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Abstract 

Background 

Globally, antimicrobial drug resistant Escherichia coli is the most common etiological agent of 

invasive disease in humans. In Europe, increasing proportions of infections due to third generation 

cephalosporins (3GCs) and/or fluoroquinolone resistant extraintestinal pathogenic E. coli (ExPEC) 

strains are reported. It has been shown that multidrug resistant (MDR) E. coli can be transmitted 

from animals to humans and based on existing evidence, poultry is the food animal source most 

closely linked to human E. coli. However, lack of reliable data makes it difficult to assess the 

attributable risk of different food sources and their impact on human health.  

Objectives 

In the present  study, our objective was to investigate the antimicrobial resistance profile, 

phylogenetic background and virulence factors of E. coli isolates from  broiler chicken meat sold at 

retail in Palermo, Italy and to compare with the geographically and temporally matched collection 

of isolates from humans with infections due to this bacterium. 

Materials and Methods 

Isolation of MDR E. coli was performed during April 2013-December 2014 on a total of 250 food 

samples including 180 raw broiler chicken meat , 17 pork meat , 14 cow meat 19 cheese and  20 

ready to eat foods samples and a total of  200 de-identified FQ-R and ESBL-producing E. coli 

isolates were collected from Ospedale Civico in Palermo , Italy. Susceptibility to a panel of nine 

antimicrobial agents was determined and the isolates resistant to at least three classes of 

antibacterial drugs were defined as MDR. PCR assays were carried out to detect extended spectrum 

β-lactamase (ESBL), plasmid-mediated AmpC β-lactamase and plasmid-mediated quinolone 

resistance (PMQR) genes, phylogenetic group and ExPEC-associated traits. A single nucleotide 

polymorphism (SNP) PCR was done to detect E. coli sequence type (ST)131. Enterobacterial 
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repetitive intergenic consensus sequence PCR (ERIC-PCR)  and Raman spectroscopy were 

performed to analyze the relatedness among ExPEC isolates. 

Results 

E. coli were isolated from all of the chicken samples. However, multi-drug resistant (MDR) E. coli 

were isolated from 152 (84.4%) of the 180 chicken samples. No MDR E. coli isolates were found in 

other types of food samples. B1 was the most prevalent (114 isolates, 48.1%) followed by groups D (80 

isolates, 33.7%), A (30 isolates, 12.7%) and B2 (13 isolates, 5.5%); phylogenetic group B2 was the most 

prevalent phylogroup among clinical isolates (136 isolates, 68.5%) followed by groups D (33 isolates, 

16.8%), A (20 isolates, 10.6%) and B2 (9 isolates, 4.6%), respectively. ESBLs and AmpC β-lactamases 

were detected by PCR in 233 (98.3%) and 29 (12.2%) of chicken meat isolates and 194 (97.5%) and 

34 (17.2%) of clinical isolates, respectively. PMQR determinants were detected in 215 (90.7%) of 

chicken isolates and 183 (91.9%) of clinical isolates, respectively. Based on the molecular 

definition of ExPEC, 58 and 156 isolates from chicken meat and clinical samples were attributed 

with the status of ExPEC . SNP-PCR results confirmed that a total of 91.9% (125/136) and 69.2% 

(9/13) of the clinical and chicken meat isolates of E. coli of B2 phylogroup population were 

identified as ST131, respectively. Both ERIC-PCR and Raman Spectroscopy analysis showed a 

large heterogeneity among isolates. 

Conlusion   

The results of this study show an alarmingly high prevalence of MDR  E. coli and especially 

ExPEC isolates from broiler chicken meat in our geographic area. The ongoing use of antimicrobial 

drugs in livestock should be urgently revised and stopped, particularly in the poultry sector. 
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1.Introduction  

1.1. Overview on Escherichia coli 

Escherichia coli (E. coli) is a gram negative rod bacterium belonging to the family of 

Enterobacteriaceae . E. coli is part of normal flora colonizing the gastrointestinal tract of both 

humans and animals (1). In general, E. coli can benefit the hosts in a way that it maintains the 

normal intestinal homeostasis and stability of the luminal microbial flora. This relationship between 

the E. coli and its host is symbiotic and providing both with a number of advantages. However, E. 

coli has developed into a pathogen well adapted to its host through the loss and gain of genes. Some 

pathogenic E. coli strains cause gastrointestinal illness (intraintestinal pathogenic E. coli), whereas 

others cause extraintestinal infections (extraintestinal pathogenic E. coli [ExPEC]) (2).  

Not only an important causative agent in human diseases, ExPEC strains are responsible for 

significant economic losses in animal production, particularly within the poultry industry (3), as it is 

one of the fastest growing industries worldwide. Recently, a lot of studies have highlighted 

similarities between human and avian ExPEC, particularly in their virulence genes, suggesting that 

poultry products could serve as a possible source of ExPEC which causes blood infections in 

humans (4) (Fig. 1). Moreover poultry meat exhibits the highest overall levels of E. coli 

contamination, and E. coli strains isolated from poultry and poultry meat are often more extensively 

multidrug resistant (MDR) than E. coli recovered from other kinds of meat (4). On the other hand,  

the increased poultry meat consumption worldwide could have contributed to the appearance of 

antibiotic (ATB) resistance in ExPEC and the emergence of ExPEC infections in humans (5). 

Global trades and travels also contribute to the worldwide spread of these infections (6), thus 

making it difficult to implement infection-control measures. 

 E. coli is the leading cause of urinary tract infections (UTI), whether nosocomial or acquired in the 

community. It also frequently causes soft tissue (e.g., peritonitis) and central nervous system (e.g., 
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neonatal meningitis) infections. The worldwide burden of these extraintestinal infections is 

staggering, with hundreds of millions of people affected annually and considerable morbidity and 

mortality in cases of complication with bacteremia or sepsis syndrome (7). Moreover, E. coli 

pathogens, particularly those causing extraintestinal infections, have developed resistance to every 

class of antibiotics introduced to treat human and animal infections. The prevalence of resistance to 

first-line oral antibiotics, such as trimethoprim-sulfamethoxazole, amoxicillin and amoxicillin plus 

clavulanic acid, which are widely used to treat community-acquired E. coli infections, has increased 

steadily over time(8). The release onto the market of fluoroquinolones (FQ) and extended-spectrum 

cephalosporins (ESC) in the 1980s increased expectations of treatment efficacy, but these hopes 

have been dashed. Infact, resistance to ESC due to the production of extended-spectrum β-

lactamases (ESBL) by E. coli isolates has increased steadily over the last 20 years. There is also 

evidence to suggest that this increase in resistance is linked to the worldwide spread, since 2008, of 

a specific clone of E. coli, E. coli sequence type 131 (ST131) (3, 5, 9-12). 

1.1.1.General characteristics of ExPEC 

ExPEC strains have acquired specific virulence attributes that confer an ability to survive in 

different niches outside of their normal intestinal habitat in both mammals and birds. ExPEC are 

phylogenetically distinct from commensal and intestinal pathogenic E. coli. There are four main 

phylogenetic groups of E. coli: A, B1, B2, and D. ExPEC strains belong mainly to group B2, with 

some extend located in group D (13). Phylogroup B2 is the most predominant and the most virulent 

in most cases of ExPEC infections. ExPEC possess virulence factors required for extraintestinal 

infections (14), with some virulence factors more specific to certain ExPEC groups, such as Tsh and 

ColV plasmids in avian pathogenic E. coli (APEC), K1 capsule in neonatal meningitis E. coli 

(NMEC), and Sat and Usp in uropathogenic E. coli (UPEC) (Table 1). This provides strong 

evidence that certain genetic backgrounds are required for the acquisition and expression of certain 

virulence factors. ExPEC are generally very diverse, with few common virulence factors between 
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them (15) . These findings imply that strains utilize different factors for similar roles during various 

stages of the infection process (10, 16, 17). However, other virulence factors that have not yet been 

identified in ExPEC and host–pathogen interaction could have a significant role in the pathogenesis 

of these bacteria. This assortment of virulence genes is apparently made possible by a variety of 

genetic factors contributing to genome plasticity, including plasmids (18, 19). 

