Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 44, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

INTEGRATION BY PARTS FOR THE L^r HENSTOCK-KURZWEIL INTEGRAL

PAUL MUSIAL, FRANCESCO TULONE

Abstract. Musial and Sagher [\[4\]](#page-6-0) described a Henstock-Kurzweil type integral that integrates L^r -derivatives. In this article, we develop a product rule for the L^r -derivative and then an integration by parts formula.

1. INTRODUCTION

Definition 1.1 ([\[4\]](#page-6-0)). A real-valued function f defined on $[a, b]$ is said to be L^r Henstock-Kurzweil integrable $(f \in HK_r[a, b])$ if there exists a function $F \in L^r[a, b]$ so that for any $\varepsilon > 0$ there exists a gauge function $\delta(x) > 0$ so that whenever $\{(x_i, [c_i, d_i])\}$ is a δ -fine tagged partition of $[a, b]$ we have

$$
\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} (L) \int_{c_i}^{d_i} |F(y) - F(x_i) - f(x_i)(y - x_i)|^r dy \right)^{1/r} < \varepsilon.
$$

In the sequel, if an integral is not specified, it is a Lebesgue integral. It is shown in [\[4\]](#page-6-0) that if f is HK_r -integrable on [a, b], the following function is well-defined for all $x \in [a, b]$:

$$
F(x) = (HK_r) \int_a^x f(t) dt
$$
\n(1.1)

Here the function F is called the *indefinite* HK_r *integral of f.* Our aim is to establish an integration by parts formula for the HK_r integral. In a manner similar to L. Gordon [\[2\]](#page-6-1) we state the following

Theorem 1.2. Suppose that f is HK_r -integrable on [a, b], and G is absolutely continuous on [a, b] with $G' \in L^{r'}([a, b])$, where $1 \leq r < \infty$, $r' = r/(r-1)$ if $r > 1$, and $r' = \infty$ if $r = 1$. Then fG is HK_r -integrable on [a, b] and if F is the indefinite HK_r integral of f, then

$$
(HK_r)\int_a^b f(t)G(t) dt = F(b)G(b) - \int_a^b F(t)G'(t) dt.
$$

We note that if $r = 1$ so that $r' = \infty$, the condition on G is that it is a Lipschitz function of order 1 on $[a, b]$.

Key words and phrases. Henstock-Kurzweil; integration by parts.

 $\bigodot 2015$ Texas State University - San Marcos.

²⁰⁰⁰ Mathematics Subject Classification. 26A39.

Submitted December 8, 2014. Published February 16, 2015.

In the classical case where f is Henstock-Kurzweil integrable $(r = \infty, r' = 1)$, Theorem [1.2](#page-0-0) holds, but it is enough to assume that G is of bounded variation on [a, b]. In that case the integral on the right is the Riemann-Stieltjes integral $\int_a^b F dG$. See [\[3\]](#page-6-2) for a proof of this statement.

To prove Theorem [1.2](#page-0-0) we will need a product rule for the L^r -derivative. We will also utilize a characterization of the space of HK_r -integrable functions that involves generalized absolute continuity in L^r sense $(ACG_r([a, b]))$.

2. PRODUCT RULE FOR THE L^r -DERIVATIVE

Definition 2.1 ([\[1\]](#page-6-3)). For $1 \leq r < \infty$, a function $F \in L^r([a, b])$ is said to be L^r-differentiable at $x \in [a, b]$ if there exists $a \in \mathbb{R}$ such that

$$
\int_{-h}^{h} |F(x+t) - F(x) - at|^r dt = o(h^{r+1}).
$$

It is clear that if such a number a exists, then it is unique. We say that a is the L^r -derivative of F at x, and denote the value a by $F'_r(x)$.

Theorem 2.2. For $1 \leq r < \infty$, let $x \in \mathbb{R}$ and suppose $F \in L^r(I)$ where I is an interval having x in its interior, and suppose F is L^r -differentiable at x . Suppose also that $G \in L^{\infty}(I)$ and that G is L^r-differentiable at x. Then FG is L^r -differentiable at x and $(FG)'_r(x) = F'_r(x)G(x) + F(x)G'_r(x)$.

Proof. Let $\varepsilon > 0$. We need to choose γ so that for $0 < h < \gamma$

$$
\int_{-h}^{h} |F(x+t)G(x+t) - F(x)G(x) - H(x)t|^r dt < \varepsilon h^{r+1}
$$
\n(2.1)

where $H(x) = F'_r(x)G(x) + F(x)G'_r(x)$. We add and subtract the terms $F(x)G(x+t)$ and $F'_r(x)G(x+t)t$ to the part of the integrand inside the absolute value signs. We also note that if a, b and c are non-negative numbers then

$$
(a+b+c)^r \le C(a^r + b^r + c^r)
$$

where C is a positive constant that depends on r .

