in the Mediterranean area during La Niña events. Tropical variability

events, like ENSO (Mariotti et al., 2002, Rodo et al., 2002), can be important in

the parts where NAO influence is weaker (Rodó et al., 1997).

There are evidences that ENSO is significantly correlated with winter rainfall in

the Eastern Mediterranean (Price et al., 1998, Yakir, 1996). However it is still open

for debate, what could be the physical mechanisms for these links. In summer,

when the advection of moisture from the Atlantic is weaker and the Hadley cell

moves northward and attenuates, there are evidences of connections with the Asian

and the African monsoons (stronger in the eastern part). The influence of NAO on

the Mediterranean temperature is weaker than on precipitation and the observed

correlation has been found to be non-linear and non-stationary (Pozo-Vázquez

et al., 2001).

Mediterranean summer temperatures have no relation with the NAO, and they

are not adequately linked to larger scale patterns. Rather, warm Mediterranean

summers are connected with blocking conditions, subsidence, stability, a warm
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lower troposphere and positive Mediterranean Sea surface temperature (Xoplaki

et al., 2003).

The variability of large and locale scale meteorological factors that arise around

Mediterranean Sea, are reflected on the variegate climatology that is observable on

related lands. The western side of Africa coast is mostly classified as warm desert

climate, while on the eastern side Algeria and Morocco coasts areas are classified

as warm Mediterranean or cold semiarid climate as well as part of Spanish coast,

some Italian, Greek and Turkish, costs and islands (then comprising Sicily). On

the north temperate Mediterranean, temperate oceanic and warm oceanic/humid

subtropical climate classes are attributed to French coasts, adjacent Spain and

Italian lands and along the eastern Adriatic coast.

The Mediterranean region is characterized by the occurrence of short and very

intense storms. These phenomena often cause landslides and floods with consid-

erable loss of human life and enormous economic damage. These events (which

can be classified as extreme events) are very rare when referring to specific sites.

However their frequency is not negligible in a regional context. This seems to be

more evident when analysing the annual maxima for rainfall and flow data series.

In fact, there are some values much higher than the others and called “outliers”

which do not seem to come from the same sample of data.

In the ’90s the Italian National Group for Defence from Hydrological disasters

(GNDCI) has developed a National Program for assessing floods in Italian water-

courses, involving dozens of researchers in different operative units representing

all Italian regions.

The latest developments in meteorology, for example, highlights how the ex-

treme variability of rainfall is strongly influenced by the rainfall generating pro-

cesses. These processes can be divided into three categories:

1. frontal or cyclonic phenomena, rain storm cell aggregates, which are the

dominant structure in the Mediterranean weather (baroclinic cyclogenesis

marked with orographic effects);

2. isolated cells storms, convective rainfall combined with evolving local phe-

nomena, just like the typical summer storms;

3. cyclonic vortex (hurricane-like phenomena), rainfall generated by meteoro-

logical structures like meso-cyclonic vortices.
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The first process produces ordinary events, while the other two processes gen-

erate extraordinary events. The “clustering” of high intensity rainfall areas em-

bedded within rainfall areas of lower intensity can be analysed at many different

scales (Willems, 2001). At the smallest scale, the individual rain cell forms the

building-block of a spatial rainfall structure. The rain cells are embedded in a clus-

tered way within “small mesoscale areas” (102–103 km2). At larger scales, small

mesoscale areas occur in a clustered way within lower intensity “large mesoscale

areas”, which in turn are embedded within some synoptic-scale lowest intensity

rainfall field. The large mesoscale areas are observed as (sometimes elongated)

bands and their spatial extent varies from 103 to 104 km2.

The distribution of rainfall is strongly influenced by the orography (Tropeano

and Furcolo, 2005; Cuomo and Guida, 2010) because, from a cinematic point

of view, it promotes the channelling of atmospheric currents along preferential

directions. On the other hand, from a thermodynamic point of view, it interacts

with the overlying air, lifting the hot masses and transferring radiation through

complex heating exchanges between the air and the soil.

The rainfall variability due to the orography and to the atmospheric circulation

is difficult to be described at the different scale of interest. It proves to be even

more difficult when only a few rainfall data sets are available (e.g. daily rainfall

observations in few points of a region of interest). In the case of intense storms,

especially for the convective storms, it may happen that the most violent rainfall

might escape the observation. This condition is often caused by the low density

of measurement points compared to the variability of the phenomenon and by the

unavailability of a radar system.

1.2.1 Baroclinic cyclogenesis

The baroclinic cyclogenesis is the dominant meteorological phenomenon in the

Mediterranean. The rainfall is associated with the movement of sub-horizontal

baroclinic cyclones (e.g. Holton, 1992), when large masses of warm moist air move

and meet cold air masses.

To the passage of cold fronts (Figure 1.3) can be associated with two types of

facilities, as described by Bacchi (1996):

• Bands parallel to the line of the cold front, having a length of a few hundred

kilometres in front of a width of a few kilometres. The sudden lifting of
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warm air masses generate heavy rainfall, also the order of 100 mm/h, with

a duration limited to a few minutes.

• Formation of bands of greater width (a few tens of kilometres), set back from

the bands on either side of the face, accompanied by less intense rainfall (1-10

mm/h) duration of the order of the hour.

Figure 1.3: Cold front (source: Lutgens and Tarbuck, 2004)

Always Bacchi (1996), inspired by the work of Hobbs and Locatelli (1978)

and Houze Jr et al. (1976) show that the warm fronts (Figure 1.4) are generally

associated with stratiform precipitation by band structures, far between a few

tens of kilometres and having extensions of the order of 50-100 km. The rainfall

associated with this type of structures are not particularly intense (1-10 mm/h)

and have durations of the order of the hour.

Figure 1.4: Warm front (source: Lutgens and Tarbuck, 2004)

The interaction of a large-scale baroclinic wave with an orographic obstacle like

the Apennines is the cause of a smaller-scale, orographically induced, baroclinic

lee cyclone that is generated to the lee of the obstacle (Reale and Atlas, 2001).
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The precipitation associated with cyclonic and frontal storms are of the level of the

“large mesoscale areas” that have an extensions of about 103–104 km2 (Willems,

2001). Baroclinic structures, then, generally generate rainfall events with large

extent, in which it’s often possible to identify cells, or clusters of cells, with high

intensity. Frontal events duration varies from several hours to several days. These

events also move hundreds of kilometres accordingly to the atmospheric circulation

and generate ordinary extreme events more frequent and less severe on average.

1.2.2 Isolated convective cells

In temperate zones, like the Mediterranean, it is common to observe, especially

in the warm season, the formation of events with a low spatial scale, thunderstorms,

which for this reason they are often referred to as summer storms. This type of

event, which has convective genesis is denoted by one or more cumulus clouds

(cumulonimbus) generated by convection of charged atmosphere of water vapour,

made unstable by heating close to the ground. Rain cells and cell clusters most

often appear in large and small mesoscale areas but they can also occur isolated

outside these regions (e.g. in air mass thunderstorms) (Willems, 2001). Moisello

(1999) showed that the life of a cell is about half an hour, but the storm can last

for several hours as the cells succeed one behind the other.

The evolution of these cells, which is depicted schematically in Figure 1.5, can

be conceptualized as occourring in three stage:

1. cumulus stage, during which the cells behave very much like the nonprecipi-

tating convective clouds, although the updrafts may be somewhat stronger.

The air is moving upward from the subcloud layer at all levels, and precipi-

tations begin to form toward the end of this stage;

2. mature stage marks a dramatic transition in the dynamics of the convective

cell. During this stage, precipitation is forming quite rapidly, and may reach

the ground before the end of the stage. Large changes in the buoyancy

distribution in the cloud result from the redistribution of condensed water

mass, from the reevaporation of some of the precipitation in subsaturated

environmental air, from mixing of cloudy air with its environment, and from

melting of falling snow, graupel, or hail;

3. dissipating stage where the spreading cold air negates the ability of pressure

perturbations associated with the buoyant cloud to draw up subcloud-layer
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Figure 1.5: Isolated convective cells

air, because the latter has become decidedly stable and dense. The updraft

collapses, and the downdraft decays on a time scale dictated by the fall speed

of precipitation and the depth of the cloud. The remaining cloud at low levels

evaporates through turbulent mixing with the surrounding, unsaturated air,

while large concentrations of ice may remain in the high troposphere as an

“anvil” cloud, produced by the outward-spreading updraft air. Here, the

saturation vapour pressure is so small that the evaporation of even a small

amount of condensed water quickly saturates the air.

The spatial extent of individual rain cells, in the order of 10–50 km2 (Waymire

et al., 1984), is indeed of the same order of magnitude as the spatial extent of

most urban and small hydrographic catchments. Therefore the study of isolated

cells requires a very dense rain gauge network or a radar system.

Convective precipitation systems are generally organized in isolated storm cells

or clusters. This kind of phenomenon is associated with the convective movement

of warm moist air masses towards the cold layers of the overlying atmosphere. It

is also supported by contributions of energy and water vapour from limited areas,

carried by a convergent flow of air masses. In the areas affected by convective

rainfall the instantaneous and average intensity vary within a wide range, typically

10-100 mm/h within a few minutes. The spatial distribution of a convective rainfall

is also heterogeneous and each cell usually lasts less than an hour. However before

dissipating all the active cells, it may take several hours.
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1.2.3 Tropical Like Cyclones

In the Mediterranean, vortices of great intensity and small scale were observed

(Reale and Atlas, 2001), mainly concentrated in autumn (between August and

November), which have characteristics of convective events more typical of tropical

like cyclones (Figure 1.6) and they are named Mediacane, a portmanteau of the

words Mediterranean and hurricane.

Mediterranean tropical cyclones are not considered to be formally classified

tropical cyclones and their region of formation is not officially monitored by any

agency. A majority of Mediterranean tropical cyclones form over two separate

regions. The first, more conducive for development than the other, encompasses

an area of the western Mediterranean bordered by the Balearic Islands, southern

France, and the shorelines of the islands of Corsica and Sardinia. The second

identified region of development, in the Ionian Sea between Sicily and Greece

and stretching south to Libya, is less favourable for tropical cyclogenesis. An

additional two regions, in the Aegean and Adriatic seas, produce fewer medicanes,

while activity is minimal in the Levantine region.

Figure 1.6: Diagram of a Northern hemisphere hurricane.

The geographical distribution of Mediterranean tropical cyclones is markedly

different from that of other cyclones, with the formation of regular cyclones cen-

tring on the Pyrenees and Atlas mountain ranges, the Gulf of Genoa, and the

island of Cyprus in the Ionian Sea. Although meteorological factors are most

advantageous in the Adriatic and Aegean seas, the closed nature of the region’s

geography, bordered by land, allows little time for further evolution (Cavicchia

et al., 2014).

The geography of mountain ranges bordering the Mediterranean are conducive

for severe weather and thunderstorms, with the sloped nature of mountainous
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regions permitting the development of convective activity (Homar et al., 2003).

Although the geography of the Mediterranean region, as well as its dry air, which

typically prevent the formation of tropical cyclones, under certain meteorological

circumstances, these obstacles can be overcome (Emanuel, 2005).

The occurrence of tropical cyclones in the Mediterranean Sea is generally ex-

tremely rare, with an average of 1.57 forming annually and merely 99 recorded

occurrences of tropical-like storms discovered between 1948 and 2011 in a mod-

ern study, with no definitive trend in activity in that period (Cavicchia et al.,

2014). Few medicanes form during the summer season, though activity typically

rises in autumn, peaks in January, and gradually decreases from February to May

(Cavicchia et al., 2014). In the western Mediterranean region of development,

approximately 0.75 such systems form each year, compared to 0.32 in the Ionian

Sea region (Cavicchia et al., 2014).

Therefore, the Mediterranean is affected by meso-cyclonic vortices with very

low frequency (not negligible though), similar to tropical cyclones. The rainfall

due to the tropical like cyclones is characterized by an intensity much higher than

that of the frontal phenomena. It generally occurs over a localized area with rapid

advection over coastal areas. The events, to be considered “extraordinary”, cause

rainfall up to 30-50% of average annual rainfall, covering up to 100-1000 km2 areas

in less than 24 hours. The Figure 1.7 shows satellite imagery of a Mediterranean

tropical-like cyclone.
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Figure 1.7: NOAA-7 visible satellite imagery of a Mediterranean tropical-like
cyclone at 1236 UTC on 26 January 1982.



Chapter 2

Frequency analysis of extreme

rainfall events

The purpose of frequency analysis in hydrology is to analyse past records of

hydrologic variables so as to estimate future occurrence probabilities. The data

used in the analysis must be evaluated in terms of the objectives, length of records

available and completeness of records. It must also satisfy certain statistical crite-

ria such as randomness, independence, homogeneity and stationarity. A frequency

analysis can be performed using single-site data, regional data or both. It can also

include historical information and reflect physical constraints.

Because hydrological phenomena are characterized by great variability, ran-

domness and uncertainty, it should, therefore be recognized that statistical analysis

of hydrological data will not always yield a true answer. The sources of uncer-

tainty in frequency analysis include representativeness of the analytical approach,

selection of the probability distribution and estimation of parameters.

In the case of extreme events, our major interest is not in what has occurred,

but the likelihood that further extreme and damaging events will occur at some

point in the future. A probabilistic approach is required to incorporate the effects

of such phenomena into decisions. If the occurrences can be assumed to be inde-

pendent in time the frequency analysis can be used to describe the likelihood of

any one or a combination of events over the time horizon of a decision.

In this chapter, the extreme events will be described with relative the state of

the art of frequency analysis, subdividing the works among at-site and regional

frequency analysis. General probability concepts will be introduced, as the L-

moments and the statistical criteria that the data series must meet. In the case

19
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of the screening of data, the discordancy measure, derived using L-moments con-

cepts, will be introduced. The discordancy measure provides an useful tool for the

initial screening of the data and indicates sites where the data may merit close

examination. Some probability distribution of extreme events will be described

concurrently at the method aimed to the parameter estimation and the methods

use to choose an appropriate frequency distribution will be discussed. Finally, at-

site frequency analysis of rainfall will be described, while the regional frequency

analysis will be deepen in the next chapter.

2.1 State of the art of rainfall frequency analysis

A frequency analysis can be performed for a site for which sufficient rainfall

data are available. Similar to flood frequency analysis, rainfall frequency analysis

is also based on annual maximum series or partial duration series (e.g. Wang,

1991, Wilks, 1993).

Probability distributions can be assessed for the mean rainfall intensities at

the relevant time scales, but most important for urban drainage and flash flooding

applications are the rainfall extremes. These extremes can be extracted from the

full rainfall series using the classical approach of annual maxima (Coles et al.,

2001) where the annual maximum within a (hydrological) year is concluded in the

extreme value analysis. Traditionally, this approach has been used for analysing

rainfall extremes (e.g. Alila, 1999, Schaefer, 1990, Wallis et al., 2007).

Another approach considers events above threshold level in the extreme value

analysis. This approach, referred to as the Partial Duration Series (PDS) or Peak-

Over-Threshold (POT) method, has been used for analysing extreme rainfall at

fine temporal scales in for example Begueŕıa and Vicente-Serrano (2006), Madsen

et al. (2002), Wang (1991), Wilks (1993), Willems (2009), Willems et al. (2007).

The pros and cons of the Annual Maxima Series (AMS) approach versus the POT

method have been discussed, amongst others, by Madsen et al. (1997), Stedinger

and Vogel (1993).

For example, Wilks (1993) have investigated the performance of 8 three-parameter

probability distributions for representing annual extreme and partial duration pre-

cipitation data at stations in the northeastern and southeastern United States.

Particular attention was paid to fidelity on the right tail, through use of a boot-

strap procedure simulating extrapolation on the right tail beyond the data. The

authors have found that the beta-k distribution best describes the extreme right
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tail of annual extreme series, and the beta-P distribution is best for the partial

duration data. The conventionally employed two-parameter Gumbel distribution

was found to substantially underestimate probabilities associated with the larger

precipitation amounts for both annual extreme and partial duration data. Fitting

the distributions using left-censored data did not result in improved fits to the

right tail. Arguments in favour of either of these techniques are contained in the

literature (Stedinger and Vogel, 1993, Watt et al., 1989).

Procedure for statistical frequency analysis of a single set of data are well

established. However in some case, the dataset of the different measuring sites have

insufficient data. In this case, if the meteorological or environmental observation of

the same variables at different measuring sites made on samples of similar products,

and if the event frequency are similar for the different observed quantities, a more

accurate conclusion can be reached by analysing all of the data samples together

than by using only a single sample. In environmental application this approach

is know as regional frequency analysis, because the data samples analysed are

typically observations of the same variables at number of measuring sites within

a suitably defined “region”.

For example, Schaefer (1990) used the index flood methodology to conduct

regional analyses of annual maximum precipitation data in Washington State.

It has been shown that climatically homogeneous regions can be defined based

on the mean annual precipitation. Further, it was found that the coefficients of

variation and skewness of annual maximum rainfalls vary systematically with the

mean annual precipitation. Hence, all sites within a homogeneous region could be

characterized by a specific three-parameter probability distribution, such as the

generalized extreme value, having fixed values of the coefficients of variation and

skewness. However, the use of mean annual precipitation as an index variable

may not be appropriate for other regions with different climatic or topographic

conditions. For instance, the median of annual maximum rainfalls at a site was

recommended as the index variable for regional estimation of extreme rainfalls in

the United Kingdom (Faulkner, 1999).

In general, one of the main difficulties in the application of this technique

is related to the definition of homogeneous regions. Various methods have been

proposed for determining regional homogeneity, but there is no generally accepted

procedure in practice (Mills, 1995, Nguyen et al., 2002).

Zwiers and Kharin (1998) used L-moments to study precipitation data pro-

duced by global climate models to compare current climate to modelled climate
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under CO2 doubling. Fowler and Kilsby (2003a,b) and Fowler et al. (2005) used

L-moments to study extreme precipitation in the United Kingdom via RFA.

Approaches used to identify homogeneous regions (Alexander et al., 2006,

Coelho et al., 2008) usually consider all extremes of a station before applying

spatial clustering, in order to identify regions which display similar behaviour,

(e.g. Maraun et al., 2008). A final tool, adopted by several authors (e.g. Dales

and Reed, 1989, Neal and Phillips, 2009, Wigley et al., 1984) for RFA analysis, is

to analyse the rainfall characteristics through the Principal Component Analysis

(PCA) followed by a clustering analysis to identify regional groups (e.g. Blenkin-

sop et al., 2008, Jones et al., 2014).

In Italy the diffusion of the methodology for extreme rainfall was used from

the VAPI (VAlutazione delle Piene in Italia; Flood evaluation in Italy) realized by

GNDCI. In this project the RFA was applied for the extreme rainfall modelling

of different regions: Calabria (Ferro and Porto, 1988), Sardinia (Cao et al., 1991),

Puglia (Copertino et al., 1992), Sicily (Cannarozzo et al., 1995), Campania (Rossi

and Villani, 1994) and Veneto (Villi et al., 2001) and other regions.

With regard to the works in Sicily, Cannarozzo et al. (1995) presented a regional

frequency analysis for the Sicilian region which used the TCEV distribution and

a hierarchical regionalization technique. The rainfall analysis, carried out with

rainfall data recorded by Sicilian raingauges, showed a duration dependence of the

TCEV parameters and allowed even for the determination of the rainfall depth-

duration relationship at ungauged sites and at gauged sites with short records.

At the first level of the hierarchical regionalization procedure, Sicily is con-

sidered to be a homogeneous region with regard to the skewness and kurtosis

coefficient and the duration-dependent hypothesis for the TCEV parameters Λ∗

and θ∗ was considered.

At the second level the region is divided into smaller areas, named homogeneous

sub-regions, in which the λ1 parameter is assumed constant. For each duration d,

generating samples by a Monte Carlo technique, a Λ∗1 parameter (dependent on

the duration) was used equal to the mean value of the λ1 parameters of all the

recording raingauges located in each sub-region; the relationships dependent on

the duration d was evaluated for the λ1 parameters.

The last step of the hierarchical procedure aims to determine a regional crite-

rion to estimate µR even for ungauged sites or for sites with short records. Since

the theoretical µR values were fixed equal to the empirical one, mc, the third re-

gionalization level was developed via mc values calculated through a power-law
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equation depending on the duration.

Lo Conti et al. (2007) carried out a regional frequency analysis procedure and

applied to precipitation data in the island of Sicily, Italy. Annual maximum series

(AMS) for rainfall durations of 1, 3, 6, 12 and 24 h from about 300 raingauges, for

the period 1928-2004, were used for various statistical analyses. The identification

of homogeneous regions was performed using only site characteristics (latitude,

longitude, mean annual precipitation) and required a minimum of subjective re-

location of stations in order to obtain relatively homogeneous regions evaluated

through the Hosking and Wallis test (HW ).

Two regional probability distributions were used in order to obtain depth-

duration frequency curves: generalized extreme value (GEV) and two component

extreme value (TCEV) distribution. The regional parameters of these distributions

were estimated using the L-moment ratios approach. Different statistics were

computed and compared with those resulting from at-site Monte Carlo simulation

showing that the regional procedures improves the quantiles prediction.

Gabriele and Chiaravalloti (2013) provide a new approach based on meteo-

climatic information in the regional daily rainfall frequency analysis. By starting

with reanalysis meteorological data, the thermodynamic and dynamic atmospheric

instability indexes Convective Available Potential Energy (CAPE), vector Diver-

gence (QD), and the Vertically Integrated Moisture Flux (J) were used to search

regional homogeneity in the absence of a priori rainfall data.

In the first step, the proposed methodology attempted to verify the possibility

of identifying large areas that are related to climatic characteristics and contain

prevalent high CAPE values or low QD values.

In these areas, which are prone to experience intense convective precipitation,

the meteorological context, which is related to the annual maxima, is expected to

be characterized by high CAPE values. In leeward areas, the direct exposure to

deep fronts may characterize large areas in which annual maxima daily rainfall are

generated by long precipitation with a high frequency of negative QD values.

The application of the Hot Spot Analysis, that is a statistical tool able to

evaluate possible clustering of vector variables able to emphasize the tail of the

spatial distribution of the frequency of CAPE and QD, confirmed the presence

of homogeneous large areas named macro-regions ; in these macro-regions, the

characteristics of the CAPE and QD indexes were considered constant.

In the second step, the mean direction of the Vertically Integrated Moisture Flux

(J) was investigated inside each macro-region by the use of kriging analysis. The
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results showed that, especially for stratiform rainfall, flux is strongly influenced

by orographic barriers and, determined by these barriers, there were many sub-

areas that display a constant mean flux direction in the Italian Peninsula. In

order to verify the proposed procedure, two regional analyses were performed; one

was performed in the north-east in a stratiform macro-region (identified by high

frequencies of low QD values). While a second was performed in the south Sicily

in a convective macro-region (identified by high frequencies of high CAPE values).

The results of the heterogeneity test clearly confirmed the rainfall homogeneity

and verify the goodness fit, by the Z-statistic test, for the Generalized Logistic

distribution. The proposed approach was evaluated for the two regions, which

contained a well-defined climatic homogeneity of CAPE, QD and J, seemed capable

of detecting rainfalls homogeneity without the use of direct observations. To reduce

the number of indexes computation the authors used rainfalls to select the events

to be analysed. Since there was no guarantee of the correspondence of the days

of annual maximum of rainfalls and atmospheric indexes, more experiments were

performed to find the representative meteorological events in the absence of a

priori selection based on rainfall. The GLO distribution and the TCEV have

shown better performance.

2.2 Probability concepts

In frequency analysis, a series is a convenient sequence of data, such as hourly,

daily, seasonal or annual observations of a hydrological variable. If the record of

these observations contains all the events that occurred within a given period, the

series is called a complete duration series. Regardless of the method employed

to obtain rainfall series, through observation or through stochastic generation, a

regardless of the temporal scale, statistical analysis is required to quantify the

probabilities of the rainfall intensities.

The AMS method considers only the maximum events within a year although

other events in the year may exceed annual maxima of the other years. The use of

the annual maximum series is very common in frequency analyses for two reasons.

The first is for convenience, as most data are processed in such a way that the

annual series is readily available. The second is that there is a simple theoretical

basis for extrapolating the frequency of annual series data beyond the range of

observation. A limitation of annual series data is that each year is represented by
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only one event. The second highest event in a particular year may be higher than

the highest in some other years, yet it would not be contained in the series.

The use of POT can address this issue because all peaks above the specified

threshold are considered (WMO, 2008). The POT approach provides a more con-

sistent definition of the extreme values be considering all events above a threshold.

However, as opposed to the AMS approach that generally assures independents

events, independence criteria have to be defined to ensure independence between

extreme events in the POT series. In addition, the POT method includes se-

lection of threshold level, which will introduce some sort of subjectivity in the

extreme value analysis. Due to its simpler structure, the AMS-based method is

more popular in practice.

The POT analysis, however, appears to be preferable for short records, or where

return periods shorter than two years are of interest. The theory and application

of the AMS approach have been well documented in hydrologic and engineering

literature (Chow, 1964b, Stedinger and Vogel, 1993, Watt et al., 1989). As for any

statistical analyses, both the quantity and quality of the data used are important.

Both the methods above described are directed to evaluate the quantile of the

distribution, usually as function of the return period (T ), with the aim to design

and management of hydraulic works. The main steps of the quantiles evaluation

are:

1. analysis of the dataset;

2. evaluation of statistic parameter;

3. population statistics and parameter estimation;

4. goodness-of-fit test of distribution.

All these steps will be discussed in the following sections providing also some

information about the at-site frequency analysis, while the regional frequency anal-

ysis will described in the next chapter.

2.2.1 The rainfall data and hypothesis testing

Rainfall data used for frequency analysis are typically available in the form of

annual maximum series, or are converted to this form using continuous records of

hourly or daily rainfall data.
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The precipitation data should be collected for a long period of time. A suf-

ficiently long record of precipitation data provides a reliable basis for frequency

determinations. It is known that a data sample of size n, in the absence of a

priori distributional assumptions, can provide information only about exceedance

probabilities greater than approximately 1/n (NRCC, 1998). It is a common rule

of thumb to restrict extrapolation of at-site quantile estimates to return periods

(years) of up to twice as long as the record length (Watt et al., 1989). Hence,

long-term precipitation data are extremely valuable for determining statistically

based rainfall estimates of reasonable reliability, especially for extreme rainfalls

with high return periods, such as those greater than 100 years.

The quality of precipitation data may affect its usability and proper interpre-

tation in flood frequency analysis studies. Precipitation measurements are subject

to both random and systematic errors (Sevruk, 1985). The random error is due to

irregularities of topography and microclimatical variations around the gauge site.

Random errors are also caused by inadequate network density to account for the

natural spatial variability of rainfall. The systematic error in point precipitation

measurement is, however, believed to be the most important source of error. The

largest systematic error component is considered to be the loss due to wind field

deformation above the orifice of elevated precipitation gauges. Other sources of

systematic error are wetting and evaporation losses of water that adheres to the

funnel and measurement container, and rain splash.

The outliers could provide critical information for describing the upper tail

of the rainfall distribution. Hence, high outliers are considered to be historical

data if sufficient information is available to indicate that these outlying observa-

tions are not due to measurement errors. Regarding data inconsistency, there are

many causes. Changes in gauging instruments or station environment may cause

heterogeneity in precipitation time series.

The data series must meet certain statistical criteria such as randomness, inde-

pendence, homogeneity and stationarity in order to guarantee for the results of a

frequency analysis to be theoretically valid. These statistical criteria are listed in

Table 2.1. A more detailed description of many of tests for the different criterion

can be found in Helsel and Hirsch (1992).