 

 

Figure 1. Avian and human extraintestinal pathogenic Escherichia coli (ExPEC), their infections, and zoonotic potential. The schematic diagram 

illustrates the major ExPEC pathotypes and their infections in humans and birds. ExPEC can cause localized infections that can become systemic 

(urinary tract infection [UTI] in humans and airsacculitis in birds), a systemic infection that localizes (meningitis), both a local and systemic infection 

(salpingitis in birds), or localized only (cellulitis in birds). The diagram also shows the potential of poultry and their products to transfer antibiotic 

(ATB) resistance and ExPEC to humans and cause zoonotic diseases. UPEC, uropathogenic Escherichia coli; NMEC, neonatal meningitis E. coli; 

SEPEC, sepsis E. coli; APEC, avian pathogenic E. coli (19).  
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1.2. Biological and pathogenic characteristics of E. coli ST131 

 

Following on from the initial detection of E. coli O25:H4, ST131 on three continents, this global 

clone of phylogenetic group B2 was shown, by pulsed-field gel electrophoresis (PFGE) and 

multiple virulence factor (VF) gene profile analyses, to consist of multiple subclones. The survival 

of this clone was also improved by its acquisition of various genes encoding resistance to 

antibiotics, including several borne on plasmids (15, 20). Many studies since 2008 have focused on 

these traits, in an attempt to determine the precise nature of E. coli ST131. 

 

1.2.1. Phylogenetic grouping  
Phylogentic analysis is revealed based on the genetic substructure of E. coli. Clermont et al. 

developed a simple triplex PCR based method to assign the phylogenetic groups of E. coli by 

focusing on three specific target genes (chuA, yjaA and TSPE4.C2) (21). The phylogenetic grouping 

of E. coli is obtained in reference to the genetic profile of these three target fragments. Phylogenetic 

background of E. coli isolates mainly originate from four phylogroups- A, B1, B2, and D. In 

general, phylogroups A or B1 are most likely observed in commensal E. coli strains. Interestingly, 

virulent extraintestinal E. coli isolates fall into mainly B2 and a minority of D phylogenetic group 

(21). It was proved that approximately 80-85% of phylogenetic grouping of Clermont strategy was 

correctly assigned (22). Therefore, this approach has been widely adopted in epidemiological 

research (6, 23-25). However, some E. coli strains, particularly A0, D1, D2 genotypes have been 

interpreted falsely using Clermont’s method. Hence, a modified multiplex PCR strategy has been 

proposed by adding an internal amplification control to improve the reliability of the results (26). 

Since the expansion of MLST data in recent years, more information is available for evaluation of 

the Clermont’s approach and understanding the genetic substructure of E. coli. There are now eight 

recognized phylogroups (A, B1, B2, C, D, E, F and Escherichia cryptic clade I) (27). 
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Consequently, a newly designed quadruplex PCR has been implemented. With the modification of 

primer sequences and newly added arpA gene target, phylogenetic groups C, E, F and clade I could 

be identified accurately. This updated quadruplex method has been confirmed to perform well with 

95% E. coli strains accurately typed(27, 28). 

1.2.2. VF-encoding genes and virotypes 

Group B2 strains are known to harbor many more virulence factor (VF)-encoding genes than the 

other E. coli groups (15, 29, 30). Several studies have therefore investigated the VF gene 

composition of E. coli ST131 isolates. Key initial findings included an absence of adhesin-encoding 

P fimbria pap genes and classical group B2 cytotoxic necrotizing factor (cnf1) genes in 

intercontinental E. coli ST131 isolates (29). In contrast, the following VF genes have been found to 

be uniformly or frequently present in E. coli ST131 isolates: sat (secreted autotransporter toxin), 

fimH (type 1 fimbriae), fyuA (yersiniabactin receptor),  kpsM II (group 2 capsule synthesis), usp 

(uropathogen-specific protein), malX (pathogenicity island marker), iha (adhesion siderophore 

receptor), ompT (outer membrane receptor) iucD (aerobactin), iutA (aerobactin receptor), and tratT 

(serum resistance associated) (5, 6, 29, 31, 32). All of the ST131 E. coli isolates investigated in 

these studies may be considered to be extraintestinal pathogenic E. coli (ExPEC), due to the 

presence of two (kpsMII and iutA) of the five molecular factors used to define ExPEC status (3). 

However, the number of VF-encoding gene profiles identified is increasing with the number of 

studies carried out to identify VF-encoding genes in E. coli ST131 isolates. These studies identified 

several VF-encoding genes characterizing distinct VF profiles in E. coli ST131 isolates, most of 

which can be grouped into specific PFGE clusters (5). Blanco et al. (33) referred to these VF 

profiles as “virotypes” and identified a number of VF-encoding genes identifying them. Some of 

these genes are VF genes classically identified in non-ST131 group B2 ExPEC: afa/draBC 

(encoding Afa/Dr adhesins), papG (P fimbrial adhesins), and toxin genes, such as cnf1 and hlyA 

(alpha hemolysin). The ibeA (invasion of brain endothelium) gene, which can be used to identify 
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virotype D and its subvirotypes, was previously reported in recently emerging avian O25b:H4 

ST131 isolates (10). With the exception of afa/draBC, none of these virotype-distinguishing VF 

genes were found in the first strains described as ST131, even though they originated from different 

countries (18). This may reflect the large proportion of isolates from the recently recognized 

virotype C, which seems to be the most prevalent E. coli ST131 virotype (33, 34), in this first 

collection of E. coli ST131 isolates. 

1.2.3. MLST and PFGE typing  

E. coli ST131 isolates have been shown to have uniform housekeeping gene sequences across the 

seven multilocus sequence typing (MLST) loci (adk, fumC, gyrB, icd, mdh, purA, and recA) defined 

by Achtman (http://mlst.warwick .ac.uk/mlst/dbs/Ecoli), but some diversity has been found within 

the E. coli ST131 lineage in analyses of the eight MLST loci (dinB, icdA, pabB, polB, putB, trpA, 

trpB, and uidA) defined by the Pasteur Institute (http://www.pasteur.fr/recherche/genopole/PF8 

/mlst/EColi.html). Matsumura et al. reported three different “Pasteur” sequence types (PST) among 

O25b ST131 isolates (PST43, PST527, and PST568) and three among O16 ST131 isolates 

(PST506, PST566, and PST567) (34). Mora Gutierrez et al. found seven different PSTs in 23 E. coli 

ST131 isolates: PST43 corresponded to O25b isolates of virotypes A, B, and C; PST9, PST43, and 

PST527 corresponded to O25b isolates of virotype D; PST621 corresponded to O25b isolates of 

virotype E; and PST506, PST567, and PST625 corresponded to O16 isolates (10, 35). However, 

PFGE profiles displayed much higher levels of within-lineage genetic variation. This variation was 

noted during the initial description of clone ST131, together with the presence of ST131 isolates 

with similar PFGE profiles at distant locations and the presence of isolates with different profiles at 

the same site (33). Johnson et al. carried out PFGE profiling on a collection of 579 E. coli ST131 

isolates obtained between 1967 and 2009 from diverse sources (humans, animals, and 

environmental samples) from different countries (5). This study identified 170 distinct pulsotypes 

accounting for between one (105 pulsotypes) and 136 (1 pulsotype, called “968”) isolates. There 
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were 65 pulsotypes containing multiple isolates (multiple-isolate pulsotypes), 12 of which 

contained at least six isolates, leading to their recognition as high-prevalence pulsotypes. Temporal 

occurrence profiles differed significantly between pulsotypes. Both multiple-isolate pulsotypes and 

highprevalence pulsotypes were found to be associated with more recent isolation. The 12 high-

prevalence pulsotypes included three (968, 800, and 812) appearing sequentially in 1990 to 1999, 

