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Introduction

This thesis is concerned with quantile regression (QR). This technique is

becoming popular mainly because, compared to mean regression, it pro-

vides a complete description of the relationship between a response variable

and a set of covariates. It is also attractive because it does not require any

distributional assumption. With a non parametric approach it is possible to

achieve an estimate of the so-called quantile function without specifying the

form of the predictor. In this work, the attention is particularly focused on

P-spline QR and the choice of the smoothing parameter. The main contri-

bution of the thesis consists of the implementation of an iterative algorithm

which allows to get an optimal smoothing parameter. Simulations are re-

ported to see how the method performs compared with some alternatives;

furthermore an application in agronomy is presented to show how it works

in practice.

In this chapter, some motivations to move from mean regression to quantile

regression technique and from parametric to non parametric approach are

discussed. Since the thesis is going to deal with QR, some examples in

which QR represents a better choice than mean regression are presented.
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From mean regression to quantile regression

In several fields of applied sciences, researchers need to model data to

achieve a description of the relationship among a response variable and a set

of explanatory variables or covariates. The idea is that, using a set of statis-

tical techniques, it is possible to validate (or not) some theoretical proper-

ties of the object of the study. This allows to get answers to some research

questions aimed to scientist’s decisions. The most common technique to

study those relationships is mean regression analysis. Mean regression is

considered a simple but powerful method because, relying on a small set

of assumptions, it is computationally easy to estimate; furthermore, the in-

terpretation of the parameters ruling the generator data process is generally

quite simple. In the last two centuries mean regression was applied in al-

most every field of scientific knowledge, from Economics to Biology, from

Psychology to Engineering. For many years mean regression was presented

as the only tool to study dependence of variables but sometimes it does not

help to describe the phenomenon which the researchers are interested in.

An example of possible shortcomings using mean regression is when one

has to estimate growth curves. There are many ways to estimate a growth

model using mean regression. Since growth curves are usually supposed

to be non linear, Logistic, Gompertz, Richards or Weibull models can be

used (see Zimmerman et al. (2001) for further details). According to these

models, the growth rate changes only for the mean; however, it could be

useful to know if the growth rate changes constantly varying quantile or

not. For instance, in the work of de Onis (2006) one of the major purposes

is to analyse some anthropometric variables (BMI, height, weight) for chil-

dren in the early ages. Mean regression can be unreliable when it does not

take into account that there are children who are born heavy (or tall) and
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will naturally belong to the upper tail of the distribution and children who

are born light (or short) and will naturally belong to the lower tail of the

distribution. The use of the mean in this context implies the assumption

that the growth rate is the same both for heavy and light children. So it is

important to provide more specific information to get a real idea of how

those variables grow along with time.

This problem is conceptually easy to solve with a quantile regression (QR)

(Koenker, 2005; Davino et al., 2013) approach. Quantile regression repre-

sents a more complete alternative to mean regression because it provides a

description of the whole conditional distribution of the response given a set

of covariates. It is easy to see how, looking at the plot in Figure 1.

Quantile regression analysis can help to avoid a too complex model spec-

ification and a set of heavy distributional assumptions which do not hold

in many real situations. Moreover it is easy to incorporate in other frame-

works: Engle and Manganelli (2004) compute a quantile autoregressive

model for Var estimation, giving birth to CAViaR models. Muggeo et al.

(2013) estimate a growth model for height and weight of Posidonia ocean-

ica via non parametric quantile regression. Eilers and De Menezes (2005),

in order to find changes in copy numbers along chromosomes, propose to

shift the problem from L2-norm (based on least squares) to L1-norm (based

on least absolute values); in other words, they move from mean regression

to median regression.

The estimation procedure is done via linear programming. There are some

interesting properties which make QR approach quite attractive. One of

them is robustness. It is known that the mean is very sensible to outliers; in

other words, large (or small) values in the sample affect the estimation of

the mean. That does not happen for quantiles. Anyway, robustness of QR
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Figure 1: Quantile regression fit. It is possible to include a curve for each
quantile function; in practise, it is possible to depict the whole conditional
distribution instead of evaluating only the mean.

approach does not concern only outliers: in fact, it allows the researcher

to get reliable estimates even when some distributional assumptions do

not hold; QR is potentially distribution free. Another important feature

of quantile regression is equivariance (see Koenker and Bassett (1978)).

Equivariance permits to monotonically change the scale of the response or

the parametrization of the model without affecting the results of the esti-

mates. So there is no need to change the modelling approach like in case

of Generalized Linear Model framework: one can just transform the data

without any problem.
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It is worthwhile to state that mean regression can be also used to get an

estimate of the whole conditional distribution and hence the so-called dis-

tributional regression. In fact it is possible to achieve a quantile estimation

from any mean regression model (Kneib (2013) for further information).

Efron (1991) describes the procedure to assign regression percentiles from

a regression model: given a linear regression model, yi = µ(xi) + εi with

i.i.d. errors, εi ∼ N(0, σ2), then

q100α = µ̂(x) + σ̂zτ,

where zτ is the 100τ-th quantile given a probability level τ of the normal dis-

tribution. It is easy to note that the fit will be represented by parallel lines,

usually based on the same functional form, displaced by σ̂zα. That can be

a problem especially when data are characterized by heteroskedasticity; the

simulated example plotted in Figure 2 shows how heteroskedasticity affects

the reliability of the fitted curves. It turns out that a more flexible tool is

needed to handle this kind of data and QR represents a valid alternative.

From parametric to non parametric approach

Many real phenomena result very difficult to model because it is not easy

to find a prior functional form.

An example of importance of good model specification is when logistic

regression is used instead of the linear model for binomial response. The

relationship between response and covariates follows a logistic curve avoid-

ing problems on the scale of the response, on coherence of results and so

on. Unfortunately, it is not always obvious to decide a non linear functional

form to model relationships. A common way to solve this problem is to
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Figure 2: Quantile regression fit from a linear model. The approach pro-
posed by Efron (1991) with heteroskedastic data does not work properly.
Although the relationship is linear in the mean, the estimated quantile
curves are characterized by a clear lack of fit.
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use a non parametric approach. Instead of assuming a specific function,

this flexible approach makes data speak for themselves using automatic

procedures with the advantage of reducing the problem of model predic-

tor specification to the choice of just one or few parameters. Since those

parameters rule the regularity or the smoothness of a curve they are called

smoothing parameters. On the other hand, the non parametric approach

has the disadvantage of losing interpretation of parameters. Many interest-

ing methodologies of non parametric Statistics are included in the books of

Ruppert et al. (2003) and Wood (2006). In this work, P-spline (Eilers and

Marx (1996)) will be the main smoother used to get a non parametric fit of

QR. P-splines are a very flexible tool and very easy to incorporate in QR

framework. P-spline smoother minimizes a “fidelity plus penalty” function.

The penalty is weighted by the smoothing parameter.

The choice of smoothing parameter is crucial: according to this quantity,

one can get a very regular (or smooth) fit or a very rough one. There are

many ways to choice this parameter: first of all, according to the problem

to deal with, the choice can be done just by visualizing data or using more

technical procedures. In the second case, there are many alternatives such

as information criteria (AIC or SIC) or cross validation and several exten-

sions. Most of these methods are based on the specification of a grid of

values. As we will see in the next chapters, these methods could make

troubles especially when many covariates are involved in the analysis. The

main problem is the computational burden derived from those approaches.

In fact, to apply one of the aforementioned criteria, one has to estimate the

model for any value of the grid and select the optimal model according to

the best value of the criterion. An idea to fix this problem is to use an iter-

ative algorithm which does not work on grid of values. This is the seminal
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idea behind our research.

Contribution of the thesis

The main purpose of this thesis is to present an iterative algorithm aimed

to smoothing parameter estimation for P-spline QR. The algorithm is an

extension to QR of the one described by Schall (1991) which relies on the

ratio of variances in the mixed model framework to estimate smoothing

parameter in mean regression. This approach is advantageous respect to

common grid search methods because it avoids the use of grids which can

either lead to computational problems (especially with a large number of

covariates) or to misleading results in case they are not properly set up.

To extend the algorithm, several issues has to be considered: first of all,

until now Schall algorithm was used for L2-norm problems but it is known

that the estimation of QR comes from an L1 problem. Hence, instead of

considering the ratio of variances we use the standard deviation ratio.

Moreover, since the concept of standard deviation is based on the mean,

usually it is not simple to establish a measure of a quantile-based variance.

We propose several solutions mainly based on the use of the Asymmet-

ric Laplace distribution, following the approach used by Geraci and Bottai

(2007).

Finally we propose a new computation of the ED based on an approximated

hat matrix explained in the work of Muggeo et al. (2012). Currently, the

unique method to evaluate the residual ED in QR is based on the number

of non-zero residuals in the model.

The outline of the work is as follows: in the next chapter an overview on

parametric and non parametric quantile regression is presented: due to the
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main purposes of the thesis, the non parametric approach will be dealt with

reporting also some basics about P-splines. The second chapter concerns

smoothing parameter selection: after explaining some grid search methods,

Schall algorithm and our proposal will be discussed. The third chapter will

be entirely focused on results derived from simulation studies with the aim

to analyse the performance of the iterative algorithm as compared to grid-

search criteria.

In the fourth chapter an application of the methodology to real data will be

illustrated. The application regards the comparison between a traditional

and a compost based fertilizer in terms of root length of Sorghum bicolor

Moench x S. sudanense (Piper).

Finally the thesis will end with some conclusions and possible future works.