Statistical tests can only indicate the significance of the observed test statistics

and do not provide unequivocal findings. It is therefore important to clearly un-

derstand the interpretation of the results and to corroborate findings with physical

evidence of the causes, such as land use changes. When data do not satisfy the
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Table 2.1: Statistical tests and statistical criteria

Criterion Explanation Applicable statistical tests

Randomness In a hydrologic context, randomness means No suitable tests for
essentially that the fluctuations of the hydrological series
variable arise from natural causes. are available.

Independence Independence implies that no observation Anderson as described in
in the data series has any influence Chow (1964a).
on any following observations. Even if Spearman rank order serial
events in a series are random, they may correlation coefficient as
not be independent. The elements of annual described in NERC (1975).
series of short-duration rainfall may,
in practice, be assumed to be independent.

Homogeneity Homogeneity means that all the elements Terry (1952).
of the data series originate from a single
population. Elderton (1953) indicated that
statistics are seldom obtained from strictly
homogeneous material. When the variability
of the hydrological phenomenon is too high,
as in the case of extreme precipitation,
non-homogeneity tends to be difficult
to decipher (Miller, 1972), but non-homogeneity
in yearly precipitation sums is easier to detect.

Stationarity Stationarity means that, excluding random Spearman rank correlation
fluctuations, the data series is invariant with coefficient test for trend
respect to time. Types of non-stationarity NERC (1975).
include trends, jumps and cycles. Trends may be Wald and Wolfowitz (1943)
caused by gradual changes in climatic conditions test for trend. No satisfactory
or in land use, such as urbanization. Cycles may method of testing is available
be associated with long-term climatic oscillations. for long-period cycles.

Mann–Kendall test for trend
Yue et al. (2002)

assumptions, then a transformation can often be employed so that the transformed

observations would meet the criteria required for analysis. Caution is advised in

interpolation and extrapolation when data do not meet the assumptions.

2.2.2 The L-moments

It is standard statistical practice to summarize a probability distribution or an

observed data set by its moments (i.e. expected value, variance, skewness, etc.). In

this method, while fitting a probability distribution to a sample, the parameters are

estimated by equating the sample moments to those of the theoretical moments

of the distribution. It is sometimes difficult to assess exactly what information

about the shape of a distribution is conveyed by its moments of third and higher

order; the numerical values of sample moments, particularly when the sample is

small, can be very different from those of the probability distribution from which

the sample was drawn; and the estimated parameters of distributions fitted by

the method of moments are often markedly less accurate than those obtainable
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by other estimation procedures such as the method of maximum likelihood. The

alternative approach described here is based on quantities called L-moments.

Hosking and Wallis (1993) has defined L-moments, which are analogous to con-

ventional moments, and can be expressed in terms of linear combinations of order

statistics. Basically, L-moments are linear functions of probability weighted mo-

ments (PWMs) (Greenwood et al., 1979). L-moments have theoretical advantages

over conventional moments of being able to characterize a wider range of distri-

butions and, when estimated from a sample, of being more robust to the presence

of outliers in the data. Experience also shows that, compared with conventional

moments, L-moments are less subject to bias in estimation and approximate their

asymptotic normal distribution more closely in finite samples. Parameter esti-

mates obtained from L-moments are sometimes more accurate in small samples

than even the maximum likelihood estimates. Lettenmaier et al. (1987) and Hak-

tanir (1992) have obtained, in terms of statistical robustness, good performance

with parameters estimated using the moments weighted into probability (PWM).

They are in fact able to produce estimates of the quantiles with low distortion and

small standard error observed even if the sample belongs to a population different

from that assumed.

Just as the variance, or coefficient of skewness, of a random variable are func-

tions of the moments E[X], E[X2], and E[X3], L-moments can be written as func-

tions of probability-weighted moments, which can be defined as

βr = E{X[F (X)]r} (2.1)

where F(X) is the cdf for X and r the order of the moment. Probability-weighted

moments are the expectation of X times powers of F(X). For r = 0, β0 is the

population mean µ0.

The L-moments provide excellent performance in terms of robustness and ac-

curacy of the estimation of the parameters especially in the context of regionaliza-

tion, like the PWM from which they are derived. L-moments have been defined

for a probability distribution, but in practice must often be estimated from a finite

sample. Estimation is based on a sample size n, arranged in ascending order. Let

x1:n ≤ x2:n ≤ ... ≤ xn:n be the ordered sample. It is convenient to begin with an

estimator of the probability weighted moment (βr).
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An unbiased estimator of βr may be written in general as:

βr = n−1

r∑
j=1

(j − 1)(j − 2)...(j − r)
(n− 1)(n− 2)...(n− r)

xj (2.2)

where xj, for j = 1, ..., n is the sample ordered ascending and n is the sample size.

The sample estimate of the L-moments can be done through the expressions:

λ1 = β0 (2.3)

λ2 = 2β1 − β0 (2.4)

λ3 = 6β2 − 6β1 + β0 (2.5)

λ4 = 20β3 − 30β2 + 12β1 − b0 (2.6)

and in general

λr =
r−1∑
k=0

p∗r−1,kβk (2.7)

where

p∗r,k =

(
r

k

)(
r + 1

k

)
(2.8)

The merit of the L-moments compared to PWM is that they offer the advan-

tage of an easier statistical interpretation being able to read as a measure of the

shape parameters of the probability distributions of the theoretical and observed

the sample. The L-moments, unlike the moments “classics”, appear to be less sub-

ject to the presence of adverse sampling conditions, such as time series reduced or

measurement errors (Kottegoda and Rosso, 1997).

In statistical, regional analyses are particularly suitable dimensionless ratios

between the L-moments always proposed by Hosking and Wallis (1993).

The L-moments ratio are defined as dimensionless version of the L-moments ;

these are achieved by dividing the higher order L-moments by the scale measure

λ2. The L-moments ratios are defined:

τr =
λr
λ2

r = 3, 4, ... (2.9)

L-moments ratios measure the shape of a distribution independently of its scale

of measurement. The L-CV value was defined

L− CV =
λ2

λ1

(2.10)
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This quantity is analogous to the ordinary coefficient of variation, Cv. The

L-moments are similar but the most convenient moments weighed in probability

because more easily interpretable as a measure of shape of the distribution: in

fact, λ1 is the average, or a position measurement, λ2 is a measure of scale, τ3

and τ4 (L-skewness and L-kurtosis) are, respectively, measures of skewness and

kurtosis.

The estimator τr and τ are not unbiased, but their biases are very small in

moderate or large samples. The quantities λ1, λ2, τ3, and t4 are statistical param-

eters useful to summarize the characteristics of a data sample and be used, as well

as to judge which distributions are consistent for a given data sample (Hosking and

Wallis, 1993), to estimate the parameters when fitting a distribution to a sample,

by equating the L-moments of the population to those of the sample (Hosking and

Wallis, 1993). In fact, many researches (Hosking and Wallis, 1988, Hosking et al.,

1985, Lettenmaier and Potter, 1985, Lettenmaier et al., 1987, Potter and Letten-

maier, 1990, Wallis and Wood, 1985) have shown that the procedure of the flow

rate based on the probability weighted moments, or L-moments ratios, produces

estimates of quantile robust and accurate.

Zafirakou-Koulouris et al. (1998) mentioned that like ordinary product mo-

ments, L-moments summarize the characteristics or shapes of theoretical proba-

bility distributions and observed samples. Both moment types offer measures of

distributional location (mean), scale (variance), skewness (shape), and kurtosis

(flattening). The authors further mentioned that L-moments offer significant ad-

vantages over ordinary product moments, especially for environmental data sets,

because of the following:

• L-moment ratios : L-CV, L-skewness, and L-kurtosis are almost undistorted,

regardless of the probability distribution from which the observations arise

(Hosking and Wallis, 1993);

• L-moment ratios : L-CV, L-skewness, and L-kurtosis may show fewer distor-

tions than traditional statistical moments, especially for samples extremely

asymmetrical;

• L-moment ratios : L-CV, and L-skewness, have no limits and depend on the

size of the sample unlike what happens to the classic moments;

• theL-moments samples are linear combinations of observations, which are

less sensitive to the observations in a sample larger compared to the classic

moments products, that depend on the square or cube of the observations;
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• L-moment ratios diagrams are particularly good at identifying the distribu-

tional properties of highly skewed data, whereas ordinary product moment

diagrams are almost useless for this task (Peel et al., 2001, Vogel and Fen-

nessey, 1993).

Hosking and Wallis (2005) suggested to use, in place of the ordinary moments,

the L-moments because suitable to describe most distributions and more robust

in estimating from samples inconsistent data in the presence of outliers resulting

less subject to distortion in estimate.

2.2.3 Parameter estimation

Fitting a distribution to datasets provides a compact and smoothed repre-

sentation of the frequency distribution revealed by the available data, and leads

to a systematic procedure for extrapolation to frequencies beyond the range of

the dataset. When hydro-climatic variable is well-described by some family of

distributions, a task for the hydrologist is to estimate the parameters of the dis-

tribution so that required quantiles and expectations can be calculated with the

“fitted” model. Appropriate choices for distribution functions can be based on

examination of the data using probability plots and moment ratios, the physical

origins of the data, and previous experience.

Several general approaches are available for estimating the parameters of a

distribution. A simple approach is the method of moments which uses the available

sample to compute an estimate Θ̂ of Θ so that the theoretical moments of the

distribution of X exactly equal the corresponding sample moments. Alternatively,

parameters can be estimated using the sample L-moments, corresponding to the

method of L-moments. Still another method that has strong statistical motivation

is the method of maximum likelihood. Maximum likelihood estimators (MLEs)

have very good statistical properties in large samples, and experience has shown

that they generally do well with records available in hydrology. However, often

MLEs cannot be reduced to simple formulas, so estimates must be calculated using

numerical methods. MLEs sometimes perform poorly when the distribution of the

observations deviates in significant ways from the distribution being fit.

A different philosophy is embodied in Bayesian inference, which combines prior

information and regional hydrologic information with the likelihood function for
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available data. Advantages of the Bayesian approach are that it allows the ex-

plicit modelling of uncertainty in parameters, and provides a theoretically con-

sistent framework for integrating systematic flow records with regional and other

hydrologic information.

Occasionally non-parametric methods can be employed to estimate frequency

relationships. These have the advantage that they do not assume that floods are

drawn from a particular family of distributions. Modern non-parametric methods

have not yet seen much use in practice and have rarely been used officially. How-

ever, curve-fitting procedures which employ plotting positions are non-parametric

procedures often used in hydrology.

Issue of concern are the bias, variability, and accuracy of parameter estimation

Θ̂[X1, ..., Xn], where this notation emphasizes that an estimator Θ̂ is a random

variable whose value depends on observed sample values [X1, ..., Xn]. Studies of

estimators evaluate an estimator’s bias, defined as

Bias[Θ̂] = E[Θ̂]−Θ (2.11)

and sample-to-sample variability, described by Var[Θ̂]. One wants estimators to

be nearly unbiased so that on average they have nearly the correct value, and also

to have relatively little variability. One measure of accuracy which combines bias

and variability is the mean square error, defined as

MSE[Θ̂] = E[(Θ̂−Θ)2] = (Bias[Θ̂])2 − V ar[Θ̂] (2.12)

An unbiased estimator (Bias [Θ̂] = 0) will have a mean square error equal to its

variance. For a given sample size n, estimators with the smallest possible mean

square errors are said to be efficient.

Bias and mean square error are statistically convenient criteria for evaluating

estimators of a distribution’s parameters or of quantiles. In particular situations,

the hydrologists can also evaluate the expected probability and under or over-

design, or use economic loss functions related to operation and design decisions.

2.2.4 Probability distribution of extreme events

Several probability distributions have been applied to describe the distribution

of extreme rainfall intensities at a single site (e.g. Benjamin and Cornell, 1970,

Chow, 1964a). Common distribution that have been applied to the analysis of
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AMS include the Gumbel (Watt et al., 1989), Generalized Extreme Value (GEV)

(NERC, 1975), Log-normal (Pilgrim et al., 1998), and Log-Pearson type 3 (Janusz,

1982, Pilgrim et al., 1998) distribution. Among these distributions the GEV and

its special form, the Gumbel distribution, have received dominant applications in

modelling the AMS of rainfall.

The Gumbel distribution was found, however, to underestimate the extreme

precipitation amounts in several cases (Wilks, 1993). Studies using rainfall data

from tropical and no-tropical climatic regions (Nguyen et al., 2002, Wilks, 1993,

Zalina et al., 2002) suggest also that a three-parameter distribution can be provide

sufficient flexibility to rappresent extreme precipitation data. In particular, the

GEV distribution has been found to be the most convenient, since it requires

a simpler method of parameter estimation and it is more suitable for regional

estimation of extreme rainfall at-sites with limited or without data (Nguyen et al.,

2002). When the return period associated with frequency-based rainfall estimates

greatly exceed the length of record available, discrepancies between commonly

used distribution tend to increase.

For POT extremes, following the extreme value theory of Pickands III (1975),

the distribution’s tail of POT extremes converges asymptotically to a Generalized

Pareto Distribution (GPD). Many other distributions have also been successfully

employed in hydrologic applications, including the five-parameter Wakeby distri-

bution, the Boughton distribution, and the TCEV distribution (corresponding to

a mixture of two Gumbel distributions).

This section provides a short description of some families of distributions com-

monly used in hydrology. These include the normal family, the GEV family, the

Generalized Pareto Distribution (GPD), and the Two Components Extreme Value

(TCEV).

2.2.4.1 Normal family

The normal (N), or Gaussian distribution is certainly the most popular distri-

bution in statistics. It is also the basis of the lognormal (LN) and three-parameter

lognormal (LN3) distributions which have seen many applications in hydrology.

This section describes the basic properties of the three-parameter lognormal (LN3)

distributions.
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Three parameters Lognormal distribution. The three-parameter lognormal

distribution is a skewed distribution that is useful for modelling continuous pos-

itive random variables with support set [ξ,∞) for some ξ ≥ 0. Limpert et al.

(2001) illustrated how the log-normal distributions are widespread through the

science. The probability density function (pdf) of the three-parameter lognormal

distribution is:

F (x) =
1

(x− ξ)κ
√

2π
exp{− [ln(x− ξ)− α]2

2κ2
(2.13)

where x > ξ ≥ 0, −∞ < α < ∞, σ > 0 , and ξ is the threshold parameter or

location parameter that defines the point where the support set of the distribution

begins; α is the scale parameter that stretch or shrink the distribution and κ is

the shape parameter that affects the shape of the distribution.

If X is a random variable that has a three-parameter log-normal probability

distribution, then Y = ln(X − ξ) has a normal distribution with mean α and

variance 2κ. The two-parameter lognormal distribution is a special case of the

three-parameter lognormal distribution when ξ = 0.

The shape parameters κ of the LN3 distribution in terms of L-moments, is a

function ot τ3 alone. No explicit solution is possible, but the following approxima-

tion has relative accuracy better than 2.5 x 10−6 for |τ3| ≤ 0.94, corresponding to

|κ3| ≤ 0.94:

κ ≈ τ3
E0 + E1τ

2
3 + E2τ

4
3 + E3τ

6
3

1 + F1τ 2
3 + F2τ 4

3 + F3τ 6
3

(2.14)

The coefficient used in the approximation are given in Table A.1. of the book

by Hosking and Wallis (2005). The other parameters are then given by

α =
λ2κe

−κ2/2

1− 2Φ(−k/
√

2)
(2.15)

ξ = λ1 −
α

κ
(1− eκ2/2) (2.16)

where Φ is the cumulative distribution function of the standard Normal distribu-

tion defined as:

φ(x) = (2π)−1/2exp(
x2

2
),Φ(x) =

∫ x

−∞
φ(x)dt (2.17)

The quantiles of the LN3 distribution have no explicit analytical form.
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2.2.4.2 GEV family

Many random variables in hydrology correspond to the maximum of several

similar processes, such as the maximum rainfall or flood discharge in a year, or

the lowest stream flow. The physical origin of such random variables suggests

that their distribution is likely to be one of several extreme value (EV) distri-

butions described by Gumbel. The cdf of the largest of n independent variates

with common cdf F (x) is simply F (x)n. For large n and many choices for F (x),

F (x)n converges to one of three extreme value distributions, called types I, II,

and III. Unfortunately, for many hydrologic variables this convergence is too slow

for this argument alone to justify adoption of an extreme value distribution as

a model of annual maxima and minima. In this section, the generalized extreme

value distribution (GEV) and the two components extreme value (TCEV) are then

introduced. It spans the three types of extreme value distributions for maxima

popularized by Gumbel.

The Generalized Extreme Value Distribution. This is the general mathe-

matical form which incorporates Gumbel’s type I, II and III extreme value distri-

bution for maxima. The GEV distribution’s cdf can be written:

F (x) = exp{−[1− κ(x− ξ)
α

]1/κ} (2.18)

The Gumbel distribution is obtained when κ = 0. For |κ| < 0.3, the general

shape of GEV distribution is similar to the Gumbel distribution, though the right-

hand tail is thicker for κ < 0 and thinner for κ > 0.

Here ξ is a location parameter, α is a scale parameter, and κ is the important

shape parameter. For κ > 0 the distribution has a finite upper bound at ξ + α/κ

and correspond to the EV type III distribution for maxima that are bounded

above; for κ < 0 the distribution has a thicker right-hand tail and corresponds

to the EV type II distribution for maxima from thick-tailed distributions like the

generalized Pareto distribution with κ < 0.

The parameter of the GEV distribution in terms of L-moments are:
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κ = 7.8590c+ 2.9554c2 (2.19)

α =
κλ2

Γ(1 + κ)(1− 2−k)
(2.20)

ξ = λ1 +
α

κ[Γ(1 + κ)− 1]
(2.21)

where

c =
2λ2

λ3 + 3λ2

− ln(2)

ln(3)
(2.22)

The quantiles of the GEV distribution can be calculated from

xp = ξ +
α

κ
{1− [−ln(p)]k} (2.23)

where p is the cumulative probability of interest.

Two Component Extreme Value distribution. The Two Component Ex-

treme Value (TCEV) distribution, as proposed by Rossi et al. (1984), was used

for the regional frequency analysis of maximum rainfall in different Italian regions

(Rossi and Villani, 1994) and United Kingdom flood data (Arnell and Beran,

1987). The authors hypothesized that rainfall could be described by two prob-

ability distributions, an ordinary component and an extraordinary component.

The distribution is characterized of two independently extreme value distributions

EV1 : the basic, which takes into account the usual values; and the outlying com-

ponent, which takes into account the extreme values.

The TCEV distribution of annual maxima has the distribution function:

F (x) = exp
[
−λ1e

−x/θ1 − λ2e
−x/θ2

]
(2.24)

or, in the standardised regional case

F (y) = exp[−e−y − Λ∗e−y/Θ
∗
] (2.25)

where
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Θ∗ =
Θ2

Θ1

(2.26)

Λ∗ =
Λ2

(Λ
1/Θ∗

1 )
(2.27)

y =
x− θ′1 lnλ

′
1

θ
′
1

(2.28)

θ
′
1 and λ

′
1 are site parameters, while θ1, θ1, λ1 and λ2 are regional parameters.

This choice is justified when the maximum rainfalls are due to storms with

different meteorological characteristics (Rossi and Villani, 1994).

The implementation of the TCEV distribution with the parameters obtained

was achieved through the following expression:

F (x
′
) = exp

[
−λ1(expα)−x

′

− Λ∗λ
1/Θ∗

1

(
exp

α

Θ∗

)−x′]
(2.29)

wherein x’ is the dimensionless variable obtained as x
µ
. Inside the equation there

is the parameter α = µ
θ1

(Gabriele and Arnell, 1991) assessed with this expression:

α = lnλ1 + 0.5772−
∑
j=1

∞
(−1)jΛ∗Γ( j

Θ∗
)

j!
(2.30)

The valuation of the parameters Λ∗ and Θ∗ was achieved matching the expres-

sions of theoretical and sample values of the L-skewness and L-kurtosis, through

the following expressions:

ln(9/8) + 2D2 −D1

ln 2 +D1

−M3 = 0 (2.31)

ln(216/310) + 5D3 − 5D2 −D1

ln 2 +D1

−M4 = 0 (2.32)

wherein

Dr = Tr − Tr − 1 (2.33)

Tr =
∞∑
j=1

(−1)j−1Λ∗j(r + 1)j−1/Θ∗Γ(j/Θ∗)/j! (2.34)
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where M3 and M4 are the sample values respectively of the L-skewness and L-

kurtosis. The parameter λ1 was evaluated with the similar expression matching

with the theoretical value with the sample value L-CV, and solving with the pa-

rameters Λ∗ and Θ∗ before obtained.

ln 2 +D1

γ + lnλ1 + T0

−M2 = 0 (2.35)

where M2 is the sample values of the L-CV.

The quantiles of the TCEV distribution have no explicit analytical form.

2.2.4.3 Generalised Pareto distribution

The Generalised Pareto Distribution (GPD) model has been used in hydrology

to study floods (Ashkar and Ouarda, 1996) since it allows to model the excess

over a threshold. The GPD arises as the limit distribution for the excess over

a threshold and for sufficiently high thresholds, it tends asymptotic ally to the

General Extreme Values (GEV) distribution.

The GPD has a cumulative distribution function

F (x) =

1− (1− κx
α

)1/κ, se κ 6= 0

1− exp(−x
α

), se κ = 0
(2.36)

The parameter of the GPD distribution in terms of L-moments are given by:

κ =
1− 3τ3

1 + tau3

(2.37)

α = (1 + κ)(2 + κ)λ2 (2.38)

ξ = λ1 − (2 + κ)λ2 (2.39)

The quantiles of the GPD distribution can be calculated from

x(F ) =

ξ + α{1− (1− F )κ}/κ, se κ 6= 0

ξ − α log(1− F ), se κ = 0
(2.40)

2.2.5 Goodness-of-fit test of distribution

The reliability of precipitation frequency estimates depends on how well the

fitted model represents the parent distribution. Several rigorous statistical tests
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are available and are useful in hydrology to determine whether it is reasonable to

conclude that a given set of observations was drawn from a particular family of

distributions (Stedinger and Vogel, 1993).

Several methods are available for testing the goodness fo fit of a distribution

to data from single sample. These include quantile-quantile plot, chi-squared,

Kolmogorov-Smirnov, and other general goodness-of-fit test and test based on

moment or L-moment statistics.

The probability plot correlation test is a more effective test of whether a sample

has been drawn from a postulated distribution (Chowdhury et al., 1991, Vogel and

Fennessey, 1993). The Kolmogorov–Smirnov test provides bounds within which

every observation on a probability plot should lie if the sample is actually drawn

from the assumed distribution (Kottegoda and Rosso, 1997). Discussion of the

development and interpretation of probability plots is provided by Stedinger and

Vogel (1993) and Kottegoda and Rosso (1997).

The L–moments can be used to assess if a proposed distribution is consistent

with a dataset (Chowdhury et al., 1991, Hosking, 1990). Using L-moments, it is

natural to base test statistics on-site L-moments and the position they occupy

on an L-moment ratio diagram Figure 2.1. Cong et al. (1993) have constructed

statistics based on the scatter of the point for different sites on a L-moment ratio

diagram about the L-skewness-L-kurtosis relation for different three-parameters

distributions. Their aim was to choose the distribution that gives the best fit to

the data in this sense.

Figure 2.1: An L-moment ratio diagram. The yellow dots rappresent the value
for each site, while the blue cross is the point that rappresent the mean value

of the site. The curves show the candidate distributions.
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The use of the best-fitting distribution for each data sample provides frequency

estimates that are too sensitive to the sampling variations in the data and the pe-

riod of record available. Current distribution selection procedures adopted by

many countries are based on a combination of regionalization of some param-

eters and split-sample Monte-Carlo evaluations of different estimation methods

to find distribution-estimation procedure combinations that give reliable quantile

estimates (Stedinger and Vogel, 1993).

2.3 At-site frequency analysis of rainfall

A frequency analysis can be performed for a site for which sufficient rainfall

data are available. Owing to its simpler structure, the AMS based method is more

popular. The PDS or POT analysis, however, appears to be preferable for short

records, or where return periods shorter than two years are of interest. The choice

of an appropriate technique should depend on the purpose of the analysis and char-

acteristics of the available data in terms of both quantity and quality. Improved

reliability of the results can be generally achieved with the use of sophisticated

and comprehensive analysis methods.

Virtually all hydrological estimates are subject to uncertainty. Therefore, it

is often advisable to produce estimates using two or more independent methods

and to perform a sensitivity analysis to gain information regarding the potential

reliability of results.

Briefly, the steps below should be followed to determine the frequency distri-

bution of annual maximum rainfall, for a fixed duration and for a given site:

1. obtaining a data sample and perform an assessment of data quality based

on hydrological and statistical procedures;

2. selecting a candidate distribution model for the data and estimate the model

parameters;

3. evaluating the adequacy of the assumed model in terms of its ability to

represent the parent distribution from which the data were drawn.

The assessment of data quality is an important step in all statistical computa-

tions. The basic assumption in precipitation frequency analysis is that the data are

independent and identically distributed as previously said. As mentioned above,
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precipitation measurements could be subject to various sources of error, inconsis-

tency and heterogeneity. Detailed examination and verification of the raw data

are needed to identify invalid data in the record caused by instrument malfunction

and/or human error. There is no general agreement as to which distribution or dis-

tributions should be used for precipitation frequency analysis. A practical method

for selecting an appropriate distribution is by examining the data with the use of

probability plots. Probability plots, which require the use of a plotting position

formula, are an effective tool to display graphically the empirical frequency distri-

bution of the data and to assess whether the fitted distribution appears consistent

with the data.

There are several plotting position formulae available in practice among (see

Nguyen et al. (1989)) which the Hazen, Weibull, and Cunnane formulas are the

most popular. The differences between these three formulae are small for observa-

tions that are neither the largest nor the smallest; however, they can be significant

for the largest three or four values in the data series. An alternative method for

making a good choice among different distributions is based on the L–moment

diagram (Stedinger and Vogel, 1993, Watt et al., 1989).

Common distributions that have been applied to the analysis of annual max-

imum series include the Gumbel (EV type I), generalized extreme value (GEV),

log-normal (LN3), and log-Pearson type III distributions (LP3). Among these

distributions, the GEV and its special form, the EVI, have received dominant

applications in modelling the annual maximum rainfall series.

Even a long record may be a relatively small sample of a climatic regime.

A better measure of the regime at a station may be given by a smoothed map,

which includes information from nearby stations that can influence point data,

and thus broadens the sample. The degree of smoothing should be consistent with

the spacing of observation stations and the sampling error of the stations. Too

little smoothing tends to confound sampling error with spurious regional variation.

Rainfall frequency atlases have been produced by interpolation and smoothing of

at-site frequency analysis results (Bonnin et al., 2006, Bureau, 1962).





Chapter 3

Rainfall regional frequency

analysis

One of the aims of this thesis is to achieve an objective method for the iden-

tification of the homogeneous regions and the evaluation of the best frequency

distribution. In order to obtain such a regionalization, some classical statistical

tools were used in synergy with the regional frequency analysis.

In this chapter, the method of the regional rainfall frequency analysis will be

described. For each step of the regional frequency analysis, the statistical tools

used in the procedure will be described, analysing in details their characteristics.