2000 to 2002, and 2005, respectively, identified as the top three most prevalent species overall and 

within each interval considered, from 1990 onwards. The prevalence of pulsotype 968 remained 

high after its initial emergence, whereas peaks in prevalence followed by a steep decline were 

observed for pulsotypes 800 and 812. Thus, although ST131 is highly diverse at the pulsotype level, 

this clonal lineage is dominated by a small number of highly prevalent pulsotypes. Spatial analysis 

showed that the broad geographic distribution of pulsotypes prevailed over local specific 

segregation patterns, indicating a pattern of widespread dispersal (pandemicity) rather than 

localized endemicity (3, 5, 36, 37). 

1.2.4. fimH subtyping 

All E. coli ST131 isolates harbor the fimH gene, like most other isolates of E. coli (38), which 

displays a remarkably high level of allelic diversity (11, 15, 39). The fimH typing region (fim-HTR) 

carries a highly diverse set of alleles that may be considered to be phylogenetically restricted (1, 7). 

This typing method was applied to clone ST131 isolates (1, 7, 34, 40). Adams-Sapper et al. typed 

246 E. coli bacteremia isolates by MLST and fimH subtyping methods and showed that the three 

most frequent fimH types accounted for 96% of E. coli ST131 isolates (41). Johnson et al. explored 

the subclonal structure of 352 historical and recent ST131 isolates (1967 to 2011). They identified 

seven fimH types, with fimH30 the most frequent (n= 236; 67%), followed by fimH22 (n= 73; 

21%), with fimH35 and fimH41 in joint third place (19 isolates each; 5%) (42). The diversity of 

fimH alleles in clone ST131 isolates sheds light on the molecular mechanisms 

underlying clonal diversification. 
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1.2.5. Screening methods for detecting the E. coli ST131 clone and subclones 

The proposed screening methods are based on the molecular diversity observed within E. coli and 

within E. coli ST131isolates. Once an E. coli isolate has been assigned to group B2 by the multiplex 

PCR methods developed by Clermont et al. (21, 27), other single-nucleotide polymorphism (SNP)-

based methods can be used to determine whether the isolate concerned belongs to the ST131 

lineage. Specific-allele PCR of the 5’ portion of the rfb locus can detect the most common O 

serogroups, including the allele specific for O25b (6). Other methods make use of so-called 

“ST131-specific” alleles of genes used in the MLST methods designed by Achtman and the Pasteur 

Institute. For example, Clermont et al. described a specific-allele ST131 PCR based on SNPs of the 

pabB gene included in the Pasteur Institute MLST method (34). Johnson et al. suggested a method 

for E. coli ST131 screening based on ST131-associated SNPs (sequencing method) of the mdh and 

gyrB genes included in Achtman’s MLST method (5). Weismann et al. proposed the use of an 

ST131-associated SNP of the fumC gene (Achtman’s MLST method) for detecting clone ST131 and 

the use of fimH sequencing for the detection of subclones of ST131 E.coli isolates (32). This 

method, known as CH clonotyping, was successfully used for the direct testing of urine samples 

(43). Blanco et al. proposed two triplex PCRs. The first was based on the detection of O25b (O25b 

rfb allele) E. coli producing CTX-M-15 (encoded by the 3’ end of the blaCTX-M-15gene) and 

harboring the afa/draBC gene, a VF gene specific to virotype A (32). The second was based on the 

detection of VF genes specific for virotypes B, C, and D (iroN, sat, and ibeA, respectively) (24). 

The CH clonotyping method appears to be the most relevant of the methods described, as it can 

detect E. coli ST131 and distinguish between the two serogroups of this lineage identified to date: 

O25b (fimH30) and O16 (fimH41). In conclusion, various bacteriological analyses have revealed the 

existence of diversity within the E. coli ST131 lineage and have shown that subclones are 

characterized by combinations of bacterial traits (Figure 1). 
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Figure 2. Schematic dendrogram of ST131 phylogeny reconstructed using whole-genome single nucleotide polymorphism analysis 

(1).  

 

 

1.3.Antibiotic Resistance 

1.3.1.Phenotypic antibiotic resistance in clinical isolates of E. coli ST131.  

Two traits were identified as common to all the intercontinental E. coli ST131 isolates initially 

described: resistance to ESC, due to the production of ESBL CTX-M-15, and resistance to 

fluoroquinolones (1, 7). Subsequent studies aiming to detect E. coli ST131 isolates in other 

countries frequently identified these associated traits. However, some studies also showed a 

particularly high prevalence of clone ST131 among non-ESBL-producing, fluoroquinolone-resistant 

E. coli isolates (40, 44). This suggests that CTX-M enzymes may have been acquired by E. coli 

ST131 isolates that were already resistant to fluoroquinolones. One study carried out in remote 

northern Saskatchewan communities (Canada) showed that clone ST131 was the second most 

prevalent clone, after ST95, which was the most prevalent clone among the ESC- and 

fluoroquinolone-susceptible urine isolates studied (45). 
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Such antibiotic-susceptible E. coli ST131 isolates have also been identified in the dominant fecal E. 

coli populations of healthy subjects living in the Paris area (45). It is, therefore, clear that antibiotic- 

susceptible E. coli ST131 isolates exist. A very small number of studies (29, 32)have provided 

information about resistance to various antibiotic families in E. coli ST131 isolates, comparing the 

results obtained with those for non- ST131 E. coli isolates producing or not producing ESBL. For 

ESBL-producing isolates, these studies showed that E. coli ST131 isolates were consistently more 

frequently resistant to amikacin than non-ST131 isolates and potentially more frequently resistant to 

amoxicillin-clavulanic acid, piperacillin-tazobactam, or ciprofloxacin; they were also more 

frequently susceptible to gentamicin or co-trimoxazole than non-ST131 isolates, depending on the 

country considered. For isolates that did not produce ESBL, E. coli ST131 isolates were 

systematically found to be more frequently resistant to quinolones/fluoroquinolones and to 

ampicillin/amoxicillin than non-ST131 isolates. Resistance to ampicillin/amoxicillin in E. coli 

isolates is widely known to be mediated principally by the production of plasmid-encoded TEM-1/-

2, SHV-1, or OXA-1 enzyme. The blaTEM-1 and blaOXA-1 genes were commonly found 

associated with the blaCTX-M gene on plasmids of the IncF type. This have gone on to acquire the 

genes encoding the CTX-M enzymes. The E. coli ST131 isolates resistant to fluoroquinolones and 

producing IncF-mediated TEM-1 and/or OXA-1 may be the ancestors of the current CTX-M-

producing E. coli ST131 isolates found worldwide. 

1.3.2.Characterization of plasmids harbored by clinical isolates of E. coli ST131.  