Choose $\gamma_0 > 0$ and $N > 0$ so that $F \in L^r([x - \gamma_0, x + \gamma_0])$ and that

ess $\sup_{[x-\gamma_0,x+\gamma_0]} G < N$.

We then have that if $0 < h < \gamma_0$ then the integral in [\(2.1\)](#page-1-0) is less than or equal to

$$
C \int_{-h}^{h} |G(x+t)|^r |F(x+t) - F(x) - F'_r(x)t|^r dt \qquad (2.2)
$$

$$
+ C \int_{-h}^{h} |F(x)|^{r} |G(x+t) - G(x) - G'_{r}(x)t|^{r} dt \qquad (2.3)
$$

$$
+ C \int_{-h}^{h} |F'_r(x)|^r |(G(x+t) - G(x))t|^r dt.
$$
 (2.4)

For [\(2.2\)](#page-1-1), choose $\gamma_1 < \gamma_0$ so that if $0 < h < \gamma_1$ we have

$$
\int_{-h}^{h} |F(x+t) - F(x) - F'_r(x)t|^r dt < \frac{\varepsilon h^{r+1}}{4CN^r}
$$

so that

$$
C\int_{-h}^{h} |G(x+t)|^{r} |F(x+t) - F(x) - F'_{r}(x)t|^{r} dt < \frac{\varepsilon h^{r+1}}{4}.
$$

For [\(2.3\)](#page-1-2), choose $\gamma_2 < \gamma_1$ so that if $0 < h < \gamma_2$ we have

$$
\int_{-h}^{h} |G(x+t) - G(x) - G'_r(x)t|^r dt < \frac{\varepsilon h^{r+1}}{4C(|F(x)|^r + 1)}
$$

so that

$$
C\int_{-h}^h |F(x)|^r|G(x+t)-G(x)-G'_r(x)t|^rdt < \frac{\varepsilon h^{r+1}}{4}
$$

For [\(2.4\)](#page-1-3), we note that

$$
C \int_{-h}^{h} |F'_r(x)|^r |(G(x+t) - G(x))t|^r dt
$$

\n
$$
= C|F'_r(x)|^r \int_{-h}^{h} |(G(x+t) - G(x) - G'_r(x)t + G'_r(x)t)t|^r dt
$$

\n
$$
\leq C^2 |F'_r(x)|^r h^r \Big(\int_{-h}^{h} |(G(x+t) - G(x) - G'_r(x)t)|^r dt
$$

\n
$$
+ \int_{-h}^{h} |G'_r(x)t|^r dt \Big)
$$

\n
$$
\leq C^2 |F'_r(x)|^r h^r \Big(\int_{-h}^{h} |(G(x+t) - G(x) - G'_r(x)t)|^r dt \Big)
$$

\n
$$
+ 2C^2 |F'_r(x)|^r h^{2r+1} |G'_r(x)|^r.
$$

Now we note that we can choose

$$
0 < \gamma < \min\left(1, \gamma_2, \left(\frac{\varepsilon}{(8C^2(|G'_r(x)| + 1)(|F'_r(x)| + 1))}\right)^{1/r}\right)
$$

so that if $0 < h < \gamma$ we have

$$
\left(\int_{-h}^{h} |(G(x+t) - G(x) - G'_r(x)t)|^r dt\right) < \frac{\varepsilon h^{r+1}}{4C^2(|F'_r(x)|^r + 1)}
$$

We then have that if $0 < h < \gamma,$ then

$$
C^{2}|F'_{r}(x)|^{r}h^{r}\Big(\int_{-h}^{h} |(G(x+t) - G(x) - G'_{r}(x)t)|^{r}dt\Big)
$$

<
$$
< (C^{2}|F'_{r}(x)|^{r}h^{r})\Big(\frac{\varepsilon h^{r+1}}{4C^{2}(|F'_{r}(x)|^{r} + 1)}\Big)
$$

$$
\leq \frac{\varepsilon h^{2r+1}}{4} < \frac{\varepsilon h^{r+1}}{4}
$$

and that

$$
2C^{2}|F'_{r}(x)|^{r}h^{2r+1}|G'_{r}(x)|^{r}
$$

\n
$$
\leq 2C^{2}|F'_{r}(x)|^{r}h^{r+1}|G'_{r}(x)|^{r}\left(\frac{\varepsilon}{8C^{2}(|F'_{r}(x)|+1)(|G'_{r}(x)|+1)}\right)
$$

\n
$$
\leq \frac{\varepsilon h^{r+1}}{4}.
$$

We can then conclude that [\(2.1\)](#page-1-0) holds and the theorem is therefore proved. \square

In [\[4\]](#page-6-0) we find sufficient conditions for HK_r -integrability. We will need the following definitions.