3.1 Steps followed in a regional frequency anal-

ysis

Frequency analysis often is a problem in hydrology because sufficient infor-

mation are seldom available at a site to adequately determine the frequency of

rare events. When only 30 years of data are available to estimate the event ex-

ceeded with a chance of 1 in 100 (the 1 percent exceedance event), extrapolation

is required.

The National Research Council (NRC) proposed three principles for modelling

of the hydrological variables:

1. “substitute space for time”;

2. introduction of more “structure” into models;

43
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3. focus on extremes or tails as opposed to, or even to the exclusion of, central

characteristics.

One substitutes space for time by using hydrologic information at different

locations to compensate for short records at a single site. This is easier to do

for rainfall which in regions without appreciable relief should have fairly uniform

characteristics over large areas.

Regional frequency analysis (RFA), which involves data from many sites, has

been shown to reduce the uncertainties in quantile estimation of extreme rain-

fall events (Hosking and Wallis, 1988). Regional frequency analysis involves the

following basic step, which will be described in details in the next sections, that

are:

1. screening of the data;

2. identification of homogeneous;

3. evaluation of homogeneous region obtained

4. choice of a frequency distribution;

5. accuracy of estimated quantile.

The RFA approach based on L-moments has been widely applied in hydrology

since it was first introduced by Hosking and Wallis (1993). The method is based

on an “index flood” or “index value” approach.

The index value method, introduced by Dalrymple (1960), is an efficient method

of pooling a summary statistics from the different data sample. The assumptions

made in this method are that the sites form a homogeneous region and that the

frequency distribution of the different sites is identical except a site-specific scaling

factor, called the “scale factor” (or “index value”).

The most practical application of the RFA, for rainfall, is aimed to the cre-

ation of the rainfall Depth-Duration-Frequency (DDF) curves. The DDF curves,

which describe rainfall depth as a function of duration for given return periods,

are essential for the design and verification of hydraulic infrastructures. For a

homogeneous region, the DDF curve are given by:

Hd,T = µR(d)h(T ) (3.1)
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in which Hd,T is the rainfall depth of fixed duration d and return period T, h(T)

represents the regional growth curve (function of return period T ) as a dimen-

sionless quantile common to every site or region, and µR(d) is the mean for fixed

duration, that usually is modelled with a power-law of duration.

It is possible to assume that the scale factor is represented by central tendency

the frequency of distribution and that can be estimated through the sample mean

or median of the at-site value; consequently the mean of rescaled data is equal to

1 for each site, and so the regional average of these means is 1.

The index value procedure uses summary statistics of data at each site and com-

bines them by averaging to form the regional estimates. If the summary statistics

are the L-moments ratios of the at-site data, this method is called the regional

L-moments algorithm.

The index-value method on a theoretical basis is not superior to the maximum-

likelihood approach but is an efficient and intuitively method to summarize the

information originated from different sites. The procedure requires a computa-

tional burden simpler than those of maximum-likelihood estimation, because the

method does not involve the entire regional dataset (Hosking and Wallis, 2005).

The L-moments are effective to fit, to the data from the sites in a homogeneous

region, a single frequency distribution (the regional frequency distribution) that

describes the distribution of the observation at each site after scaling by at-site

scaling factor. This distribution is scaled appropriately at each site in order to

estimates quantiles of the at-site frequency distribution. In the hypothesis that

analysis regards a group of n stations, the ratios between the L-moments calculated

from the data of the generic station i are denoted as t(i) or L-CV, t
(i)
3 or L-skewness,

t
(i)
4 or L-kurtosis. The regional average L-moment ratios are obtained through the

weighted proportionally to the site’s records length:

tR =

N∑
i=1

nit
(i)

N∑
i=1

ni

(3.2)

tRr =

N∑
i=1

nit
(i)
r

N∑
i=1

ni

r = 3, 4, ... (3.3)

Homogeneity of the region is then defined in terms of constant second and

higher order moments.
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3.2 Screening of the data

As already discussed in the Section 2.2.1, the first essential stage of any sta-

tistical data analysis is to check that data are appropriate for the analysis. For

frequency analysis, the data collected at a site must be a true representation of the

quantity being measured and must all be drawn from the same frequency distribu-

tion. An initial screening of the data should aim to verify that these requirements

are satisfied.

For the extreme rainfall, two kinds of error are particularly important and

plausible.

First, data values may be incorrect. Incorrect recording or transcription of the

data values is easily done and casts doubts on any subsequent frequency analysis

of the data.

Second, the circumstances under which the data were collected may have

changed over time. The measuring device may have been moved to different lo-

cation or trends over time may have arisen from changes in the environmental

of the measuring device. This means that the frequency distribution from which

the data were sampled is not constant over time, and frequency analysis of the

data will not be a valid basis for estimating the probability distribution of future

measurement at the site.

Test for outlier and trend are well established in the statistical literature (e.g.,

Barnett and Lewis, 1994, Kendall, 1975). In the context of using L-moments,

Hosking and Wallis (2005) have found that useful information can be obtained by

comparing the sample L-moment rations for different sites. Incorrect data values,

outliers, trends, and shift in the mean of a sample can all be reflected in the L-

moments of the samples. A convenient amalgamation of the L-moment ratios into

a single statistics, a measure of the discordancy between the L-moments ratios of

site and average L-moment ratios group of similar sites, is described in the next

section.

3.2.1 Discordance measure

The discordance measure (D) can be used for different aspects of the RFA.

Usually it is applied before the identification of homogeneous regions to check

whether errors are present in the data. At this stage, the data could be analysed

carefully to find possible errors in the recording of transcription of data or for

sources of unreality in the data. The discordance measure can also be used when
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the homogeneous regions have been, at least tentatively, identified and if any site

was discordant with the region as a whole, some sites could be removed from the

regions, or a completely different assignment of sites to regions has to be tried.

The discordance measure in terms of the L-moments indicates the stations that

are grossly discordant with the group as a whole. Regard the sample L-moments

ratio of site as a point in three dimensional space. A group of sites will yield a

cloud of such points. Flag as discordant any points that are far from the centre of

the cloud. “Far” is interpreted in such a way as to allow for correlation between

the sample L-moment ratio.

If ui is the vectors containing the L-moments [t(i), t
(i)
3 , t

(i)
4 ] for i-th site (i =

1,. . . , N ), then the discordance measure for the same i-th site is defined as

Di =
1

3
N(ui − ū)A−1(ui − ū) (3.4)

where

ū = N−1

N∑
i=1

ui (3.5)

A = (ui − ū)(ui − ū) (3.6)

A site i is declared discordant if Di is large. The definition of “large” depends

on the number of sites group.

Wilks (1963) proposed an outlier measure that is equivalent to the largest of

Di. It is not easy to choose a value of Di that can be used as a criterion for deciding

whether at site is discordant. Hosking and Wallis (1993) initially suggested the

criterion Di ≥ 3, but this is not satisfactory for small regions. It was proposed an

algebraic bound to satisfy

Dcr =
(N − 1)

3
(3.7)

where N is the number of site in region.

Thus value of Di larger than 3 can occur only in regions having 11 or more sites.

To some extent, the criterion for the discordance should be increasing function of

number of sites in the region. This is because large regions are more likely to

contain sites with large value of Di. However, Hosking and Wallis recommend

that any site with Di > 3 be regarded as discordant, as such sites have L-moments

ratios that are markedly different from average for the other sites in the region

(Hosking and Wallis, 1993). The sites that have regarded discordant will be moved

in another region or deleted if they will result yet discordant.
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3.3 Identification of homogeneous regions

Among all the stages in a RFA involving many sites, the identification of ho-

mogeneous region is usually the most difficult and requires the greatest amount of

subjective judgement. For these reasons two statistical tools, the principal com-

ponents analysis (PCA) and the k -means, are combined among them in order to

obtain a solution as objective as possible. The PCA and the clustering techniques

are used in many works regarding the hydrological variables.

The principal component analysis is here used to reduce the dimensionality

and retained the most of the variation present in all of the original variables.

Instead, the k -means, that is a standard method of statistical multivariate

analysis for dividing a dataset into groups, has been successfully used to form

homogeneous regions for the RFA.

In the following sections the tools used in the identification of homogeneous

regions will be described, providing, at the same time, a description of the them.

3.3.1 Principal Component Analysis

Possibly the most widely used multivariate statistical technique in the at-

mospheric sciences is principal component analysis, often denoted as PCA. The

technique became popular for analysis of atmospheric data following the paper

by Lorenz (1956), who called the technique empirical orthogonal function (EOF)

analysis. Both names are commonly used, and refer to the same set of proce-

dures. Sometimes the method is incorrectly referred to as factor analysis, which

is a related but distinct multivariate statistical method.

The central idea of principal component analysis (PCA) is to reduce the di-

mensionality of a data set consisting of a large number of interrelated variables,

while retaining as much as possible of the variation present in the data set. This

is achieved by transforming it to a new set of variables, the principal components

(PCs), which are uncorrelated, and which are ordered so that the first few retain

most of the variation present in all of the original variables. PCA reduces a data

set containing a large number of variables to a data set containing fewer (hopefully

many fewer) new variables (Jolliffe, 2002).

These new variables are linear combinations of the original ones, and these

linear combinations are chosen to represent the maximum possible fraction of the

variability contained in the original data. That is, given multiple observations of

a (K×1 ) data vector x, PCA finds (M×1 ) vectors u whose elements are linear
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combinations of the elements of the x, which contain most of the information in the

original collection of x. PCA is most effective when this data compression can be

achieved with M�K. This situation occurs when there are substantial correlations

among the variables within x, in which case x contains redundant information.

The elements of these new vectors u are called the principal components (PCs).

Data for atmospheric and other geophysical fields generally exhibit many large

correlations among the variables xk, and a PCA results in a much more compact

representation of their variations. Beyond mere data compression, however, a PCA

can be a very useful tool for exploring large multivariate data sets, including those

consisting of geophysical fields.

The PCA has the potential for yielding substantial insights into both the spa-

tial and temporal variations exhibited by the field or fields being analysed, and

new interpretations of the original data x can be suggested by the nature of the

linear combinations that are most effective in compressing the data. Usually it is

convenient to calculate the PCs as linear combinations of the anomalies x ’=x -x̄.

The first PC, u1, is that linear combination of x ’ having the largest variance. The

subsequent principal components um, m = 2, 3, ...,M , are the linear combinations

having the largest possible variances, subject to the condition that they are un-

correlated with the principal components having lower indices. The result is that

all the PCs are mutually uncorrelated.

The new variables or PCs that is, the elements um of u that will account

successively for the maximum amount of the joint variability of x ’ (and therefore

also of x ) are uniquely defined by the eigenvectors of the covariance matrix [S] of

x . In particular, the mth principal component, um is obtained as the projection

of the data vector x ’ onto the mth eigenvector, em ,

um = eTmx
′
=

K∑
k=1

ekmx
′

k, m = 1, ...,M (3.8)

Notice that each of the M eigenvectors contains one element pertaining to each

of the K variables, xk. Similarly, each realization of themth principal component in

Equation (3.8) is computed from a particular set of observations of the K variables

xk. That is, each of the M principal components is a sort of weighted average of

the xk values. Although the weights (the ekm) do not sum to 1, their squares do

because of the scaling convention ‖em‖ = 1.

If the data sample consists of n observations (and therefore of n data vectors

x , or n rows in the data matrix [X]), there will be n values for each of the principal
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components, or new variables, um. Each of these constitutes a single-number index

of the resemblance between the eigenvector em and the corresponding individual

data vector x .

Geometrically, the first eigenvector, e1, points in the direction (in the K -

dimensional space of x’ ) in which the data vectors jointly exhibit the most vari-

ability. This first eigenvector is the one associated with the largest eigenvalue,

λ1. The second eigenvector e2, associated with the second-largest eigenvalue λ2, is

constrained to be perpendicular to e1, but subject to this constraint it will align

in the direction in which the x’ vectors exhibit their next strongest variations.

Subsequent eigenvectors em, m =3, 4, ..., M, are similarly numbered according to

decreasing magnitudes of their associated eigenvalues, and in turn will be perpen-

dicular to all the previous eigenvectors. Subject to this orthogonality constraint

these eigenvectors will continue to locate directions in which the original data

jointly exhibit maximum variability. Put another way, the eigenvectors define a

new coordinate system in which to view the data. In particular, the orthogonal

matrix [E] whose columns are the eigenvectors defines the rigid rotation

u = [E]Tx
′

(3.9)

which is the simultaneous matrix-notation representation of M = K linear combi-

nations of the form of Equation (3.8) (i.e., here the matrix [E] is square, with K

eigenvector columns).

This new coordinate system is oriented such that each consecutively numbered

axis is aligned along the direction of the maximum joint variability of the data,

consistent with that axis being orthogonal to the preceding ones. These axes will

turn out to be different for different data sets, because they are extracted from

the sample covariance matrix [Sx] particular to a given data set. That is, they are

orthogonal functions, but are defined empirically according to the particular data

set at hand. This observation is the basis for the eigenvectors being known in this

context as empirical orthogonal functions (EOFs).

It is a remarkable property of the principal components that they are uncorre-

lated. That is, the correlation matrix for the new variables um is simply [I]. This

property implies that the covariances between pairs of the um are all zero, so that

the corresponding covariance matrix is diagonal. Each PC represents a share of

the total variation in x that is proportional to its eigenvalue,
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R2
m =

λm
K∑
k=1

λk

∗ 100% =
λm

K∑
k=1

sk,k

∗ 100% (3.10)

Here R2 is used in the same sense that is familiar from linear regression. The

total variation exhibited by the original data is completely represented in (or

accounted for by) the full set of K um, in the sense that the sum of the variances

of the centred data x’
∑

k sk,k, is equal to the sum of the variances
∑

m λm of the

principal component variables x . Equation (3.10) expresses the transformation of

a (K�1 ) data vector x’ to a vector u of PCs.

In principal component analysis, the number of components extracted is equal

to the number of variables, necessitating to decide how many of these components

are truly meaningful and worthy of being retained for rotation and interpreta-

tion. In general, the first few components will account for meaningful amounts

of variance, and that the later components will tend to account for only trivial

variance.

Mathematically, there are as many eigenvectors of [S] or [R] as there are el-

ements of the data vector x ’. However, it is typical of atmospheric data that

substantial covariances (or correlations) exist among the original K variables, and

as a result there are few or no off-diagonal elements of [S] (or [R]) that are near

zero. This situation implies that there is redundant information in x , and that

the first few eigenvectors of its dispersion matrix will locate directions in which

the joint variability of the data is greater than the variability of any single el-

ement, x′k, of x . Similarly, the last few eigenvectors will point to directions in

the K -dimensional space of x ’ where the data jointly exhibit very little variation.

To the extent that there is redundancy in the original data x ’, it is possible to

capture most of their variance by considering only the most important directions

of their joint variations. That is, most of the information content of the data may

be represented using some smaller number M<K of the principal components um.

In effect, the original data set containing the K variables xk is approximated

by the smaller set of new variables um. If M�K, retaining only the first M of the

principal components results in a much smaller data set. This data compression

capability of PCA is often a primary motivation for its use. The truncated rep-

resentation of the original data can be expressed mathematically by a truncated

version of the analysis formula, Equation (3.9), in which the dimension of the

truncated u is (M�1 ), and [E] is the (nonsquare, K�M ) matrix whose columns
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consist only of the first K eigenvectors (i.e., those associated with the largest M

eigenvalues) of [S].

There is no clear criterion that can be used to choose the number of principal

components that are best retained in a given circumstance. The choice of the

truncation level can be aided by one or more of the many available principal com-

ponent selection rules, but it is ultimately a subjective choice that will depend in

part on the data at hand and the purposes of the PCA.

Subjective criteria. Some approaches to truncating principal components are

subjective, or nearly so. Perhaps the most basic criterion is to retain enough

of the principal components to represent a sufficient fraction of the variances of

the original x . That is, enough principal components are retained for the total

amount of variability represented to be larger than some critical value. Of course

the difficulty comes in determining how large the fraction of the critic value must

be in order to be considered sufficient. Ultimately this will be a subjective choice,

informed by the analysts knowledge of the data at hand and the uses to which

they will be put.

Another essentially subjective approach to principal component truncation is

based on the shape of the graph of the eigenvalues λm in decreasing order as a

function of their index m=1,...,K, known as the eigenvalue spectrum. Plotting the

eigenvalue spectrum with a linear vertical scale produces what is known as the

scree plot or screen test (Figure 3.1) (Cattell, 1966).

In this method the eigenvalues associated with each component are plotted and

will be looking for a “break” between the components with relatively large eigen-

values and those with small eigenvalues. The component numbers are listed on

the horizontal axis, while eigenvalues are listed on the vertical axis. The compo-

nents that appear before the break are assumed to be meaningful and are retained

for rotation; those appearing after the break are assumed to be unimportant and

are not retained. Sometimes a scree plot will display several large breaks. When

this is the case, the last big break before the eigenvalues begin to level off should

look for. Only the components that appear before this last large break should be

retained.

The scree test can be expected to provide reasonably accurate results, pro-

vided the sample is large (over 200) and most of the variable communality are

large (Stevens, 2012). However, this criterion has its own weaknesses as well, most

notably the ambiguity that is often displayed by scree plots under typical research
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Figure 3.1: Example scree plot

conditions, very often, it is difficult to determine exactly where in the scree plot a

break exists, or even if a break exists at all.

Cumulative percentage of total variation. Perhaps the most obvious cri-

terion for choosing m is to select a (cumulative) percentage of total variation

which one desires that the selected PCs contribute, say 80% or 90%. The required

number of PCs is then the smallest value of m for which this chosen percentage is

exceeded. It remains to define what is meant by “percentage of variation accounted

for by the first m PCs”, but this poses no real problem. Principal components are

successively chosen to have the largest possible variance, and the variance of the

kth PC is λm. Furthermore,
∑M

m=1 λm =
∑K

k=1 skk, that is the sum of the variances

of the PCs is equal to the sum of the variances of the elements of x . The obvious

definition of “percentage of variation accounted for by the first m PCs” is therefore

tm = 100 ·

M∑
m=1

λm

K∑
k=1

sk,k

= 100 ·

M∑
m=1

λm

K∑
m=1

λm

(3.11)

which reduces to
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tm =
100

K

M∑
m=1

λm (3.12)

in the case of a correlation matrix.

Choosing a cut-off t∗ somewhere between 70% and 90% and retaining m PCs,

where m is the smallest integer for which tm > t∗, provides a rule which, in prac-

tice, preserves in the first m PCs most of the information in x . The best value

for t∗ will generally become smaller as K increases, or as n, the number of obser-

vations, increases. Although a sensible cutoff is very often in the range 70% to

90%, it can sometimes be higher or lower depending on the practical details of a

particular data set. For example, a value greater than 90% will be appropriate

when one or two PCs represent very dominant and rather obvious sources of vari-

ation. Here the less obvious structures beyond these could be of interest, and to

find them a cutoff higher than 90% may be necessary. Conversely, when K is very

large choosing m corresponding to 70% may give an impractically large value of

m for further analyses. In such cases the threshold should be set somewhat lower.

Size of the last retained eigenvalue. Another class of principal-component

selection rules involves focusing on how small an “important” eigenvalue can be.

This set of selection rules can be summarized by the criterion

Retain λm ifλm >
T

K

K∑
k=1

sk,k (3.13)

where sk,k is the sample variance of the kth element of x , and T is a threshold

parameter.

A simple application of this idea, known as Kaiser’s rule, involves comparing

each eigenvalue (and therefore the variance described by its principal component)

to the amount of the joint variance reflected in the average eigenvalue. Princi-

pal components whose eigenvalues are above this threshold are retained. That

is, Kaiser’s rule uses Equation (3.13) with the threshold parameter T=1. Jolliffe

(2002, 1972) has argued that Kaiser’s rule is too strict (i.e., typically seems to

discard too many principal components). He suggests that the alternative T=0.7

often will provide a roughly correct threshold, which allows for the effects of sam-

pling variations. A third alternative in this class of truncation rules is to use the

broken stick model, so called because it is based on the expected length of the mth
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Figure 3.2: Example cumulative percentage of total variation

longest piece of a randomly broken unit line segment. According to this criterion,

the threshold parameter in Equation (3.13) is taken to be

T (m) =
1

K

K∑
j=m

1

j
(3.14)

This rule yields a different threshold for each candidate truncation level that

is, T = Tm, so that the truncation is made at the smallest m for which Equation

(3.13) is not satisfied, according to the threshold in Equation (3.14).

This criterion has a number of positive features that have contributed to its

popularity. Perhaps the most important reason for its widespread use is its sim-

plicity, it do not need any subjective decisions, but merely retain components with

eigenvalues greater than one. On the positive side, it has been shown that this

criterion very often results in retaining the correct number of components, par-

ticularly when a small to moderate number of variables are being analysed and

the variance in each of the original variables is explained by the extracted factors

are high. Stevens (2012) reviews studies that have investigated the accuracy of
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the eigenvalue-one criterion, and recommends its use when less than 30 variables

are being analysed and communality are greater than 0.70, or when the analysis

is based on over 250 observations and the mean communality is greater than or

equal to 0.60.

There are a number of problems associated with the eigenvalue-one criterion,

however. It can lead to retaining the wrong number of components under cir-

cumstances that are often encountered in research (e.g., when many variables are

analysed, when communality are small). Also, the mindless application of this

criterion can lead to retaining a certain number of components when the actual

difference in the eigenvalues of successive components is only trivial. There is a

possibility than more a component has a value near to 1.00, (e.g. component 2

displays an eigenvalue of 1.001 and component 3 displays an eigenvalue of 0.99),

then component with value greater than 1.00 will be retained but component with

value lower 1.00 will not retained; this may mislead you into believing that the

third component was meaningless when, in fact, it accounted for almost exactly

the same amount of variance as the second component. In short, the eigenvalue-

one criterion can be helpful when used judiciously, but the thoughtless application

of this approach can lead to serious errors of interpretation.

3.3.2 Cluster analysis

Cluster analysis divides data into groups (clusters) that are meaningful, useful,

or both. If meaningful groups are the goal, then the clusters should capture the

natural structure of the data. In some cases, however, cluster analysis is only a

useful starting point for other purposes, such as data summarization.

Whether for understanding or utility, cluster analysis has long played an impor-

tant role in a wide variety of fields: psychology and other social sciences, biology,

statistics, pattern recognition, information retrieval, machine learning, and data

mining. There have been many applications of cluster analysis to practical prob-

lems. In this section an overview on the partition methods will be provide with

particular regard to the k -means method.

Cluster analysis groups data objects based only on information found in the

data that describes the objects and their relationships. The goal is that the ob-

jects within a group be similar (or related) to one another and different from (or

unrelated to) the objects in other groups. The greater similarity (or homogeneity)

within a group and the greater the difference between groups, the better or more
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distinct the clustering. In many applications, the notion of a cluster is not well

defined.

Cluster analysis is related to other techniques that are used to divide data

objects into groups. For instance, clustering can be regarded as a form of classifi-

cation in that it creates a labelling of objects with class (cluster) labels. However,

it derives these labels only from the data. In contrast with the “supervised classi-

fication”; i.e., new, unlabelled objects are assigned to a class label using a model

developed from objects with known class labels. For this reason, cluster analysis

is sometimes referred to as “unsupervised classification”. When the term classifi-

cation is used without any qualification within data mining, it typically refers to

“supervised classification”. Also, while the terms segmentation and partitioning

are sometimes used as synonyms for clustering, these terms are frequently used

for approaches outside the traditional bounds of cluster analysis.

For example, the term partitioning is often used in connection with techniques

that divide graphs into sub-graphs and that are not strongly connected to clus-

tering. Segmentation often refers to the division of data into groups using simple

techniques; e.g., an image can be split into segments based only on pixel inten-

sity and colour. Nonetheless, some work in graph partitioning and in image and

market segmentation is related to cluster analysis.

3.3.2.1 Clustering methods

There are many clustering algorithms in the literature. It is difficult to provide

a crisp categorization of clustering methods because these categories may overlap

so that a method may have features from several categories. The main reason

for having many clustering methods is the fact that the notion of “cluster” is not

precisely defined Estivill-Castro and Yang (2000). Consequently many clustering

methods have been developed, each of which uses a different induction principle.

Fraley and Raftery (1998) suggest dividing the clustering methods into two

main groups: hierarchical and partitioning methods. Han and Carlin (2001) sug-

gest categorizing the methods into additional three main categories: density-based

methods, model-based clustering and grid-based methods. An alternative cate-

gorization based on the induction principle of the various clustering methods is

presented in (Estivill-Castro and Yang, 2000).

These methods are briefly summarized in Table 3.1. Some clustering algo-

rithms integrate the ideas of several clustering methods, so that it is sometimes

difficult to classify a given algorithm as uniquely belonging to only one clustering
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method category. Furthermore, some applications may have clustering criteria

that require the integration of several clustering techniques.

Table 3.1: Overview of clustering methods discussed in this section. Note that
some algorithms may be combined in various methods.

Method General characteristic

Partitioning – Find mutually exclusive clusters of spherical shape

methods – Distance-based

– May use mean or medoid (etc.) to represent cluster centre

– Effective for small- to medium-size data sets

Hierarchical – Clustering is a hierarchical decomposition

methods – Cannot correct erroneous merges or splits

– May incorporate other techniques like microclustering or

consider object “linkages”

Density-based – Can find arbitrarily shaped clusters

methods – Clusters are dense regions of objects in space that are

separated by low-density regions

– Cluster density: Each point must have a minimum number of

points within its “neighbourhood”

– May filter out outliers

Grid-based – Use a multi-resolution grid data structure

methods – Fast processing time (typically independent of the number of

data objects, yet dependent on grid size)

Partitioning methods. Given a set of n objects, a partitioning method con-

structs k partitions of the data, where each partition represents a cluster and

k ≤ n. That is, it divides the data into k groups such that each group must con-

tain at least one object. In other words, partitioning methods conduct one-level

partitioning on data sets. The basic partitioning methods typically adopt exclu-

sive cluster separation. That is, each object must belong to exactly one group.

This requirement may be relaxed, for example, in fuzzy partitioning techniques.

Most partitioning methods are distance-based. Given k, the number of partitions

to construct, a partitioning method creates an initial partitioning. It then uses an

iterative relocation technique that attempts to improve the partitioning by moving

objects from one group to another. The general criterion of a good partitioning
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is that objects in the same cluster are “close” or related to each other, whereas

objects in different clusters are “far apart” or very different. There are various

kinds of other criteria for judging the quality of partitions.

Figure 3.3: Clustering of a set of objects using the k-means method; for (b)
update cluster centers and reassign objects accordingly (the mean of each cluster

is marked by a C. Source (Han et al., 2011)

Traditional partitioning methods can be extended for subspace clustering,

rather than searching the full data space. This is useful when there are many

attributes and the data are sparse. Achieving global optimality in partitioning-

based clustering is often computationally prohibitive, potentially requiring an ex-

haustive enumeration of all the possible partitions. Instead, most applications

adopt popular heuristic methods, such as greedy approaches like the k-means and

the k-medoids algorithms, which progressively improve the clustering quality and

approach a local optimum. These heuristic clustering methods work well for find-

ing spherical-shaped clusters in small- to medium-size databases. To find clusters

with complex shapes and for very large data sets, partitioning-based methods need

to be extended (Han et al., 2011).