Chapter 1

Quantile regression model

This chapter is devoted to the introduction to Quantile Regression. It is

divided into two main parts: the first part consists of a presentation of the

parametric approach. In the second part, non parametric approach to QR

will be discussed. To know properly how non parametric QR works, some

considerations on P-splines and smoothing splines will be addressed in the

chapter. Then, shape constraints to get reliable estimated curves will be

described. Finally, some alternatives to QR, namely expectiles modelling

(Waltrup et al., 2014) and LMS method (Cole and Green, 1992) will be

briefly discussed.

1.1 Quantile regression framework

The idea of using quantiles to model relationships was introduced by Koenker

and Bassett (1978). In their seminal work, with the aim of fixing the prob-

lem of robustness of an estimator, the authors propose a minimization prob-

lem to produce the ordinary sample quantiles. In the same work, the authors
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prove the asymptotic properties of the quantile regression estimator, the su-

periority of median regression respect to mean regression over a class of

non-Gaussian distributions and several equivariance properties.

The common definition of quantile is, given a random variable Y with dis-

tribution function F(y) = P(Y ≤ y) and a probability level τ,

qτ = F−1(τ) = inf{y : F(y) ≥ τ)}, 0 ≤ τ ≤ 1.

Starting from an exercise of decision theory in the book of Ferguson (1967),

Koenker and Bassett (1978) define sample quantile as minimizer of the

function

τ
∑
ei≥0

|ei| + (1 − τ)
∑
ei≤0

|ei| =

n∑
i

ei (τ − I(ei ≤ 0)) =
∑

i

ρτ(ei) (1.1)

where ei = yi − qτ and ρτ(·) is called check function. The definition of

the quantile by minimization is attractive because it allows to incorporate a

regression model for qτ. For the sake of simplicity just one covariate x will

be considered. The linear quantile regression model is the combination of

the covariate x and the parameter βτ, namely

qτ(Y |xi) = xT
i βτ, (1.2)

It is important to note that, only the assumption of τ-th quantile equal to

zero is required.

If we have a model of the form
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yi = xT
i βτ + εiτ,

and considering the assumption mentioned above

Fεi(0) = τ ⇒ qτ(Y |xi) = xT
i β,

because

τ = Fεiτ(0) = P(εiτ ≤ 0) = P(xT
i βτ+εi ≤ xT

i βτ) = P(yi ≤ xT
i βτ) = FYi(xT

i βτ).

The objective function (1.1) is based on least absolute deviation or L1-norm

and it is piecewise linear as shown in Figure 1.1. The special case of the

median, i.e. when τ = 0.5, weights positive and negative residuals in the

same way; for a given τ , 0.5 the weight is asymmetrical and changes

along with the probability level: low probability levels correspond to low

weights for positive residuals and high weights for negative ones. Looking

at the picture, there is a sharp point in zero: it means that the right and left

derivatives are different and this makes the ρτ(·) function not differentiable

for residuals equal to zero. Since the contribution to the objective function

is given by a sum of many check functions, the objective is not differen-

tiable as well. Therefore, standard methods usually based on least squares

algorithms do not work. That is why, to minimize such kind of objective

function, algorithm based on linear programming are required.

Afterwards, many works to improve the algorithm estimation initially based

on simplex methods (Koenker and d’Orey, 1987) have been published. One

of the most important, by Portnoy et al. (1997), describe a modification of
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Figure 1.1: Plot of the check function ρτ(·) for τ = {0.25, 0.5, 0.75, 0.9}. As
probability levels increase, weights to positive residuals increase. For the
median, the weight for positive and negative residuals is the same therefore
the function is symmetrical.

the Frisch-Newton algorithm to estimate QR which results advantageous

for large problems (i.e many observations). All these algorithms are in-

cluded in the R package quantreg (Koenker, 2013).

1.2 Non parametric quantile regression

As already sketched in the Introduction, it is possible to estimate the whole

distribution via QR. Just like in case of mean regression a linear speci-

fication of the (1.2) could be not enough to describe properly the rela-

tionship. Several non-parametric approaches were developed to fix this

issue, for instance Chaudhuri (1991) finds a method to estimate QR us-

ing local polynomial regression approach. However, kernel approaches

are known being computationally heavy and having boundary problems.

Koenker et al. (1994) use quantile smoothing splines with a total variation
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penalty term to get a flexible estimation of the model and imposing some

inequality constraints (Koenker, 2005) to guarantee particular features of

the estimated curves such as monotonicity or convexity. The total varia-

tion penalty depends on the difference of the absolute values of the first

derivative of adjacent coefficients of the splines. A similar penalization

method is provided by Ng and Maechler (2007) to implement the so-called

constrained B-splines (COBS). Yet another approach, the one used in this

thesis, consists of the implementation of QR model via P-spline (Bollaerts

et al., 2006). A big advantage of non parametric techniques is that they

can be easily included in other frameworks: for instance Andriyana et al.

(2014) implement a varying coefficient QR model via P-spline.

With a non parametric approach, the expression of the linear term to model

quantile function in (1.2) is replaced with

qτ(Y |xi) = s(xi), (1.3)

where s(·) is an unknown and possibly non linear function. For simplic-

ity, only one non linear covariate is considered in the model but it can be

possible to include a semiparametric specification. Most of the differences

among the aforementioned approaches concern just the methods to obtain

a smooth estimation of the function s(·).

1.2.1 Quantile smoothing splines

One of the most known non parametric approach for QR is given by Koenker

et al. (1994). In their work, they describe a method to include smooth-

ing spline in a QR framework. A spline is defined as follows (Green

and Silverman, 1993): given n points x1 < x2 < · · · < xn in an inter-
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val (a, b), a q-degree spline is a function s characterized by a q-degree

function for each interval (a, x1), (x1, x2), . . . , (xn, b) such that s,s′ and s′′

are continuous. Because of optimality conditions natural cubic splines

are often used. The main characteristic of natural cubic splines is that

s′′(a) = s′′(b) = s′′′(a) = s′′′(b) = 0. It is always possible to interpo-

late a given set of values by natural cubic splines. This property helps to

extend the approach in mean regression framework: to limit the fact that

the estimated curves perfectly interpolate the points giving too rough esti-

mates, a penalized least squares approach can be used. The penalty term

is given by the integral of the squared second derivative of the fitted func-

tion. The idea is that a very smooth curve has a very low
∫

[s′′(x)]2 dx. The

term is quadratic to consider in the penalty also the part of the curve where

s′′(x) < 0.

In QR framework, a smoothing spline model aims to minimize the follow-

ing objective function

S =

n∑
i=1

ρτ

(
yi − s(xi)

)
+ λ

∫ [
s′′(x)

]2 dx. (1.4)

The amount of penalty is ruled by the smoothing parameter λ, with λ ∈

[0,+∞). The most important features of this quantity will be described in

the next section of the chapter. An alternative way to express the penalty is

based on the use of the so-called total variation penalty. The total variation

function V of a generic function s is defined as

V(s) = sup
n∑

i=1

|s(xi+1) − s(xi)|.
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When s is absolutely continuous then

V(s) =

∫
|s′(x)|dx.

Applying this function to the first derivative of the s(·),

V(s′) = sup
n∑

i=1

|s′(xi+1) − s′(xi)|,

and for absolutely continuous s′ it turns out

V(s′) =

∫
|s′′(x)|. (1.5)

Therefore the objective function is

S =

n∑
i=1

ρτ

(
yi − s(xi)

)
+ λV(s′(xi)). (1.6)

The function s(·) which minimizes (1.6) has a piecewise linear form with

knots corresponding to the observations (x1, x2, . . . , xn) . This means that

ŝ(x) = αi + βi(x − xi) for x ∈ [xi, xi+1) and i = 0, . . . , n. This implies

βi =
s(xi+1) − s(xi)

xi+1 − xi

=
αi+1 − αi

hi
,

where hi = xi+1 − xi. So the penalty can be expressed as
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V(s′) =

n−1∑
i

|βi+1 − βi|

=

n−1∑
i

|(αi+2 − αi+1)/hi+1 − (αi+1 − αi)/hi|

and the objective to minimise becomes

S =

n∑
i=1

ρτ

(
yi − αi

)
+ λ

n−1∑
i

|dT
j α|, (1.7)

where dT
j = (0, . . . , 0, h−1

j ,−(h−1
j+1−h−1

j ), h−1
j+1, 0 . . . , 0) and α = (α1, α2, . . . , αn).

Thus, according to (1.7) the model matrix of QR smoothing spline problem

can be expressed as a set of dummy variables.

1.2.2 P-spline quantile regression

Smoothing splines are a good tool to estimate but they are quite inefficient

for at least two reasons: first of all, with smoothing splines there is one

knot for each observed xi; in other words, the model matrix has a col-

umn for each unit in the sample. It means that the number of evaluated

splines increases linearly with n. Nowadays most statistical application are

based on big data so the computational burden of this tool can be excessive.

Secondly, quantile smoothing splines results in a piecewise linear function.

Unless there is a good theoretical reason to consider this pattern of data (for

instance, see Eilers and De Menezes (2005)), this approach is not generally

advisable.

An alternative idea is to consider a B-spline approach. Basically, the method

consists of changing the basis of the space spanned by the model matrix
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with q-degree overlapping spline basis. This basis results in a low rank

matrix so that the number of columns will be smaller than the number of

observations.

For instance, let consider a mean regression model of the form

yi = β0 + β1xi + β2x2
i + β3x3

i + εi

Thus X = [1 x x2 x3] is a canonical basis for the vector space for all

3-rd degree polynomials in x. A linear combination of the basis with the

parameters provides the fit. Instead of considering the X matrix, one can

include a spline basis matrix B for m+1 knots. The plot in Figure 1.2 shows

the basis for the linear model and some B-spline bases.