Definition 2.3 ([\[4\]](#page-6-0)). We say that $F \in AC_r(E)$ if for all $\varepsilon > 0$ there exist $\eta > 0$ and a gauge function $\delta(x)$ defined on E so that if $\mathcal{P} = \{(x_i, [c_i, d_i])\}$ is a finite collection of non-overlapping δ -fine tagged intervals having tags in E and satisfying

$$
\sum_{i=1}^{q} (d_i - c_i) < \eta
$$

then

$$
\sum_{i=1}^q\Big(\frac{1}{d_i-c_i}\int_{c_i}^{d_i}|F(y)-F(x_i)|^rdy\Big)^{1/r}<\varepsilon.
$$

Definition 2.4 ([\[4\]](#page-6-0)). We say that $F \in ACG_r(E)$ if E can be written

$$
E=\cup_{i=1}^\infty E_i
$$

and $F \in AC_r(E_i)$ for all i.

Lemma 2.5. Suppose that F and G are in $ACG_r([a, b])$, and that $G \in L^{\infty}([a, b])$. Then $FG \in ACG_r([a, b]).$

Proof. The function $F \in ACG_r([a, b])$ and so we can find a sequence of sets ${A_n}_{n=1}^{\infty}$ so that $[a, b] = \bigcup_{n=1}^{\infty} A_n$ and $F \in AC_r(A_n)$ for all n. Since G belongs to $ACG_r([a, b]),$ we can also find a sequence of sets ${B_m}_{m=1}^{\infty}$ so that $[a, b] = \bigcup_{m=1}^{\infty} B_m$ and $G \in AC_r(B_m)$ for all m. We can then write

$$
[a,b]=\cup_{n=1}^{\infty}\cup_{m=1}^{\infty}\ (A_{n}\cap B_{m}).
$$

We will rewrite the sequence $\{A_n \cap B_m\}_{n,m \geq 1}$ as $\{E_k\}_{k \geq 1}$. We then have that both F and G are in $AC_r(E_k)$ for all $k \geq 1$. We will show that $FG \in ACG_r(E_k)$ for all k .

Let $N = 1 + ||G||_{\infty}$ and fix k. For $j \ge 1$ let

$$
U_j = \{ x \in E_k : j - 1 \le |F(x)| < j \}
$$

We then have

$$
E_k = \cup_{j=1}^{\infty} U_j.
$$

We will show that $FG \in AC_r(U_i)$ for all j.

Let $\varepsilon > 0$. There exist $\eta > 0$ and a gauge function $\delta(x)$ defined on U_j so that if $\mathcal{P} = \{x_i, [c_i, d_i]\}$ is a finite collection of non-overlapping δ -fine tagged intervals having tags in U_j and satisfying

$$
\sum_{i=1}^{q} (d_i - c_i) < \eta
$$

then

$$
\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{1/r} < \frac{\varepsilon}{2N},
$$

$$
\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |G(y) - G(x_i)|^r dy \right)^{1/r} < \frac{\varepsilon}{2j}.
$$

Then for such P ,

$$
\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y)G(y) - F(x_i)G(x_i)|^r dy \right)^{1/r}
$$

$$
\leq \sum_{i=1}^{q} \Big(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y)G(y) - F(x_i)G(y)|^r dy \Big)^{1/r} \n+ \sum_{i=1}^{q} \Big(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(x_i)G(y) - F(x_i)G(x_i)|^r dy \Big)^{1/r} \n\leq N \Big(\sum_{i=1}^{q} \Big(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \Big)^{1/r} \Big) \n+ |F(x_i)| \Big(\sum_{i=1}^{q} \Big(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |G(y) - G(x_i)|^r dy \Big)^{1/r} \Big) \n\leq N \Big(\frac{\varepsilon}{2N} \Big) + j \Big(\frac{\varepsilon}{2j} \Big) = \varepsilon.
$$

Now we can conclude that for P ,

$$
\sum_{i=1}^q \left(\frac{1}{d_i-c_i} \int_{c_i}^{d_i} |F(y)G(y) - F(x_i)G(x_i)|^r dy\right)^{1/r} < \varepsilon
$$

and so that $FG \in ACG_r([a, b]).$

3. LINEARITY OF $ACG_r(E)$

We now show that $ACG_r(E)$ is a linear space.

Theorem 3.1. Suppose F and G are in $ACG_r(E)$. Then for any constants a and b we have that $aF + bG \in ACG_r(E)$.

Proof. Write E as $\bigcup_{n=1}^{\infty} E_n$. We will show that $aF + bG \in AC_r(E_n)$ for every n.