Hierarchical methods. A hierarchical method creates a hierarchical decompo-

sition of the given set of data objects. A hierarchical method can be classified as

being either agglomerative or divisive, based on how the hierarchical decomposi-

tion is formed. The agglomerative approach, also called the bottom-up approach,

starts with each object forming a separate group. It successively merges the ob-

jects or groups close to one another, until all the groups are merged into one (the

topmost level of the hierarchy), or a termination condition holds.
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Figure 3.4: Agglomerative and divisive hierarchical clustering on data objects
[a,b,c,d,e]. Source (Han et al., 2011)

.

The divisive approach, also called the top-down approach, starts with all the ob-

jects in the same cluster. In each successive iteration, a cluster is split into smaller

clusters, until eventually each object is in one cluster, or a termination condition

holds. Hierarchical clustering methods can be distance-based or density-and con-

tinuity based. Various extensions of hierarchical methods consider clustering in

subspaces as well.

Hierarchical methods suffer from the fact that once a step (merge or split) is

done, it can never be undone. This rigidity is useful in that it leads to smaller com-

putation costs by not having to worry about a combinatorial number of different

choices. Such techniques cannot correct erroneous decisions; however, methods for

improving the quality of hierarchical clustering have been proposed (Han et al.,

2011).

Density-based methods. Most partitioning methods cluster objects based on

the distance between objects. Such methods can find only spherical-shaped clus-

ters and encounter difficulty in discovering clusters of arbitrary shapes. Other

clustering methods have been developed based on the notion of density. Their

general idea is to continue growing a given cluster as long as the density (number

of objects or data points) in the “neighbourhood” exceeds some threshold. For

example, for each data point within a given cluster, the neighbourhood of a given

radius has to contain at least a minimum number of points. Such a method can

be used to filter out noise or outliers and discover clusters of arbitrary shape.

Density-based methods can divide a set of objects into multiple exclusive clusters,

or a hierarchy of clusters. Typically, density-based methods consider exclusive
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clusters only, and do not consider fuzzy clusters. Moreover, density-based meth-

ods can be extended from full space to subspace clustering (Han et al., 2011).

Grid-based methods. Grid-based methods quantize the object space into a fi-

nite number of cells that form a grid structure. All the clustering operations are

performed on the grid structure (i.e., on the quantized space). The main advan-

tage of this approach is its fast processing time, which is typically independent

of the number of data objects and dependent only on the number of cells in each

dimension in the quantized space. Using grids is often an efficient approach to

many spatial data mining problems, including clustering. Therefore, grid-based

methods can be integrated with other clustering methods such as density-based

methods and hierarchical methods. Some clustering algorithms integrate the ideas

of several clustering methods, so that it is sometimes difficult to classify a given

algorithm as uniquely belonging to only one clustering method category. Further-

more, some applications may have clustering criteria that require the integration

of several clustering techniques (Han et al., 2011).

3.3.2.2 Dissimilarity of numeric data

In this section, the distance measures, that are commonly used for comput-

ing the dissimilarity of objects analysed by numeric attributes, will be described.

These measures include the Euclidean and Manhattan distance.

In some cases, the data are normalized before applying distance calculations.

This involves transforming the data to fall within a smaller or common range, such

as [-1, 1] or [0.0, 1.0].

In general, expressing an attribute in smaller units will lead to a larger range

for that attribute, and thus tend to give such attributes greater effect or “weight”.

Normalizing the data attempts to give all attributes an equal weight. It may or

may not be useful in a particular application.

The most popular distance measure is Euclidean distance (i.e., straight line or

“as the crow flies”). If i = (xi1, xi2, ..., xip) and j = (xj1, xj2, ..., xjp) are two objects

described by p numeric attributes. The Euclidean distance between objects i and

j is defined as

d(i, j) =
√

(xi1 + xj1)2 + (xi2 + xj2)2 + ...+ (xp1 + xp1)2 (3.15)



62 3.3. Identification of homogeneous regions

Another well-known measure is the Manhattan (or city block) distance, named

so because it is the distance in blocks between any two points in a city (such as 2

blocks down and 3 blocks over for a total of 5 blocks). It is defined as

d(i, j) = |xi1 + xj1|+ |xi2 + xj2|+ ...+ |xp1 + xp1| (3.16)

Both the Euclidean and the Manhattan distance satisfy the following mathe-

matical properties:

• non-negativity. Distance is a non-negative number, d(i, j) ≥ 0;

• identity of indiscernible. The distance of an object to itself is 0, d(i, j) = 0;

• symmetry. Distance is a symmetric function, d(i, j) = d(j, i);

• triangle inequality. Going directly from object i to object j in space is no

more than making a detour over any other object k, d(i, j) ≤ d(i, k)+d(k, j).

3.3.3 The k-means algorithm

The simplest and most fundamental version of cluster analysis is partitioning,

which organizes the objects of a set into several exclusive groups or clusters. To

keep the problem specification concise, the number of clusters can be assumed

given as background knowledge. This parameter is the starting point for parti-

tioning methods. In this section, the k -means that is the most well-known and

commonly used partitioning methods will be described.

Formally, given a data set, D, of n objects, and k, the number of clusters to

form, a partitioning algorithm organizes the objects into k partitions (k ≤ n),

where each partition represents a cluster. The clusters are formed to optimize an

objective partitioning criterion, such as a dissimilarity function based on distance,

so that the objects within a cluster are “similar” to one another and “dissimilar”

to objects in other clusters in terms of the data set attributes.

Suppose a dataset, D, contains n objects in Euclidean space. Partitioning

methods distribute the objects in D into k clusters, C1, ..., Ck. An objective

function is used to assess the partitioning quality so that objects within a cluster

are similar to one another but dissimilar to objects in other clusters. This is

the objective function aims for high intra-cluster similarity and low inter-cluster

similarity.
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A centroid-based partitioning technique uses the centroid of a cluster, Cj, to

represent that cluster. Conceptually, the centroid of a cluster is its centred point.

The centroid can be defined in various ways such as by the mean or medoid of

the objects (or points) assigned to the cluster. The medoid can be defined as the

object of a cluster whose average dissimilarity to all the objects in the cluster is

minimal. The dissimilarity between an object p ∈ Ci and ci, the representative

of the cluster, is measured by dist(p,ci), where dist() is the Euclidean distance

between two points p and ci.

The k -means algorithm defines the centroid of a cluster as the mean value of

the points within the cluster.

First, it randomly selects k of the objects in D, each of which initially represents

a cluster mean or centroid. For each of the remaining objects, an object is assigned

to the cluster to which it is the most similar, based on the Euclidean distance

between the object and the cluster mean. The k -means algorithm then iteratively

improves the within-cluster variation. For each cluster, it computes the new mean

using the objects assigned to the cluster in the previous iteration. All the objects

are then reassigned using the updated means as the new cluster centres. The

iterations continue until the assignment is stable, that is, the clusters formed in

the current round are the same as those formed in the previous round. The k -

means procedure is summarized in Figure 3.5.

The k -means method is not guaranteed to converge to the global optimum

and often terminates at a local optimum. The results may depend on the initial

random selection of cluster centres. In order to obtain good results in practice,

it is common to run the k -means algorithm multiple times with different initial

cluster centres.

There are several variants of the k -means method. These can differ in the

selection of the initial k -means, the calculation of dissimilarity, and the strategies

Figure 3.5: The k-means partitioning algorithm
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for calculating cluster means. The k -means method can be applied only when the

mean of a set of objects is defined. This may not be the case in some applications

such as when data with nominal attributes are involved.

The necessity for users to specify k, the number of clusters, in advance can

be seen as a disadvantage. There have been studies on how to overcome this

difficulty; however, the k value can be evaluated by providing an approximate

range of k values, and subsequently using an analytical technique, the best value

will be determined k by comparing the clustering results obtained for the different

k values (Han et al., 2011).

Two of possible evaluation measures are described, with different theoretical

backgrounds and demands. These methods, of course, not represent an exhaus-

tive list of clustering evaluations, but tries to give an impression of the possible

methods which are concerned with clustering evaluation.

Sum-of-Squared-Error Criterion. Summing over the squared distances be-

tween the clustering objects and their cluster representatives (i.e. the respective

cluster centroids) is a standard cost function. The evaluation defines a measure

for the homogeneity of the clustering results with respect to the object description

data. The sum-of-squared-error (E) originally refers to Euclidean distance, but is

applicable to further distance measures. The definition is given in Equation (3.17),

where the quality of cluster Ci can be measured by the within-cluster variation,

which is the sum of squared error between all objects in Ci and the centroid ci ,

defined as

E =
k∑
i=1

∑
p∈Cd

dist(p, ci)
2 (3.17)

where E is the sum of the squared error for all objects in the data set; p is the

point in space representing a given object; and ci is the centroid of cluster Ci (both

p and ci are multidimensional).

In other words, for each object in each cluster, the distance from the object to

its cluster centred is squared, and the distances are summed. This objective func-

tion tries to make the resulting k clusters as compact and as separate as possible.

Silhouette Value. Rousseeuw (1987) presented the silhouette plot as a means for

clustering evaluation. With this method, each cluster is represented by a silhouette
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displaying which objects lie well within the cluster and which objects are marginal

to the cluster.

The silhouettes are useful when the proximities are on a ratio scale (as in the

case of Euclidean distances) and when one is seeking compact and clearly separated

clusters. Indeed, the definition makes use of average proximities as in the case of

group average linkage, which is known to work best in a situation with roughly

spherical clusters.

In order to construct silhouettes, only two things need: the partition obtained

(by the application of some clustering technique) and the collection of all proxim-

ities between objects. For each object i, a certain value s(i) will be introduced,

and then these numbers will be combined into a plot.

Let us define first the numbers s(i) in the case of dissimilarities. Take any

object i in the data set, and denote by A the cluster to which it has been assigned.

When cluster A contains other objects apart from i, then it is possible compute

a(i), the average dissimilarity of i to all other objects of A. In Figure 3.6, this is

the average length of all lines within A.

Let us consider now any cluster C which is different from A, and compute

d(i,C), the average dissimilarity of i to all objects of C. In Figure 3.6, this is the

Figure 3.6: An illustration of the elements involved in the computation of
s(i), where the object i belongs to cluster A.
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average length of all lines going from i to C. After computing d(i,C) for all clusters

C 6= A, the smallest value of those numbers will be denote by b(i) = minimum

d(i, C).

The cluster B for which this minimum is attained (that is, d(i,B) = b(i)) it is

called the neighbour of object i. This is like the second-best choice for object i :

if it could not be accommodated into cluster A, the cluster B would be the best

choice. In Figure 3.6, cluster B indeed appears to be “closest” (on the average)

to object i, when A itself is discarded. Therefore, it is very useful to know the

neighbour of each object in the dataset. Note that the construction of b(i) depends

on the availability of other clusters apart from A, so it is necessary to assume that

the number of clusters k is more than one.

The number s(i) is obtained by combining a(i) and b(i) as follows:

s(i) =


1− a(i)/b(i), if a(i) < b(i)

0, if a(i) = b(i)

b(i)/a(i)− 1, if a(i) > b(i)

(3.18)

It is even possible to write this in one formula:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
(3.19)

When cluster A contains only a single object it is unclear how a(i) should be

defined, and then the value will be set s(i) equal to zero. This choice is of course

arbitrary, but a value of zero appears to be most neutral. Indeed, from the above

definition it is evident that −1 ≤ s(i) ≤ 1 for each object i.

When s(i) is at its largest (that is, s(i) close to 1) this implies that the “within”

dissimilarity a(i) is much smaller than the smallest “between” dissimilarity b(i).

Therefore, it can say that i is “well-clustered”, as there appears to be little doubt

that i has been assigned to a very appropriate cluster: the second-best choice (B)

is not nearly as close as the actual choice (A).

A different situation occurs when s(i) is about zero. Then a(i) and b(i) are

approximately equal, and hence it is not clear at all whether i should have been

assigned to either A or B. Object i lies equally far away from both, so it can be

considered as an “intermediate case”.

The worst situation takes place when s(i) is close to -1. Then a(i) is much

larger than b(i), so i lies on the average much closer to B than to A. Therefore it
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would have seemed much more natural to assign object i to cluster B, so it can

almost conclude that this object has been “misclassified”.

In order to obtain an overview, an example of the silhouettes of the different

clusters are shown in Figure 3.7. In this way the entire clustering can be displayed

by means of a single plot, which enables us to distinguish “clear-cut” clusters from

“weak” ones.

Figure 3.7 shows the silhouettes for the clustering into k = 3 clusters of the

twelve stations. The grey bar shows the silhouette value for each station while on

the right are shown the number of the station into cluster and the mean value of the

silhouette, respectively. In the bottom the total average value of the silhouette

is shown. In this case, all the station have a positive value obtaining a good

performance.

To conclude, s(i) measures how well object i matches the clustering at hand

(i.e., how well it has been classified). In the special case where there are only two

clusters (k = 2 ), it possible note that shifting object i from one cluster to the

other will convert s(i) to -s(i).

Figure 3.7: An illustration of the elements involved in the computation of
s(i), where the object i belongs to cluster A.
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3.4 Evaluation of homogeneous regions

The assessment of regional homogeneity is a critical point in regional frequency

analysis. The procedures for the analysis of a single set of data are well-established,

but often observations of the same variable at different measuring sites are avail-

able, and more accurate conclusions can be reached by analysing many data sam-

ples together. This constitutes the basis for regional frequency analysis (Hosking

and Wallis, 2005). Critical points of the regional approach to frequency analysis

are in the choice of the method to group the data samples together, and in the

assessment of the plausibility of the obtained groupings. This involves testing

whether the proposed regions may be considered homogeneous or not. The hy-

pothesis of homogeneity implies that frequency distributions for different sites are

the same, except for a site-specific scale factor.

Commonly used homogeneity tests, based on L-moments ratios, are considered

here in a comparison with two rank tests that do not rely on particular assumptions

regarding the parent distribution. The performance of these tests is assessed in

a series of Monte Carlo simulation experiments. In particular, the power and

type I error of each test are determined for different scale and shape parameters

of the regional parent distributions. The tests are also evaluated by varying the

number of sites belonging to the region, the series length, the type of the parent

distributions and the degree of heterogeneity.

In the next section, three different test will be described. The first two test, the

regional homogeneity statistic, HW, (Hosking and Wallis, 1993) and the Anderson-

Darling rank test, AD, (Stedinger et al. 1993), evaluate the extreme rainfall re-

gions obtained assessing the homogeneity. The last test, the discordance measure

for each station, D (Hosking and Wallis, 2005), examines possibly anomalous be-

haviour of individual stations.

3.4.1 Hosking and Wallis homogeneity test

Hosking and Wallis (1993, 2005) proposed a statistical test for assessing the

homogeneity of a group of basins at three different levels by focusing on three

measures of dispersion for different orders of the sample L-moment ratios.

In a homogeneous region all site have the same population L-moments ratios.

Thus, a natural question to ask is if the between-site dispersion of the sample

L-moments ratios, for the group of sites under consideration, is larger than would

be expected of a homogeneous region. The latter is estimated through repeated
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simulations of homogeneous regions with samples drawn from a four parameter

kappa distribution. The four-parameter distribution for the simulation is capable

of representing many of the distribution occurring in the environmental sciences.

The weighted standard deviation of the at-site sample L-CVs, is calculated as:

V =


N∑
i=1

ni(t
(i)−tR)2

N∑
i=1

ni


1/2

(3.20)

After that the parameters of a four-parameters kappa distribution have been

fitted to the regional averaged L-moment ratios tR, tR3 andtR4 , a large number Nsim

of realizations of sets of k samples are generated. The i-th site sample in each

set has a kappa distribution as its parent and record length equal to ni. For each

simulated homogeneous set, the statistic V is calculated, obtaining Nsim values.

From the simulations, the mean µV and standard deviation σV of the Nsim were

determined. An heterogeneity measure, which is called here HW , is finally found

as

HW =
V − µV
σV

(3.21)

HW can be approximated by a normal distributed variable with zero mean

and unit variance: following Hosking and Wallis (2005), the region under analy-

sis can therefore be regarded as “acceptably homogeneous” if HW<1, “possibly

heterogeneous” if 1≤ HW<2, and “definitely heterogeneous” if HW≥2.

Hosking and Wallis (2005) suggested that these limits should be treated as

useful guidelines. Even if the HW statistic is constructed like a significance test,

significance levels obtained from such a test would, in fact, be accurate only under

special assumptions: to have independent data both serially and between sites,

and the true regional distribution being four-parameters kappa.

3.4.2 The bootstrap Anderson-Darling test

A test that does not make any assumption on the parent distribution is the

Anderson-Darling (AD) rank test (Scholz and Stephens, 1987). The AD test

is the generalization of the classical Anderson-Darling goodness of fit test (e.g.,

D’Agostino, 1986), and it is used to test the hypothesis that k independent sam-

ples belong to the same population without specifying their common distribution

function.
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The test is based on the comparison between local and regional empirical dis-

tribution functions. The empirical distribution function, or sample distribution

function, is defined by

F (xj) =
j

η
(3.22)

where η is the size of the sample and x(j) are the ordered statistics, i.e. the

observations arranged in ascending order x(j) ≤ x < x(j+1).

If the empirical distribution function of the i-th sample (local) is denoted by

F̂i(x), and that of the pooled sample of all N = n1 + ...+nk observations (regional)

by HN(x), the k -sample Anderson-Darling test statistic is then defined as

θAD =
k∑
i=1

ni

∫
allx

[F̂i(x)−HN(x)]2

HN(x)[1−HN(x)]
dHN(x) (3.23)

If the pooled ordered sample is Z1 < ... < ZN , the computational formula to

evaluate Equation (3.23) is:

θAD =
1

N

k∑
i=1

1

ni

N−1∑
j=1

(NMij − jni)2

j(N − j)
(3.24)

where Mij is the number of observations in the i-th sample that are not greater

than Zj. The homogeneity test can be carried out by comparing the obtained θAD

value to the tabulated percentage points reported by Scholz and Stephens (1987)

for different significance levels (Viglione et al., 2007).

The statistic θAD depends on the sample values only through their ranks. This

guarantees that the test statistic remains unchanged when the samples undergo

monotonic transformations, an important stability property not possessed by HW

heterogeneity measures. However, problems arise in applying this test in a common

index value procedure.

In fact, the index value procedure corresponds to dividing each site sample by a

different value, thus modifying the ranks in the pooled sample. In particular, this

has the effect of making the local empirical distribution functions much more sim-

ilar to the other, providing an impression of homogeneity even when the samples

are highly heterogeneous. The effect is analogous to that encountered when apply-

ing goodness-of-fit tests to distributions whose parameters are estimated from the

same sample used for the test (e.g., D’Agostino, 1986, Laio, 2004). In both cases,

the percentage points for the test should be opportunely redetermined. This can be
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done with a non-parametric bootstrap approach (Viglione et al., 2007), presenting

the following steps:

1. building up the pooled sample S of the observed non-dimensional data, the

sample with replacement from S and generate k artificial local samples, of

size n1, ..., nk;

2. dividing each sample for its index value, and calculate θ
(1)
AD.

3. repeating the procedure for Nsim times and obtain a sample of θ
(1)
AD, j =

1, ..., Nsim values, whose empirical distribution function can be used as an

approximation ofGH0(θAD), the distribution of θAD under the null hypothesis

of homogeneity.

The acceptance limits for the test, corresponding to any significance level α, are

then easily determined as the quantiles of GH0(θAD) corresponding to a probability

(1− α). The test obtained with the above procedure will be called the bootstrap

Anderson-Darling test, hereafter referred to as AD.

3.5 Choice and accuracy of the distribution

Analytical goodness-to-fit criteria are useful for gaining an appreciation for

weather the lack of fit is likely to be due to sample-to-sample variability, or whether

a particular departure of the data from a model is statistically significant. In the

most case several distribution will provide statistically acceptable fits to available

data so that goodness-of-fit tests are unable to identify the “true” or “best” dis-

tribution to use. Such tests are valuable when they can demonstrate that some

distribution appear inconsistent with the data.

Unfortunately, the true distribution is probably too complex to be of practical

use. Still, L-moments skewness-kurtosis and CV-skewness diagram are good for

investigating what simple family of distribution are consistent with available data

sets for a region (Stedinger and Vogel, 1993, Watt et al., 1989). Standard goodness-

of-fit statistics, such as probability plot correlation have also been used to see how

well a member of each family of distribution can fit a sample. Unfortunately, the

goodness-of-fit statistics likely do not identify the actual family of the sample,

rather, the test will choose the most flexible families that generally achieves the

best fitting of the data. Regional L-moments diagram focuses on the character of
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sample statistics which describe the “parent” distribution for available samples,

rather than goodness-of-fit.

In the next section, the approach proposed by Hosking and Wallis (2005), that

works directly with the regional average L-moment statistics, will be illustrated.

Calculation of goodness-of-fit measures involves the estimate of sampling vari-

ability of L-moment ratios in a region whose record lengths and average L-moment

ratios match those of the data. If the region is homogeneous and data at different

sites are statistically independent, then if one of the distributions is the true dis-

tribution for the region, its goodness-of-fit measure should have approximately a

standard normal distribution.

If one supposes that the region has N sites with record length ni, indicating

the sample of L-moments ratios for each site and regional with ti, ti3 and ti4 and

tR, tR3 and tR4 respectively, for each m-th simulated region, the regional average L-

skewness t
[m]
3 and L-kurtosis t

[m]
4 can be calculated for the selected distribution and

the kappa distribution, the latter used as reference distribution, by the regional

average L-moments. The bias and standard deviation of the t
[m]
4 are:

B4 = N−1
sim

∑Nsim

lim
m=1

(t
[m]
3 − tR4 ) (3.25)

σ4 =

{
(Nsim − 1)−1

[∑Nsim

lim
m=1

(t
[m]
3 − tR4 )2 −NsimB

2
4

]}1/2

(3.26)

For each distribution, the goodness-of-fit measure is:

ZDIST = (tDIST4 − tR4 +B4)/σ4) (3.27)

The value of ZDIST would be sufficiently close to zero to provide the best fit,

a reasonable criterion is given to |ZDIST | ≤ 1.64, to considerer the distribution

accepted.

3.6 Accuracy of estimated quantile

In the traditional statistics, the assessment of accuracy of the estimated quan-

tile is achieved by the construction of confidence intervals for estimated parameters

and quantiles. In the regional frequency analysis through the regional L-moments

algorithm it is possible to constructs confidence intervals for estimation in homo-

geneous regions, at least as a large-sample approximation when sample L-moments
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may be taken to be normally distributed. The confidence intervals are of limited

utility in practice, because rarely the model used is the ”correct” and in the case

of the regional L-moments algorithm all the assumptions of the index-flood must

be satisfy.

A reliable assessment of the accuracy should should considerer the possibil-

ity of heterogeneity in the region, misspecification of frequency distribution, and

statistical dependence between observation at different sites.

The procedure, described by Hosking and Wallis (2005), for simulation of the

regional L-moments algorithm (omitting the intersite dependence) that involves

Monte Carlo simulation. The steps which characterises the algorithm, needed to

evaluate the accuracy of estimated quantiles, can be summarised as following:

1. specifying N and for each of N sites its record length ni and L-moments of

its frequency distribution.

2. Calculating the parameters of the at-site frequency distribution given their

l-moment ratios.

3. For each of M repetitions of the simulation procedure, carting out the fol-

lowing steps:

(a) generating sample data for each site. This simply requires the genera-

tion of a random sample of size ni from the frequency distribution for

site i, i = 1,..., n.

(b) Applying the regional L-moments algorithm to the sample of regional

data. This involved the following steps:

i. Calculating at-site L-moment ratios and regional average L-moment

ratios;

ii. Fitting the chosen distribution;

iii. Calculating estimates of the regional growth curve and at-site quan-

tiles.

(c) Calculating the relative error of the estimated regional growth curve and

at-site quantiles, and accumulate the sum needed to calculate overall

accuracy measures.

4. Calculating overall measures of the accuracy of the estimated quantiles and

regional growth curve.
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The Monte Carlo simulation is a reasonable approach to estimate the accu-

racy of the estimates quantiles. The simulation should considerer the particular

characteristic of the data from which the estimates are calculated.

The L-moments ratio at the individual sites should be chosen to yield a region

whose heterogeneity is consistent with the regional measures calculated from the

data. Some preliminary simulation should may be needed to establish the variation

at-site of the L-moments ratio to yield the observed value of the heterogeneity

measure.

An important point is that between-site variation in population of L-moments

ratio for the simulated region should be less of the sample L-moments ratio of the

actual data, because sampling variability causes sample L-moment ratios to be

much more widely scattered than the corresponding population L-moment ratio.

The use in the simulation the observed sample L-moments ratios as the population

L-moments ratio of the simulated region, because this would yield a simulated

region that has much more heterogeneity that actual data (Hosking and Wallis,

2005).

In the simulation procedure, quantile estimates are calculates for various non-

exceedance probabilities. At the mth repetition, let the site-i quantile estimate

for non exceedance probability F be ĥmi (F ). The relative error of this estimate

is (ĥmi (F ) − ĥi(F ))/ĥi(F ). This quantity can be squared and averaged over all

M repetitions to approximate the relative RMSE of the estimators. The relative

BIAS and relative RMSE are approximated, for large M, by

BIASi(F ) = M−1

M∑
m=1

(ĥmi (F )− ĥi(F ))/ĥi(F ) (3.28)

and

RMSEi(F ) =

[
M−1

M∑
m=1

{
(ĥmi (F )− ĥi(F ))/ĥi(F )

}2
]1/2

(3.29)

A summary of the accuracy of estimated quantiles overall of the sites in the

region is given by the regional average relative RMSE of the estimates quantile,

BIASR(F ) = N−1

N∑
i=1

Bi(F ) (3.30)

and the regional average relative RMSE of the estimated dimensionless quantiles,

RMSER(F ) = N−1

N∑
i=1

Ri(F ) (3.31)



Chapter 4

Area of study

In this chapter, the area of study will be described together with its charac-

teristics meteo-climatic and geographical. In the next sections, some more spe-

cific information about Sicily and the dataset used in the application of different

method shown in the next chapters will be described.

4.1 Climatology of Sicily

Sicily is the largest island in the Mediterranean Sea situated in the South of

Italy with an area about 25.000 km2 and its location is from 36◦ to 38◦ north and

12◦ to 15◦ east Figure 4.1.

Figure 4.1: Study area location with digital elevation model

75
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Figure 4.2: Map of mean annual precipitation (Di Piazza et al., 2011)

The mean annual precipitation over Sicily (Figure 4.2) is about 715 mm and

it is possible to identify a summer and winter season, with rainfall concentrated

in the winter period while July-August months are usually rainless.

Considerable spatial variability of precipitation is observed, ranging from an

average of 1500 mm in the Northern-Eastern part to an average of 400 mm in the

South-Eastern part (Di Piazza et al., 2011).

The mean annual temperature (Figure 4.3) ranges from 11◦ C to 20◦ C (Drago

et al., 2002). The lowest temperature are registered in the mountainous while the

highest temperature along the coasts. In particular, the south coast results the

driest and the warmest (Piazza et al., 2015).

Even though the morphology of Sicily is very complex, it is useful in terms

of meteorological features, to consider three subareas related to the three main

sides of the island: the northern side, the south-western side and the eastern side

(Drago et al., 2002).

The Northern Side includes the whole northern part of Sicily where is the moun-

tain range considered as part of the Apennines Mountains. The rainfall regime

is characterized by a rainy season (autumn-winter) and a dry season (spring-

summer). The precipitation is more frequent in winter. Indeed the number of

rain days (total daily amount > 1 mm) is greater than 70 and the precipitation is

typically orographically-induced, with precipitation often of longer duration and

rarely of extreme intensity.