The number of B-splines used in the model is usually J = m + q where

m is the number of intervals of the domain split by knots and q is the de-

gree of the polynomials. It is clear that the degree q of the spline does not

affect too much the number of columns of B: a common optimality crite-

rion is to choose 3-rd degree B-splines. A more important problem is to

determine number and position of knots: as the B-spline is more flexible

(i.e. many knots) to fit the data, the bias generally decreases, while the

variance increases. So when the flexibility level is too high there is the

risk to have meaningless and too wiggly estimated curves, a phenomenon

called undersmoothing. There is a large amount of publications to find a

procedure aimed to get an optimal number and position of knots, see for in-

stance the work of Friedman and Silverman (1989). However it looks sim-

pler to choose a high number of equally spaced knots (a common choice is

min(40, n/4)) and again penalize the integral of the second derivative of the

fitted curve to avoid undersmoothing. Eilers and Marx (1996) replaced the

penalty term with the sum of squares of the d-order differences among the
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Figure 1.2: Plot of the basis for 4 given models. In the top left, basis
for a cubic parametric model. Elsewhere, spline basis with degree q =

{1(topright), 2(bottomle f t), 3(bottomright)}. The number of columns for
spline regression is J = m + q, where m is the number of intervals and q the
degree of the spline basis. In this example, m = 7.
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adjacent coefficients of the B-splines. This quantity is expressed via proper

difference matrix Dd.

Then, in mean regression framework the objective function is L2 norm and

the penalty is usually L2 norm.

µi = B1(xi)a1 + B2(xi)a2 + · · · + BJ(xi)aJ = B(xi)a (1.8)

where µi = E[y|xi], B j(xi) is the j − th spline basis and a j is the j − th

coefficient.

The objective function is

S 2 =

n∑
i=1

(yi − µi(a))2 + λ

J−d∑
j=1

(Dda)2
j , 0 ≤ λ ≤ +∞ (1.9)

The estimation of the vector of coefficients â can be computed via stan-

dard least squares method. It is important to underline that the estimated

coefficients have no statistical meaning: they just scale the basis.

In QR context, according to the model in equation (1.3) and using a P-spline

approach, we have

qτ(Y |xi) = s(xi) = B1(xi)a1 + B2(xi)a2 + · · · + BJ(xi)aJ = Ba. (1.10)

Of course the objective function is different respect to mean regression

framework because is based on the L1-norm for the fidelity term. The ob-

jective function could be
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S 1 =

n∑
i=1

ρτ

(
yi − s(xi)

)
+ λ

J−d∑
j=1

(Dda)2
j . (1.11)

This formulation of the objective function has a L1 norm fidelity term and

a L2 norm penalty term. Many authors tried to solve the quadratic pro-

gramming problem in (1.11); for instance Pratesi et al. (2009), use a non

parametric M-quantile approach and Nychka et al. (1995) provide an appli-

cation in quality air analysis: these works are based on penalised iterative

reweighted least squares (PIRLS) technique.

However, Koenker et al. (1994) stated that the resulting quadratic program

poses serious computational obstacles. This situation leads to consider a

quite natural solution: use a L1 norm penalty which is based on the absolute

differences between the adjacent coefficients, therefore

S 1 =

n∑
i=1

ρτ

(
yi − s(xi)

)
+ λ

J−d∑
j=1

|Dda| j. (1.12)

The order of the differences d does not affect the estimated curve for L2

norm problems as illustrated in Figure 1.3.

On the other hand, the L1-norm estimations are piecewise d − 1 order poly-

nomials, so the order of the differences is not a negligible quantity. The

plot in Figure 1.4 describes this situation: it is clear that d ≥ 3 provides a

rather smooth fit; for d = 1 a step function and for d = 2 a piecewise linear

function are achieved. A plausible idea is to choose d ≥ 3 unless particular

reasons to use piecewise linear or step function (see Eilers and De Menezes

(2005) for an example of piecewise constant QR).

The smoothing parameter λ is fundamental to determine the amount of

smoothing provided in the estimation procedure. When λ is large, even
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Figure 1.3: P-spline mean regression varying degree of differences of the
penalty term. The pattern of estimated curves seems to be not sensible
to changes in the order of differences, d. For graphical reasons, the fitted
curves are shifted each other by 0.15.

small changes in adjacent coefficients are amplified; this fact determines

a strong penalty on the second derivative of the estimated function which

constrained the curve to be smooth.

As λ → ∞ the fitted curve tends to a d − 1 polynomial. On the other

hand, when λ is small the differences among the coefficients are considered

negligible; in P-spline QR this means to have a piecewise d − 1 order poly-

nomials as fitted curve. In the limit case of λ = 0 the fit will correspond to

a B-spline QR. Figure 1.5 illustrates what happens varying the smoothing
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Figure 1.4: P-spline median regression varying degree of differences of
the penalty term. Because of the L1-norm fidelity plus L1-norm penalty
objective function, the fit is always piecewise and the polynomials change
according to d.

parameter. In the simulated example, data present a clear heteroskedastic

pattern despite of a constant relationship between the response and the co-

variate. The order of the differences is 3: the B-spline fit (i.e with λ = 0)

shows a very wiggly pattern but as λ increases, the estimated curves tend

gradually to be quadratic polynomials.
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Figure 1.5: P-spline quantile regression varying the smoothing parameter
λ. The data were generated using yi = 0.5+g(x)εi, g(x) = x+sin(1.5πx−.5).
The asymptotic property λ→ ∞⇒ q̂τ → Pd−1(x) is shown.

1.3 Some alternatives to non-parametric QR

Expectiles

Expectile smoothing is one alternative to quantile regression. The advan-

tage of using expectiles relies on the estimation method which allows to

avoid linear programming. The first work on this topic dates back to Newey

and Powell (1987) and deals with the asymmetric least squares estimation

problem; other more recent papers on the topic are provided by Waltrup

et al. (2014) and Sobotka et al. (2011). As already seen, quantiles are de-
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fined by minimization of the (1.1) which can be expressed as

n∑
i

wi(τ)|yi − qτ,i|,

where wi is τ for positive residuals and 1 − τ for negative ones. It is easy

to note that quantile regression solves a weighted least absolute problem.

Instead of minimizing absolute values expectiles solve a weighted least

squares problem. The definition of expectile relies on least asymmetrically

weighted squares, namely

arg min
µτ,i

n∑
i

wi(τ)
(
yi − µτ,i

)2 (1.13)

It is worthwhile to underline that expectiles are averages; the probability

levels τ is called asymmetry. Since the estimation of the expectiles is based

on the L2-norm, µ̂τ,i is more efficient than q̂τ,i. Moreover, Jones (1994)

shows that expectiles and M-quantiles are quantiles for a quite particular

transformation of data. On the other hand, expectiles are not easy to inter-

pret: in regression analysis, it can be seen that the expectile µτ,i determines

at X = x the point such that 100τ% of the mean distance between it and

Y comes from the mass below it. This interpretation is due to Yee (2004)

and does not have the same intuitive meaning of quantiles. Furthermore,

expectiles result too sensible to outliers because they are averages; hence,

they do not work as quantiles but they can be considered an efficient tool to

approximate them.

If one aims to estimate an expectile smoothing model via P-spline, namely

µτ = sτ(x) = Ba, (1.14)



1.3 Some alternatives to non-parametric QR 27

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0 1.2

6
7

8
9

10
11

12
13

x

y
0.1
0.25
0.5
0.75
0.9

Figure 1.6: Expectile smoothing with asymmetry τ =

{0.1, 0.25, 0.5, 0.75, 0.9}. Implementation via R package expectreg
(Sobotka et al., 2011)

the estimation of coefficients is of the form

â =
(
BT WB + λP

)−1
BT Wy,

where W is a diagonal matrix with asymmetrical weights wi. The estima-

tion procedure consists of iterating two steps: in the first one, estimation of

coefficients given an initial matrix W̃ is computed; after that, one can calcu-

late W̃ according to the signs of the residuals. The plot in Figure 1.6 shows

an expectile smoothing via P-splines for a sinusoidal signal plus a gaussian

error. See Sobotka and Kneib (2012) for an application of the method and

further details.
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LMS

Another way to get quantile estimates is given in Cole and Green (1992).

The technique consists of estimating quantiles using the Box-Cox λ-Power

transformation. Hence, assuming that response variable y has mean µ, and

that yλ is normally distributed, Box-Cox Power transformation is

z∗ =


(y/µ)λ−1

λ λ , 0

loge(y/µ) λ = 0
(1.15)

With this transformation z∗ ∼ N(0, σ). Dividing z∗ by its standard deviation

σ, z = z∗/σ, on can get z ∼ N(0, 1):

z =


(y/µ)λ−1

λσ λ , 0
loge(y/µ)

σ λ = 0.
(1.16)

The three parameters in (1.16), µ, λ and σ are supposed to vary smoothly

according to a covariate x and so

µ = M(x), λ = L(x), σ = S (x).

Replacing the smooth functions in (1.16) and writing y as function of the

covariate one can get the estimation of the quantile qτ(Y |x) as

qτ(x) =


M(x)(1 + L(x)S (x)zτ)1/L(x) L(t) , 0

M(x) exp[S (x)zτ] L(t) = 0
(1.17)

The estimation of each smooth functions is achieved via penalized maxi-

mum likelihood, one can use either smoothing or P-spline (see plot in Fig-

ure 1.7 with P-spline as smoother). For this plot we used L(t) = S (t) = k
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Figure 1.7: LMS fitting via GAMLSS function, for probability levels τ =

{0.1, 0.25, 0.5, 0.75, 0.9}

because a vector of i.i.d. gaussian errors was generated.