First we show that $aF \in AC_r(E_n)$. Let $\varepsilon > 0$ and choose $\eta > 0$ and a gauge function $\delta(x)$ defined on E_n so that if $\mathcal{P} = \{x_i, [c_i, d_i]\}$ is a finite collection of non-overlapping δ -fine tagged intervals having tags in E and satisfying

$$
\sum_{i=1}^{q} (d_i - c_i) < \eta
$$

then

$$
\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{1/r} < \frac{\varepsilon}{|a| + 1}.
$$

Then

$$
\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |aF(y) - aF(x_i)|^r dy \right)^{1/r}
$$

=
$$
|a| \left(\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{1/r} \right)
$$

<
$$
\langle |a| \left(\frac{\varepsilon}{|a| + 1} \right) < \varepsilon.
$$

Now we show that $F + G \in ACG_r(E)$. Let $\varepsilon > 0$ and choose $\eta > 0$ and a gauge function $\delta(x)$ defined on E_n so that if $\mathcal{P} = \{x_i, [c_i, d_i]\}$ is a finite collection

 \Box

of non-overlapping δ -fine tagged intervals having tags in E and satisfying

$$
\sum_{i=1}^q (d_i - c_i) < \eta \,,
$$

then

$$
\sum_{i=1}^{q} \Big(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \Big)^{1/r} < \frac{\varepsilon}{2},
$$

$$
\sum_{i=1}^{q} \Big(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |G(y) - G(x_i)|^r dy \Big)^{1/r} < \frac{\varepsilon}{2}.
$$

Then we have for this P , using Minkowski's inequality,

$$
\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) + G(y) - (F(x_i) + G(x_i))|^r dy \right)^{1/r}
$$

\n
$$
\leq \sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) + F(x_i)|^r dy \right)^{1/r}
$$

\n
$$
+ \sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |G(y) - G(x_i)|^r dy \right)^{1/r}
$$

\n
$$
< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$

We will use the following characterization of HK_r -integrable functions.

Theorem 3.2 ([\[4\]](#page-6-0)). Let $1 \leq r < \infty$. A function f is HK_r -integrable on [a, b] if and only if there exists a function $F \in ACG_r([a, b])$ so that $F'_r = f$ a.e.

4. Integration by Parts

We are now ready to give the proof of Theorem [1.2.](#page-0-0)

Proof. Define

$$
V(x) = f(x)G(x),
$$

$$
J(x) = F(x)G(x) - \int_a^x F(t)G'(t) dt.
$$

We note that FG' is integrable by Hölder's inequality [\[5\]](#page-6-4). Our task is to show that J is the HK_r -integral of V . By Theorem [3.2,](#page-5-0) we see that it is sufficient to demonstrate that $J \in \text{ACG}_r([a, b])$ and that $J'_r = V$ a.e.

We note that the function

$$
\int_a^x F(t)G'(t) dt
$$

is absolutely continuous on [a, b] and therefore is in $ACG_r([a, b])$ [\[4\]](#page-6-0). Its derivative, and therefore its L^r-derivative, is equal to $F(x)G'(x)$ a.e. in [a, b].

Using Theorem [2.2](#page-1-4) we can see that FG has an L^r -derivative equal to $F'_rG + FG'$ a.e. in [a, b]. Using the linearity of the L^r-derivative, we have that $J'_r = V$ a.e. Thus all that remains is to show that $J \in ACG_r([a, b])$. By Theorem [3.1](#page-4-0) it is sufficient to show that $FG \in ACG_r([a, b]).$

The function $F \in ACG_r([a, b])$. Since $G \in AC([a, b])$, it is also in $ACG_r([a, b])$ and G is also in L^{∞} so by Lemma [2.5,](#page-3-0) $FG \in ACG_r([a, b])$ and Theorem [1.2](#page-0-0) is proved. \square

REFERENCES

- [1] Calderon, A. P.; Zygmund, A.; Local properties of solutions of elliptic partial differential equations, Studia. Math. 20 (1961), pp. 171-225.
- [2] Gordon, L.; Perron's integral for derivatives in L^r , Studia Math. **28** (1966/1967), pp. 295-316.
- [3] Gordon, R. A.; The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., 1994.
- [4] Musial, P.; Sagher, Y.; The L^r Henstock-Kurzweil integral, Stud. Math. 160 (1) (2004), pp. 53-81.
- [5] Wheedan, R.; Zygmund, A.; Measure and Integral, Marcel Dekker, Inc., New York, 1977.

PAUL MUSIAL

Department of Mathematics and Computer Science, Chicago State University 9501 South King Drive, Chicago, Illinois 60628, USA

 $\it E\mbox{-}mail$ $address:$
 p musial@csu.edu

Francesco Tulone

Department of Mathematics and Computer Science

University of Palermo, Via Archirafi, 34, 90132 Palermo, Italy E-mail address: francesco.tulone@unipa.it