CHAPTER 4. AREA OF STUDY 77

Figure 4.3: Map of mean annual temperature (Piazza et al., 2015)

The eastern side includes whole east part of the island and is characterized by

the presence of the Etna volcano (3329 m high). In this zone the rainfall is greatest

in the winter season. Precipitation is infrequent compared to the northern zone

except for the zone near to the Etna volcano and the number of rain days does

not exceed 60. The regime is typically oriental with greater events coming from

the east. Precipitations are often brief and sometimes extreme. This behaviour

is due to low pressure areas that bring rain from Africa produced because of the

elevated thermal contrast.

The Southern Side includes the whole of the coastline of the Mediterranean

Sea, the Sicily canal and the central zone. As well as for the entire region, the

rainy season is winter. The number of rain-days is lower than the northern zone

(<60 days). The rainfall regime is conditioned from airflows mainly coming from

the south-west.

4.2 Rainfall dataset

In order to develop the RFA, the extreme rainfall data published by the Servizio

Osservatorio delle Acque (the former Hydrologic service) have been used. The

rainfall data used in this research are relative to the annual maxima rainfalls with

duration (AMRd) equal to 1, 3, 6, 12 and 24 h and the annual maxima daily

(AMD). There is a total of 314 stations for AMRd data used for the analysis



78 4.2. Rainfall dataset

Figure 4.4: Rain-gauges distribution

spanning the period 1928-2010 (Figure 4.4), while for AMD there are 382 stations

spanning the period 1928-2009.

In Figure 4.5 it is possible to see as some stations have many temporal gaps

due to the presence of some non-operative period. The density plot shows that

there is a time window with a greater presence of stations operating (years between

the years 1972 and 2003). This period, characterized by the maximum number of

stations operating, was selected for the next analysis.

This choice was made to achieve the maximum overlap of the rainfall events

among different stations. The use of different ranges of operation could provide

analysis of rainfall events registered just from few stations. The dataset comprises

124 stations, each with a minimum record length of 20 years (Figure 4.6).

The Table 4.1 shows the stations, with coordinates, elevation and activity

period, used in the analysis that will be described in the next chapter.

Table 4.1: Hydrologic service network rain-gauges list with location and work-
ing period

ID LOCATION North ED50 [m] East ED50 [m] Elevation [m] S-year E-year

20 S. SABA 4237314 543535 22 1973 2002

40 MONFORTE S.GIORGIO 4223520 533660 321 1972 2002

60 MILAZZO 4230437 521320 0 1959 2010

70 CASTROREALE 4216925 518572 395 1930 2007

80 BARCELLONA 4222320 519185 49 1974 2003

130 MONTALBANO ELICONA 4208511 501538 876 1932 2011

170 FICARRA 4217863 485273 437 1973 2004

180 CAPO D’ORLANDO 4223229 478228 100 1959 2008

220 TORTORICI 4209363 484671 471 1930 2011

Table 4.1: continued on next page
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Table 4.1: continued from previous page

ID LOCATION North ED50 [m] East ED50 [m] Elevation [m] S-year E-year

280 ALCARA LI FUSI 4208618 473580 396 1971 2003

310 S. FRATELLO 4207875 464802 655 1965 2011

323 S. STEFANO DI CAMASTRA 4207974 442803 60 1971 2004

380 GERACI SICULO 4191461 425673 991 1973 2004

430 CASTELBUONO 4198604 420013 397 1953 2011

460 ISNELLO 4203887 412808 729 1953 2010

520 SCILLATO 4191270 404563 390 1972 2008

550 ALIA 4182001 386755 713 1972 2008

600 VICARI 4187837 374201 596 1929 2004

640 SAMBUCHI 4192472 380281 550 1960 2008

660 CIMINNA 4194981 373384 473 1928 2009

670 MONUMENTALE 4205600 384292 10 1939 2008

700 TURDIEPI 4204596 354362 658 1928 2003

720 FICUZZA 4194006 357434 691 1939 2001

780 PIOPPO 4213382 347017 378 1929 2007

790 ALTOFONTE 4212098 350419 392 1933 2004

840 S. MARTINO DELLE SCALE 4217362 346879 547 1938 2011

850 PARTINICO 4213798 335792 174 1957 2010

870 PALERMO (Ist. Zootecnico) 4219903 351044 124 1958 2005

880 PALERMO (Oss.Astronomico) 4219404 355462 41 1953 2010

910 PALERMO (Ist.Castelnuovo) 4224919 354160 48 1940 2008

920 PALERMO (Piazza Verdi) 4220406 356009 23 1928 2005

930 ISOLA DELLE FEMMINE 4229524 346760 0 1960 1998

9806 CALATAFIMI 4197667 313283 306 1931 2008

1000 SPECCHIA C.C. 4204258 296153 177 1971 2001

1010 LENTINA (Contrada) 4214350 296057 100 1948 2003

1020 S. ANDREA BONAGIA 4214703 290759 64 1956 2003

1030 TRAPANI 4210451 281182 0 1928 2009

1040 CASTELLAMMARE DEL GOLFO 4210401 314425 68 1970 2009

1050 CAPO S.VITO 4229238 301460 1 1970 2010

1060 FASTAIA 4200568 301579 228 1961 2009

1070 DIGA RUBINO 4195352 299314 185 1972 2006

1080 BORGO FAZIO 4192617 294514 183 1953 2008

1100 BIRGI NUOVO 4196090 279791 20 1953 2010

1110 CIAVOLO (Contrada) 4182184 284316 83 1968 2009

1120 MARSALA 4187992 276125 8 1942 2010

1140 MAZARA DEL VALLO 4170625 288266 17 1942 2006

1160 DIGA TRINITA’ 4174134 301889 75 1972 2010

1180 PARTANNA 4178077 314256 429 1928 2008

1190 CASTELVETRANO 4174003 306087 201 1928 2007

1210 PIANA DEGLI ALBANESI 4207075 348899 734 1928 2002

1220 CASA DINGOLI 4208205 351545 725 1932 2004

1230 S. CRISTINA GELA 4205713 353081 670 1928 2006

1240 DIGA MAGANOCE 4203364 349734 625 1928 2007

1270 CORLEONE 4186778 350533 564 1952 2008

1310 GIBELLINA 4184438 320714 420 1969 2005

1330 MONTEVAGO 4174938 322230 375 1969 2004

1370 DIGA ARANCIO 4166248 328972 269 1955 2009

1390 CALTABELLOTTA 4160464 342463 768 1958 2010

1400 SCIACCA (Scuola Agraria) 4153499 334511 111 1929 2008

1420 PIANO DEL LEONE 4170590 364733 845 1931 2011

1430 PALAZZO ADRIANO 4172402 357101 613 1932 2010

1440 CHIUSA SCLAFANI 4171528 347504 620 1928 2004

1480 BIVONA 4164898 362292 515 1964 2010

1490 LERCARA FRIDDI 4178883 376710 669 1958 2009

1520 DIGA FANACO (Platani) 4170403 372444 678 1955 2005

1540 CASTRONOVO DI SICILIA 4170817 364798 875 1933 1999

1600 S. CATERINA VILLARMOSA 4160714 414358 606 1955 2010

1630 MARIANOPOLI 4162540 402994 520 1933 2006

1680 MUSSOMELI 4160541 390072 786 1960 2008

1740 PIETRANERA (Azienda) 4155963 369048 160 1982 2005

1750 CIANCIANA 4153963 361566 377 1973 2004

1760 CATTOLICA ERACLEA 4145127 358205 185 1971 2009

1810 AGRIGENTO (Ispett. Agrario) 4129672 374931 182 1928 2009

1840 CANICATTI’ 4135377 398198 460 1972 2009

1850 PALMA DI MONTECHIARO 4116128 391730 145 1969 2005

1860 PETRALIA SOTTANA 4186213 420281 950 1931 2008

1900 ALIMENA 4173714 422570 769 1974 2008

1920 RESUTTANO 4170791 414489 591 1972 2004

1960 ENNA 4158307 435811 877 1930 2009

Table 4.1: continued on next page
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Table 4.1: continued from previous page

ID LOCATION North ED50 [m] East ED50 [m] Elevation [m] S-year E-year

2020 CALTANISSETTA 4150518 416707 618 1928 2009

2040 PIETRAPERZIA 4142058 423781 478 1956 2010

2240 GELA 4102365 433501 13 1928 2009

2250 PIAZZA ARMERINA 4138324 444269 677 1928 2008

2260 DIGA DISSUERI 4116398 437034 174 1935 2010

2290 MONTEROSSO ALMO 4104685 478933 624 1958 2002

2300 CHIARAMONTE GULFI 4098259 473650 615 1974 2010

2310 DIGA RAGOLETO 4109137 471789 325 1977 2010

2320 VIZZINI 4112996 477763 562 1957 1997

2350 VITTORIA 4089771 457849 165 1928 2002

2370 RAGUSA 4086500 475456 514 1931 2009

2380 MODICA 4079425 478831 375 1929 2009

2440 CASTELLUCCIO 4087577 492655 197 1933 2010

2450 NOTO 4082655 505748 77 1940 2002

2470 PALAZZOLO ACREIDE 4101831 491141 677 1928 2010

2490 SORTINO 4113242 503643 465 1976 2003

2550 AUGUSTA 4120485 519911 2 1951 2009

2580 LENTINI (Città) 4127327 499904 52 1939 2010

2590 LENTINI (Bonifica) 4133115 507231 3 1928 2003

2660 MANIACI 4191500 484278 745 1953 2005

2690 CESARO’ 4188865 474475 1108 1948 2008

2750 TROINA 4181917 464776 1001 1933 1996

2790 BRONTE 4182182 485339 781 1928 2009

2800 NICOSIA 4178089 446907 706 1928 2009

2870 RAGALNA 4164810 494769 702 1969 2004

2900 ADRANO 4168791 484989 549 1948 1998

2910 PATERNO’ 4158035 492108 245 1928 2004

2940 LEONFORTE 4166668 446794 647 1948 2004

2960 VALGUARNERA 4150071 445902 590 1928 2005

2970 TORRICCHIA 4161108 465352 238 1969 2002

2980 CATENANUOVA 4158420 472896 175 1975 2002

3000 RADDUSA 4147520 458685 325 1928 2002

3050 CALTAGIRONE 4121762 457304 486 1930 2008

3060 MINEO 4124444 472594 500 1928 2010

3070 RAMACCA 4137784 473085 263 1931 2000

3110 ZAFFERANA ETNEA 4172087 509384 583 1929 2009

3120 LINGUAGLOSSA 4188191 512771 525 1968 2010

3150 ACIREALE 4163912 514640 183 1929 2010

3160 CATANIA (Ist. Agrario) 4152468 506400 68 1977 2010

3170 CATANIA (G.C.OO.MM.) 4150371 508351 0 1928 2002

3290 ALCANTARA 4186523 522413 38 1949 2005

3310 TAORMINA 4189603 525753 247 1929 2009

3350 CAMARO (Caserma Forestale) 4229511 543857 544 1929 2005

3380 MESSINA (Ist. Geofisico) 4228394 548574 42 1950 2011

3400 GANZIRRI 4234573 553279 0 1953 2006

3410 ALI’ TERME 4206499 537177 13 1959 2002

4.3 Variables used for the RFA

In order to identify the homogeneous regions, the regional frequency analysis

needed to select the variables to be used to a such aim. This step is very impor-

tant to obtain a regional frequency analysis with good performance in terms of

homogeneous regions.

The available data for the formation of the regions are quantities often calcu-

lated from the variable of interest through simple or advanced statistical operation,

denoted as at-site statistics (e.g. quantile), and other site descriptors called site

characteristics. In environmental applications, the site characteristics would typ-

ically include the geographical location at site, its elevation, and other physical
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Figure 4.5: Consistency plot (bottom) and density plot (top) for the value of
AMRd for all the stations spanning the period 1928-2010

properties associated with the site while the at-site statistics would include the

quantile calculated or percentile value of the variable analysed (Hosking and Wal-

lis, 2005).

In principle, site characteristics are quantities that are known even before any

data are measured at a site. However, it is reasonable to include among the site

characteristics some quantities that are estimated from data measured at site,

provided that these measurements are not too highly correlated with the variable

values themselves (Hosking and Wallis, 2005).

The choice of the variables has been conducted with the necessity of describing

the behaviour of the extreme events, and consequently, increasing the comprehen-

sion related to the high variability of events over the Sicily.

In this study, among all the possible variables that can be used in the RFA,

following previous studies a particular set was selected. This variables set, listed
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Figure 4.6: Station selected spanning the period 1972-2003

in Table 4.2, contains the following variables: the raingauge elevation Zi; the

annual maxima rainfalls with duration, AMRd,i; nDryi that depicts the mean

annual number of dry day; Rsi/Rwi that is the ratio between summer rainfall (i.e.

the cumulative rainfall recorded between April-September) and the winter rainfall

(i.e. cumulative rainfall recorded between October-May). These variables have

been selected because provides an idea as the rainfall are subdivided during the

year, highlighting possible seasonal characteristics of seasonality.

The Figure 4.7(a) and Figure 4.7(b) show the value of the nDryi and Rsi/Rwi,

respectively, for each stations. The south coast and the south-east coast show

the highest number of dry day and the lowest value of Rsi/Rwi. The opposite

Table 4.2: Variables used in rainfall region development

Variable Description

Zi Station elevation
¯AMRd,i Annual maxima rainfall for fixed duration

nDryi Number of days < 1 mm
Rsi/Rwi Ratio between summer rainfall (April - September) and winter

rainfall (October - May)
θ̄i Mean date of events, represents a measure of the average time of

occurrence of rainfall events (i = 1, 3, 6, 12 and 24 hours).
r̄i Seasonality vector provides a dimensionless measure of the spread

of the data (i = 1, 3, 6, 12 and 24 hours).
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(a) nDry

(b) Rs/Rw

Figure 4.7: Maps of number of dry day (nDry) and ratio among summer
rainfall and winter rainfall (Rs/Rw)

behaviour is shown on the stations in the north-east coast, where the precipitations

are distributed during all the year.

Reed (1994) have suggested that measures of the seasonality and timing can

be used as variables to define similar regions, as shown in the Flood estimation

handbook (Reed et al., 1999). In order to describe the seasonality, two indices,

named θ and r̄, have been used; they respectively represent a measure of the

average time of occurrence of rainfall events and the measure of the time spread

of the data.

These variables that can be assimilated to site characteristics able to describe
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the seasonality of hydrological time series are the directional statistics (Fisher,

1993, Magilligan and Graber, 1996, Mardia, 1975).

Following Bayliss and Jones (1993), Burn (1997) and Cunderlik and Ouarda

(2009), the Julian date of occurrence of an annual hydrologic event i can be

transformed to a directional statistic:

θi = (julianedata)
2π

365
− 2π

3
(4.1)

where θi is the angular value (in radians).

Since the majority of the events occur over or between October and March, an

angular value equal to 2π/3 is subtracted from the transformation of the Julian

date in order to remove the ostensible difference of the values because of the change

of the year.

Burn (1997) suggested for a sample of n events, the values of θi can be ag-

gregated in order to estimate the x̄ and ȳ coordinates of the mean date of event

occurrence:

x̄ =
1

n

n∑
i

cos θ (4.2)

ȳ =
1

n

n∑
i

sin θ (4.3)

The mean direction of the event dates is then obtained from:

θ̄ =


tan−1( ȳ

x̄
), x̄ ≥ 0, ȳ ≥ 0

tan−1( ȳ
x̄
) + π x̄ < 0

tan−1( ȳ
x̄
) + 2π x̄ ≥ 0, ȳ ≥ 0

(4.4)

A measure of the variability of the n rainfall occurrences about the mean date

can also be determined. The variability measure is obtained by defining the mean

resultant as:

r̄ =
√
x̄2 + ȳ2 (4.5)

where r̄ provides a dimensionless measure of the spread of the data, ranging from

zero (high variability) to one (low variability).
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The use of these variables, through the similarities of the timing and of the

seasonality of the extreme events, can give an indication of the meteorological

characteristics of the stations.

The maps (Figure 4.8) rappresents the two indices θ and r̄ by a vector, wherein

the angle indicates the timing and the thickness indicates the spread of the event

for each stations. Observing these vectors for the different durations, it is possible

to deduce how the events occurrance tends to shift from the autumn season to

winter season.

The mean value of the directional statistics, shown in Figure 4.8 for each du-

rations, were averaged and plotted in polar plots shown in Figure 4.9, where the

colour of the slice represents the percent of the event that occur in each month.

The polar plots describes more clearly how the timing of the rainfall events

moving from the October/November to December/January with the increasing of

the duration. This result could explain the type of the event, in fact, the convective

events usually are linked to the short precipitations that manifest themselves at

the beginning of the autumn season, while the stratiform events usually associated

to the long duration occur fully in the winter season.
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(a) Duration 1 h (b) Duration 3 h

(c) Duration 6 h (d) Duration 12 h

(e) Duration 24 h (f) Legend

Figure 4.8: Maps of the mean direction and variability measure. The size of
the arrow provides the value of variability measure while the direction of the
arrow provides the timing of the event, as it is shown in the legend in bottom

right.
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(a) Duration 1 h (b) Duration 3 h

(c) Duration 6 h (d) Duration 12 h

(e) Duration 24 h

Figure 4.9: Plot polar for the directional statistics for each duration. The
shaded value shows the r̄ value in percent.





Chapter 5

Case study - Regional frequency

analysis in Sicily

The aim of this work consists in the design and the development of a RFA

procedure for the area of Sicily, Italy, based on the selection of suitable procedures

considering the data availability and the meteoclimatic features of the area. In

the previous works related to the same area (Cannarozzo et al., 1995, Lo Conti

et al., 2007), the choice of the number of the homogeneous regions and their

extension were made with geographical criterion related principally on watersheds

boundaries.

In these works, the regionalization was based on an initial hypothesis related to

geographical or hydrological characteristics. For the identification of homogeneous

regions such hypothesis was subsequently verified. The new approach tries to

obtain a regionalization starting from the meteo-climatic characteristics identified

and defined in the previous chapter, considering not only those linked to the

precipitation depth but even variables able to describe the seasonality and the

timing of the events. In order to obtain a new regionalization, a combination of

statistical tools was used to support the “traditional” regional frequency analysis.

For these reasons in this work, an objective method has been adopted to achieve

the identification of the homogeneous regions researching, at same time, the best

distribution able to represent the characteristics of the regions identified. An

assessment of the accuracy has been carried out to confirm the goodness of fit as

well.

89
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5.1 Methodology

The methodology developed in this chapther follows the index flood method

introduced by Dalrymple (1960), and previously described.

In this application, the mean of the frequency of distribution has been assumed

as the scale factor and has been estimated through the sample mean of the at-

site values; consequently the mean of rescaled data is 1 for each site, and so the

regional average of these means is 1. The flow diagram, that describes the main

steps of the methodology, is shown in Figure 5.1.

The selected variables were used as input in the Principal Components Analysis

(PCA), whose primary purpose is to reduce the number of variables taken into

account in the process of identification of homogeneous regions. As previously

mentioned, PCA is particularly useful when a data reduction procedure that makes

Figure 5.1: The flow diagram, that describes the main steps in the method-
ology
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no assumptions is needed with regard to an underlying causal structure that is

responsible for co-variation in the data. The new variables obtained after PCA,

the i.e. principal components (PCs), have been provided as input for the cluster

analysis process.

The cluster analysis (CA) has been carried out using, in addition the PCs

selected from the PCA analysis, the normalized latitude and longitude of each

station to support the grouping of spatially continuous regions. Operationally, the

CA has been performed by means of the k -means clustering method (Hartigan

and Wong, 1979).

Once a set of physically plausible regions have been defined, it is necessary to

assess their degree of homogeneity that tests whether two or more homogeneous

regions are sufficiently similar that they should be combined into a single region.

In this study three different tests were chosen, i.e., the discordance measure

for each station D (Hosking and Wallis, 1993) to examine possibly anomalous

behaviour of individual stations; the HW (Hosking and Wallis, 1993), and the

Anderson-Darling rank test AD (Scholz and Stephens, 1987) to assess homogeneity

of the extreme rainfall regions obtained.

After having identified the homogeneous regions, the next step is to test whether

a given distribution fits the data acceptably. A related aim is the selection, from

a number of candidate distributions, the distribution that gives the best fit to the

data, through the goodness-of-fit procedure based on the computation of ZDIST

(Hosking and Wallis, 2005) described in section 3.5.

There are many families of distributions that might be candidates for being

fitted by a regional data set. Their suitability as candidates can be evaluated by

considering their ability to reproduce features of the data that are of particular im-

portance in modelling. The goodness-of-fit is evaluated for each homogeneous re-

gion considering five different probability distributions: generalized logistic (GLO),

generalized extreme-value (GEV), lognormal (LN3), Pearson type III (PE3) and

Generalized Pareto Distribution (GPA).

For each of the homogeneous regions identified, the growth curves, for the

distribution selected, were obtained setting F (x′) = 1 − 1/T and evaluating the

quantiles function x′ for the different return periods T [i.e. x
′
(T )].

In order to evaluate the reliability of the results relative to quantile evaluation,

the assessment of the magnitude of uncertainty has been carried out. In this

work, the algorithm implemented by Hosking and Wallis (2005) has been used to

evaluate the accuracy of the quantiles estimated.
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5.2 Extreme rainfall regions

5.2.1 Principal component analysis

The results of a PCA are usually discussed in terms of component scores o

principal components (PCs), sometimes called factor scores, that rappresent the

transformed variable values corresponding to a particular data point, while the

loadings rappresent the weight by which each standardized original variable should

be multiplied to get the component score.

Some of the rainfall variables used for the identification of the homogeneous

regions depend on the duration (Table 4.2) and for this reason, five groups of

principal components have been obtained; consequently, five different identification

of homogeneous regions have been obtained.

The residual percent variance method was used to select the principal com-

ponents obtained from the analysis. The method is based on the idea that the

residual variance should reach a steady state when the factors begin to account

for random errors (Valle et al., 1999). In this study, it was decided to retain the

principal components which accounted for at least 5% of the total variance in the

input dataset, analysing also the values obtained for the different durations; then

only the five principal components, that explain about 95% of data variance, were

selected (Table 5.1).

Analysing the PCs obtained from the different durations (Table 5.1), the com-

ponents have shown more or less the same proportional contribution to the vari-

ance, with exception for the duration of 1 h that has shown a slightly different

behaviour. For this reason it has been considered the possibility to derive a unique

Table 5.1: Percentage variance explained for every duration for the different
PCA. In bold, the values lower than threshold selected (5%) and parenthetical

the cumulative of the explained variance

PC 1h 3h 6h 12h 24h

1 42.40 (42.40) 37.62 (37.62) 37.75 (37.75) 38.54 (38.54) 40.64 (40.64)

2 18.93 (61.33) 18.87 (56.49) 21.03 (58.78) 23.03 (61.57) 22.37 (63.01)

3 13.86 (75.19) 17.78 (74.27) 16.90 (75.68) 15.00 (76.57) 14.10 (77.11)

4 11.01 (86.19) 11.95 (86.22) 11.15 (86.83) 10.69 (87.27) 10.99 (88.10)

5 7.71 (93.91) 8.36 (94.58) 8.29 (95.12) 7.82 (95.08) 7.10 (95.21)

6 6.09 (100.00) 5.42 (100.00) 4.88 (100.00) 4.92 (100.00) 4.79 (100.00)
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group of regions able to explain and resume the characteristics relative to the dif-

ferent five duration data.

Analysing the loadings values in Table 5.2, where the bold type indicates most

significant contributing variables, it is possible to suppose a connection among the

PCs and the original variables. For example, since the most important information

of the first PCs is provided from the Z and Rs/Rw, it is possible to suppose that

the first PCs is linked with the morphology and Rs/Rw. Similar conclusion can

be made for other PCs.

Observing loadings in Table 5.2, it was decided that the PCs for the different

durations could be combined through an averaging operation.

In order to confirm the results provided by the value of loadings (Table 5.2),

the Figure 5.2 shows the comparison among the interpolation of the score of the

PCs by Universal Kriging and the observed values in each station, where the

colours were inverted, respect to maps, to underline the correlation among them.

The Figure 5.2(a) highlights the responses to orography, the mountains chains

emphasized with the black coincide with the clear values inferred from the stations.

The high value of precipitation (Figure 5.2(b)) and the higher value of the dry

day show a link with the seasonality, in particular, in the east side where the

rainfall events are usually short and intense (Figure 5.2(c)) are clearly correlated,

respectively, to the second and third PCs.

5.2.2 k-means clustering method

The cluster analysis has been performed by means of the k -means clustering

method (Hartigan and Wong, 1979) using as input the variables obtained from the

PCA analysis together with the normalized latitude and longitude of each station

to support, as previously said, the grouping of contiguous regions.

In this study, the possible range of k value have been selected considering

the minimum and a maximum number of region used in previous works realized

with regard of Sicily (Cannarozzo et al., 1995, Gabriele and Chiaravalloti, 2013,

Lo Conti et al., 2007).

The silhouette method (Rousseeuw, 1987) has been used to evaluate the best

number of regions in the range of k from 3 to 8. The entire clustering is displayed

by combining the silhouettes into a single plot, and allowing for an appreciation

of the relative quality of the regions and an overview of the data configuration

(Figure 5.3). The average silhouette width provides an evaluation of clustering

validity, and might be used to select an “appropriate” number of regions.
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Table 5.2: Loadings of each variable within the first five principal component.
Bold type indicates most significant contributing variables.

Duration 1h
Variable PC1 PC2 PC3 PC4 PC5

Z 0.45 -0.33 0.27 -0.36 0.62
AMRd -0.32 -0.36 -0.74 -0.43 0.18
θ -0.42 0.02 0.56 -0.57 -0.04
r̄ -0.34 -0.56 0.20 0.60 0.34

nDry -0.34 0.66 -0.08 0.10 0.66
Rs/Rw 0.53 0.14 -0.15 0.05 0.19

Duration 3h

Z -0.48 -0.38 0.14 0.41 -0.44
AMRd 0.31 -0.57 0.23 -0.65 -0.31
θ 0.20 -0.62 -0.56 0.36 0.09
r̄ 0.41 0.05 0.58 0.46 -0.33

nDry 0.40 0.37 -0.51 0.02 -0.62
Rs/Rw -0.56 0.08 -0.13 -0.25 -0.46

Duration 6h

Z 0.48 -0.20 0.35 -0.57 -0.16
AMRd -0.17 -0.74 0.09 0.42 -0.4
θ 0.20 -0.57 -0.59 -0.30 0.38
r̄ -0.48 -0.16 0.41 -0.53 -0.10

nDry -0.42 0.18 -0.57 -0.35 -0.49
Rs/Rw 0.55 0.16 -0.14 0.00 -0.60

Duration 12h

Z 0.48 -0.22 0.38 -0.51 0.18
AMRd -0.04 -0.76 -0.11 0.24 -0.55
θ 0.36 -0.40 -0.62 -0.08 0.50
r̄ -0.43 -0.40 0.37 -0.48 0.07

nDry -0.43 0.14 -0.56 -0.58 -0.16
Rs/Rw 0.52 0.21 -0.10 -0.33 -0.62

Duration 24h

Z 0.47 -0.15 0.45 -0.54 -0.05
AMRd 0.07 -0.77 -0.09 0.26 0.56
θ 0.40 -0.40 -0.51 -0.08 -0.62
r̄ -0.43 -0.39 0.35 -0.48 -0.11

nDry -0.43 0.02 -0.60 -0.53 0.17
Rs/Rw 0.50 0.26 -0.22 -0.35 0.51
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(a) PC1 describes the morphology

(b) PC2 describes the annual maximum

(c) PC3 describes the seasonality

Figure 5.2: Some measures of extreme rainfall and the scores of principal
components derived from the variables showed in Table 4.2. The dots are the
values recorded of the stations which show a relationship with the score of the

PCA.
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(a) 3-region (b) 4-region

(c) 5-region (d) 6-region

(e) 7-region (f) 8-region

Figure 5.3: Silhouette value for different number of region
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The values in Table 5.3 list min, max and average values of the silhouette.