An implementation of the LMS method is provided within R package GAMLSS

(Stasinopoulos and Rigby, 2007). GAMLSS allow to assume several dis-

tributions for the data in quantile modelling. For instance, in addition to

Box-Cox Normal distribution, Box-Cox tν distribution or power exponen-

tial distribution can be used. A good advantage of using LMS methods is

that the estimated quantile curves cannot cross each other. Furthermore, the

results are easier to interpret than expectiles.

On the other hand, LMS models are based on the assumption of normal-

ity of (transformed) data which has to be checked while for QR it is not

required.





Chapter 2

Smoothing parameter
selection

This chapter includes the main contribution of the thesis. Smoothing pa-

rameter selection is a crucial point in any non parametric technique and

setting up a “good” criterion is important for this purpose. A good method

for smoothing parameter selection allows for a reliable fit of data and saves

computational time. In non parametric QR framework, many approaches

can be followed: Koenker et al. (1994) use a slightly modified version of

the Schwarz Information Criterion (SIC); Oh et al. (2004) propose the so-

called Robust Cross Validation (RCV) and Nychka et al. (1995) provide an

approximation of this version (ACV) to reduce the computational burden.

Then a generalized approach to ACV is given by Yuan (2006). Andriyana

et al. (2014) select the smoothing parameter via L-curve (Frasso and Eilers,

2015), a function representing the trade-off between fidelity and penalty.

Yet another interesting approach, given by Reiss and Huang (2012), pro-

vides a likelihood-based selection according to the link between penalized
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and mixed models. However, all these criteria are based on grid search and

so one has to compute the model for each value of the grid and then choos-

ing the smoothing parameter, requiring an high number of computations to

carry out. Further computational problems may arise when many covariates

are involved in the analysis: the higher number of variables involved, the

higher number of dimensions of the grid. At this aim, an iterative algorithm

based on a mixed model approach due to Schall (1991) is presented. The al-

gorithm is modified to allow for the estimation of smoothing parameter in a

P-spline QR model. Schall algorithm is used to estimate mixed models (i.e

in the context of L2-norm problems) but we extend it to P-spline QR frame-

work. The extension to the QR has never been discussed and guarantees a

good fit of data without spending too much computational time.

This chapter is divided into two main parts: the first one concerns the de-

scription of the aforementioned grid search methods. Then, Schall algo-

rithm for L2-norm problems and its extension to P-spline QR model are

introduced; in this section, the issues concerning the implementation of the

algorithm and some theoretical aspects are also described. Furthermore, a

method to determine the effective dimension of the model is provided.

2.1 Methods for smoothing parameter selection

2.1.1 The Schwarz information criterion

In the approach used by Koenker et al. (1994), Schwarz information cri-

terion is proposed to find the optimal amount of penalty for a quantile

smoothing spline model.
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S ICλ = log

n−1
n∑
i

ρτ{yi − ŝ(xi)} + 0.5n−1EDλ log(n)

 (2.1)

The optimal model will be the one with the lowest S IC. The formula of

the criterion is slightly different from models based on L2 norm. Since QR

approach is distribution free, the check function replaces the common least

squares objective of the model. Another relevant quantity is the measure

of the effective dimension of the model EDλ. The authors stated that in

a quantile smoothing spline with objective function (1.6), the EDλ can be

considered as the number of points interpolated by the fitted curve: in other

words, EDλ is the number of zero residuals in the model.

2.1.2 Cross validation-based methods

Cross validation (CV) methods are based on the estimation of a model using

a subset of the observations. A very popular technique for L2-norm smooth-

ing is the leave-one-out CV, namely CVλ = n−1 ∑n
i
[
yi − ŝ−i(xi, λ)

]2 , where

ŝ−i(xi, λ) is the estimation of the smooth function omitting the i-th point.

Given a grid of λs, the optimal smoothing parameter is the one which min-

imize CV. CV is mainly used for L2-norm problems; for L1-norm smooth-

ing, Oh et al. (2004) propose to use a robust version based on the check

function.

RCVλ = n−1
n∑
i

ρτ

(
yi − ŝ−i(xi, λ)

)
. (2.2)

It is well-known that the computational load of the leave-one-out CV is

very high. Basically, given a fixed smoothing parameter, one should esti-

mate n different versions of ŝ−i(xi, λ). The number of computation increases
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dramatically along with the number of values included in the grid. This

shortcoming can be reduced using the so-called Approximate CV (ACV)

proposed by Nychka et al. (1995):

ACVλ = n−1
n∑
i

ρτ

(yi − ŝ(xi, λ)
1 − hii

)
, (2.3)

where hii = δŝ(xi, λ)/δyi.

ACV allows to avoid the estimation of the ŝ−i(xi, λ), reducing computa-

tional time: one has to compute one model (instead of n models) for each

value of the grid. However, Yuan (2006) shows in his simulation that ACV

does not perform well; so he suggested to compute the Generalized Ap-

proximate CV, GACV. Cross-validation was thought as the minimizer of

the mean square error MS Eλ,

MS Eλ = n−1
n∑
i

(
s(xi, λ) − ŝ−i(xi, λ)

)2
.

However, in QR framework it is possible to use a different function to min-

imize, the Generalized Comparable Kullback-Leibler distance which de-

pends on the check function,

GCKLλ = n−1
n∑
i

EZ
[
ρτ(yi − ŝ(xi, λ))

]
,

where z1, z2, . . . , zn is a sample such that the conditional distribution of

z|X = xi is the same of y|X = xi. According to the author ACV is not a

reliable estimate of GCKL. As an alternative he proposes

GACVλ = n−1
n∑
i

ρτ

(yi − ŝ(xi, λ)
1 − tr(H)

)
(2.4)
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where tr(H) is the trace of the hat matrix, tr(H) =
∑n

i hii.

2.1.3 L-curve

Another approach used by Andriyana et al. (2014) in P-spline with vary-

ing coefficient QR framework is based on the L-curve (Hansen, 1992). The

smoothing parameter selection via L-curve for mean regression is com-

puted as follows: given a grid of λs and the objective function in (1.9), the

L-curve can be obtained plotting the fidelity term, Fidλ =
∑n

i=1 (yi − µ̂i)2

against the penalty term Penλ =
J−d∑
j=1

(Dda)2
j . As pictured in Figure 2.1 the

optimal λ corresponds to the corner of the L-curve. This point has the min-

imum distance from the origin. Therefore one can search for the optimal λ

using this approach.

The L-curve is a worthwhile method often used in Econometrics because it

is robust in case of autocorrelation of the errors (Frasso and Eilers, 2015).

In P-spline QR framework, the computation of fidelity and penalty term is

achieved via L1-norm, according to the equation (1.12). Instead of com-

puting directly the L-curve, the authors re-scale the fidelity and the penalty

term. Then they select the optimal point using the minimum euclidean dis-

tance from the origin ; therefore the best λ will minimize

d(λ) =

√
z2

Fid(λ) + z2
Pen(λ)

where the scale fidelity and penalty are

zFid(λ) =
Fid(λ) −min Fid(λ)

max Fid(λ) −min Fid(λ)
, zPen(λ) =

Pen(λ) −min Pen(λ)
max Pen(λ) −min Pen(λ)
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Figure 2.1: Plot of L-curve for simulated data. An optimal λ corresponds
to the corner of the L-curve (left). The right panel shows a smooth fit.

2.1.4 Maximum likelihood from a mixed model

This method suggested by Reiss and Huang (2012), relies on the link be-

tween penalized and mixed model for P-spline QR with L2-norm penalty

(see Lee et al. (2006)). In other words, it is possible to re-parametrize a

mixed model as function of λ. According to this link and referring to equa-

tion (1.10),

qτ(Y) = Ba = B
(

Q1 Q2

) (
QT

1 QT
2

)T
a = Xβ + Zu (2.5)

where X is a matrix of covariates with fixed effects β, Z is a matrix of

covariates with random effects u ∼ N(0, ψ); Q1 and Q2 are two matrices

K × d and K × K − d (i.e. the number of penalized coefficients) such that

X = BQ1, β = QT
1 a, Z = BQ2 and u = QT

2 a. Using this re-parametrization,
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the L2 penalty can be written as

aT Pa = uT QT
2 PQ2u

The authors provide a mixed model representation of the (1.11) assuming

a Laplace distribution for the error term and a normal distribution for the

random effect term, namely yi|u ∼ AL(xT
i β + zT

i u, σ, τ) for i = 1, . . . , n

where n is the number of subjects and u ∼ N(0, (σ/2λ)QT
2 P+Q2), with P+

an generalized inverse of P. Standard theory about mixed models considers

the joint distribution as f (yi, u) = f (yi|u) f (u) and the maximization of the

profile likelihood to get parameter estimates. The joint likelihood is

L(β, σ, λ) =

[
τ(1 − τ)

σ

]n |(2λ/σ)QT
2 PQ2|

1/2

2π(K−d)/2 ×

exp
[
−

1
σ

{ n∑
i

ρτ(yi − bT
i a) + λaT Pa

}]
The profile likelihood is not easy to compute because there is no closed

form solution to get β̂ = arg max L(β, σ, λ). So the authors use the para-

metric quantile regression estimate, β̃ = arg min
∑n

i ρτ(yi − xT
i β). The ap-

proximated profile likelihood is then L̂p(σ, λ) = L(β̃, σ, λ). Also L̂p(σ, λ)

is not easy to compute because the integral to solve is intractable. To fix

this issue, a simulated maximum likelihood is computed via Monte Carlo

approximation. It is possible to estimate the nuisance parameter σ̂ via nu-

merical optimization. Finally, the λ selection can be done choosing the

value of the grid which maximize the likelihood calculated in the points β̃τ
and σ̂.
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2.2 Our proposal: Schall algorithm

All the aforementioned methods are far from being efficient because they

rely on criteria working on a pre-specified grid of smoothing parameters. In

practise, one has to estimate the model for any value of the grid and select

the final model according to the best value of the criterion. This means that

there is the risk to choose a bad optimal value when the grid is not appro-

priate. For instance, if the grid is too sparse then there could be values out

of the grid with a better performance than the values inside the grid. Fur-

thermore, the computational burden becomes particularly expensive when

the regression equation involves multiple additive components leading to a

multidimensional grid of smoothing parameters. To overcome this short-

coming, the key idea is to use an iterative algorithm based Schall (1991).