Various plasmids, differing in incompatibility groups (Inc), conjugative transfer, size, replicon 

types, and bla genes, have been characterized in E. coli ST131 strains of different origins. These 

plasmids include IncF plasmids, which have a host range limited to Enterobacteriaceae and are 

known to contribute to bacterial fitness through their virulence and antimicrobial resistance 

determinants (46, 47). IncF plasmids were the most common. Three IncF plasmids harbored by 

three epidemic E. coli ST131 strains (strains A, C, and D) from the United Kingdom were 
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completely sequenced (41, 44, 48) plasmids of the IncF family, which has a complex structure, have 

clearly played a major role in the dissemination of the blaCTX-M-15 gene expressed by E. coli 

ST131 strains. However, E. coli ST131 strains can harbor IncF plasmids encoding ESBL other than 

CTX-M-15, such as CTX-M- 14, SHV-2, and SHV-12 in particular, and they can even harbor CTX-

M-15-encoding plasmids from families other than the IncF family. In particular, they can carry 

resistance genes on plasmids from the IncI1, IncN, and IncA/C families or on pir-type plasmids. 

The pir-type plasmid pJIE143, first identified in a communityacquired Australian E. coli ST131 

isolate in 2006, has been fully sequenced and shown to be organized similarly to plasmids in the 

narrow-host-range IncX groups found in Enterobacteriaceae (32). No resistance-associated gene 

other than blaCTX-M-15 has been identified on pJIE143. CTX-M-1 enzymes may also be encoded 

by IncI1 (France) and IncN (Norway and Germany) plasmids, whereas CTX-M-3 (the United 

Kingdom) and CTX-M-65 (Germany and China) enzymes may be encoded by IncN plasmids. 

CMY-2, the plasmid-encoded cephalosporinase most frequently identified in E. coli ST131 to date, 

is carried by an IncI1 plasmid. Finally, although the blaNDM-1 gene has most frequently been 

detected on broad-host-range plasmids, such as IncA/C plasmids, particularly in clinical or 

environmental isolates from the New Delhi area (49), it has also been found on an IncFII plasmid 

(pGUE-NDM) in an E. coli ST131 isolate. This isolate was obtained in France, from a patient 

returning home from Darjeeling (India), where she had lived for several years without 

hospitalization (50). Peirano et al. reported similar findings for a patient admitted to a hospital in 

Chicago after hospitalization in New Delhi. However, in the New Delhi E. coli ST131 strain, NDM-

1 was harbored by a larger IncF plasmid carrying the FIA replicon (51). The complete genome 

sequence of pGUE-NDM showed that blaNDM-1 was acquired by a plasmid resembling those 

previously reported to harbor blaCTX-M-15. These findings are particularly alarming given the 

success with which E. coli ST131 has disseminated blaCTX-M-15 on IncF plasmids. Finally, one 

E. coli ST131 isolate has been found to contain a plasmid (pJIE186-2) harboring only VF genes 

classically carried by the chromosome (52)and a second plasmid of the same incompatibility group 
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(IncF) harboring the classical resistance-associated genes identified in E. coli ST131 (blaCTX-M-

15, blaOXA-1, blaTEM-1, aac6’-Ib-cr, and aac3-II). 

1.3.3.Molecular epidemiology of resistance in clinical isolates of E. coli.  

An extensive review of studies of resistance mechanisms in E. coli ST131 isolates revealed that 

CTX-M enzymes were by far the most frequent ESBL. The most prevalent of these enzymes was 

CTX-M-15, which currently has a worldwide distribution. The production of other CTX-M-type 

enzymes in ST131 E. coli isolates has been documented for CTX-M-1, -2, -3, -9, -10, -14, -18, -24,-

27, -28, -32, -39, -52, -55, -65, and 103 (8, 9, 16, 23, 39, 51, 53). E. coli ST131 isolates producing a 

number of these enzymes seem to be more frequent in particular countries: ST131 producing CTX-

M-14 is particularly common in Canada, China, Japan, and Spain; ST131 producing CTX-M-3 is 

particularly frequent in the United Kingdom, and ST131 producing CTX-M-27 is common in 

France, Japan, and Switzerland (8, 39, 43, 45, 54-56). Other non-CTX-M ESBL Ambler class A 

enzymes have also been described in E. coli ST131 isolates. These enzymes include derivatives of 

the SHV family (mostly SHV-2 and SHV-12) (4, 33, 57-59) and, based on anecdotal evidence, 

derivatives of the TEM family (TEM-24 and -52) (13, 24). The class A carbapenemase KPC-2 has 

been found in E. coli ST131 isolates from the United States (seven isolates), France (one isolate), 

Ireland (one isolate), and China, where they recently caused outbreaks (3, 10, 60). Ambler class B 

enzymes from E. coli ST131 isolates have been reported in only a few studies: NDM-1 (two cases 

from India) (31, 60), VIM-1 (one case in Italy) (61), and IMP-8 (one case in Taiwan) (62). Ambler 

class C enzymes have been detected more frequently than class B enzymes in ST131 isolates. The 

class C enzymes detected include CMY-2 (63) and CMY-4 (64), with DHA-1 described only rarely 

(65). Finally, Ambler class D β-lactamases, such as OXA-48, have only rarely been found in ST131 

isolates (66). Two narrow-spectrum β-lactamases, OXA-1 and TEM-1, have frequently been found 

in ST131 isolates, generally in association with CTX-M-15 enzymes, following plasmid transfer 

(see “Characterization of plasmids harbored by clinical isolates of E. coli ST131” above) (10, 18, 
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66, 67). Another resistance gene, aac(6')-Ib-cr, which confers resistance to both aminoglycosides 

(amikacin and tobramycin) and ciprofloxacin, has frequently been detected in association with 

CTX-M-15 enzymes (23, 43, 57, 65). Only a few studies in Spain and Portugal have reported the 

detection of qnr determinants another plasmid-mediated mechanism of quinolone resistance in 

ST131 isolates (24, 68, 69). The main mechanism reported to confer resistance to fluoroquinolones 

in E. coli ST131 isolates is amino acid substitutions within the quinolone resistance-determining 

regions (QRDR) of GyrA and ParC, the targets of quinolones/fluoroquinolones (2, 29, 32, 36). 

These reports clearly indicate that all the resistance mechanisms acquired by E. coli ST131 isolates 

to date, with the exception of fluoroquinolone resistance, are plasmid mediated. However, one or 

several copies of the blaCTX-M-15 gene have been detected on the chromosome (2, 29, 32, 36, 39, 

59, 70, 71). Some strains with chromosomally encoded CTX-M-15 harbor an IncFII-type plasmid, 

but without the blaCTX-M-15 gene. This suggests that the blaCTX-M-15 gene may have been 

transferred from the plasmid to the chromosome (12). 
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Figure 2. Maximum likelihood phylogenetic comparison of ST131 strains EC958, JJ1886, NA114 (clade C) and SE15 (clade A), and 16 

representative strains from other E. coli phylogroups. The phylogenetic relationships were inferred with the use of 70,777 SNPs identified between 

the genomes of the 20 E. coli strains and 1000 bootstrap replicates. The major E. coli phylogroups are coloured as follows; group B2-ST131: (red); 

group B2 non-ST131: APEC-01, S88, 536, UTI89, CFT073, ED1A (orange); group D: UMN026, IAI39 (yellow); group A: BW2952, MG1655, 

W3110, HS (green); group B1: SE11, IAI1 (aquamarine); group E: O157 EDL933, O157 Sakai (blue). Nodes are coloured according to bootstrap 

support for branching at that node: 1000 (blue), 858 (dark green), 770 (light green),659 (red). The Figure is adapted from Forde et al. 2014 (72). 
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1.4.Pathogenic Characteristics 

1.4.1.Infection spectrum.  

E. coli ST131 strains cause community- and hospital-acquired UTI (cystitis and pyelonephritis) and 

bacteremia worldwide (11, 61, 73). They have also been reported to cause other types of infection: 

intra-abdominal and soft tissue infections, meningitis, osteoarticular infection, myositis , 

epididymo-orchitis, and septic shock (11, 61, 73). This spectrum of infections, typical of ExPEC, 

has increased the degree of concern about ST131, which is already considered a major potential 

problem due to its multidrug resistance. 

