Electronic Journal of Differential Equations, Vol. 2015 (2015), No. 44, pp. 1–7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

INTEGRATION BY PARTS FOR THE L^r HENSTOCK-KURZWEIL INTEGRAL

PAUL MUSIAL, FRANCESCO TULONE

ABSTRACT. Musial and Sagher [4] described a Henstock-Kurzweil type integral that integrates L^r -derivatives. In this article, we develop a product rule for the L^r -derivative and then an integration by parts formula.

1. INTRODUCTION

Definition 1.1 ([4]). A real-valued function f defined on [a, b] is said to be L^r Henstock-Kurzweil integrable $(f \in HK_r[a, b])$ if there exists a function $F \in L^r[a, b]$ so that for any $\varepsilon > 0$ there exists a gauge function $\delta(x) > 0$ so that whenever $\{(x_i, [c_i, d_i])\}$ is a δ -fine tagged partition of [a, b] we have

$$\sum_{i=1}^{n} \left(\frac{1}{d_i - c_i} (L) \int_{c_i}^{d_i} |F(y) - F(x_i) - f(x_i)(y - x_i)|^r dy \right)^{1/r} < \varepsilon.$$

In the sequel, if an integral is not specified, it is a Lebesgue integral. It is shown in [4] that if f is HK_r -integrable on [a, b], the following function is well-defined for all $x \in [a, b]$:

$$F(x) = (HK_r) \int_a^x f(t) dt \tag{1.1}$$

Here the function F is called the *indefinite* HK_r *integral of* f. Our aim is to establish an integration by parts formula for the HK_r integral. In a manner similar to L. Gordon [2] we state the following

Theorem 1.2. Suppose that f is HK_r -integrable on [a,b], and G is absolutely continuous on [a,b] with $G' \in L^{r'}([a,b])$, where $1 \leq r < \infty, r' = r/(r-1)$ if r > 1, and $r' = \infty$ if r = 1. Then fG is HK_r -integrable on [a,b] and if F is the indefinite HK_r integral of f, then

$$(HK_r) \int_a^b f(t)G(t) \, dt = F(b)G(b) - \int_a^b F(t)G'(t) \, dt.$$

We note that if r = 1 so that $r' = \infty$, the condition on G is that it is a Lipschitz function of order 1 on [a, b].

²⁰⁰⁰ Mathematics Subject Classification. 26A39.

Key words and phrases. Henstock-Kurzweil; integration by parts.

^{©2015} Texas State University - San Marcos.

Submitted December 8, 2014. Published February 16, 2015.

In the classical case where f is Henstock-Kurzweil integrable $(r = \infty, r' = 1)$, Theorem 1.2 holds, but it is enough to assume that G is of bounded variation on [a, b]. In that case the integral on the right is the Riemann-Stieltjes integral $\int_a^b F dG$. See [3] for a proof of this statement.

To prove Theorem 1.2 we will need a product rule for the L^r -derivative. We will also utilize a characterization of the space of HK_r -integrable functions that involves generalized absolute continuity in L^r sense $(ACG_r([a, b]))$.

2. Product rule for the L^r -derivative

Definition 2.1 ([1]). For $1 \leq r < \infty$, a function $F \in L^r([a,b])$ is said to be L^r -differentiable at $x \in [a,b]$ if there exists $a \in \mathbb{R}$ such that

$$\int_{-h}^{h} |F(x+t) - F(x) - at|^{r} dt = o(h^{r+1}).$$

It is clear that if such a number a exists, then it is unique. We say that a is the L^r -derivative of F at x, and denote the value a by $F'_r(x)$.

Theorem 2.2. For $1 \leq r < \infty$, let $x \in \mathbb{R}$ and suppose $F \in L^r(I)$ where I is an interval having x in its interior, and suppose F is L^r -differentiable at x. Suppose also that $G \in L^{\infty}(I)$ and that G is L^r -differentiable at x. Then FG is L^r -differentiable at x and $(FG)'_r(x) = F'_r(x)G(x) + F(x)G'_r(x)$.

Proof. Let $\varepsilon > 0$. We need to choose γ so that for $0 < h < \gamma$

$$\int_{-h}^{h} |F(x+t)G(x+t) - F(x)G(x) - H(x)t|^{r} dt < \varepsilon h^{r+1}$$
(2.1)

where $H(x) = F'_r(x)G(x) + F(x)G'_r(x)$. We add and subtract the terms F(x)G(x+t) and $F'_r(x)G(x+t)t$ to the part of the integrand inside the absolute value signs. We also note that if a, b and c are non-negative numbers then

$$(a+b+c)^r \le C(a^r+b^r+c^r)$$

where C is a positive constant that depends on r.