The estimation of variance components via Schall algorithm was used for

smoothing parameter selection by Schnabel and Eilers (2009) within expec-

tile smoothing framework and by Rodrı́guez-Álvarez et al. (2014) to get a

smoothing parameter estimation in case of anisotropic penalty. It was never

applied in QR framework.

In the next subsections, the application of the Schall algorithm for a L2-

norm smoothing problem is described; that is useful to show the differences

respect to our algorithm for a P-spline QR model (based on L11 norm)

which will be discussed afterwards.

Schall algorithm in L2 norm smoothing

Consider a random effect model of the form

y = Xβ + Zu + ε (2.6)
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where ε ∼ N(0,Σ) and u ∼ N(0,Ω), X and Z are m × p and m × q for fixed

and random part of the model, m is the total number of observations and n

is the number of subjects.

• cov(ε) = Σ = σ2
ε In

• cov(u) = Ω = ψ2Iq

• cov(y) = Σ + ZΩZT .

Schall algorithm in mixed models consists of iteratively computing the er-

ror variance σ2
ε , the random effect variance ψ2. Taking advantage of the

link between penalized and mixed models, we can get Ba = Xβ + Zu with

Z such that u = Da (D is the difference matrix). The smoothing parameter

can be expressed as the ratio of the estimated variances

λ̂ =
σ̂2
ε

ψ̂2
=

||y−Ba||2

m−ED
||Da||2

ED

so one can iterate the computation of variances and λ until convergence.

2.2.1 Schall algorithm in P-spline QR

The procedure to select the smoothing parameter can be extended to QR

framework. The algorithm is set up as follows:

1. Fix a (small) starting value for the smoothing parameter λ(0);

2. Fit the model minimising the objective

n∑
i=1

ρτ

(
yi − s(xi)

)
+ λ

J−d∑
j=1

|Dda| j;
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3. Compute the variances:

σ̂2
ε , and σ̂2

b

4. λ̂ = σ̂ε/σ̂b;

5. Set λ̂→ λ(0) and repeat steps 2. to 4. till convergence.

The algorithm presents some differences respect to the one used in L2 norm

smoothing. There are at least two issues to discuss: first, the estimation

of variances has to be changed. Variance is a concept commonly based on

mean and it is not simple to establish a measure of a quantile-based vari-

ance, especially when τ is close to 0 or 1. Second: unlike mixed models

wherein an error belonging to the exponential class and Gaussian random

effects is assumed, in QR framework the approach is distribution-free. This

implies the need to choose a reliable distribution either for error and ran-

dom effect to estimate the variance components. Furthermore, while the

link between penalized and mixed models was proved for mean regression,

there is no formal proof in QR framework. Since the approach is mainly

empirical, this topic is not discussed in this thesis and represents a future

challenging work.

A reasonable approach to fix the first issue is to include in the algorithm the

ratio of standard deviations instead of variances which seems to be more

sounded for L1 framework. Moreover, the effective dimension of the model

ED is computed via the trace of the hat matrix derived from a paramet-

ric smooth approximation of the objective (1.12). This procedure allows

to partition the total model ED among the specified multiple smooth terms

and then to evaluate the complexity of each variable in the model. Thus the

term-specific variances and smoothing parameters can be obtained accord-

ing to the ratios of step 3 and step 4 respectively. This makes the algorithm
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very attractive in the multidimensional case where the multidimensional

grid search gets substantially unfeasible.

The issue concerning the choice of the distribution for the error and the

random effects and the estimation of the corresponding standard deviations

is discussed in the next section.

2.2.2 Estimation of variance components

Error variance

Several methods can be followed to estimate standard deviations. From an

empirical point of view, it is possible to estimate the error variance accord-

ing to the asymmetrically weighted squared residuals (Schnabel and Eilers,

2009),

σ̂2
ε =

(y − q̂τ)T W(y − q̂τ)
m − ED

.

A second alternative to estimate σε relies on the use of the check function,

namely

σ̂ε =

∑n
i ρτ(yi − q̂τ,i)

m − ED
(2.7)

However, other approaches can be adopted. One of them relies on the

Asymmetric Laplace (ALD) which is a known distribution to model quan-

tiles, see Geraci and Bottai (2007) and Geraci and Bottai (2014) for further

details. ALD can be described as a three-parameter (µ, σ, τ) distribution

(Yu and Zhang, 2005) of the form

f (y|µ, σ, τ) =
τ(1 − τ)

σ
exp

[
−ρτ

(y − µ
σ

)]
(2.8)
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where 0 < τ < 1, σ > 0 is a scale parameter and −∞ < µ < +∞ is a loca-

tion parameter. For τ = 0.5 one can get the symmetric Laplace or double

exponential distribution. It is worthwhile to underline that many authors

(Koltz et al., 2001; Inusah and Kozubowski, 2006) present the symmetric

Laplace distribution as

f (x|µ, φ) =
1

2φ
exp

[
−
|x − µ|
φ

]
. (2.9)

In our context the symmetric Laplace has a different parametrization of the

scale parameter, namely φ = 2σ.
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Figure 2.2: Density of Asymmetric Laplace distribution. it is possible to
see how the density varies according to different τs (left panel) andσs (right
panel, τ = 0.75).

Looking at the plot in figure (2.2), it is easy to note that the distribution is

not differentiable in the expected value (in this example µ = 0). The scale

parameter affects the variability of the variable: an increase of σ leads to

an increase of V[y].
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In QR context, it is possible to consider τ as the probability level and µ as

the quantile of the conditional distribution and the expression in (2.10) as

estimation of the error variance. According to (2.8), it is possible to see that

the variance of the response is

V[y] =
σ̂2(1 − 2τ + 2τ2)

(1 − τ)2τ2 , (2.10)

and that a ML estimation of the scale parameter is given by

σ̂ = n−1
n∑
i

ρτ(yi − µτ,i).

Random effect variance: Laplace distribution

The argument of the exponential in (2.8) remind us the normal distribution

but with an L1 norm objective: it seems that the Laplace distribution plays

for L1 norm problems a similar role of the normal distribution for L2 norm

problems. This fact probably leads Geraci and Bottai (2007) to propose

an estimation of the random effects variance using the symmetric Laplace

distribution, ui ∼ ALD(µi = 0, ψ, τ = 0.5). The join density of (yi, ui) is

given by the product of the density for the i-th subject conditional on the

random intercept ui and the density of the random effects, namely

f (yi, ui) = f (ui|ψ)
qi∏
j

f (yi j|ui, σε)

=

{
τ(1 − τ)
σε

}mi 1
4ψ

exp
[
−

mi∑
j=1

{
ρτ

(yi j − qτ,i j

σε

)}
−

1
2ψ
|ui|

]
(2.11)

Setting τ = 0.5 and λ =
σε
ψ , the above expression becomes
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f (yi, ui) =
1

(4ψ)mi+1λmi
exp

[
−

1
2σε

{ mi∑
j

(|yi j − µi j|) + λ|ui|

}]
.

The argument of the exponential has a similar form as the penalized quan-

tile regression used by Koenker (2004). Therefore the joint distribution

seems to be quite related to a penalized model.

The log-likelihood for the i-th subject related to (2.11) can be expressed as

li(σε ; µi j, ψ, τ) ∝ −mi logσε − logψ −
mi∑
j=1

{
ρτ

(yi j − qτ,i j

σε

)}
−

1
2ψ
|ui|

and the partial derivative respect to σε is

∂li(σε ; µi j, τ)
∂σε

= −
mi

σε
+

1
σ2
ε

mi∑
j=1

{
ρτ

(
yi j − qi j

) }

then

σ̂ε =

∑n
i
∑mi

j ρτ
(
yi j − q̂i j

)
∑n

i mi
. (2.12)

For the random effect variance ψ,

∂li(ψ; ui)
∂ψ

= −
1

2ψ
−
|ui|

2ψ

then

ψ̂ =

∑n
i |ûi|

n
(2.13)
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and

λ̂ =
σ̂ε

ψ̂
=

∑n
i
∑mi

j ρτ(yi j−q̂i j)∑n
i mi∑n
i |ûi |

n

. (2.14)

Therefore, assuming that the distribution of the error is Asymmetric Laplace

and the random effects distribution is symmetric Laplace, the smoothing

parameter computed in the algorithm is approximately a Maximum Likeli-

hood Estimator.

In ML framework, the dimension of a model is roughly determined by the

number of the observations; hence the denominator of the error variance

will be the total number of observations m =
∑n

i mi and the denominator

of the random effects will be the number of subjects n. It is known that

ML variance estimations are biased because they ignore the complexity of

a model. An intuitive way to fix this problem is to compute the Restricted

ML estimates (REML) depending on the ED of the model. This means to

replace the denominators of (2.12) and (2.13) with respectively, n− ED for

the error variance and ED for the random effect variance.