1.4.2.Transmissibility.  

ST131 transmission has essentially been documented between members of the same household and 

between family members and pets (dogs and cats in particular) (74). Ender et al. provided strong 

evidence of the transmission of a CTX-M-15-producing ST131 isolate resistant to gentamicin, 

trimethoprim- sulfamethoxazole, and fluoroquinolones between a father and his daughter (75). The 

father was admitted to a hospital for pyelonephritis due to a clone ST131 strain, where he was 

visited by his adult daughter. She used his bathroom during the visit and subsequently developed 

emphysematous pyelonephritis, renal abscess, bacteremia, and septic shock due to the same ST131 

strain, which appeared to be particularly virulent. However, the VF gene profile of this strain 

identified it as a classical virotype A strain. Johnson et al. provided novel evidence of the within 

household transmission of an ST131 strain between an infected patient (an 8-month-old girl with an 

osteoarticular infection) and another previously healthy member of the same family (the girl’s 

mother). The same ST131 strain was detected in the digestive tracts of both patients (76), but it 

remains unclear in which direction the infection was transmitted. In this case, the ST131 strain was 

a fluoroquinolone-resistant strain that did not produce an ESBL.  
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1.4.3. Pathogenesis.  

Various studies have investigated the virulence potential of E. coli ST131. 

(i) Biofilm production and metabolic potential. Very few studies have investigated the biofilm 

production and metabolic potential of E. coli ST131 isolates, but the results of these studies are 

concordant. Clermont et al. found that the two ST131 strains studied produced a biofilm after 48 h, 

and Kudinha et al. found that the prevalence of isolates producing biofilms was greater among 

ST131 E. coli isolates than among non-ST131 clinical isolates (77). 

(ii) Adhesion and colonization abilities. Martinez-Medina et al., who characterized the similarity 

and divergence of adherent invasive E. coli (AIEC) and ExPEC strains, found that one of the 12 

ExPEC ST131 strains tested had an AIEC phenotype and displayed 50% similarity to two other 

ST131 AEIC strains (78). The VF genes harbored by these three strains were different, suggesting 

that ST131 AIEC strains, like other AIEC strains, have virulence-specific features that can currently 

be detected only phenotypically. These features include an ability to adhere to and invade intestinal 

epithelial cells and an ability to survive and replicate within macrophages. 

1.5.Genomics of E.coli ST131 

The entire genome sequences of 13 E. coli ST131 strains are currently available (48). In 2011, 

Avasthi et al. (79) published the chromosome sequence of strain NA114, a typical uropathogenic E. 

coli ST131 isolate from the city of Pune in Western India (80), and the sequence of the single 3.5-

kb plasmid harbored by this strain. The NA114 chromosome was 4,935,666 bp long, with a GC 

content of 51.16% and a coding percentage of 88.4%. It had 4,875 protein-encoding sequences, 67 

tRNAs, and three rRNA genes. The authors limited their comments on this genome essentially to 

confirmation of the presence of the virulence- associated genes classically identified by PCR in E. 

coli ST131 and the detection of several genes rarely identified in E. coli ST131 isolates (cnf1, sfa, 

and aer) and an intact polyketide synthetase island. Andersen et al. (48)recently reported the 

complete genome of strain JJ1886, a uropathogenic strain (81) considered representative of the 
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epidemic and highly virulent CTX-M-15-producing H30-Rx subclone of E. coli ST131. This 

complete genome corresponds to a 5,129,938-bp chromosome with a GC content of 50.8%, 5,086 

protein-encoding sequences, 88 tRNAs, and 22 rRNA genes plus five plasmids of 1.6, 5.2, 5.6, 56, 

and 110 kb in size. Again, few analytical data have been reported for this genome sequence. 

However, the authors indicated that only the largest plasmid (110 kb) carried genes for antibiotic 

resistance. The blaCTX-M-15 gene was found to have been integrated into the strain JJ1886 

chromosome by the insertion of an incomplete Tn3 element into a lambda-like prophage. Further 

analyses are required to clarify the differences and similarities between strains NA114 and JJ1886, 

but the data already available indicate some differences between these strains. 

1.6.Epidemiology of  E. coli STI131 

1.6.1.Global Dissemination of E. coli ST131  

Following the initial identification of E. coli ST131 in 2008 in a limited number of countries on 

three continents—North America (Canada) Europe (France, Portugal, Spain, Switzerland), and Asia 

(India, South Korea, Kuwait, and Lebanon) (16, 17)—this clone was successfully detected in many 

other countries on these three continents and on the two remaining continents, Africa and Oceania 

(Figure 3). 
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Figure 3. Global dissemination of Escherichia coli ST131 clone (2013). Articles which mentioned for the first time the presence of clone ST131 in 

a given country or a given location are cited. Red stars indicate isolates producing ESBL enzymes, and blue stars indicate fluoroquinolone-resistant, 

non-ESBL-producing isolates (11). 

 

 

Overall, depending on the country considered, E. coli ST131 has accounted for 12 to 27% of all E. 

coli isolates causing infections in the general population over the last 10 years. Among UTI E. coli 

isolates, the prevalence of clone ST131 varied with age: <10% in children, 13% in women of 

reproductive age, and >20% in elderly patients. Banerjee et al. showed, with unselected isolates, 

that E .coli ST131 predominated in adults over the age of 50 years and that the prevalence of 

infections with this clonal group increased with age (11). If only ESBL-producing or 

fluoroquinolone-resistant E. coli isolates were considered, the prevalence of clone ST131 was 

generally much higher, varying from 20 to 66% among ESBL producers and from 10 to 72% 

among fluoroquinolone-resistant isolates, depending on the country, type of infection, and 

subpopulation considered. 
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1.6.2.Molecular epidemiology of E. coli ST131 and E. coli ST131 subclones.  

The relationships between virotypes and phenotypic, genotypic, epidemiological, or clinical traits 

have been established (9). All isolates of virotypes A and B and 63% of those of virotype C 

produced CTX-M-15, whereas none of the virotype D isolateswere found to produce this enzyme 

(P<0.001 for all comparisons with virotype D). In contrast, virotype D isolates produced group 

CTX-M-9 enzymes, SHV-12, and CTX-M-32. Ciprofloxacin resistance was significantly associated 

with virotype A, B, and C isolates. A cross analysis of pulsotypes and virotypes revealed four major 

clusters, which were largely virotype specific. All virotype A, B, and C isolates considered 

contained fimH30 and an ISL3-like transposase in the fimB gene, whereas all the virotype D isolates 

studied had a fimH22 gene and no ISL3-like transposase in the fimB gene. The associations of the 

four virotypes with demographic data and with the acquisition and type of infection have also been 

explored. Virotype B has been shown to be significantly associated with older patients and a lower 

likelihood of symptomatic infections, specifically for urinary tract infection, whereas virotype C 

was significantly associated with a higher likelihood of symptomatic infection. Virotype D was 

significantly associated with younger patients and community-acquired infections. Virotypes A and 

B displayed a significantly stronger association with nursing home residents than did virotypesCand 

D. Various teams have applied similar epidemiological approaches to ST131 subclones H30, H30-R 

and H30-Rx (15, 29, 33, 80). 

1.7.Food Animals and Antimicrobials: Impacts on Human Health 

For many decades, antibiotic resistance has been recognized as a global health problem. It has now 

been escalated by major world health organizations to one of the top health challenges facing the 

21st century (3, 4, 35, 59, 74). Some of its causes are widely accepted, for example, the overuse and 

inappropriate use of antibiotics for nonbacterial infections such as colds and other viral infections 

and inadequate antibiotic stewardship in the clinical arena (59). But the relationship of drug-
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resistant bacteria in people to antibiotic use in food animals continues to be debated (4, 13, 24, 35, 

59, 68, 82). 