Choose $\gamma_0 > 0$ and N > 0 so that $F \in L^r([x - \gamma_0, x + \gamma_0])$ and that

$$\operatorname{esssup}_{[x-\gamma_0, x+\gamma_0]} G < N$$

We then have that if $0 < h < \gamma_0$ then the integral in (2.1) is less than or equal to

$$C\int_{-h}^{h} |G(x+t)|^{r} |F(x+t) - F(x) - F'_{r}(x)t|^{r} dt$$
(2.2)

$$+ C \int_{-h}^{h} |F(x)|^{r} |G(x+t) - G(x) - G'_{r}(x)t|^{r} dt \qquad (2.3)$$

$$+ C \int_{-h}^{h} |F'_{r}(x)|^{r} |(G(x+t) - G(x))t|^{r} dt.$$
(2.4)

For (2.2), choose $\gamma_1 < \gamma_0$ so that if $0 < h < \gamma_1$ we have

$$\int_{-h}^{h} |F(x+t) - F(x) - F_r'(x)t|^r dt < \frac{\varepsilon h^{r+1}}{4CN^r}$$

so that

$$C\int_{-h}^{h} |G(x+t)|^{r} |F(x+t) - F(x) - F'_{r}(x)t|^{r} dt < \frac{\varepsilon h^{r+1}}{4}$$

EJDE-2015/44

For (2.3), choose $\gamma_2 < \gamma_1$ so that if $0 < h < \gamma_2$ we have

$$\int_{-h}^{h} |G(x+t) - G(x) - G'_r(x)t|^r dt < \frac{\varepsilon h^{r+1}}{4C(|F(x)|^r + 1)}$$

so that

$$C\int_{-h}^{h} |F(x)|^{r} |G(x+t) - G(x) - G'_{r}(x)t|^{r} dt < \frac{\varepsilon h^{r+1}}{4}$$

For (2.4), we note that

$$\begin{split} C &\int_{-h}^{h} |F_{r}'(x)|^{r} |(G(x+t)-G(x))t|^{r} dt \\ &= C |F_{r}'(x)|^{r} \int_{-h}^{h} |(G(x+t)-G(x)-G_{r}'(x)t+G_{r}'(x)t)t|^{r} dt \\ &\leq C^{2} |F_{r}'(x)|^{r} h^{r} \Big(\int_{-h}^{h} |(G(x+t)-G(x)-G_{r}'(x)t)|^{r} dt \\ &+ \int_{-h}^{h} |G_{r}'(x)t|^{r} dt \Big) \\ &\leq C^{2} |F_{r}'(x)|^{r} h^{r} \Big(\int_{-h}^{h} |(G(x+t)-G(x)-G_{r}'(x)t)|^{r} dt \Big) \\ &+ 2C^{2} |F_{r}'(x)|^{r} h^{2r+1} |G_{r}'(x)|^{r}. \end{split}$$

Now we note that we can choose

$$0 < \gamma < \min\left(1, \gamma_2, \left(\varepsilon/(8C^2(|G'_r(x)|+1)(|F'_r(x)|+1))\right)^{1/r}\right)$$

so that if $0 < h < \gamma$ we have

$$\left(\int_{-h}^{h} |(G(x+t) - G(x) - G'_r(x)t)|^r dt\right) < \frac{\varepsilon h^{r+1}}{4C^2(|F'_r(x)|^r + 1)}$$

We then have that if $0 < h < \gamma$, then

$$C^{2}|F_{r}'(x)|^{r}h^{r}\left(\int_{-h}^{h}|(G(x+t)-G(x)-G_{r}'(x)t)|^{r}dt\right)$$

$$<(C^{2}|F_{r}'(x)|^{r}h^{r})\left(\frac{\varepsilon h^{r+1}}{4C^{2}(|F_{r}'(x)|^{r}+1)}\right)$$

$$\leq\frac{\varepsilon h^{2r+1}}{4}<\frac{\varepsilon h^{r+1}}{4}$$

and that

$$\begin{split} & 2C^2 |F'_r(x)|^r h^{2r+1} |G'_r(x)|^r \\ & \leq 2C^2 |F'_r(x)|^r h^{r+1} |G'_r(x)|^r \Big(\frac{\varepsilon}{8C^2 (|F'_r(x)|+1)(|G'_r(x)|+1)} \Big) \\ & \leq \frac{\varepsilon h^{r+1}}{4}. \end{split}$$

We can then conclude that (2.1) holds and the theorem is therefore proved. \Box

In [4] we find sufficient conditions for HK_r -integrability. We will need the following definitions.