Random effect variance: normal distribution

Geraci and Bottai (2007) have also introduced a linear quantile mixed model

with ALD error and normal random effects.

Assuming that the random effects are independent and identically normally

distributed ui ∼ N(0, ψ2), the joint density for (yi, ui) for the i-th subject is



46 Smoothing parameter selection

f (yi, ui) = f (ui|ψ
2)

qi∏
j

f (yi j|ui, σε)

=

{
τ(1 − τ)
σε

}mi 1√
2πψ2

exp
[
−

mi∑
j=1

{
ρτ

(yi j − qτ,i j

σε

)}
−

1
2ψ2 u2

i

]
(2.15)

Now, setting τ = 0.5 and λ =
σε
ψ2 , the density becomes

(
τ(1 − τ)
λψ2

) 1√
2πψ2

exp
[
−

1
σε

{ mi∑
j

|yi j − µi j| −
λ

2
u2

i

}]
The argument of the exponential has a form similar to the objective func-

tion of a QR model with a L2-norm penalty, which is out of our framework.

It is also worthwhile to note that in this situation λ does not represent a

pure number because the numerator and the denominator belong to differ-

ent scales (numerator in linear scale, denominator in quadratic scale). The

individual contributes to the part of log-likelihood related to (2.15) which

depends on σε and ψ2 are

li(σε ; µi j, τ) ∝ −mi logσε −
1
2

logψ2 −

mi∑
j=1

{
ρτ

(yi j − qτ,i j

σε

)}
−

1
2ψ2 u2

i

and the correspondent partial derivatives are

∂li(σε ; µi j, τ)
∂σε

= −
mi

σε
+

1
σ2
ε

mi∑
j=1

{
ρτ

(
yi j − qi j

) }
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then

σ̂ε =

∑n
i
∑mi

j ρτ
(
yi j − q̂i j

)
∑n

i mi
. (2.16)

The partial derivative for ψ2 is

∂li(ψ2; ui)
∂(ψ2)

= −
1

2ψ2 +
u2

i

2(ψ2)2

then

ψ̂2 =

∑n
i û2

i

n
(2.17)

Therefore, the estimation of the smoothing parameter is of the form

λ̂ =
σ̂ε

ψ̂2
=

∑n
i
∑mi

j ρτ(yi j−q̂i j)∑n
i mi∑n
i u2

i
n

. (2.18)

Approximation of the ED

The evaluation of ED is commonly based on the number of zero residuals.

Here a new alternative based on an approximation of the hat matrix for a

quantile regression model is presented. To achieve an estimate of the ED,

the computation of the hat matrix is fundamental: a shortcoming is that

for L1 norm problems it is not possible to get it. A nice approach to fix

this issue consists of estimating a quantile regression model using iterative

weighted least squares (IWLS) which is based on the L2 norm so that it is

quite easy to obtain the hat matrix.

The approximation is described in the work of Muggeo et al. (2012) and it
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is valid either for parametric and non-parametric quantile regression mod-

els. The idea is to smooth the objective function (1.1) using a parametric

approximation.

Instead of use the objective in (1.1) one can use the following function:



(τ − 1)ei ei ≤ −cτ
(1−τ)e2

i
2cτ +

cτ(1−τ)
2 −cτ < ei ≤ 0

τe2
i

2c(1−τ) +
cτ(1−τ)

2 0 < ei < c(1 − τ)

τei ei ≥ c(1 − τ)

(2.19)

where c is a parameter which regulates the smoothness of the approxima-

tion. It is worthwhile to note that the approximation does not make the

function change for values far from zero: the objective is not approximated

for ei ≤ −cτ and ei ≥ −c(1 − τ). On the other hand, the smooth part of

the approximation is close to zero. This is quite logic because the check

function has a kink in correspondence of zero which is the unique not dif-

ferentiable point.

The use of this new objective function allows for iterative weighted least

squares estimation via path-following algorithm described by the authors.

The iterative step for a P-spline QR model estimation is of the form

β̂ = (BT W(c)B + P)−1BT z(c)

where B is a (n×J) B-spline matrix, z(c) and W(c) are, respectively, a work-

ing response and a diagonal matrix of weights (see Muggeo et al. (2012)

for further details). P is the penalty matrix which depends the matrix of

d-order differences Dd and on the smoothing parameter λ. Hence the hat

matrix has the form
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H = X(XT W(c)X + P)−1XT W(c), (2.20)

The smoothing parameter c determines the range of approximation: when

c is small (big), the approximation will concern a small (big) portion of

the domain of ei. However when c is very small the estimation is more

difficult because the gradient tends to be a step function more than for high

values of c. This value can be chosen adaptively by taking, at each step of

the estimation algorithm, ‘the absolute value of the quantile corresponding

to the percentile of the positive (negative) current residuals when τ ≥ 0.5

(τ ≤ 0.5) ’.

The IWLS has a computational advantage respect to linear programming

estimates especially when the number of covariates is quite large. On the

other hand, the authors state that IWLS algorithm yields less efficient and

more biased quantile estimates than the ones achieved from a linear pro-

gram.

Our proposal is to use the approximation (2.19) of the objective and calcu-

late the hat matrix and its trace without computing directly IWLS estimates.

It is possible to do that by fitting the standard QR model, fixing the smooth-

ing parameter c, computing the asymmetrical residuals τêi for êi > 0 and

(τ−1)êi for êi < 0 and use them to calculate the diagonal matrix of weights

W(c). In this way one can get the hat matrix H according to (2.20) and its

trace.

Since the trace is invariant under cyclic permutations,

tr(H) = tr{(XT W(c)X + P)−1XT W(c)X}. (2.21)
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This form is more convenient because the dimension of H is no longer

(n× n) but it becomes (J × J). This allows for an easy estimation of ED for

single smooth term. It will suffice to sum over the elements of the diagonal

of H which correspond to the number of columns used to create the spline

basis for the single smooth term.



Chapter 3

Simulations

In this chapter results derived from the simulation study to compare the per-

formances of different methods for smoothing parameter selection are re-

ported. The results are compared in terms of Root Mean Integrated Square

Error (RMISE), Root Mean Integrated Absolute Error (RMIAE) and Effec-

tive Degrees of Freedom (EDF) of the model. That is useful to analyse the

performances of the methods looking either the at fidelity of the estimates

(via RMISE and RMIAE) and at the complexity of the fitted model (via

EDF). The best method has the highest fidelity and the lowest complexity.

3.1 Comparison among methods

We compared several smoothing parameter estimation methods. All ver-

sions of the iterative algorithm are summarized in Table 3.1.

1. rqss: it is the function used in the R package quantreg (Koenker,

2013). It computes smoothing spline quantile regression using a total

variation penalty. The residual EDF are computed as the number of
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non-zero residuals in the model. Smoothing parameter selection is

done via SIC.

2. laplace: this method (and also the next ones) is referred to gcrq func-

tion in the R package QuantregGrowth (Muggeo, 2014). The compu-

tation of the smoothing parameter is performed via Schall-like algo-

rithm using ALD error variance and normal random effects variance.

The computation of the degrees of freedom is achieved via trace of

the approximated hat matrix in (2.21).

3. scale: computation of the smoothing parameter as ratio of scale pa-

rameters of ALD for the error component and symmetric Laplace

distribution for the random effect component. The computation of

the degrees of freedom is achieved via trace of the approximated hat

matrix (2.21).

4. varscale: computation of smoothing parameter via Schall-like algo-

rithm using ALD error variance as numerator and the scale parameter

of the symmetric Laplace distribution as denominator.

5. variances: computation of smoothing parameter via Schall-like algo-

rithm using the variance estimation of the asymmetric Laplace distri-

bution for the error variance and the symmetric Laplace variance for

the random effect variance.
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Method Numerator Denominator

laplace
√

σ̂2(1−2τ+2τ2)
(1−τ)2τ2

√
||Da||2

ED

scale
∑n

i
∑mi

j ρτ(yi j−q̂i j)∑n
i mi−ED

∑n
i |Dâ|i
ED

varscale
√

σ̂2(1−2τ+2τ2)
(1−τ)2τ2

∑n
i |Dâ|i
ED

variances
√

σ̂2(1−2τ+2τ2)
(1−τ)2τ2

√
8ψ̂2

Table 3.1: Set of possible computations of the iterative algorithm for λ
selection

3.2 Simulation Plan

We run simulations of the scenarios derived from the following plan:

1. B = 100 number of replicates for each scenario;

2. sample size: n ∈ {100, 400};

3. model: y = f (x) + sig(x)ε;

4. signal: f (x) ∈ {0.2+0.4x, log(x), sin(2πx), g0(x) =
√

x(1 − x) sin
(

2π(1+2−7/5)
x+2−7/5

)
}

5. distribution: ε ∈ {N(0, 1), t1, t3, χ2
3 − 3}

6. scale: sig(x) = {0.2, 0.2(1 + x)}

7. percentile: τ = {0.5, 0.75, 0.9}

8. Difference order of the penalty matrix: d ∈ {2, 3}
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Figure 3.1: Data generated from 4 different distributions given the signal
g0(x).

For each scenario we run simulations and estimate quantile regression for

the given percentiles. To show the results we use boxplots showing RMISE,

RMIAE, namely

RMIS E =

√√
n−1

n∑
i

(
f̂ (xi) − f (xi)

)2
,

RMIAE =

√√
n−1

n∑
i

∣∣∣ f̂ (xi) − f (xi)
∣∣∣ ,

and effective dimension of the model (or Equivalent Degrees of Freedom,

EDF) for the different estimation methods. Figure 3.1 describes how the

choice of the distribution for the generator data process affects data in g0(x).
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Looking at the y-scale of each panel, one can notice that Gaussian and t3
errors have lower variability than t3; furthermore, since χ2

3 − 3 distribution

is positive skewed, all observation lie above the signal.