Analysing the values in the table, the most robust and optimal solution has been

obtained for k=6 wherein the silhouette value is lower than other k value. The

silhouette value for k=8 has the same mean value than k=6 , but there is a cluster

with only 4 stations, and for this reason this possible solution has not been taken

into account.

The regions obtained from the cluster analysis are shown in Figure 5.4 while

the characteristics of each region are summarized in Table 5.4. The Figure 5.4 has

been obtained considering the limit of the watershed. Only two regions (4 and

5) result significantly more numerous than the others while the region 3 includes

only ten stations. The low number of stations inside that present in a region could

cause increase of the uncertainty, that could result higher than regions with a high

number of stations.

In Table 5.4, it is possible to observe as the mean annual precipitation is not

strongly related to the mean elevation; indeed the region 3, that shows the highest

values of AMRd, does not have the highest elevation, while opposite observation

can be made for the region 5.

5.2.3 Test of regional homogeneity

The two different tests of homogeneity were applied at the regions obtained

through the cluster analysis.

As previously said, Viglione et al. (2007) have shown that the Hosking and Wal-

lis heterogeneity measure HW1 (only based on L-CV) is preferable when skewness

is low, while the bootstrap Anderson-Darling test should be used for more skewed

regions. The authors suggested that the L-moment space can be divided into two

regions: if the L-skewness coefficient for the region under analysis is lower than

Table 5.3: Max, min and mean Silhouette value for different numbers of region

N. Max Min Mean Mean n. Max n. Min n.
of region s(i) s(i) s(i) stations stations stations

3 0.34 0.11 0.28 42 60 32
4 0.34 0.06 0.24 31 23 40
5 0.37 0.08 0.24 25 13 37
6 0.35 0.14 0.26 20 10 32
7 0.25 0.09 0.20 18 10 25
8 0.41 0.12 0.26 16 4 31
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Figure 5.4: Homogeneous regions obtained with the k -means

Table 5.4: Characteristics of the homogeneous regions

Region Stations ¯AMRd (mm) Mean annual Mean
1h 3h 6h 12h 24h rainfall (mm) elevation

1 18 28 37 46 56 67 586 257
2 17 24 34 42 52 63 746 297
3 10 33 48 65 80 99 911 373
4 31 25 33 39 46 55 573 156
5 32 23 31 39 48 58 714 697
6 16 23 31 38 46 55 509 473

All 124 26 36 45 55 66 673 376

0.23, they propose to use the Hosking and Wallis heterogeneity measure HW1;

otherwise if L-skewness > 0.23, the bootstrap Anderson-Darling test is preferable.

In the Table 5.5, the results of two tests applied are illustrated (white background

AD where L-skewness >0.23 and grey background HW1 where L-skewness <0.23).

When the test of homogeneity indicates that the regions cannot be accepted,

the characteristics of sites that have showed marked differences have been carefully

examined. If a site results discordant, it was evaluated to reassign it to other

regions, but often there was no physical reason why the atypical sites should be

different from the rest of the region.

For example, an extreme convective meteorological event could affect only a

few stations in a region; this could yield discordant values for only a few events,
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Table 5.5: Results of the test of homogeneity; Anderson-Darling test are
indicated with white background (upper limit=0.95), while Hosking and Wallis
are indicated with grey background (upper limit=1.00). In bold the values that

exceed the upper limit.

Test of homogeneity
1 2 3 4 5 6

1 h 0.66 1.01 -0.01 0.17 0.13 -1.58
3 h 0.97 0.13 0.41 0.97 0.06 -0.52
6 h 0.81 0.15 0.00 0.24 0.74 1.55
12 h 0.10 0.26 0.35 0.62 0.68 1.66
24 h 0.04 0.07 0.45 -0.73 0.87 0.76

and in this case, these sites could be to treat anyway into a homogeneous region

(Hosking and Wallis, 2005).

The region 6 resulted, for two duration, “possibly heterogeneous”, but it has

no station with discordant value evaluated by the discordance measure. In other

cases, some regions presented stations with discordant values but during the test

of homogeneity, the region as a whole resulted homogeneous. In this case, the

stations have not been deleted and then used during the subsequent analysis.

Since it is difficult in practice to ensure that sites used in a particular applica-

tion of RFA constitute a region that is exactly homogeneous, the analysis of the

performance is necessary to evaluate if the region can be accepted even when it is

possibly heterogeneous, as the region 6.

5.2.4 Choice of frequency distribution

In a RFA analysis, a single frequency distribution is fitted to data coming from

several sites. In general, the region will be slightly heterogeneous, and there will

be no single “true” distributions that apply to each region. The aim is therefore

not to identify a “true” distribution but to find a unique regional distribution that

will yield accurate quantiles estimates for each site.

Calculation of heterogeneity and goodness-of-fit measures involve the estimate

of sampling variability of L-moment ratios in a homogeneous region whose record

lengths and average L-moment ratios match those of the data. In the hypoth-

esis that the region is homogeneous and data at different sites are statistically

independent, if one of the distributions correspond to the “true” distribution, its

goodness-of-fit measure should have approximately a standard normal distribution.
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In this application, the sampling variability is estimated by Montecarlo simulation

using 1000 replications for each single distribution as explained in the Section 3.5.

The goodness-of-fit measure was made for each region and for different dura-

tions (1h, 3h, 6h, 12h and 24h). The ZDIST statistics for the five candidate dis-

tributions are shown in Table 5.6, indicating that the LN3 and the GEV provided

acceptably close fits to the regional average L-moments because ZDIST resulted

lower in absolute value than 1.645 for most cases. For the PE3, the test was

passed only for some durations and regions, then this reason, this distribution was

not used. The GPA has provided the worst performance, as previously said, this

distribution is more conform to model the POT approach.

In order to compare this work with the other previous works carried out for

Sicily (Cannarozzo et al., 1995, Lo Conti et al., 2007), in addition to the two chosen

distributions, the TCEV distribution have been introduced to permit a possible

comparison with previous works.

Table 5.6: Simulations results for the goodness of fit measure ZDIST . In bold,
the values with |Z| < 1.645. The grey background shows the best distributions.

Region 1 Region 4
D GLO GEV LN3 PE3 GPA GLO GEV LN3 PE3 GPA

1h 3.66 1.55 1.19 0.35 -3.23 3.79 1.11 0.56 -0.64 -5.04
3h 2.75 1.09 0.50 -0.62 -2.90 3.27 0.87 0.23 -1.05 -4.75
6h 1.76 0.32 -0.35 -1.58 -3.29 3.05 0.68 0.06 -1.20 -4.87
12h 2.59 1.30 0.52 -0.87 -2.06 2.50 -0.27 -0.68 -1.68 -6.47
24h 1.87 0.62 -0.22 -1.70 -2.71 3.14 0.27 -0.06 -0.98 -6.07

Region 2 Region 5

1h 3.81 2.08 1.50 0.39 -2.08 3.13 0.77 0.12 -1.16 -4.78
3h 1.06 -0.03 -0.77 -2.06 -2.94 1.54 -0.27 -1.18 -2.82 -4.86
6h 0.94 -0.37 -0.98 -2.08 -3.63 0.55 -1.27 -2.04 -3.45 -5.76
12h 2.71 1.20 0.58 -0.57 -2.54 2.40 0.50 -0.35 -1.90 -4.24
24h 2.01 0.68 0.00 -1.22 -2.71 2.65 0.84 -0.18 -1.99 -3.84

Region 3 Region 6

1h 1.66 0.37 -0.05 -0.84 -2.73 2.11 0.32 -0.04 -0.83 -3.77
3h 1.10 0.22 -0.41 -1.51 -2.16 1.60 -0.33 -0.58 -1.23 -4.61
6h 1.01 0.07 -0.50 -1.52 -2.38 0.77 -1.09 -1.30 -1.89 -5.22
12h 1.59 0.73 0.12 -0.95 -1.59 2.28 0.57 0.19 -0.62 -3.38
24h 1.70 0.76 0.16 -0.91 -1.72 2.14 0.86 0.20 -1.00 -2.38
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5.2.5 Parameters of distribution and hierarchical levels

After that the frequency distributions have been chosen, these have been fitted

through data from the sites of each homogeneous region for each duration after

scaling data by the at-site scaling factor. The maxima values for each station were

normalized by the median of annual maximum values.

The distributions have been fitted using the method of the L-moments (Hosking

and Wallis, 2005); in particular parameters have been estimated by equating the

L-moments of the distribution to the sample L-moments calculated from the data.

An analysis of the dependence with the duration have been achieved, to confirm

whether it was necessary to take into account a relation between the L-moments

values and the duration. The values of the regionally weighted L-moments (L-

kurtosis, L-skewness and L-CV) were calculated for the different durations (Equa-

tion 3.3) and these values were plotted in Figure 5.5 as a function of the duration

for each region.

The Figure 5.5 shows the different behaviour of the L-moments of hourly rain-

fall between the duration with respect to the other durations, as it has been shown

in the loadings value of the PCs. This behaviour could be due to the errors in the

recorded data.

The L-skewness (Figure 5.5(b)) and L-CV (Figure 5.5(c)) for the region 4 and

6 have shown a possible dependence with the duration; in particular, for the region

6 the reason could be due to the “possibly heterogeneous” behaviour shown during

the test of homogeneity.

An analysis of the standard deviation of the L-moments values has been carried

out comparing cases in which 1 h data is present and absent. The standard

deviation of the L-moments with hourly data resulted almost always higher than

that relative to L-moments values without the one-hour duration. This result

supports the decision do not consider the shortest duration (i.e. 1 hour).

The parameters of the distributions have been evaluated through hierarchical

procedure considering the mean value for each L-moment not including the values

for the duration of 1h.

Fiorentino et al. (1987) and Gabriele and Arnell (1991) proposed a procedure

that involved a hierarchy of regions. Relatively large regions were defined, where

the shape parameters (related to the L-skewness for the LN3 and GEV) are as-

sumed to be constant, and these regions are subdivided into smaller subregions

over which the dispersion parameter is assumed to be constant.
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(a) L-kurtosis

(b) L-skewness

(c) L-CV

Figure 5.5: Variation of the L-kurtosis (a), the L-skewness (b) for the different
regions and durations and the L-CV (c) for the different regions and durations.
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Figure 5.6: Standard deviation for the L-moments with and without for du-
ration of 1h.

Lo Conti et al. (2007) carried out the regional analysis on three hierarchical

levels estimating first the parameters that depend on higher order moment for the

station inside a wide homogeneous region and progressively that depends on of

the lower order moment, being these calculated for smallest homogeneous regions.

The hierarchical approach has been used in this work for the estimation of

parameters for the selected distribution.

The first regional level considered is the entire Sicily, evaluated through the

Hosking and Wallis test value of HW3. The measure based on HW3 should be an

appropriated tool for assessing the heterogeneity of proposed regions when using

the hierarchical approach (Hosking and Wallis, 2005). The value of HW3 suggests

that this region can be considered homogeneous respect to the value of L-skewness

and L-kurtosis and then homogeneous for the first level of the regional analysis.

This result coincides with that obtained from the two previous works.

Parameters of distributions depending on the values of L-kurtosis and L-skewness

were assessed with the data of the entire Sicily, without considering the dependence

on the duration and excluding the L-moments relative to hourly data.

For the second regional level of the analysis, the subdivision in six sub-regions

described in the previous paragraph has been used to estimate the parameters of

the distributions. In this case the parameters of the distributions linked to L-CV

have been evaluated considering the homogeneity in every region; also in this case,
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Figure 5.7: First level of regionalization with L-kurtosis and L-skewness ho-
mogeneous for all over Sicily.

the mean values of L-CV were calculated by excluding the hourly data and not

considering the dependence on the duration.

In Table 5.7, 5.8, 5.9 the parameters of the distributions are listed. The

parameters of the first level of regionalization are constant over Sicily; in the case

of the TCEV are constant the first two parameters related to the L-kurtosis and

L-skewness.

The Figure 5.9 shows the growth curves for each distribution and for each re-

gion; these curves are practically similar for return period lower than 100 years,

while for greater return period, the distributions provide different values. In par-

ticular the GEV distribution provides the highest quantiles while the TCEV gives

the lowest quantiles.

Table 5.7: Parameters of LN3

Region
1 2 3 4 5 6

κ -0.477

ξ 0.893 0.909 0.892 0.907 0.909 0.910
α 0.425 0.362 0.428 0.367 0.360 0.357
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Figure 5.8: Second level of regionalization with L-CV homogeneous for each
region.

A comparison with previous work of that Lo Conti et al. (2007) shows that the

shape parameter for the GEV distribution resulted κ = −0.1323, while in this work

is resulted equal to κ = −0.091. Indeed, in the case of the TCEV distribution,

the parameters Λ∗ and Θ∗ result different from those estimated by Lo Conti et al.

(2007) parameters, that were equal to 0.71 and 2.24 respectively.

The last step of the hierarchical procedure aims to determine a regional crite-

rion to estimate µi,d for ungauged sites or for sites with short records.

The practical application of the results obtained from the RFA, requires the

construction of the DDF (Depth Duration Frequency) curve, that will be obtained

by multiplying the value of h(T ) (i.e. the growth curves), by average mean value

of precipitation relative to different duration, µi,d, for each station.

Table 5.8: Parameters of GEV

Region
1 2 3 4 5 6

κ -0.091

ξ 0.765 0.800 0.764 0.797 0.801 0.803
α 0.347 0.296 0.349 0.300 0.294 0.292
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Figure 5.9: Value of growth curves for different return period

For the estimation of DDF in sites with measuring station, the values of µi,d can

be set equal to the sample estimates md obtained from recorded data. In general,

for each recording raingauge, md can be obtained as a function of duration d

according to the power law relationship:

md = a · dn (5.1)

in which a and n are site specific parameters.

Table 5.9: Parameters of TCEV

Region
Region 1 2 3 4 5 6

Λ∗ 1.05

Θ∗ 1.98

λ1 9.122 18.974 8.865 17.691 19.494 20.305

α 4.214 4.946 4.185 4.876 4.973 5.014
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It is possible to proceed to the spatialization of the values of a and n in order

to have their value also in ungauged sites.

Previous works i Sicily have shown that the elevation can not be employed as

a unique predictor variable of the variation for the parameter a, while the index

n has shown a good correlation with elevation. Other parameters, especially the

longitude, latitude, the concavity index and the distance from the sea, seem to have

a significant influence on the variability of heavy rains. Moreover, the authors have

obtained a estimate of the variable n better than parameter a. Therefore, the maps

of values were obtained through a spatial interpolation by Universal Kriging such

maps are shown in Figure 5.10.

5.2.6 Assessments of the accuracy

The comparison of the growth curve for the different distributions, shown in

Figure 5.9, does not show substantial dissimilarity, especially for the lower re-

turn periods. The accuracy procedure applied in this work was described in the

Section 3.6.

The probability distributions at the sites, fitted through L-moments method,

are used to extract a random sample from these frequency distributions considering

the effective record lengths. The regional frequency distribution specified is then

fitted to the simulated data. The estimated dimensionless quantiles with the

growth curves, obtained from random data are compared, and accuracy measures

are calculated for the estimators. A number of 10,000 realizations (M) for each

region have been carried out and the regional L-moment algorithm was used to fit

the three different distributions to the data generated at each realization.

For each region, the accuracy was assessed using the relative BIAS and relative

RMSE values for the different probability, considering each probability distribu-

tion.

The regional average relative bias, BIASR(F ), calculated by Equation (3.30),

measures the tendency of the simulated dimensionless quantiles to be uniformly

higher or lower than the whole region.

The regional average relative RMSE,RMSER(F ), calculated by Equation (3.31),

measures the overall deviation of the simulated dimensionless quantiles from the

true quantiles.

The values of the relative BIAS (Figure 5.11) resulted negative for the LN3

and GEV distributions and near zero or positive for the TCEV distribution that

shows the lowest absolute values.
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(a) Parameter a

(b) Parameter n

Figure 5.10: Map of values of the parameters a and n
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Figure 5.11: The relative BIAS (%) value for the different distribution

The LN3 and GEV distributions have produced relative RMSE values higher

than TCEV (Figure 5.12). For high return periods, TCEV provides the best result;

the reason of this behaviour could be due to the structure of the distribution given

by the union of two EV1.

For high return periods, the difference among the TCEV with the other dis-

tributions is clear with the exception for the region 4 and 5, where the values

are similar. The region 3 has shown the worst performance, probably due to the

small number of stations inside the region. The region 6, despite being identified

as “possibly heterogeneous”, does not show RMSE and BIAS values significantly

greater than those relative to the other regions.

As previously said, the values of the L-moment ratio for the hourly data have

not been considered during the process of the evaluation of the parameters of the

regional distributions. In order to verify the choice to exclude the L-moment for

hourly duration, a sample of 1000 L-moments ratio values were extracted randomly

from the hourly values, and by the Monte Carlo technique for each distribution

dimensionless quantile values were generated.

Figure 5.13, 5.14 and 5.15 show, for each distribution, that the hourly CDF of
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Figure 5.12: The relative RMSE (%) value for the different distribution

generated dimensionless quantiles follows the trend of the regional CDF beforehand

evaluated without considering the hourly data.

The CDF of the quantiles for the LN3 (Figure 5.13) and TCEV (Figure 5.15)

distributions show a limited dispersion around the regional CDF, while the CDF

for the GEV (Figure 5.14) shows a scattering higher than other distributions,

providing generally the worst performance. Even for the shortest duration, the

LN3 and the TCEV achieved the best performance.

The results obtained confirm that the use of the regional growth curve ob-

tained, disregarding the value for 1h, is reliable also for the lowest duration and

consequently the accuracy of estimate uncertainty can be comparable with those

regional curves obtained neglecting the hourly data.
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Figure 5.13: The hourly CDF of the dimensionless quantiles for LN3 distri-
bution

Figure 5.14: The hourly CDF of the dimensionless quantiles for GEV distri-
bution
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Figure 5.15: The hourly CDF of the dimensionless quantiles for TCEV dis-
tribution



Chapter 6

Climate change on the extreme

precipitation

Global Climate Models (GCMs) are the most appropriate and powerful tool

for understanding the behaviour of the global climate system over the coming

centuries. They typically have grid-cells with dimensions 150-300 km or greater, so

are only able to provide climate change information on large spatial scales. Thus,

although GCMs can provide useful information about possible future changes in

atmospheric circulation at the regional (e.g. continental) scale, they do not provide

the detail required for regional and national assessments. This is particularly true

for heterogeneous regions, where sub-GCM grid-scale variations in topography,

vegetation, soils, and coastlines can strongly affect climate. In addition, extreme

events, such as heavy precipitation, are often not captured or their intensity is

unrealistically low at coarse resolutions.

Figure 6.1: GCM and RCM

113
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Climate change information at higher resolution can be derived by nesting

Regional Climate Models (RCMs), which cover a limited area at a higher resolution

(50 km or finer) than GCMs (Figure 6.1). This methodology is widely used to

provide realistic spatial and temporal detail on how the climate may change locally.

However, such future climate projections, at the local scale, are not necessarily

reliable because uncertainty in the representation of processes in the GCMs and

RCMs often leads to a range of projected changes, the likelihood of which often

cannot be established (Déqué et al., 2007).

In this chapter, the possible effects of the climate change on the extreme pre-

cipitation will be studied through the use of the regional climate models that

provide an indication of the possible climate evolution until the end of the 21th

century. A procedure of bias correction will be implemented and used to correct

daily RCMs data. Then a temporal downscaling method will be carried out to ob-

tain a sub-daily values of precipitation. Finally, the final results will be discussed

and analysis of the future trend of rainfall quantiles for different duration will be

achieved.

6.1 A short history of climate models

Climate models have a lot in common with models that are used to predict

the weather. In fact, they both have the same roots. Numerical modelling of the

atmosphere had been envision as early as the early 20th Century.

In 1904, the Norwegian meteorologist Vilhelm Bjerknes first proposed the pos-

sibility of the numerical prediction of weather if the initial state and the physical

laws were known accurately. Then, the English scientist Lewis Fry Richardson

made a weather prediction using equations describing the physics of the atmo-

sphere that he calculated by hand.

In 1922, Richardson explained his forecast in his book Weather Prediction by

Numerical Process. Unfortunately, his forecasts were horribly incorrect, because

the observations that he used for the initial conditions were not very reliable. Also,

the equations he used were too complex, allowing atmospheric waves of all kinds

including sound waves. These high frequency waves grew to be very large.

Later in the 1930s, Carl Gustav Rossby discovered this fatal mistake and re-

configured the equations to filter out these high frequency waves (Washington and

Parkinson, 2005).
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With the development of modern computers in the late 1940s, the idea of

direct numerical modelling of the atmosphere could be revisited. At Princeton

University’s Institute for Advanced Studies, John von Neumann supervised the

construction of one of these early computers, and he realized the potential of us-

ing it for weather forecasting. He subsequently established a team of scientist led

by Jule Charney to develop a numerical weather prediction model. This team of

scientists used Rossby’s simplified equations (Washington and Parkinson, 2005).

By this time, there were better data. What was missing from the set of observa-

tional data at Richardson’s time were data from above the surface. By the 1940s,

there were regular upper-air soundings made over land (Weart, 2011).

However, the first models had to be two-dimensional and regional for weather

prediction purposes for the rudimentary computers of the time. Norman Phillips at

the University of Chicago took a step towards global climate modelling Inspired by

his sink experiments of features that resembled weather in a rotating pan of water,

he developed a two-layer model on a cylinder instead of a sphere that produced

features that resembled a jet stream and weather systems (Weart, 2011).

Encouraged by Phillips’s results, Joseph Smagorinsky at the U.S. Weather Bu-

reau, the predecessor to the National Weather Service, established a team to de-

velop a general circulation model (GCM), a global three-dimensional model of the

atmosphere. A key member of this team was Syukuro “Suki” Manabe. Smagorin-

sky and Manabe developed a nine-layer model that was the first to include physical

processes as well as moisture fluxes from a global damp surface (Weart, 2011). This

group grew to become the Geophysical Fluid Dynamics Laboratory now housed at

Princeton University.

Another group developing a GCM at about the same time was Yale Mintz’s

group at the University of California-Los Angeles (UCLA). Mintz recruited Akio

Arakawa to help in the development of numerical schemes for a GCM. One of those

schemes was a staggered vertical grid to resolve complications that develop when

calculating all quantities at the same grid points. Together, Mintz and Arakawa

developed a two-layer model with separate land and ocean surfaces (Weart, 2011).

With the advancement of computers, the GCMs became increasingly more

complex with the inclusion of more processes and even a return to the original

equations that Richardson used. Over the years, separate models began to be

developed for the oceans, land surface, and sea ice that were eventually coupled to

the atmospheric model for more accurate simulations of the whole Earth system

(or as close to the whole system as possible). Also, more and more groups started
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developing their own GCMs first in the U.S. and then in other countries, but many

of the later models are really offshoots from earlier models.

6.2 Global climate model (GCM)

Global Climate Models (GCMs) have evolved from the Atmospheric General

Circulation Models (AGCMs) widely used for daily weather prediction. GCMs

have been used for a range of applications, including investigating interactions

between processes of the climate system, simulating evolution of the climate sys-

tem, and providing projections of future climate states under scenarios that might

alter the evolution of the climate system. The most widely recognized applica-

tion is the projection of future climate states under various scenarios of increasing

atmospheric carbon dioxide (CO2).

At the core of a GCM is an Atmospheric General Circulation Model (AGCM)

that dynamically simulates the circulation of the atmosphere, including the many

processes that regulate energy transport and exchange by and within the atmo-

spheric flow. The basic atmospheric flow is represented by fundamental equations

that link the mass distribution and the wind field. These equations are represented

on a spherically spatial grid field that has many levels representing the depth of

the atmosphere.

The flow equations are modified by the representation of processes that occur

on a scale below that of the grid-including such processes as turbulence, latent

heat of condensation in cloud formation, and dynamic heating as solar and infrared

radiation interact with atmospheric gases, aerosols, and clouds.

The oceans are at least as important as the atmosphere for the transport of

energy. For that reason, the GCM also includes an Ocean General Circulation

Model (OGCM) that simulates the circulation of the oceans. The OGCM is vital

for climate simulations because the oceans represent a dynamic thermal reservoir

that, through energy exchange with the atmosphere, dominates the evolution of the

climate system. The specification of the processes that regulate heat, moisture,

and momentum exchanges between the ocean and atmosphere is crucial to the

integrity of a GCM.

Land surface, and how soil moisture and vegetation type regulate heat, mois-

ture, and momentum with the atmosphere, plays a lesser but nevertheless impor-

tant role in the simulation of climate. Soil moisture and vegetation respond to local

precipitation and affect the exchange of heat, moisture, and momentum with the
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atmosphere over time. The soil moisture and vegetation (and their regulation of

land-atmosphere exchange processes) respond to the climate on the shorter time-

scale of weather systems but, due to the varying accumulation of soil moisture,

the influence of land surface on climate is on seasonal and interannual time-scales.

Surface ice sheets also have an important role in the evolution of the climate

system. Their formation and expansion represent a lowering of the total energy of

the climate system as a whole because latent heat is lost as water changes from

the liquid to solid phase. Likewise, contraction of surface ice sheets represents an

increase in the total energy of the climate system.

A primary function of the climate system is to transport energy from the

tropics to higher latitudes; globally, there is an equilibrium between solar radiation

absorption and infrared radiation loss to space. Of course, with such a complex

system there is rarely perfect balance. At times, especially during the cycle of

seasons, Earth is accumulating radiation energy and warming, whereas at other

times it is losing energy and cooling. But the rate of radiation loss varies with

temperature and acts as a natural thermostat: when Earth warms, the infrared

radiation loss to space increases such that it exceeds the solar input and warming

ceases; when Earth cools, the infrared radiation loss to space decreases such that

solar radiation exceeds the infrared radiation loss and cooling ceases.

In general, clouds and their interaction with the climate system are difficult to

model. Clouds are an outcome of vertical motion and saturation, but the feedback

to the circulation through radiation processes is sensitive. Although cloud fields

tend to be regulated by the larger scale circulation, the processes leading to cloud

formation and dissipation are operating on scales very much smaller than that of

the computation grid, with individual clouds often occupying only a small part

of a grid. Thus it is necessary for models to specify the climate interaction of a

multitude of differing clouds across a grid space by a single process.

6.3 Regional Climate Models (RCMs)

As previously said, a key limitation of GCMs is the fairly coarse horizontal

resolution. For the practical planning of local issues such as water resources or

flood defences, countries require information on a much more local scale than

GCMs are able to provide. Regional models provide one solution to this problem.

Regional Climate Models (RCMs) work by increasing the resolution of the

GCM in a small, limited area of interest. An RCM might cover an area the size of
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western Europe, or southern Africa - typically 5000km x 5000km. The full GCM

determines the very large scale effects of changing greenhouse gas concentrations

and volcanic eruptions on global climate. The climate calculated by the GCM is

used as input at the edges of the RCM for factors such as temperature and wind.