Definition 2.3 ([4]). We say that $F \in AC_r(E)$ if for all $\varepsilon > 0$ there exist $\eta > 0$ and a gauge function $\delta(x)$ defined on E so that if $\mathcal{P} = \{(x_i, [c_i, d_i])\}$ is a finite collection of non-overlapping δ -fine tagged intervals having tags in E and satisfying

$$\sum_{i=1}^{q} (d_i - c_i) < \eta$$

then

$$\sum_{i=1}^q \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy\right)^{1/r} < \varepsilon.$$

Definition 2.4 ([4]). We say that $F \in ACG_r(E)$ if E can be written

$$E = \bigcup_{i=1}^{\infty} E_i$$

and $F \in AC_r(E_i)$ for all *i*.

Lemma 2.5. Suppose that F and G are in $ACG_r([a, b])$, and that $G \in L^{\infty}([a, b])$. Then $FG \in ACG_r([a, b])$.

Proof. The function $F \in ACG_r([a, b])$ and so we can find a sequence of sets $\{A_n\}_{n=1}^{\infty}$ so that $[a, b] = \bigcup_{n=1}^{\infty} A_n$ and $F \in AC_r(A_n)$ for all n. Since G belongs to $ACG_r([a, b])$, we can also find a sequence of sets $\{B_m\}_{m=1}^{\infty}$ so that $[a, b] = \bigcup_{m=1}^{\infty} B_m$ and $G \in AC_r(B_m)$ for all m. We can then write

$$[a,b] = \bigcup_{n=1}^{\infty} \bigcup_{m=1}^{\infty} (A_n \cap B_m).$$

We will rewrite the sequence $\{A_n \cap B_m\}_{n,m \ge 1}$ as $\{E_k\}_{k \ge 1}$. We then have that both F and G are in $AC_r(E_k)$ for all $k \ge 1$. We will show that $FG \in ACG_r(E_k)$ for all k.

Let $N = 1 + ||G||_{\infty}$ and fix k. For $j \ge 1$ let

$$U_j = \{x \in E_k : j - 1 \le |F(x)| < j\}$$

We then have

$$E_k = \bigcup_{j=1}^{\infty} U_j.$$

We will show that $FG \in AC_r(U_j)$ for all j.

Let $\varepsilon > 0$. There exist $\eta > 0$ and a gauge function $\delta(x)$ defined on U_j so that if $\mathcal{P} = \{x_i, [c_i, d_i]\}$ is a finite collection of non-overlapping δ -fine tagged intervals having tags in U_j and satisfying

$$\sum_{i=1}^{q} (d_i - c_i) < \eta$$

then

$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{1/r} < \frac{\varepsilon}{2N},$$
$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |G(y) - G(x_i)|^r dy \right)^{1/r} < \frac{\varepsilon}{2j}.$$

Then for such \mathcal{P} ,

$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y)G(y) - F(x_i)G(x_i)|^r dy \right)^{1/r}$$

EJDE-2015/44

$$\leq \sum_{i=1}^{q} \left(\frac{1}{d_{i} - c_{i}} \int_{c_{i}}^{d_{i}} |F(y)G(y) - F(x_{i})G(y)|^{r} dy \right)^{1/r} \\ + \sum_{i=1}^{q} \left(\frac{1}{d_{i} - c_{i}} \int_{c_{i}}^{d_{i}} |F(x_{i})G(y) - F(x_{i})G(x_{i})|^{r} dy \right)^{1/r} \\ \leq N \left(\sum_{i=1}^{q} \left(\frac{1}{d_{i} - c_{i}} \int_{c_{i}}^{d_{i}} |F(y) - F(x_{i})|^{r} dy \right)^{1/r} \right) \\ + |F(x_{i})| \left(\sum_{i=1}^{q} \left(\frac{1}{d_{i} - c_{i}} \int_{c_{i}}^{d_{i}} |G(y) - G(x_{i})|^{r} dy \right)^{1/r} \right) \\ \leq N \left(\frac{\varepsilon}{2N} \right) + j \left(\frac{\varepsilon}{2j} \right) = \varepsilon.$$

Now we can conclude that for \mathcal{P} ,

$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y)G(y) - F(x_i)G(x_i)|^r dy \right)^{1/r} < \varepsilon$$

and so that $FG \in ACG_r([a, b])$.

3. LINEARITY OF $ACG_r(E)$

We now show that $ACG_r(E)$ is a linear space.

Theorem 3.1. Suppose F and G are in $ACG_r(E)$. Then for any constants a and b we have that $aF + bG \in ACG_r(E)$.

Proof. Write E as $\bigcup_{n=1}^{\infty} E_n$. We will show that $aF + bG \in AC_r(E_n)$ for every n.