1.7.1. Zoonotic Potential of ExPEC.  

In recent years, much attention has been directed toward controlling zoonotic infections, which 

remain a major worldwide health concern.Meat and eggs are known to be a source of human 

pathogens such as Campylobacter, Listeria, and Salmonella, which frequently leads to a food recall 

of the suspected contaminated products (83). Recent studies on the zoonotic risk of ExPEC have 

prompted the Centers for Disease Control and Prevention to release information reports to caution 

the public on the zoonotic potential of ExPEC and their eventual transmission through chicken meat 

(23, 55, 59). The zoonotic risk of APEC isolates was initially related to the fact that some human 

and avian ExPEC have similar phylogenic backgrounds and share some virulence genes (4). The 

sequencing of the genome of the APEC strain O1:K1:H7 revealed that it is highly similar to human 

UPEC and NMEC (37). Interestingly, a comparison of a large number of ExPEC from human and 

chicken diseases for their phylogenetic background and the presence of virulence-associated genes 

has shown that although most isolates fall into genetically distinct pathotype groups (APEC, 

NMEC, and UPEC), with distinguishable characteristics, the study identified a genotyping cluster 

that includes ExPEC with overlapping traits and was considered potentially zoonotic (9). The role 

of poultry as a source of human ExPEC (Fig. 1) is suggested by multiple epidemiological studies 

that reveal the presence of avian ExPEC in both the intestines of healthy poultry and poultry meat 

from retail markets, strains that are often genetically similar to those found to be responsible for 

human infections (4). Johnson et al. (25) demonstrated that 92% (180/195) of poultry meat samples 

tested were contaminated with E. coli, with 46% (83/180) of strains having virulence factors 

associated with ExPEC and 15.6% (28/180) identified as UPEC. However, according to recent 

reports, not all ExPEC strains have zoonotic potential. A subset of ExPEC strains from specific 
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clonal groups, including ST95 and ST23, could have a broad host range distribution and cause 

diseases in both humans and chickens (10, 84).  

The claims that ExPEC have zoonotic potential are reinforced by the experimental evidence on the 

ability of human ExPEC to cause diseases in chicken models for colibacillosis and avian ExPEC to 

cause infections in animal models of human infections (52, 84). 

Zhao et al. (52) have determined that UPEC and APEC strains sharing the same virulence gene 

profiles caused lesions of colibacillosis in chickens and showed the same tendency of gene 

expression, including iron acquisition, in a murine model of human UTI. The correlation between E. 

coli UTI in humans and poultry meat consumption is strongly reinforced by recent investigations 

that have shown that E. coli B2 isolated from meat and intestines of healthy chickens are able to 

cause infection in a murine model of human UTI (85). Moreover, B2 E. coli fromUTI patients, 

poultrymeat, and healthy chickens exhibiting high virulence genotypes were clonally related and 

were virulent in a mouse model of UTI (86). The zoonotic risk of ExPEC appears to be mainly 

related to their large plasmids. Growing evidence shows that APEC plasmids could be a source of 

virulence genes for other ExPEC strains (68, 87). Studies have shown that UPEC and APEC 

isolates have certain genes in common that are associated with large transmissible plasmids of 

APEC (88). Some virulence genes associated with APEC plasmids (aerobactin, salmochelin, and sit 

operons) also occur on plasmids of UPEC (89). Additionally, APEC and NMEC have virulence 

genes of ColV plasmids in common (90), and APEC plasmids in E. coli can contribute to the 

pathogenicity of urinary infection in mice and meningitis in rats (6). 

 

1.7.2. ExPEC Infections in Poultry: Impact on Poultry Industry.  

Bacterial infections due to APEC, a subgroup of ExPEC (Fig. 1), are responsible for significant, 

worldwide economic losses for the poultry farms (91), which is considered one of the most 

important industries in many countries, including the United States, Brazil, and China. APEC 
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strains cause multiple systemic infections in birds, commonly referred to as avian colibacillosis 

(Fig. 1). While the intestines and the environment serve as reservoirs for APEC (75), the clinical 

outcome of APEC infection in birds depends on the bacterial strain, the host, the route of infection, 

and predisposing environmental factors. Similar to most other pathogens, APEC strains take 

advantage of host weaknesses to cause infections in chickens, turkeys, and other avian species. 

APEC infection can lead to septicemia, fibrinous lesions of internal organs (airsacculitis, 

pericarditis, perihepatitis), and death. APEC strains also cause local infections in birds, such as 

cellulitis, salpingitis, synovitis, and omphalitis (40). The main clinical signs associated with most of 

these infections are depression, fever, yellowish or greenish droppings, and lesions of internal 

organs. E. coli infections lead to a 1–10% mortality rate in chickens, with even higher mortality 

rates in broilers (23, 92-94)and commercial organic chickens (95). 

 

1.7.3 Animal- and Food-Borne E. coli ST131. 

There have been very few reports on E. coli ST131 from either animals (healthy or sick) or foods. 

Prospective, targeted cohort studies are rare in veterinary medicine, so many of the published data 

were obtained in passive surveys or with opportunistic, nonrepresentative sampling methods. The 

prevalence of animal colonization (intestinal carriage) or infection with ST131 E. coli isolates, 

regardless of their susceptibility/resistance status for ESC and/or fluoroquinolones (FQ), therefore 

remains unclear (86, 96). In such a context, it is difficult to assess the contribution of animal E. coli 

ST131 to the global expansion of E. coli ST131 in humans (including the differential expansion of 

certain ST131 subclones). 

1.7.4. E. coli ST131 in food animals and foodstuffs.  

Only a few studies have investigated the presence of E. coli ST131 in food animals. One FQ-

susceptible, non-ESBL-producing E. coli ST131 isolate was identified among 101 (0.9%) E. coli 

isolates from healthy chickens and turkeys in Italy (97). Schink et al. (98) identified one E. coli 
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ST131 isolate among 22 ESBL producers in a collection of 1,378 E. coli isolates from various 

animals (mostly pigs, poultry, and cattle). A single E. coli ST131 isolate was found in a pig with a 

gastrointestinal infection. This E. coli ST131 isolate harbored an IncN plasmid encoding CTX-M-1 

(98). E. coli ST131 isolates producing   CTX-M-9 have occasionally been recovered from poultry 

feces. In some of these instances, the animal isolates have presented a certain similarity to human 

ST131 isolates (99). Mora et al. (35) reported on CTX-M-9-producing E. coli ST131 among poultry 

E. coli isolates collected in different countries during different time periods. Three (0.2%) of the 

1,601 E. coli isolates collected from diseased poultry in Spain, France, and Belgium between 1991 

and 2001 belonged to clonal group ST131, none produced ESBL, and two were resistant to 

quinolones. One (1.8%) of the 57 fecal E. coli isolates collected from healthy chickens in Spain in 

2003 was an FQ-susceptible, CTX-M-9-producing E. coli ST131 isolate. Finally, seven (1.5%) of 

the 463 E. coli isolates collected from diseased chickens in Spain between 2007 and 2009 were E. 

coli ST131, and two isolates produced CTX-M-9 and were susceptible to FQ (35). E. coli ST131 

was also found in a pig in Denmark (100). In contrast, no ST131 isolates were identified by Wu et 

al. among 39 clinical isolates of E. coli from cattle, sheep, chicken, and pigs (101). Randall et al. 

also identified no such isolates among 388 broiler chicken cecal samples and 442 turkey rectal swab 

samples (102). E. coli ST131 was not found in cases of mastitis in cattle or in veal calves in the 

Netherlands (103) and France (104). The O25b PCR excluded the presence of E. coli ST131 from 

896 commensal E. coli isolates from 326 pigs, 316 chickens, 88 cattle, 58 ducks, 22 geese, 61 

pigeons, and 25 partridges in China (105). E. coli ST131 also appears to be very rare in foodstuffs 

of animal origin (11).  