RCMs can then resolve the local impacts given small scale information about

orography (land height) and land use, giving weather and climate information at

resolutions as fine as 50 or 25km.

In regions where the land surface is flat for thousands of kilometres, and there

is no ocean anywhere near, the coarse resolution of a GCM may be enough to

accurately simulate weather changes. However, most land areas have mountains,

coastlines and changing vegetation characteristics on much smaller scales, and

RCMs can represent the effects of these on the weather much better than GCMs.

6.3.1 Nested regional climate modelling

The nested regional climate modelling technique consists of using initial con-

ditions, time-dependent lateral meteorological conditions and surface boundary

conditions to drive high-resolution RCMs. The driving data is derived from GCMs

(or analyses of observations) and can include Greenhouse gas (GHG) and aerosol

forcing. A variation of this technique is to also force the large-scale component of

the RCM solution throughout the entire domain (e.g., Cocke and LaRow (2000),

KIDA et al. (1991), von Storch et al. (2000))

To date, this technique has been used only in one-way mode, i.e., with no feed-

back from the RCM simulation to the driving GCM. The basic strategy is, thus, to

use the global model to simulate the response of the global circulation to large-scale

forcing and the RCM to (a) account for sub-GCM grid scale forcing (e.g., complex

topographical features and land cover inhomogeneity) in a physically-based way;

and (b) enhance the simulation of atmospheric circulations and climatic variables

at fine spatial scales.

The nested regional modelling technique essentially originated from numerical

weather prediction, and the use of RCMs for climate application was pioneered by

Dickinson et al. (1989) and Giorgi (1990). RCMs are now used in a wide range

of climate applications, from palaeoclimatology (Hostetler, 1994, Hostetler et al.,

1993) to anthropogenic climate change studies. They can provide high resolution

(up to 10 to 20 km or less) and multi-decadal simulations and are capable of

describing climate feedback mechanisms acting at the regional scale.
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A number of widely used limited area modelling systems have been adapted to,

or developed for, climate application. More recently, RCMs have begun to couple

atmospheric models with other climate process models, such as hydrology, ocean,

sea-ice, chemistry/aerosol and land-biosphere models.

Two main theoretical limitations of this technique are the effects of system-

atic errors in the driving fields provided by global models; and lack of two-way

interactions between regional and global climate.

Practically, for a given application, consideration needs to be given to the

choice of physics parametrizations, model domain size and resolution, technique

for assimilation of large-scale meteorological conditions, and internal variability

due to non-linear dynamics not associated with the boundary forcing (e.g., Giorgi

and Mearns (1991, 1999), Ji and Vernekar (1997). Depending on the domain size

and resolution, RCM simulations can be computationally demanding, which has

limited the length of many experiments to date.

Finally, GCM fields are not routinely stored at high temporal frequency (6-

hourly or higher), as required for RCM boundary conditions, and thus careful

coordination between global and regional modellers is needed in order to perform

RCM experiments.

6.4 CORDEX project

The nested regional climate modelling is the technique used in the Coordinated

Regional Climate Downscaling Experiment (CORDEX) project which essentially

has the twofold purpose of providing a framework to evaluate and benchmark

model performance (model evaluation framework), and design a set of experiments

to produce climate projections for use in impact and adaptation studies (climate

projection framework).

The choice of common regional climate downscaling (RCD) domains is a prereq-

uisite for the development of the model evaluation and climate projection frame-

works. The goal of CORDEX is to provide a framework accessible to a broad

scientific community with maximum use of results. CORDEX domains therefore

encompass the majority of land areas of the world.

Figure 6.2 shows a first selection of common domain, where these should be

interpreted as interior analysis domains, e.g. not including the lateral relaxation

zone in RCMs. This selection is based partly on physical considerations (i.e.

inclusion of processes important for different regions), partly on considerations



120 6.4. CORDEX project

Figure 6.2: CORDEX simulations

of resources needed for the simulations and partly on the availability of ongoing

programmes.

In order to allow wide participation the broader community decided to make

the standard horizontal resolution for the first phase CORDEX simulations to

be ∼ 50 km (or 0.5 degrees). Today, many groups are running RCMs with con-

siderably higher resolution than this (up to ∼ 10 km) and they are encouraged

to explore the benefits of increased RCM resolution within the CORDEX frame-

work. Nevertheless, it was felt that a standard resolution, allowing contribution by

many groups, would increase the sense of community ownership of the CORDEX

project, while also increasing the size of any ensuing RCM scenario set for analysis

and comparison purposes.

6.4.1 Model evaluation framework

The climate projection framework within CORDEX is based on the set of

new global model simulations planned in support of the IPCC Fifth Assessment

Report (referred to as CMIP5). This set of simulations includes a large number

of experiments, ranging from new greenhouse-gas scenario simulations for the 21st

century, decade prediction experiments, experiments including the carbon cycle

and experiments aimed at investigating individual feedback mechanisms (Taylor

et al., 2009).

For its initial activities, CORDEX will focus on the scenario simulations. Dif-

ferent from the scenario runs employed in the fourth IPCC assessment cycle, which

were based on the SRES GHG emission scenarios (IPCC, 2000), this next genera-

tion of scenario simulations is based on so-called reference concentration pathways

(RCPs), i.e. prescribed greenhouse-gas concentration pathways throughout the

21st century, corresponding to different radiative forcing stabilization levels by the
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year 2100. Four RCPs have been selected, with stabilization levels at 2.9, 4.5, 8.5

and 11.2 W/m2 (referred to as RCP2.9, RCP4.5, RCP8.5 and RCP11.2, respec-

tively). Within CMIP5, the highest-priority global model simulations have been

selected to be the RCP4.5 and RCP8.5, roughly corresponding to the IPCC SRES

emission scenarios B1 and A1B, respectively. The same scenarios are therefore

also planned to be the highest priority CORDEX simulations.

Ideally, all regional model simulations should span the period 1951-2100 in

order to include a recent historical period, plus the entire 21st century. For many

groups, however, it may prove computationally too demanding to run CORDEX

simulations for this entire time span. The 1951-2100 period has thus been divided

into five 30-year time slices and participating groups are requested to simulate time

slices in the following order of priority 1981-2010, 2041-2070, 2011-2040, 2071-2100,

1951-1980.

The first of these (1981-2010) represents the reference period for model eval-

uation and for the calculation of climate changes. The second priority time slice,

covering a future time period, was selected as a compromise between the needs

of the impact community in terms of future time horizon and the requirement to

obtain a robust change signal. It is requested that all participating groups at a

minimum perform these two time slices to have a reasonable set of simulations for

analysis and intercomparison. In the initial phase of CORDEX, it is planned to

simulate one realization for each RCP scenario selected, using driving data from

multiple global models. In this way, CORDEX will explore the model configura-

tion uncertainty but not the internal variability one. As mentioned above, this

should not represent a major drawback, since previous experience has shown that

the former is a much more important source of uncertainty when looking at long

temporal scales.

6.4.2 EURO-CORDEX

As part of the global CORDEX framework, the EURO-CORDEX initiative

provides regional climate projections for Europe at 50 km (EUR-44) and 12.5 km

(EUR-11) resolution, thereby complementing coarser resolution data sets of for-

mer activities like, e.g., PRUDENCE and ENSEMBLES. The regional simulations

are downscaling the new CMIP5 global climate projections (Taylor et al., 2012)

and the new representative concentration pathways (RCPs) (Moss et al., 2010,

Van Vuuren et al., 2011). Twenty-six modelling groups contributing 11 different

http://www.euro-cordex.net/
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regional climate models, partly in different model configurations, actively support

EURO-CORDEX.

In its initial phase, EURO-CORDEX mainly focussed on model evaluation

in present-day climate (e.g., Vautard et al., 2013). So far more than 30 evalua-

tion simulations have been conducted. Further activities include the coordinated

analysis of future climate simulations, the joint analysis of dynamical and em-

pirical–statistical methods and the design of suitable bias correction techniques

to tailor EURO-CORDEX data for direct application in climate impact research.

Particular emphasis is put on the construction of a simulation matrix that cov-

ers uncertainty in emission scenarios, the driving global climate model and the

downscaling method in the best affordable manner.

Similarity to general CORDEX program, the EURO-CORDEX simulations

consider the global climate simulations from the CMIP5 long-term experiments

up to the year 2100. They are based on greenhouse gas emission scenarios (Moss

et al., 2010, Nakicenovic and Swart, 2000, Van Vuuren et al., 2008).

6.4.3 Med-CORDEX

Med-CORDEX initiative has been proposed by the Mediterranean climate

research community as a follow-up of previous and existing initiatives. Med-

CORDEX takes advantage of new very high-resolution Regional Climate Models

(RCM, up to 10 km) and of new fully coupled Regional Climate System Models

(RCSMs), coupling the various components of the regional climate.

Med-CORDEX is a unique framework where research community will make

use of both regional atmospheric, land surface, river and oceanic climate models

and coupled regional climate system models for increasing the reliability of past

and future regional climate information and understanding the processes that are

responsible for the Mediterranean climate variability and trends.

The areas surrounding the Mediterranean basin have quite a unique character

that results both from their complex morphology and socio-economic conditions.

It is indeed surrounded by various and complex topography channelling regional

winds (Mistral, Tramontane, Bora, Etesian, and Sirocco) than defined local cli-

mates and from which numerous rivers feed the Mediterranean sea. Many small-

size islands limit the low-level air flow and its coastline is particularly complex.

Strong land-sea contrast, land-atmosphere feedback, intense air-sea coupling and

aerosol-radiation interaction are also among the regional characteristics to take

into account when dealing the Mediterranean climate modelling.
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Figure 6.3: MED-CORDEX domain

In addition, the region features an enclosed sea with a very active regional

thermohaline circulation. It is connected to the Atlantic Ocean only by Gibral-

tar strait and surrounded by very urbanized littorals. The Mediterranean region

is consequently a good case study for climate regionalization and was naturally

chosen as a CORDEX sub-domain (MED) leading to the Med-CORDEX initia-

tive endorsed by Med-CLIVAR and HyMeX. The MED domain is defined in the

CORDEX domain document as shown in the Figure 6.3.

6.5 Climate models

The EURO-CORDEX domain covers all countries in the European Union,

but it does not map perfectly to the Europe region defined for the IPCC Fifth

Assessment Report. For the eastern part of Turkey, unfortunately, no regional

model projections are available.

A summary of the grid configuration and differences in the parametrization

schemes for the participating regional models (ALADIN5.1: Colin et al., 2010, Her-

rmann et al., 2011, CCLM: Rockel et al., 2008, HIRHAM: Christensen et al., 1998,
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RACMO2: van Meijgaard et al., 2012, RCA4: Kupiainen et al., 2011, Samuelsson

et al., 2011 REMO: Jacob et al., 2012, WRF Version 3.3.1: Skamarock et al., 2008)

are described following and is given in the Table 6.4.

The RCP scenarios, the driving GCMs and the driven RCMs as well as the

simulation length are listed in the Table 6.1. Seven different RCMs and five differ-

ent GCMs have been supplied from the CORDEX project. Two of the RCMs were

driven by five different GCMs; five GCM-RCM chains did simulate both RCP sce-

narios. They all provide data at least until the mid of the century. Eight RCP4.5

simulations and nine RCP8.5 simulations had reached the end of the century.

Table 6.1: Overview of the global and regional climate models for RCP4.5
and RCP8.5

GCM GCM Member RCM Scenarios Time

MPI-ESM-LR r1i1p1 CCLM RCP4.5/8.5 until 2100

CNRM-CM5-LR r1i1p1 CCLM RCP4.5 until 2100

EC-EARTH r12i1p1 CCLM RCP4.5 until 2100

HadGEM2-ES r1i1p1 CCLM RCP4.5 until 2100

CNRM-CM5-LR r8i1p1 ALADIN V5.2 RCP4.5/8.5 until 2100

MPI-ESM-LR r1i1p1 REMO RCP4.5/8.5 until 2100

IPSL-CM5A-MR r1i1p1 WRF331 RCP4.5 until 2100

EC-EARTH r1i1p1 RACMO2 RCP4.5/8.5 until 2100

EC-EARTH r12i1p1 RCA4 RCP8.5 until 2100

CNRM-CM5-LR r1i1p1 RCA4 RCP8.5 until 2100

HadGEM2-ES r1i1p1 RCA4 RCP8.5 until 2100

MPI-ESM-LR r1i1p1 RCA4 RCP8.5 until 2100

IPSL-CM5A-MR r1i1p1 RCA4 RCP8.5 until 2100

EC-EARTH r3i1p1 DMI-HIRHAM RCP4.5/8.5 until 2050

ALADIN-Climate. ALADIN-Climate can actually be considered as a version

of ARPEGE-Climate since they share the same computer code.

The global model used, Action de Recherche Petite Echelle Grande Echelle/

Integrated Forecasting System (ARPEGE/IFS), is a spectral model developed for

operational numerical weather forecast by Météo-France in collaboration with Eu-

ropean Centre for Medium-range Weather Forecast (ECMWF). Its climate version

has been developed in the 90s (Déqué et al., 1994). ARPEGE climate version has

been used as the atmosphere part of the Météo-France earth modelling system
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(atmosphere, ocean, land-surface and sea-ice) for IPCC (2007). The full system is

described by Salas-Mélia et al. (2005).

ALADIN-Climate is a bi-spectral RCM with a semi-implicit semi-lagrangian

advection scheme. Its configuration includes a 11-point wide bi-periodization zone

in addition to the more classical 8 point relaxation zone. This so-called extension

zone allows the computation of the fast-Fourier transforms for the spectral-to-grid

point space computation. More details can be found in Farda et al. (2010). In this

version, the planetary boundary layer turbulence physics is based on Louis (1979)

and the interpolation of the wind speed from the first layer of the model (about

30 m) to the 10 m height follows GELEYN (1988).

The version 5 used in the framework of the regional Med-CORDEX exercise

and is close to the ARPEGE-Climate version used for the next CMIP5 exercise.

ALADIN-Climate version 4 was used for the European ENSEMBLES project in

which it was inter-compared with the state-of-the art of the European RCMs at

50 and 25 km (Boberg et al., 2010, Christensen et al., 2008, Sanchez-Gomez et al.,

2009).

Different configurations of this model can be used. They are obtained by vary-

ing the spatial resolution, the size and position of the domain, and the dataset

used for the large scale forcing. More complex and unusual options are also avail-

able as the use of spectral nudging and interactive airsea coupling techniques.

COSMO-CLM. The Climate Limited-area Modelling-Community (CLM) is an

open international network of scientists, who accepted the CLM-Community agree-

ment in all of its details. Members of the CLM-Community was applied and de-

veloped the COSMO-CLM or CCLM, which is the COSMO model in CLimate

Mode.

The first version of the COSMO-CLM (named CLM) was developed by col-

leagues from HZG, PIK and BTU Cottbus on the basis of the Local Model (LM)

version 3.1 (now COSMO model), originally developed by the German Meteoro-

logical Service.

The COSMO model is the nonhydrostatic operational weather prediction model

applied and further developed by the national weather services joined in the COn-

sortium for SMall scale MOdeling (COSMO).

In 2005 CLM became the regional Community-Model for the German climate

research. This model version has been applied on time scales up to centuries and

spatial resolutions between 10 and 50 km in different regions of the world.
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In 2007/08 both CLM and LM developments were unified to get a model version

for regional climate modelling (COSMO-CLM) and operational weather forecast

(COSMO). From this time, the idea of a uniform model version for weather and

climate became a guiding principle of the model development.

The unified model version COSMO 5 for weather, climate, and environmental

research has been released recently. An intensive evaluation on a climatological

time scale is just being prepared.

HIRHAM. HIRHAM is a regional atmospheric climate model (RCM) based on a

subset of the HIRLAM (Unden et al., 2002) and ECHAM models (Roeckner et al.,

2003), combining the dynamics of the former model with the physical parametriza-

tion schemes of the latter.

The HIRLAM model - High Resolution Limited Area Model - is a numerical

short-range weather forecasting system developed by the international HIRLAM

Programme (http://hirlam.org) and is used for routine weather forecasting at a

number of meteorological institutes, i.e. DMI (Denmark), FMI (Finland), IMS

(Iceland), KNMI (The Netherlands), met.no (Norway), INM (Spain), and SMHI

(Sweden).

The ECHAM global climate model (GCM) is a general atmospheric circula-

tion model developed at the Max Planck Institute of Meteorology (MPI) in collab-

oration with external partners. The original HIRHAM model was collaboration

between DMI, the Royal Netherlands Meteorological Institute (KNMI) and MPI.

The latest running version of the HIRHAM model system, version 4, was re-

leased in 1996 (Christensen et al., 1996). An increasing demand for the use of

state-of-the-art physical parametrization schemes and higher model resolution,

however, recently made it crucial that a major upgrade be performed. Initial work

on this upgrade began in 2005 and commenced throughout 2006.

HIRHAM5 is based on release 7.0 of the HIRLAM model and release 5.2.02 of

the ECHAM model.

Regional Atmospheric Climate Model (RACMO2). In the 1990s the

KNMI developed in cooperation with the Danish Meteorological Institute the re-

search model RACMO based on the High Resolution Limited Area Model (HIRLAM)

numerical weather prediction model.

In 1993 UU/IMAU started to modify the model such that it better repre-

sented the extreme conditions over glacier surfaces. This first version of RACMO,
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RACMO1, combined the dynamical core of the HIRLAM model with ECHAM4

physics. The polar modified version of RACMO1 was mainly applied to the

Antarctic Ice Sheet.

The second version, RACMO2, combines the dynamical core of the HIRLAM

model with the European Centre for Medium-range Weather Forecasts (ECMWF)

Integrated Forecast System (ISF) physics. RACMO versions 2.0 and 2.1 included

HIRLAM version 5.0.6 and ISF cycle CY23r4, while version 2.3 includes HIRLAM

version 6.3.7 and cycle CY33r1. Due to the rapid increase in computer capacity

over the years, these versions of RACMO have not only been applied to the Green-

land and Antarctic Ice Sheets, but also at higher resolution to smaller areas such

as Dronning Maud Land and Patagonia.

For the RACMO model in general the grids are defined over the equator and

then rotated to the area of interest. Grid distance is defined in fraction of degrees,

which results in near equidistant grid points as long as the domain is small enough.

Note that the domain is thus not on a (polar) stereographic projection plane. In

the vertical the model adopts a system of hybrid sigma levels, which evolve from

terrain following sigma levels close to the surface to pure pressure levels at higher

elevation. The actual number of horizontal grid points varies per model run; in

most simulations 40 vertical layers were used.

Since RACMO is a regional model, it needs external information at the lat-

eral boundaries and sea surface. At the lateral boundary zone of the model, the

temperature, specific humidity, zonal and meridional wind components, and the

surface pressure are relaxed towards the fields of a global model every 6 model

hours, as are the sea surface temperature and sea ice concentration. RACMO is

not forced at the model top. The interior of the model is not nudged towards

observations and allowed to evolve freely.

Rossby Centre regional Atmospheric Climate model (RCA). RCA is

a regional climate model for the atmosphere and its exchange with land surface.

RCA has its origin from the numeric weather forecast model HIRLAM. A large part

of the development has been in close cooperation with the HIRLAM-work including

daily evaluation at the weather forecast service at SMHI and other meteorological

institutes in Europe. Differences between RCA and HIRLAM regard especially the

energy and water balances at the soil surface. The demand for good representation

is far higher in long climate simulations preventing long-term drift in the climate.
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Both HIRLAM and RCA are hydrostatic models performing calculations at a

discrete grid net over an area.

The model runs founding the basis for the climate index calculations are made

with a horisontal resolution of about 50 km and the area covers the larger parts

of Europe and parts of the North Atlantic. To be able to make calculations with

the regional model RCA, data on the atmospheric conditions outside the area and

sea surface temperatures (in RCA2 also deep soil temperatures) has to be fed into

the model. This information is delivered from a global climate model.

Different versions of RCA are used at the Rossby Centre. The latest version

is RCA3 from 2004 (Kjellström et al., 2005). Earlier versions are RCA0 from

1998, RCA1 from 1999-2000 (Rummukainen et al., 2001) and RCA2 from 2002

(Samuelsson et al., 2011). Compared to RCA2, RCA3 has a completely new soil

surface scheme as well as changes in the parametrisation of radiation, clouds,

turbulence and precipitation processes.

Other models can be linked to RCA. Such an example is the Rossby Centre

ocean model (RCO), describing sea and sea ice (Meier et al., 2003). When both

models are coupled we talk about the RCAO model (Doscher et al., 2002).

REMO. The dynamical structure of REMO (REgional MOdel) is similar to the

EM/DM system (Majewski, 1991). It is based on the primitive equations in a

terrain-following hybrid coordinate system. The finite-difference equations are

written in advective form on an Arakawa C-grid. Second order central differences

in space are used and the vertical finite difference formulation follows Simmons

and Burridge (1981) to conserve energy and angular momentum. To avoid nu-

merical instabilities the vertical advection as well as the vertical turbulent fluxes

are treated implicitly. The time-stepping is leap-frog with semi-implicit correction

and Asselin-filter; the time step is 5 min.

The prognostic variables are surface pressure, horizontal wind components,

temperature, specific humidity and cloud water. The vertical structure is the

same as in the Engineering Model (EM) model with 20 model levels. The boundary

conditions are specified at the top and the bottom of the model atmosphere, where

the vertical velocity vanishes.

At the lateral boundaries, time-dependent values for all prognostic variables

are specified from the global climate model ECHAM3. It is also possible to use

model output from different models with different resolutions and to bring in data

from analyses. A relaxation scheme according to Davies (1976) is used to adjust
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the prognostic variables in a zone of 8 grid rows towards the prescribed bound-

ary fields. The horizontal diffusion of momentum, temperature and moisture is

fourth order with a space-dependent diffusion coefficient proportional to the total

deformation of the horizontal wind field. The diffusion is performed on hybrid

levels but correction terms are added in the temperature and moisture equation

to account for the slope of the model layers.

Weather Research and Forecasting (WRF). The Weather Research and

Forecasting (WRF) model is a numerical weather prediction (NWP) and atmo-

spheric simulation system designed for both research and operational applications.

WRF is supported as a common tool for the university/research and operational

communities to promote closer ties between them and to address the needs of

both. The development of WRF has been a multi-agency effort to build a next-

generation mesoscale forecast model and data assimilation system to advance the

understanding and prediction of mesoscale weather and accelerate the transfer of

research advances into operations.

The Advanced Research WRF (ARW) is the ARW dynamics solver together

with other components of the WRF system compatible with that solver and used

in producing a simulation. Thus, it is a subset of the WRF modelling system that,

in addition to the ARW solver, encompasses physics schemes, numerics/dynamics

options, initialization routines, and a data assimilation package (WRF-Var).

The ARW solver shares the WRF Software Framework (WSF) with the Non-

hydrostatic Mesoscale Model (NMM) solver and all other WRF components within

the framework. Physics packages are largely shared by both the ARW and NMM

solvers, although specific compatibility varies with the schemes considered. The

association of a component of the WRF system with the ARW subset does not

preclude it from being a component of WRF configurations involving the NMM

solver. The major features of the ARW, Version 3, and reflects elements of WRF

Version 3, which was first released in April 2008. This technical note focuses

on the scientific and algorithmic approaches in the ARW, including the solver,

physics options, initialization capabilities, boundary conditions, and grid-nesting

techniques.

The climate data used in this study are shown in Table 6.2. In the first two

models the driving model is the underlying global model. The models number 1

and 9 have shown anomalous values; in particular, these models are resulted unable

to understand the seasonality of the precipitation, because of the abnormal season
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cycle that is centred over Greece and Italy for these reason are not used in the

next analysis.

6.6 Climate Extremes Indices

In order to achieve a preliminary evaluation of the performance of the RCMs

selected in this study, a group of indices (listed in the following Table 6.3) have

been used to evaluate the ability to model the extreme precipitation.

The Expert Team on Climate Change Detection and Indices (ETCCDI) has

attempted to facilitate the analysis of such extremes over the last decade by defin-

ing a set of climate indices that provide a comprehensive overview of temperature

and precipitation statistics focusing particularly on extreme aspects (Karl and

Easterling, 1999, Klein Tank and Lenderink, 2009).

Most of the indices defined by the ETCCDI describe moderate climate extremes

with recurrence times of a year or shorter, as compared to more extreme climate

statistics such as 20 year return values of annual temperature and precipitation

extremes as considered, for instance, in Kharin et al. (2007).

The indices are defined and described in detail in Klein Tank and Lenderink

(2009) and Zhang et al. (2011). The indices fall roughly into four categories:

1. absolute indices, which describe, for instance, the hottest or coldest day of

a year, or the annual maximum 1 day or 5 day precipitation rates;

2. threshold indices, which count the number of days when a fixed temperature

or precipitation threshold is exceeded, for instance, frost days or tropical

nights;

3. duration indices, which describe the length of wet and dry spells, or warm

and cold spells;

4. percentile-based threshold indices, which describe the exceedance rates above

or below a threshold which is defined as the 5th or 95th percentile derived

from the 1972–2003 base period;

In particular, a subset of the standard IPCC indicators of extreme events were

selected (Sillmann and Roeckner, 2008) related to precipitation, listed in Table 6.3.

In Figure 6.4, the values of the percentage over the total of precipitation due

to 95th percentile events for each RCM (rcp95), derived from the 1972–2003 base
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Table 6.3: IPPC Extreme Precipitation Indicator

Label Description Units

Cdd consecutive dry days (<1 mm) day
Cwd consecutive wet days (>1 mm) day
rx1day maximum precipitation in 1 day millimetre
rx5day maximum precipitation in 5 days millimetre
r10 number of days with precipitation over 10 mm/d day
r20 number of days with precipitation over 20 mm/d day
r95p percentage over the total of precipitation percent

due to 95th percentile events
Map Mean annual precipitation millimetre
Adp Average daily precipitation millimetre

period, are shown. The RCMs reproduce well the spatial variability of the extreme

events, indeed the highest values are shown in the east part of the Sicily.

The spatial resolution higher than GCM allows to represent well the variabil-

ity of the precipitation in the region due to different factors, e.g. the complex

morphology.

As a summary of all indices considered in Table 6.3, the Figure 6.5 shows the

spatial correlation of each index (columns) for each RCMs before the procedure

of correction. In such a plot, the good performance of a model in all indicators

would show up as a tendency to see clear horizontal lines. On the contrary, the

tendency of an indicator to be well represented by all models would show clear

vertical lines.

Analysing the Figure 6.5, it is possible to do a preliminary evaluation of the

RCMs. In general, all RCMs have problems to model the Cdd and Cwd. The

r95(%) is the best index represented by almost all RCMs which have shown high

correlation value with the observed values. The RCMO2 and COSMO-CLM re-

gional climate model have provided the highest performance, and among these, in

terms of correlation the RMC3 has provided the best outcome.

6.7 Bias correction methods

RCM simulations are typically affected by systematic and random model er-

rors. Misestimated climate variables in general, incorrect seasonal variations of

precipitation (Christensen et al., 2008, Terink et al., 2009, Teutschbein and Seib-

ert, 2010) and the simulation of too-many drizzle (i.e., low intensity rain) days
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Table 6.4: Percentage over the total of precipitation due to 95th percentile
events for each RCM (rcp95)

Regional climate models - rcp95
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Figure 6.5: Spatial correlations of each indicator for each RCM with respect
to observation. Shaded values range from 0 to 1.