First we show that $aF \in AC_r(E_n)$. Let $\varepsilon > 0$ and choose $\eta > 0$ and a gauge function $\delta(x)$ defined on E_n so that if $\mathcal{P} = \{x_i, [c_i, d_i]\}$ is a finite collection of non-overlapping δ -fine tagged intervals having tags in E and satisfying

$$\sum_{i=1}^{q} (d_i - c_i) < \eta$$

then

$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{1/r} < \frac{\varepsilon}{|a| + 1}.$$

Then

$$\begin{split} &\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |aF(y) - aF(x_i)|^r dy \right)^{1/r} \\ &= |a| \left(\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy \right)^{1/r} \right) \\ &< |a| \left(\frac{\varepsilon}{|a| + 1} \right) < \varepsilon. \end{split}$$

Now we show that $F + G \in ACG_r(E)$. Let $\varepsilon > 0$ and choose $\eta > 0$ and a gauge function $\delta(x)$ defined on E_n so that if $\mathcal{P} = \{x_i, [c_i, d_i]\}$ is a finite collection

of non-overlapping δ -fine tagged intervals having tags in E and satisfying

$$\sum_{i=1}^q (d_i - c_i) < \eta \,,$$

then

$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |F(y) - F(x_i)|^r dy\right)^{1/r} < \frac{\varepsilon}{2},$$
$$\sum_{i=1}^{q} \left(\frac{1}{d_i - c_i} \int_{c_i}^{d_i} |G(y) - G(x_i)|^r dy\right)^{1/r} < \frac{\varepsilon}{2}.$$

Then we have for this \mathcal{P} , using Minkowski's inequality,

$$\begin{split} &\sum_{i=1}^{q} \left(\frac{1}{d_{i} - c_{i}} \int_{c_{i}}^{d_{i}} |F(y) + G(y) - (F(x_{i}) + G(x_{i}))|^{r} dy \right)^{1/r} \\ &\leq \sum_{i=1}^{q} \left(\frac{1}{d_{i} - c_{i}} \int_{c_{i}}^{d_{i}} |F(y) + F(x_{i})|^{r} dy \right)^{1/r} \\ &+ \sum_{i=1}^{q} \left(\frac{1}{d_{i} - c_{i}} \int_{c_{i}}^{d_{i}} |G(y) - G(x_{i})|^{r} dy \right)^{1/r} \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{split}$$

We will use the following characterization of HK_r -integrable functions.

Theorem 3.2 ([4]). Let $1 \le r < \infty$. A function f is HK_r -integrable on [a, b] if and only if there exists a function $F \in ACG_r([a, b])$ so that $F'_r = f$ a.e.

4. INTEGRATION BY PARTS

We are now ready to give the proof of Theorem 1.2.

Proof. Define

$$V(x) = f(x)G(x),$$

$$J(x) = F(x)G(x) - \int_{a}^{x} F(t)G'(t) dt.$$

We note that FG' is integrable by Hölder's inequality [5]. Our task is to show that J is the HK_r -integral of V. By Theorem 3.2, we see that it is sufficient to demonstrate that $J \in ACG_r([a, b])$ and that $J'_r = V$ a.e.

We note that the function

$$\int_{a}^{x} F(t)G'(t)\,dt$$

is absolutely continuous on [a, b] and therefore is in $ACG_r([a, b])$ [4]. Its derivative, and therefore its L^r -derivative, is equal to F(x)G'(x) a.e. in [a, b].

Using Theorem 2.2 we can see that FG has an L^r -derivative equal to $F'_rG + FG'$ a.e. in [a, b]. Using the linearity of the L^r -derivative, we have that $J'_r = V$ a.e. Thus all that remains is to show that $J \in ACG_r([a, b])$. By Theorem 3.1 it is sufficient to show that $FG \in ACG_r([a, b])$. EJDE-2015/44

The function $F \in ACG_r([a, b])$. Since $G \in AC([a, b])$, it is also in $ACG_r([a, b])$ and G is also in L^{∞} so by Lemma 2.5, $FG \in ACG_r([a, b])$ and Theorem 1.2 is proved.

References

- Calderon, A. P.; Zygmund, A.; Local properties of solutions of elliptic partial differential equations, Studia. Math. 20 (1961), pp. 171-225.
- [2] Gordon, L.; Perron's integral for derivatives in L^r, Studia Math. 28 (1966/1967), pp. 295-316.
- [3] Gordon, R. A.; The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., 1994.
- [4] Musial, P.; Sagher, Y.; The L^r Henstock-Kurzweil integral, Stud. Math. 160 (1) (2004), pp. 53-81.
- [5] Wheedan, R.; Zygmund, A.; Measure and Integral, Marcel Dekker, Inc., New York, 1977.

Paul Musial

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, CHICAGO STATE UNIVERSITY 9501 SOUTH KING DRIVE, CHICAGO, ILLINOIS 60628, USA

 $E\text{-}mail \ address: \texttt{pmusial@csu.edu}$

Francesco Tulone

Department of Mathematics and Computer Science

UNIVERSITY OF PALERMO, VIA ARCHIRAFI, 34, 90132 PALERMO, ITALY *E-mail address:* francesco.tulone@unipa.it