1.8. Epidemiological Study of ExPECs 

Bacterial genomes are generally considered to be streamlined, and yet numerous families of short 

(30–150 bp) interspersed repetitive sequences have been described in bacteria. Little is known about 

the origins, evolution, mode of generation, or possible function of these elements. Most families are 



24 
 

restricted to single species or very closely related species, while many other species appear to have 

no such elements. This suggests that if these repeats have any functions they have been acquired 

recently, may not apply to all members of the family, and are unlikely to concern fundamental 

aspects of bacterial growth, survival, and replication. Thus, while some repetitive sequences have 

been reported to act as binding sites for a variety of proteins, including DNA polymerase and DNA 

gyrase (64), this may be incidental. Most short bacterial repetitive sequences are imperfect 

palindromes, with the potential to form secondary structures, which may enhance mRNA 

stability(106). Alternatively, most repetitive elements may be nonfunctional junk. 

1.8.1. Enterobacterial repetitive intergenic consensus sequences 

Enterobacterial repetitive intergenic consensus (ERIC) sequences, also described as intergenic 

repetitive units, differ from most other bacterial repeats in being distributed across a wider range of 

species. ERIC sequences were first described in Escherichia coli,  Salmonella enterica serovar 

Typhimurium , and other members of the Enterobacteriaceae, as well as Vibrio cholerae (107, 108). 

The ERIC sequence is an imperfect palindrome of 127 bp (figure 4). In addition, shorter sequences 

produced by internal deletions have also been described, as well as longer sequences due to 

insertions of about 70 bp at specific internal sites. ERIC sequences have been found only in 

intergenic regions, apparently only within transcribed regions. The number of copies of the ERIC 

sequence varies among species: it was initially estimated by extrapolation that there may be about 

30 copies in E. coli K-12 and perhaps 150 S. enterica Typhimurium LT2, while the genome 

sequence of Photorhabdus luminescenshas been reported to contain over 700 copies (109). 

 

 

Figure 4. The ERIC sequence. The 127-bp sequence is shown as a hairpin; lines (and colons) connect bases in the two arms 

complementary in DNA (and in RNA) (109). 
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1.8.2. Raman Spectroscopy.  

The control of outbreaks is essential both in hospitals and other healthcare practices as well as in the 

community. Frequently, molecular typing methods are used to establish the clonal relationships 

between isolates and confirm the clinical or epidemiological data, thus supporting the decisions in 

an outbreak situation. A suitable typing technique should have complete typability, be timely, cost-

effective, reproducible, and have the correct discriminatory power (110). In a putative outbreak 

situation the latter is a crucial determinant of a typing method because over-discrimination will 

result in missed relationships while under-discrimination results in clustering of potentially 

unrelated strains and thus unnecessary interventions. However, some bacterial species are highly 

clonal and most routine typing techniques lack the discriminatory power to allow for reliable typing 

(111, 112), for example, the molecular typing of Escherichia coli is for this reason notoriously 

difficult. Raman spectroscopy of bacterial samples is usually performed by a modified light 

microscopic device (Figure 5). The sample consists of a dried suspension from a bacterial culture 

and is illuminated with laser light. This will generate a Raman signal that can easily be separated 

from the laser light by an optical filter that only allows the Raman spectra to pass. These filtered 

signals are captured by a simple camera device and images are usually stored and analyzed on a 

small personal computer. As Raman spectra of bacteria are representations of their overall 

molecular composition (both nucleic and fatty acids, proteins, and carbohydrates) they can be used 

as highly specific spectroscopic fingerprints of the total cell content. Since Raman spectroscopy 

typing is based on the analysis of the total bacterial composition (and not only part of its DNA 

composition), it may therefore provide sufficient discriminatory capability for typing of closely-

related microbes such as E. coli. However, a systematic review of literature only showed results for 

typing of E. coli using Raman spectroscopy in a preliminary retrospective study in a research-based 

setting (110-112). 
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Figure 5. Overview of Raman procedure and spectrometer. Biomass from a bacterial culture (a) on TSA medium is collected using 

a 1-μl inoculation loop and suspended in 5 μl of demineralized water (b). After a brief centrifugation step to remove air bubbles, the 

wet pellet is transferred onto a fused silica slide (c), where it is allowed to dry (a typical slide holds 24 samples). The slide with the 

dried biomass is placed in the measurement stage (d), where the samples are illuminated with laser light (e). The Raman signal 

generated is collected along the same optical path and separated from the laser light using an optical filter (f) that only reflects light 

of a higher wavelength than the laser. The laser light is passed through. The wavelength of the Raman signal is dispersed on an 

optical grating (g) and collected using a near-infrared-optimized charge-coupled device detector (h). The Raman spectra are gathered, 

stored, and analyzed on a personal computer (i) (110). 

 

1.9. Aims of the research 

The first aim of this study was to characterize of ExPEC isolates recovered from retail meat, 

particularly chicken and fresh broiler chicken meat, broiler chickens and to compare with clinical 

isolates. The second and most important aim of the research was to determine whether transmission 

is primarily human to human through food or whether an animal reservoir can be involved. In the 

case of human-to human transmission through food, E. coli strains from humans will be introduced 

during the meat preparation process by food handlers. In the case of an animal reservoir, E. coli 

would derive from the cecal content of the animal itself, and contamination could occur more likely 

during the slaughtering process. On the basis of previous findings, we hypothesize that a food 

animal reservoir could exists for ExPEC that cause UTIs in humans and that chicken could be the 
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primary source. To evaluate this hypothesis, we will analyze isolates from animals entering the food 

chain. E. coli isolates recovered from the cecal contents of slaughtered food animals (beef cattle, 

chickens, and pigs) will be compared with geographically and temporally matched collection of 

isolates from humans with UTIs. 
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2.Materials and Methods 

2.1. Bacterial isolates 

2.1.1. Isolates from broiler chicken meat.  

A total of 250 food samples including 180 raw broiler chicken meat , 17 pork meat , 14 cow meat 

19 cheese and  20 ready to eat foods samples were bought from a range of grocery stores in 

Palermo, Italy, during April 2013-December 2014. Retail chicken samples were stored at 4°C and 

processed no later than 96 hours after purchase. A 5-g portion of each specimen was added to 45 ml 

of modified Trypticase soy broth (mTSB), containing 20 mg/L of novobiocin (Sigma Chemical Co., 

St. Louis, Mo.). The enrichment cultures were incubated at 37°C for 18 to 24 h and then 

subcultured onto MacConkey agar. When E. coli–like growth was present, one typical, well-isolated 

colony was streaked for isolation onto a BAP. The BAP(s) were incubated at 35°C for 24 hours in 

ambient air and examined for purity. E. coli presumptively identified as E. coli by indole, citrate, 

methyl red and Voges-Proskauer tests. To confirm identification, PCR amplifications of trpA gene, 

as a species specific gene, for E. coli was performed. 