(Ines and Hansen, 2006) are just a few examples of common systematic errors

(biases). In other words, climate variables simulated by individual RCMs often do

not agree with observed time series.

This poses a problem for using these simulations as input data for hydrological

impact studies. One possible solution is to use an ensemble of RCM simulations

(Déqué et al., 2007, Giorgi, 2006) that provides principally two advantages: (1)

the spread of individual ensemble members covers a more realistic range of un-

certainty and (2) the ensemble median may fit observations better (Jacob et al.,

2007), which is especially true for temperature simulations. However, for precip-

itation simulations even the ensemble median often deviates considerably from

observations and is not able to capture the variability in the observations. This
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shows that it is not enough to only employ an RCM ensemble, but that additional

correction procedures are needed.

Several bias correction methods have already been applied in weather forecast-

ing under the name model output statistics (MOS) about four decades ago (Glahn

and Lowry, 1972, Klein and Glahn, 1974). In the context of correcting RCM out-

put, however, it is today a controversial subject (Ehret et al., 2012, Muerth et al.,

2013): despite their advantageous ability to reduce errors in climate model output,

most correction methods are criticized to diminish the advantages of climate mod-

els (Ehret et al., 2012) and to not have much added value in a complex modelling

chain when considering other sources of uncertainty (Muerth et al., 2013).

Typical correction approaches aim at correcting the systematic error (bias) in

RCM-simulated climate variables by employing a transformation algorithm and are

therefore called bias correction methods. The concept is based on the identification

of possible biases between observed and simulated climate variables, which is the

starting point for correcting both control and scenario RCM runs. It should be

noted that there is a risk of not only correcting systematic errors (biases) but also

unintentionally modifying simulations due to unsystematic (random) model errors

(Maraun et al., 2008).

A common assumption of most bias correction methods is stationarity, or time

invariance, of the model errors. This implies that the empirical relationships in

the correction algorithm and its parametrization for current climate conditions do

not change over time and are also valid for future conditions. This assumption

is, however, likely not met under changing climate conditions (Ehret et al., 2012,

Maraun, 2012, Maraun et al., 2010, Vannitsem and Nicolis, 2008).

6.7.1 Statistical transformations

Statistical transformations attempt to find a function h that maps a mod-

elled variable RCM such that its new distribution equals the distribution of the

observed variable obs.

In order to correct the daily precipitation fields, the quantile matching are

applied to the RCM output. The quantile matching adjusts all moments of the

probability distribution function (PDF) of any variable of the model (Hagemann

et al., 2011, Piani et al., 2010) by using the PDF of observations, integrating

both PDFs to cumulative distribution functions (CDFs) and construct a transfer

function.
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Following Piani et al. (2010) this transformation can in general be formulated

as:

obs = h(RCM) (6.1)

Statistical transformations are an application of the probability integral trans-

form (Angus et al., 1994) and if the distribution of the variable of interest is known,

the transformation is defined as

obs = F−1
o (Fm(RCM)) (6.2)

where Fm is the CDF of RCM and F−1 o is the inverse CDF (or quantile function)

corresponding to obs.

Parametric transformations. The quantile–quantile relation can be modelled

directly using parametric transformations. Here, the following parametric trans-

formations were used:

PAR− LIN → ˆobs = a+ b(RCM) (6.3)

PAR− POW → ˆobs = b(RCM − x0)c (6.4)

where, ˆobs indicates the best estimate of obs and a, b, c and x0 are free parameters

that are subject to calibration.

In the linear case (Eq. 6.3) b is simply a multiplicative correction factor and

a is an additive correction factor. The a and b parameters are also related to the

dry day correction factor x0 = −a/b, which is not used in Eq. (6.3). x0 is the

value of precipitation below which modelled precipitation is set to zero. This is

done to equate the number of modelled and observed dry days. In conventional

bias correction techniques (e.g., Chen et al. (2000), Roeckner et al. (1999)), x0 is

derived directly as the difference in the number of dry days between observations

and model output. Eq. (6.4) is a power law with an explicit dry day correction

x0.

The transformation Equations (6.3), (6.4) were all used by Piani et al. (2010)

and some of them have been further explored in follow up studies (Dosio and

Paruolo, 2011, Rojas et al., 2011). Following Piani et al. (2010), all parametric

transformations were fitted to the fraction of the CDF corresponding to observed
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Figure 6.6: Daily correction procedure

wet days (obs > 0) by minimising the residual sum of squares. Modelled values

corresponding to the dry part of the observed empirical CDF were set to zero.

Nonparametric transformations (NON-PAR). A common approach is to

solve Equation (6.2) using the empirical CDF of observed and modelled values in-

stead of assuming parametric distributions. Following the procedure of Boé et al.

(2007) the empirical CDFs are approximated using tables of empirical percentiles.

Values in between the percentiles are approximated using linear interpolation. If

new model values (e.g. from climate projections) are larger than the training

values used to estimate the empirical CDF, the correction found for the highest

quantile of the training period is used Boé et al. (2007), Jakob Themeßl et al.

(2011).

6.7.2 Daily correction

Both the methods of bias correction beforehand described were applied for the

daily correction between the daily data observed and estimated by RCMs. The

transfer functions (TFs) were applied inside the range from 1972 to 2003, because

it is the range with greater number of serviceable stations. It was hypothesized

absence of variability in the future, then at the future RCMs was applied the same

correction. In the Figure 6.6 is schematically shown the daily correction procedure.
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In order to derive the bias correction parameters, equal time lengths of observed

and simulated daily data are required. In what follows, it will assume to deal with

a time interval of daily precipitation data. There is no day-to-day correspondence

between simulated and observed data, the time coordinates in the model data

are purely internal. The initial datasets for each simulated RCM values and for

observed data can be characterized as having the following form:

Xobs = xobs(ϕ, θ, d,m, y) (6.5)

x = x(ϕ, θ, d,m, y) (6.6)

where xobs and x are observed and modelled precipitation respectively, ϕ and θ

are the longitude and latitude of the grid point, respectively, and d, m and y are

indexes of day, month and year respectively.

Bias corrections, i.e. TFs, can be derived for every month of the year. In order

to calculate monthly transfer function, the year label y in Eqs. (6.5) and (6.6) was

removed grouping the data according to calendar month. The data are sorted at

each grid point by depth precipitation:

Xobs = xobs(ϕ, θ,m, i) (6.7)

x = x(ϕ, θ,m, i) (6.8)

such that x(ϕ, θ,m, i+1) ≥ x(ϕ, θ,m, i) and i spans the entire population of daily

precipitation values for that month and all years of the decade. For fixed (ϕ, θ,m)

the emerging TF is defined discretely for all i indexes as:

TFϕ,θ,m(x(ϕ, θ,m, i)) = xobs(ϕ, θ,m, i) (6.9)

Only the portion of the emerging TF which corresponds to observed wet days

is fitted. A wet day is evaluated during the evaluation of transfer function for each

grid. The wetter days correspond to the portion of the TF on the right side of the

intersection with the x-axis (Figure 6.7). This method was applied both historical

climate data and future climate data for each RCM. The transfer functions can

only be constructed at grid points where almost one observation station is situated.
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Figure 6.7: Transfer function derived from CDFs (continuos thick line) su-
perimposed on “perfect” transfer function derived by re-sorting and plotting
precipitation values directly (continous line). Also shown is the linear fit to

“perfect” trasfer function (dashed line).

6.7.3 Comparison between different methods

In order to assess the performance of the different methods, a set of scores is

needed that quantifies the similarity of the observed and the (corrected) modelled

empirical CDF. Overall performance is measured using the mean absolute error

(MAE) that is a quantity used to measure how close the corrected empirical CDF

are to the eventual the observed empirical CDF.

Statistical transformations, as any statistical technique, quietly assume that

the modelled relation holds if confronted with new data. In the context of climate

impact assessment this assumption is critical as it has to be expected that climate

variables exceed the observed range in future periods.

Further, highly adaptable methods, such as the non-parametric techniques used

in this study, are prone to overfitting the data. Both issues require that model

error is quantified using data that have not been used for calibration.

The suitability of the different statistical transformations to correct model

precipitation from the CORDEX project was tested using observed daily precip-

itation rates of 208 stations in Sicily, all covering the 1972–2003 time interval.

The dataset of the observed and modelled data was divided in two subsets. The

first sub-set have been used in the calibration procedure to fit the parameters of

different statistical transformation with 1972-1987 time interval while the second

sub-set have been used for the validation of the statistical methods with 1988-2003

time interval.
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(a) Uncorrected modelled (b) NON-PAR correction: statistical trasformation
based on empirical quantile

(c) PAR-LIN correction: statistical trasformation based
on parametric function

(d) Cdf of the MAE

Figure 6.8: Mean absolute error (MAE) between the observed and modelled
empirical CDF of daily precipitation for different statistical transformation ob-

tained from the mean value for all RCMs, in the validation period.

The MAE for all stations and two methods under consideration and the respec-

tively CDF of the MAE are shown in Figure 6.8. The statistical transformation

with power function is not shown because it has achieved values of MAE very

hight and for this reason, this transformation was excluded. For the uncorrected

model output, MAE has pronounced geographic variations. The largest errors are

found along the east coast, where the RCMs cannot model the orographic effect

on precipitation with sufficient detail. This analysis are confirmed to the value of

the CDF of the MAE where the NON-PAR result be the better transformation

function.

In Table 6.5 are reported the total mean absolute error for each RCM averaged

over all stations. The NON-PAR transformation have achieved results better than

PAR-LIN transfer function for almost all models, for this reason the value correct

in this way are used in subsequently analysis.
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Table 6.5: Total MAE, averaged over all stations.

Id RCM Uncorrected values NON-PAR PAR-LIN

RCM2 5.21 4.47 4.44
RCM3 5.20 3.86 4.04
RCM4 5.20 3.86 4.04
RCM5 5.33 6.45 10.17
RCM6 4.02 4.14 3.99
RCM7 7.89 5.51 6.37
RCM8 9.16 8.34 7.59
RCM10 5.30 4.95 5.00
RCM11 4.75 4.52 4.72
RCM12 5.63 5.41 7.57
RCM13 7.55 6.90 6.88
RCM14 7.23 7.75 7.67
RCM15 5.83 4.92 4.60

Prior to application of statistical transformations and related post-processing

methods, it is important to recall that these correction techniques are designed

with a limited scope: to adjust the simulated climate variable such that its distri-

bution (or some aspects of it) matches the distribution of observed values.

The validity of this assumption cannot be fully assessed, as the variable of

interest may exceed the observed range in a changing climate. Further, numerical

experiments on the global scale have shown that uncertainty related to the choice

of calibration period is small compared to uncertainties related to choice of climate

model and emission scenario Chen et al. (2011).

The Figure 6.9 shows the spatial correlation of each index (columns) for each

RCMs after the procedure of correction. In general, the procedure of correction

enhances the performance of all the models; the RCM6 have provided the greater

performance while RCM13 have provided high value of correlation for some indi-

cators; with regard to the extreme indices, only the consecutive dry day (Cdd)

and the consecutive wet day (Cwd) do not show significant improvement.

6.7.4 Model capability to rappresent seasonality

In this section the skill of the different RCMs were analysed in reproducing

the mean precipitation regime and the seasonal cycle. The historical and future

(two different scenarios) mean annual precipitation for the ensemble median of the

RCMs are shown in Figure 6.10.
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Figure 6.9: Spatial correlations after the correction of each indicator for each
RCM with respect to observation. Shaded values range from 0 to 1.

In order to evaluate the capability to depict the monthly variability, the monthly

averaged value for each RCM was derived and analysed over the regions defined

in the Chapter 5. The different monthly precipitation for each region, before and

after the bias correction, are illustrated in Figure 6.11 and Figure 6.12 respectively.

For a better comparison, the y-axis scale use to rappresent the for precipitation is

the same in all the plots (ranging from 0 to 260 mm).

All the regions present a seasonal cycle with their minimum values in July

and August. The black line shows the observed monthly (spatially averaged)

precipitation for each region while the other lines show the monthly averaged

provided by each RCM.

In general, the models are able to understand the monthly variability, be-

fore the correction (Figure 6.11); only for the region 3 the RCMs provide values
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Figure 6.10: Mean annual precipitation for historical RCMs and for two dif-
ferent scenarios.

rather different respect to the observed value, while in the other region the RCMs

have shown better performances. After the correction (Figure 6.12) the difference

among observation and RCMs are strongly reduced, even in the region 3.

6.8 Temporal downscaling

In order to obtain the quantiles of precipitation for sub-daily duration, a tem-

poral downscaling is needed. Starting from the daily value provided from the

RCMs, the sub daily have been carried out.

Several approaches for statistical temporal downscaling of precipitation time

series have been suggested in the literature, including methods based on a point-

process model (Glasbey et al., 1995, Koutsoyiannis and Onof, 2001, Marani and

Zanetti, 2007, Rodriguez-Iturbe et al., 1988). Koutsoyiannis and Onof (2001)

have developed a disaggregation methodology for the generation of hourly data

that aggregate up to given daily totals using the Bartlett-Lewis model. Marani

and Zanetti (2007) presented a temporal downscaling method based on a point-

process model that employs theoretically based estimates of rainfall variability on



CHAPTER 6. CLIMATE CHANGE ON THE EXTREME PRECIPITATION145

Figure 6.11: Monthly distribution of the spatially averaged precipitation for
each region before the procedure of bias correction.

Figure 6.12: Monthly distribution of the spatially averaged precipitation for
each region after the procedure of bias correction.
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an hourly scale derived from daily statistics to produce approximately unbiased

estimates of rainfall variance on an hourly time scale.

In this study, in order to obtain the maximum sub-daily precipitation from the

daily time series for each RCMs, a simple method of temporal downscaling was

proposed starting the idea developed by Srivastav et al. (2014) that have presented

a methodology based on equidistance quantile matching (EQM) for updating the

DDF curves under climate change.

Analysing the correlation among the observed precipitation for different dura-

tion (mean maximum daily and sub-daily) has carried out high values. The flow

chart of proposed methodology is shown in Figure 6.13.

From the each RCMs the annual maximum daily value of precipitation was

extracted. At this point, a non-parametric transfer function (NON-PAR), with the

same approach illustrated in the section 6.7.2, was obtained among the max-daily

and max sub-daily observed values using the data for the period 1972-2003. The

parameters of transfer function, obtained by a comparison among the empirical

CDF, was evaluated from the duration, e.g. daily-24h, 24h-12h, etc. The values

of correlation coefficient, that illustrates the quantitative measure of some type

of correlation and dependence, were carried out among the max-daily and max

sub-daily observed values, and has returned high value near the unit (Table 6.6),

confirming the hypothesis of correlation between the duration.

Five transfer functions derived from the observed value, for the couple of du-

ration shown in the first columns in Table 6.6.

Figure 6.13: Flow chart of temporal downscaling
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Table 6.6: Mean correlation coefficient between the maximum value of pre-
cipitation and different duration

Duration Correlation coefficient

Day-24h 0.759
24h-12h 0.925
12h-6h 0.905
6h-3h 0.900
3h-1h 0.837

Follow a “cascade method”, wherein first the pair of highest duration values

(i.e. Day-24h) were corrected and subsequently that of low duration (i.e. 3h-1h).

At this point, for each RCMs, the maximum sub daily values are available.

From the maximum sub-daily values obtained from the temporal downscaling,

the growth curves for two different scenario were achieved. In order to permit a

comparison have been used only the RCMs with values for both scenario (RCM

10, 11, 12, 13, 14, and 15). The calculation is carried out with the same procedure

illustrated in the chapter 5 realising a comparison with historical growth curves

obtained from the analysis in the previous chapter. The growth curves for two

duration (3h - 24h) and distributions, that have provided the better performances

in the previous analysis (GNO, TCEV), are shown in Figure 6.14 - 6.15. The

figures show historical curves obtained from the observation (blue), the historical

corrected curve obtained from the RCMs after the temporal downscaling (black),

and the future curve for the different scenario, RCP4.5 (green) and RCP8.5 (red).

From the comparison of the curves, it is possible to see as the GNO provides the

lower quantiles than TCEV. The black lines result almost perfectly overlapping

observed regional growth curves, and this behaviour confirm the goodness of the

temporal downscaling method. Only the region 3 (north-east of Sicily) shows a

small gap among the growth curves confirming the difficult of the RCMs to model

the precipitation in this region.

In order to provide a quantitative assessment of the future change of the quan-

tiles, the relative variation of the ∆(%) has been obtained as the ratio between

QRCP45/85−Qhist and Qhist. The values obtained (by RCM 10, 11, 12, 13, 14, and

15) are shown in the Figure 6.16 and 6.17.

In the Figure 6.16 and 6.17, the ∆(%) are shown for different scenario, RCP4.5

(continuous line) and RCP8.5 (dashed line), and different distributions. Gener-

ally, the precipitation for the lower duration has shown an increase higher than
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(a) GNO

(b) TCEV

Figure 6.14: Growth curves for the each distribution for the duration of 3h
(2006-2050).
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(a) GNO

(b) TCEV

Figure 6.15: Growth curves for the each distribution for the duration of 24h
(2006-2050).
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Figure 6.16: ∆(%) change 3h (2006-2050).

Figure 6.17: ∆(%) change 24h (2006-2050).
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precipitation for greater duration.

The behaviour of the ∆(%) is different among the regions. The regions 1, 3

and 4 show a similar trend with the scenario RCP4.5 provides values higher than

scenario RCP8.5; the value increased with return period, and in the region 3, the

values overtake the 50% for the high return period while in the other two regions

this value is not exceeded.

A behaviour totally different is shown in the region 2 and 6. In the first,

both scenarios provide an exponential increment with an exclusion of TCEV dis-

tribution; opposite in the region 6, where the ∆(%) have shown a reduction with

the return period, and in this case the RCP4.5 have provided values higher than

RCP8.5. The TCEV has provided systematic increment while the LN3 and GEV

show a strong increase for high return period.

This behaviour is confirmed by many works of the scientific community (Nikulin

et al., 2011, Sillmann et al., 2013), that underline this trend. The indications of

climate change show that the future years will be driest of the past with an increase

of the extreme rainfall events.

In conclusion, these results show again the complexity of the extreme rainfall in

Sicily as previously said. The reason is linked to the complexity of morphology and

the geographical position in the centre of the Mediterranea area with a mixture of

climatology characteristics.





Conclusions

Many practical problems require knowledge of the behaviour of extreme val-

ues. For example, high precipitation amounts and resulting streamflows may af-

fect sewerage systems, dams, reservoirs and bridges with different impacts. The

motivation for analysing extremes is often to find an optimum balance between

adopting high safety standards that are very costly on the one hand, and prevent-

ing major damage to equipment and structures from extreme events that are likely

to occur during the useful life of such infrastructure on the other hand.

The evaluation of the extreme precipitation is a fundamental branch of the

hydrologic application. Extreme precipitation events pose an increasing threat to

society and infrastructure, especially under global warming. The research of more

accurate tool to build the Depth-Duration- Frequency (DDF) curves, is justified

by the engineering applications, that need to achieve more reliable and correct

estimates.

In the case of extreme events, our major interest is not in what has occurred,

but the likelihood that further extreme and damaging events will occur at some

point in the future. The occurrence of many extreme events in hydrology cannot

be forecasted on the basis of deterministic information with sufficient skill and lead

time, and, in such cases, a probabilistic approach is required. If the occurrences

of extreme events can be assumed to be independent in time, (i.e., the timing

and magnitude of an event bear no relation to preceding events) then frequency

analysis can be used to describe the likelihood of any event or a combination of

events over the time horizon of a decision.

Changes in extreme weather and climate events have significant impacts and

are among the most serious challenges to society in coping with a changing climate.

Indeed, “confidence has increased that some extremes will become more frequent,

more widespread and/or more intense during the 21st century” (IPCC, 2007). As

a result, the demand for information services on weather and climate extremes
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is growing. The sustainability of economic development and living conditions

depends on our ability to manage the risks associated with extreme events.

The implementation of the regional frequency analysis, that allows to use more

complex statistical distribution and the evaluation of the parameters, may be

realized with a more wide datasets as an alternative to the classical approach.

In this thesis, a new regional frequency analysis based on L-moments approach

has been implemented for the Sicily, Italy. Sicily shows a variety of morphological

and climatic characteristics that result appropriate for the application of RFA. The

proposed RFA has been carried out integrating the meteo-climatic information

with directional statistics, number of dry day and ratio between summer rainfall

and winter ranfall, since this kind of variables are able to provide information on

the timing and seasonality of the extreme rainfall events.

The several steps of frequency analysis have been carried out through other

statistical tools. In the first steps, the variables selected from the rainfall dataset

were analysed with the principal components analysis which is able to analyse the

data representing the observations described by several dependent variables. Its

goal is to extract the significant information from the data table removing the

ground noise, through a set of new orthogonal variables called principal compo-

nents (PCs). The PCs obtained were used as input in a clustering method. In

this study, the partition method called k -means algorithm has been implemented.

The k -means needed the k value, that represents the number of the clusters to be

obtained. A range k of values was selected considering the previous works devel-

oped in Sicily. The cluster analysis was performed for this range of values and the

best value was selected using the silhouette method.

The six homogeneous regions obtained by k -mean algorithm were analysed by

a test of homogeneity. The test of homogeneity is necessary to evaluate if the

regions obtained do not present station with abnormal behaviour respect to the

other stations over the region. Two tests of homogeneity have been performed

with the target to identify the stations with abnormal behaviour. The stations

individuated by discordance measure, in the first attempt were moved in another

region, and if the resulted yet discordant, these were deleted.

In the next steps, different probability distributions were fit on the homoge-

neous region previously obtained. In order to select the frequency distribution,

a goodness-of-fit procedure was used and applied to five candidate distributions.

Two frequency distributions, the three-parameter lognormal (LN3) and generalised
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extreme value (GEV), were selected. In order to evaluate the result with the pre-

vious works, the two component extreme value (TCEV) distribution was added.

A typical three levels hierarchical regional approach has been adopted for the

parameter estimation procedure based on the L-moments method.

In order to compare the quantiles, the “index value method” was developed

using the regional growth curves carried out for each homogeneous region. The

validity of the proposed approach was verified by the analysis of the values of

regional L-moments and confirmed by the test of homogeneity for the highest

statistics moments.

At the first levels the higher statistics moments, i.e., the L-skewness and L-

kurtosis, were considered constant over the Sicily as a whole. At the second

level, for each obtained homogeneous region, the value of L-CV was considered

constant. At the final level, the “index value”, that rappresent the mean value

of precipitation, was evaluated for all Sicily by a spatial interpolation developed

through universal kriging algorithm using the values of precipitation at gauged

stations.

The growth curves for the sub-daily durations (1, 3, 6, 12, and 24 h) were

estimated through the assessment of the quantiles for different duration and return

period. In order to evaluate the performance of the regional frequency analysis, an

assessment of accuracy was achieved. For each distribution, the BIAS and RMSE

have been evaluated for different return periods. The analysis has shown that the

TCEV and the LN3 provide the best performances.

In the second part of this work, the response of precipitation extremes under

climate change was studied using ensembles of climate models provided by the

Coordinated Regional Climate Downscaling Experiment (CORDEX). The climate

data for the period 2006-2050 were obtained from regional climate models (RCMs).

The climate models have provided daily values of precipitation. A bias correction

method was applied on daily precipitation provided from the RCMs by comparing

three different kinds of transfer functions. The best solution, evaluated in terms of

mean absolute error (MAE), was achieved by the non-parametric transformation.

In order to obtain sub-daily values of precipitation, a straightforward method of

downscaling was implemented. The temporal downscaling uses a cascade method,

in the first step the precipitation for the duration of 24 h were corrected, and after

the precipitation for the lower durations. After the temporal downscaling was

accomplished, the growth curves for each distribution have been estimated and an
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evaluation on the future sub-daily precipitation was obtained for different return

periods.

The precipitation for the highest duration has shown an increase lower than

that relative to the precipitation for the shortest duration. This trend, combined

with the reduction of the mean annual precipitation for the period 2006-2050

follows the results of many works in the scientific community (Frei et al., 2006,

Meehl et al., 2000).

In conclusion, this thesis has provided an updated tool for the modelling of

extreme precipitation for the area of Sicily, with different features respect to pre-

vious works both in terms of the definition of homogeneous zones and in terms

of parameters of the frequency distribution. Meteo-climatic information and the

seasonality of extreme events retrieved from the dataset have been exploited in

the analysis and have provided a better characterization of the extreme rainfall

events.

The analysis of climate change of extreme precipitation has shown an increase

of the quantiles; for this reason an increase of the attention on the management

and planning of the future hydraulic infrastructures is needed. In the practical

applications, a careful evaluation of the DDF taking into account affects of climate

change to use in the design of the infrastructures could be essential, to reduce the

damage and loss of human lives in the future. Indeed, the most of the works on

the climate change show an increment of the extreme precipitation (Nikulin et al.,

2011, Sillmann et al., 2013). For this reason, during the planning of the infrastruc-

tures, the use of the DDF that take account the possible increase of precipitation

must be indispensable, in particular for major infrastructures designed for high

return periods.

Further efforts could be made in the future, in order to improve the evaluation

of climate models.
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Idraulica Università degli Studi di Cagliari.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate

behavioral research, 1(2):245–276.

Cavicchia, L., von Storch, H., and Gualdi, S. (2014). Mediterranean tropical-like

cyclones in present and future climate. Journal of Climate, 27(19):7493–7501.

Chen, C., Haerter, J. O., Hagemann, S., and Piani, C. (2011). On the contribution

of statistical bias correction to the uncertainty in the projected hydrological

cycle. Geophysical Research Letters, 38(20).



Bibliography 159

Chen, D., Cane, M. A., Zebiak, S. E., Canizares, R., and Kaplan, A. (2000). Bias

correction of an ocean-atmosphere coupled model. Geophysical Research Letters,

27(16):2585–2588.

Chow, V. (1964a). Statistical and probability analysis of hydrologic data, part

i, frequency analysis. Handbook of Applied Hydrology, McGraw-Hill Book Co.,

New York, NY, pages 8–1.

Chow, V. T. (1964b). Runoff. Handbook of applied hydrology, pages 14–1.

Chowdhury, J. U., Stedinger, J. R., and Lu, L.-H. (1991). Goodness-of-fit tests

for regional generalized extreme value flood distributions. Water Resources

Research WRERAQ, 27(7):1765–1776.

Christensen, J. H., Boberg, F., Christensen, O. B., and Lucas-Picher, P. (2008). On

the need for bias correction of regional climate change projections of temperature

and precipitation. Geophysical Research Letters, 35(20).

Christensen, J. H., Christensen, O. B., Lopez, P., van Meijgaard, E., and Botzet,

M. (1996). The hirham4 regional atmospheric climate model.

Christensen, O. B., Christensen, J. H., Machenhauer, B., and Botzet, M. (1998).

Very high-resolution regional climate simulations over scandinavia-present cli-

mate. Journal of Climate, 11(12):3204–3229.

Cocke, S. and LaRow, T. (2000). Seasonal predictions using a regional spectral

model embedded within a coupled ocean-atmosphere model. Monthly Weather

Review, 128(3):689–708.

Coelho, C., Ferro, C., Stephenson, D., and Steinskog, D. (2008). Methods for

exploring spatial and temporal variability of extreme events in climate data.

Journal of Climate, 21(10):2072–2092.

Coles, S., Bawa, J., Trenner, L., and Dorazio, P. (2001). An introduction to

statistical modeling of extreme values, volume 208. Springer.
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