We include many f (x)s to see the behaviour of the fitted curves for different

levels of linearity of the signal. The choice of 2 levels of heteroskedasticity

is included to know whether the method is sensible to the homoskedastic-

ity assumption and we aim to analyse all the scenarios for three quantiles

because results could be worst when an extreme quantile is considered.

Since the smoothing spline quantile regression results in a piecewise linear

fit, the comparison when d = 2 is done only for the linear signal.

3.3 Results

Results concerning the whole simulation study are shown in the Appendix

of the thesis. For the sake of simplicity we report the results relative to

RMIAE and consider here rqss and laplace methods. The latter and varscale

are considered the most performing versions of the iterative algorithm;

since the performances of varscale and laplace are quite similar, we in-

clude in this part just the method relying on the gaussian random effect

distribution.

3.3.1 Simulation with d = 2

Results are shown in Figures 3.2 and 3.3. For all the analysed scenarios,

differences in terms of goodness of fit (i.e. RMIAE) are rather negligi-

ble. The boxplots referred to the degrees of freedom show that laplace

method provides less complex models than rqss, which is a quite desirable

characteristic occurring regardless of the scenario. Due to the different esti-
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mation methods (smoothing spline has a major computational burden than

P-spline) and to the iterative nature of the Schall-like algorithm, laplace

can be considered preferable respect to rqss.

3.3.2 Simulation with d = 3

Results concerning RMIAE for d = 3 are reported in Figures 3.4, 3.5, 3.6

and 3.7.

There are not big differences between the methods considering a linear re-

lationship. When the signal is g0(x), laplace works better than rqss for

gaussian and t3-distributed data; these differences decrease for extreme per-

centiles. Given a sinusoidal and logarithmic signal the differences between

the methods are almost negligible except for gaussian and t3-distributed

data where laplace works slightly better than rqss especially in the IID

case.

Results concerning the effective dimension of the model are provided in

Figures 3.8, 3.9, 3.10 and 3.11. In general, models derived from rqss func-

tion are more complex than models achieved via laplace. Furthermore, the

variability of the EDF for the latter models is very low. That is quite easy

to see in almost all scenarios of the simulation (as counterpart see some

scenarios of Figure 3.10 which is referred to a logarithmic signal).
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Figure 3.2: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods with d = 2
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Figure 3.3: Effective Degrees of Freedom to compare rqss versus laplace
methods with d = 2
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Figure 3.4: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods (part1) for d = 3. Linear signal
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Figure 3.5: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods (part2) for d = 3. g0(x) signal
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Figure 3.6: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods (part3) for d = 3. log(x) signal
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Figure 3.7: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods (part4) for d = 3. sin(2πx) signal
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Figure 3.8: Effective Degrees of Freedom to compare rqss versus laplace
methods (part1) for d = 3. Linear signal
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Figure 3.9: Effective Degrees of Freedom to compare rqss versus laplace
methods (part2) for d = 3. g0(x) signal
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Figure 3.10: Effective Degrees of Freedom to compare rqss versus laplace
methods (part3) for d = 3. Signal log(x)
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Figure 3.11: Effective Degrees of Freedom to compare rqss versus laplace
methods (part4) for d = 3. Signal sin(2πx)
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3.4 Summary

In this chapter a simulation study to compare performances of our algo-

rithm respect to SIC method used in Koenker’s function “rqss” have been

provided.

Simulations show that in most of selected scenarios Schall-based algo-

rithms performs equal or sometimes better than “rqss” in terms of RMIAE.

This result is usually achieved regardless of sample size or percentile or

kind of error (IID/LS ). The only case of better performance of “rqss” is

with g0(x) as signal and t1-distributed heteroskedastic data (see the plot in

Figure 3.5).

“laplace” method seems to be the most reliable and robust in terms of re-

sults. At the moment it is considered the best method even when the per-

formance results equal to “rqss”. In fact smoothing spline QR has clearly

an higher computational burden: firstly because smoothing spline involves

all points in the model matrix and secondly because “rqss” smoothing pa-

rameter selection relies on S IC which is a grid-search method.

Simulations computed with d = 2 show that even when the signal is linear,

RMIAE derived from the two methods are similar. That is not an obvious

result because S IC method used in “rqss” always results in a piecewise

linear fit and so it could seem more reliable for this situation.

The complexity of the model in “rqss” results higher than in “laplace” for

almost all of the scenarios regardless also of order of the differences d.

The approximation of the hat matrix described in the previous chapter pro-

vides lower degrees of freedom respect to the standard approach relying

on the number of non-zero residuals in the model. To conclude, simula-

tion show that Schall-type algorithms provide less complex models with

the same level of performance and then it can be considered an important
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alternative to computationally demanding grid-search methods.



Chapter 4

Application

In this chapter an application for real data is provided. The main objective

is to compare two different fertilizers in terms of root length of Sorghum

(Bochicchio, 2013). Here we propose a quantile regression approach based

on P-splines to assess, quantify and compare the root growth patterns in

two treatment groups respectively undergoing compost and traditional fer-

tilization.

4.1 QR for plant roots growth

4.1.1 Motivation

Plant roots are a major pool of total carbon in the planet, and their dynamics

are directly relevant to greenhouse gas balance. Composted wastes are in-

creasingly used in agriculture for environmental and economic reasons, but

their role as a substitute for traditional fertilizers needs to be evaluated and

tested on all plant components. At this aim a three-year experiment (2007-

2009) was carried out by Dipartimento di Scienze dei Sistemi Colturali,
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Forestali e dell’Ambiente, Università degli Studi della Basilicata, Potenza,

Italy. Compost application was compared to traditional fertilization with re-

gard to growth of roots of Sorghum bicolor Moench x S. sudanense (Piper)

Stapf. in Battipaglia (Sa), Italy. After sowing and treatment of compost or

traditional fertilization, plant roots were monitored through sequential im-

ages taken with a digital microscope from 4 transparent acrylic access the

soil depth of 60 cm from the surface (see Figure 4.1).
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Figure 4.1: Figure showing the experimental procedure to get the images
of the roots

A total of 18 images representing depths from 0 to 60 cm were analyzed

from all 8 tubes at each date for a total of 3024 images (3 years x 7 dates

x 18 depths x 8 tubes). Each image represents an investigated area of 207

mm2. Image analysis was carried out through a dedicated software three

root growth measurements were obtained for each image and four tracked

root types: total length, total surface area and average diameter for total,

alive, white and dark roots. The aim of the experiment was to assess root

growth across days after sowing, by emphasizing differences due to two
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treatment ‘arms’: compost vs. traditional fertilization.

The usual modeling framework for growth curves is via mean regression,

namely by means of specification of a regression equation for the expected

value of the response conditional distributions (Pollice et al., 2013). How-

ever there are at least two issues that should be emphasized when modelling

the data via mean regression. Firstly, the non-negligible portion of zeroes

cannot be ignored and it needs to be modelled properly, for instance via

mixture models; secondly, and more importantly, mean regression does not

provide a complete picture of data when interest lies in studying growth

patters, particularly with strongly heteroscedastic data. In order to analyze

root growth we propose an approach based on quantile regression (QR);

more specifically we aim at modelling the growth patterns, i.e. the growth

curves for different quantiles, with respect to days after sowing by empha-

sizing possible differences due to the two aforementioned treatment groups.

There are several additional advantages in using QR, including robustness

to outliers and no need to specify the response distribution.

4.1.2 Methods

Let Y be the growth variable, here the total length of roots, qτk (Y |t, xi) the

τkth quantile of Y conditional to covariates xi and time t . We consider the

following quantile regression model

qτk (Y |t, xi) = xT
i βτk + sτk (t) (4.1)

where βτk quantifies the linear effect of p covariates and sτk (zi) accounts for

the growth pattern with respect to days after sowing. Since growth patters

are typically nonlinear, sτk (·) is a smooth but unspecified function, and we
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use B-splines at this goal, namely sτk (·) =
∑J

j b jkB j(·).

By setting θk = (βT
k , b

T
k )T and wi = (xT

i , B
T
i )T , the objective function to be

minimized can be written as

∑
i

ρk(yi − wT
i θk) + λ

J−d∑
j=1

|∆dbk| j, (4.2)

where ρk(u) = u(τk − I(u < 0)) is the so-called check function and the

penalty term λ
∑J−d

j=1 |∆
dbk| j controls the wigglyness of fitted curve. ∆d is

the order d difference operator whereby d affects the curve behaviour. Here

d = 3 then the fit will be piecewise quadratic and as λ → ∞ the fitted

tends to a quadratic polynomial. Finally objective (4.2) is extended to allow

multiple estimation of several quantile curves with noncrossing constraints

using appropriate augmented matrices.

4.1.3 Results

We propose the analysis of the growth of dark roots by a refined modelling

of the distribution of their total length, rather summarized by six quan-

tiles than by its expectation, using QR. The distributions of dark roots total

lengths for DAS classes and treatment groups in Figure 4.2 show strong

asymmetric behavior and marked zero inflation soon after sowing.

Notice that the zeroes excess in the continuous response variable corre-

sponds to images containing no roots, and can be understood as roots with

no growth. When modelling the expectation of zero-inflated responses

common alternatives include mixture modelling (Zuur et al., 2012) and the

use of Tweedie distribution models (within the exponential dispersion fam-

ily framework, see Pollice et al. (2013) and references therein). QR is

robust to the presence of zeroes excess as in this framework we do not need
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Figure 4.2: Boxplots of dark roots total lengths for DAS classes and treat-
ment groups.

to specify a probability distribution for the response, but we only need to

constrain the fitted curve to have only nonnegative values. At this aim we

model the log values and then come back to the original growth scale by

exponentiating the fitted values; this is legitimate as quantiles are invariant

to monotone transformations.

Figure (4.3) displays the fitted quantiles at probability levels

(0.10, 0.25, 0.50, 0.75, 0.90, 0.95). The quantile curves at low probability

levels are indistinguishable due to the presence of zero values in both treat-

ment groups; however at higher probability levels the two treatments lead

to quite different profiles: in the COM group quantile curves are higher and

steeper suggesting better performance, particularly within 100 − 120 days

from sowing.

The plot in Figure 4.4 shows how the use of Schall algorithm provides a
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Figure 4.3: Fitted regression quantiles at probability level
(0.10, 0.25, 0.50, 0.75, 0.90, 0.95) for dark roots total length in the
two treatment groups. Due to the presence of zeroes in both treatments,
quantile curves at low probability level are indistinguishable.

smoother fit than B-spline QR model and smoothing spline QR model. In

particular, the fit provided by the smoothing spline model (green) results

strongly wiggly. To graphically compare the methods, the order of differ-

ences for the B-spline and P-spline models is d = 2.

In order to quantify the treatment effect on root growth we consider the

difference of estimated quantile curves at each probability level τk

ŝCOM
k (t) − ŝTRA

k (t) =
∑

j

(b̂COM
jk − b̂TRA

jk )B j(t). (4.3)

The rationale is plain: if the two treatments do not make any difference the

difference profile should settle around zero. Asymptotic theory for penal-

ized quantile regression is far from being well established and it is instead a
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Figure 4.4: Fitted regression quantiles (τ = 0.75) using P-spline QR via
Schall-like algorithm (black), B-spline QR (so with λ = 0, red line) and
smoothing spline QR with selection of λ via S IC (green) using rqss func-
tion (Koenker, 2013).

hot and challenging topic (Koenker, 2005); thus, in order to obtain a sample

distribution for difference quantiles, we rely on bootstrap according to the

following steps:

1. Resample data independently from the two treatment groups;

2. Fit two noncrossing quantile regressions with P-splines using the

same basis;

3. Compute the difference quantiles (4.3) for each probability level τk.

By repeating these steps a large number of times we obtain a bootstrap dis-

tribution of the difference quantiles; Figure 4.5 reports the results for each
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of six quantiles, showing remarkable differences between the two treat-

ments. The differential evolution of dark root lengths along time for the

two treatments highlights agronomic instances that are worth considering

in deeper detail.
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Figure 4.5: Bootstrap distributions of the difference quantile curves for
each probability level. Within each panel, one grey line corresponds to
the quantile difference (4.3) for one bootstrap replicate. Bold grey lines
correspond to point estimates and bootstrap 95% point-wise bands.



Chapter 5

Conclusions

5.1 Summary

In this thesis we have been discussed non parametric Quantile Regression

with emphasis on smoothing parameter selection. After explaining some

motivations to the use of this technique either via parametric and non para-

metric approach in the Introduction, smoothing spline and P-spline QR

framework have been presented in Chapter 1. In Chapter 2, several versions

of smoothing parameter selection via Schall algorithm have been described.

In Chapter 3 a simulation study to compare the aforementioned methods

with the smoothing spline QR function “rqss” has been reported. Results

suggest to conclude that the proposed algorithm is a very valid alternative

to grid search methods. Finally, in Chapter 4 an application concerning the

performance of two fertilizers in terms root length of sorghum has been

reported.

In the implementation of the Schall-type algorithm several specifications

of the error and random effect variance have been evaluated. Alternative
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methods to grid-search have been provided. The advantage in terms of

computational load of those methods respect to smoothing spline QR is

quite clear. Simulations have shown that 2 of these methods provide less

complex models than “rqss” with the same level of performances in terms

of RMISE and RMIAE (or sometimes better).

The application of P-spline QR to compare the performance of the fertil-

izers allows to know the difference in terms of growth of the plants in the

whole distribution.

However, many topics included in this thesis deserve to be studied further:

for instance, a proof of the link between penalized and mixed quantile re-

gression models would justify the use of the Schall-like algorithms also

from a theoretical point of view. It also would be worthwhile to analyse the

performance of the iterative algorithm in the context of longitudinal data: in

the linear mixed model framework one could choose the amount of penalty

on the random intercepts using the so-called PQL approach. Another rele-

vant topic is the extension of the iterative algorithm to bivariate smoothing

wherein there could be the need to consider anisotropic penalties. More-

over, the algorithm is still referred to just one quantile: it would be useful

to extend the method in the simultaneous estimation of several quantile

curves. That could represent a starting point for the implementation of an

R package.



Appendix A

Appendix

In this appendix the results of the whole simulation study described in

Chapter 3 are reported.

A.1 Simulation study with order of differences d = 2

RMISE

Results are shown in Figure A.1. It does not seem to be too big differences

in terms of RMISE for different sample sizes and kind of error (IID or LS ).

However, it is possible to see that when n = 400 differences amongs meth-

ods are a little bit higher than with n = 100. When distribution is χ2
3 − 3

no difference among methods is detected. The “variances” and “scale”

methods have the highest RMISE for most of distributions. “varscale” and

“laplace” result preferable respect to other methods even when the perfor-

mance is at the same level of “rqss”. In fact the latter has an higher compu-

tational load than the formers.
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Figure A.1: Root Mean Integrated Squared Error to compare rqss versus
laplace methods with d = 2

RMIAE

Results are shown in Figure A.2. There are no differences between methods

in terms of RMIAE. The exception is given by “variances” and “scale”

which are again the worst methods especially for extreme quantiles. “rqss”
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Figure A.2: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods with d = 2

performance is the same (or worst for t1 distribution) respect to “laplace”

and “varscale”.
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Figure A.3: Effective Degrees of Freedom to compare rqss versus laplace
methods with d = 2

Effective dimension of the model

Results are shown in Figure A.3. It is easy to note that “laplace” and

“varscale” provide models with lower effective dimension than the other

methods. It means that model based on these methods are less complex
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than the others. Furthermore, there is very low variability of results which

validate the robustness of the computation of the ED via smooth approx-

imation. It should be emphasized that “variances” and “scale” yield the

most complex models.

A.2 Simulation study with order of differences d = 3

RMISE

The methods have the same performance varying kind of error and sample

size. The plots in Figures 3.4, 3.5, 3.6, 3.7 suggest that no differences

between methods are detected when distribution is χ2
3 − 3. The exception

is for “scale” and “variances” methods which have an higher RMISE for

τ = 0.9.

For Gaussian data “rqss” often performs worst than the other methods while

for linear signal “scale” and “variances” have the highest RMISE.

When distribution is t1, “variances” seems to have the lowest RMISE, es-

pecially for log(x) and g0(x) and τ = 0.5, 0.75. The other methods based

on the iterative algorithm seems to perform slightly worst than “rqss” espe-

cially for signals log(x) and g0(x).

For data generated from a t3 distribution “rqss” is often the worst method.

However as the quantile becomes more extreme the differences are less

evident. At the same time for “scale” and “variances” RMISE increases

when τ increases.

RMIAE

The result shown in Figures 3.4, 3.5,3.6 and 3.7,are very similar to the

RMISE but the differences seems to be less evident. In practise “rqss”
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Figure A.4: Root Mean Integrated Squared Error to compare rqss versus
laplace methods (part 1) for d = 3. Linear signal
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Figure A.5: Root Mean Integrated Squared Error to compare rqss versus
laplace methods (part 2) for d = 3. g0(x) signal
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Figure A.6: Root Mean Integrated Squared Error to compare rqss versus
laplace methods (part3) for d = 3. log(x) signal
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Figure A.7: Root Mean Integrated Squared Error to compare rqss versus
laplace methods (part4) for d = 3. sin(2πx) signal
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often works bad for Gaussian and t3-distributed data when the signal is non

linear and slightly better than the other methods (except “variances”) when

the error is distributed as t1 and the signal is g0(x). For χ2
3 − 3 distributed

data, differences among methods are negligible.
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Figure A.8: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods (part1) for d = 3. Linear signal
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Figure A.9: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods (part2) for d = 3. g0(x) signal
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Figure A.10: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods (part3) for d = 3. log(x) signal
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Figure A.11: Root Mean Integrated Absolute Error to compare rqss versus
laplace methods (part4) for d = 3. sin(2πx) signal
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EDF

Results are shown in Figures 3.8, 3.9, 3.10 and 3.11. With χ2
3−3 distributed

data “rqss”,“scale” and “varscale” provide the most complex models. The

effective dimension achieved with the other two methods seems to be more

reliable. One can check on the very low variability of the boxplots referred

to these methods to understand it.

A similar situation occurs for the other errors nad signals. “rqss” give less

complex model than “laplace” only with Gaussian error and g0(x) signal.
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Figure A.12: Effective Degrees of Freedom to compare rqss versus laplace
methods (part1) for d = 3. Linear signal
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Figure A.13: Effective Degrees of Freedom to compare rqss versus laplace
methods (part2) for d = 3. g0(x) signal
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Figure A.14: Effective Degrees of Freedom to compare rqss versus laplace
methods (part3) for d = 3. Signal log(x)
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Figure A.15: Effective Degrees of Freedom to compare rqss versus laplace
methods (part4) for d = 3. Signal sin(2πx)
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