2.1.2.Clinical isolates of E. coli 

During April 2013-December2014, a total of  200 de-identified FQ-R and ESBL-producing E. coli 

isolates were collected from Ospedale Civico, Palermo , Italy. The clinical isolates were collected 

mainly from patients with UTI, Septicemia and surgical site infections caused by this organism. The 

UTI isolates were collected from patients included in the study only if they will show typical 

symptoms of UTI such as dysuria, increased urinary frequency or urgency, pyuria, and hematuria, 

delivered a mid-stream urinary sample taken after washing the external urethral meatus with sterile 

saline, and the urine sample is positive for leucocytes by the dipstick test and reveale at least ≥103 

CFU/ml of a typical urinary pathogen (96). 
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2.2. Antimicrobial susceptibility and ESBL/AmpC status  

Susceptibility to nine antimicrobial agents including amoxicillin-clavulanic acid (20-10 µg), 

ciprofloxacin (5 µg), cefotaxime (30 µg), ceftazidime (30 µg), cefepime (30 µg), gentamicin (10 

µg), imipenem (10 µg), sulfamethoxazole-trimethoprim (25 µg) and tetracycline (30 µg)  was 

determined by disk diffusion and interpreted according with the EUCAST (European Committee on 

Antimicrobial Susceptibility Testing) guidelines (http://www.eucast.org/clinical_breakpoints/). 

Intermediately resistant isolates were categorized as resistant. Production of ESBLs was determined 

by the double disk synergy test (DDST) phenotypic confirmatory test, and AmpC expression was 

evaluated by the three-dimensional test with cefoxitin disk.  For the purposes of the study, isolates 

exhibiting resistance to at least three antibacterial drug classes (amoxicillin-clavulanic acid, third 

generation cephalosporins [3GCs]/cefepime, carbapenems, fluoroquinolones, aminoglycosides, 

sulfamethoxazole-trimethoprim and tetracycline) were defined as MDR. 

2.3. Phylogenetic grouping by multiplex polymerase chain reaction 

Isolates were assigned to phylogenetic groups according to the method of Clermont et al. (21). 

Isolates were assigned to one of four groups (A, B1, B2, or D) based on their possession of two 

genes (chuA and yjaA) and a DNA fragment (TSPE4.C2), as determined by PCR. Amplifications 

were performed as previously described (Clermont et al., 2000). Samples were subjected to 

horizontal gel electrophoresis in 2% agarose, and the sizes of the amplicons were determined by 

comparison to the 100bp DNA. Positive and negative bacterial controls for each phylogenetic group 

were included in the analysis.  

The figure below shows dichotomous decision tree to determine the phylogenetic group of an E. 

coli strain by using the results of PCR amplification of the chuA and yjaA genes and DNA fragment 

TSPE4.C2. 
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2.5. Multiplex PCR assay  for ESBLs and AmpC detection 

Three multiplex PCRs were used in this study: a blaTEM/blaSHV/blaOXA-1- like multiplex PCR; a 

blaCTX-M multiplex PCR including groups 1, 2 and 9; and a plasmid-mediated AmpC β-lactamase 

gene multiplex PCR including six groups based on percentage of similarity (28). Total DNA (1 mL) 

was subjected to each multiplex PCR in a 25 mL reaction mixture containing 1X PCR buffer (10 

mM Tris–HCl, pH 8.3/50 mM KCl/1.5 mM MgCl2), 200 mM concentration of each 

deoxynucleotide triphosphate, a variable concentration of specific-group primers (Table 1) and 1 U 

of Taq polymerase. Amplification was carried out as follows: initial denaturation at 94°C for 10 

min; 30 cycles of 94°C for 40 s, 60°C for 40 s and 72°C for 1 min; and a final elongation step at 

72°C for 7 min. 
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2.6. Detection of plasmid-mediated quinolone resistance (PMQR) determinants  

Screening of the six PMQR determinants was carried out by two sets of multiplex PCR 

amplification, one for qnrA, qnrB, qnrC, and qnrS and the other for aac(6’)-Ib and qepA (Table 2). 

In each multiplex PCR, all of the primers were added to the template DNA (1 mL) in a 25 mL 

reaction mixture containing 1X PCR buffer (10 mM Tris–HCl, pH 8.3/50 mM KCl/1.5 mM 

MgCl2), 200 mM concentration of each deoxynucleotide triphosphate. Clinical isolates that had 

previously been confirmed to carry the qnr genes, aac(6’)-Ib, and aac(6’)-Ib-cr by DNA 

sequencing were used as positive controls. Positive and negative controls were included in each 

PCR. PCR conditions were: 5 min of denaturation at 95°C; 30 cycles of 95°C for 30 s, 57°C for 30 

s, and 72°C for 50 s; and then 10 min of elongation at 72°C. Amplification products were identified 

by their sizes after electrophoresis on 1.8% agarose gels at 100 V for 60 min and staining with 

ethidium bromide. Positive results for qnr genes were confirmed by direct sequencing of PCR 

products. (113).  
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2.7. Virulence Genotyping 

 All isolates belonging to phylogenetic groups B2 and D were investigated for the following eight 

ExPEC related virulence genes by two quadroplex PCRs (table 3) : kpsM II (group 2 capsular 

polysaccharide), papA and papC (P fimbriae), iutA (iron acquisition system), sfaS (S fimbriae), 

focG (F1C fimbriae), afa (afimbrial adhesion), and hlyD (cytolytic protein toxin) (Johnson et al., 

2005b). Four strains were used as positive controls in the PCR screening: E. coli RS218 (kpsMT II, 

papA, papC, sfaS, hlyD), E. coli V27 (kpsMT II, papA, papC, iutA, focG), E. coli 2H16 (papC, iutA, 

afa, hlyD), and E. coli J96 (papA, focG). E. coli MG1655 was used as a negative control in the 

reactions. All the reference E. coli strains were kindly provided by James R. Johnson (VA Medical 

Center, Minneapolis, MN, US). E. coli isolates were defined as ExPEC if they tested positive for at 

least two of papA and/or papC, sfa/foc, afa/dra, kpsMT II  and iutA genes (Johnson et al., 2005b). 
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2.8. Detection of ST131 

For the detection of ST131, all group B2 isolates were screened by PCR for (i) the ST131-

associated O25b rfb variant (Clermont) and (ii) ST131-associated SNPs in mdh (i.e., C288T and 

C525T) and gyrB (i.e., C621T, of gyrB SNPs were gyrB47_forward (5’-CGC GAT AAG CGC 

GAC-3’) and gyrB47_reverse (5’-ACC GTC TTT TTC GGT GGA A-3’) and the primers used for 

the detection of mdh SNPs were mdh36_forward (5’-GTT TAA CGT TAA CGC CGG T-3’) and 

mdh36_reverse (5’-GGT AAC ACC AGA GTG ACC A-3’). Amplification was done with 4.0 mM 

MgCl2 and a cycling protocol of 95°C for 10 min; then 32 cycles of 94°C for 30 s, 65°C for 30 s, 

and 68°C for 2 min; and then a hold at 4°C. E. coli MVAST131, jj2663 and BUTI 1-2-1 (H17) were 

used as positive control strains (90). 

2.9. H30 subclone detection 

 All ST131 isolates were tested by allele-specific primers for allele 30 of fimH (encoding a variant 

of the type 1 fimbrial adhesin) corresponding with the main FQ resistance–associated subset within 

ST131, the H30 subclone(114). Primers fimH30F-21 (5’-CCG CCA ATG GTA CCG CTA TT-3’) 

and fimH30R-20 (5’-CAG CTT TAA TCG CCA CCC CA-3’) (354 bp product) underwent PCR as 

follows: 8′ at 95°; 30 cycles of (20 seconds at 94° and 45 seconds at 68°); 5′ at 72°; hold at 4° . E. 

coli strains MVAST131 and  jj1886 were used as positive control strains. 
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2.10. ERIC-PCR analysis 

 Enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) was performed on all 

isolates. The PCR amplifications were performed in 25-μl volumes containing 2.5 mM MgCl2, 0.5U 

of Taq polymerase, 0.25mMeach deoxynucleoside triphosphate, 2.5 ul of 10X amplification buffer, 

10 ng of crude template DNA, and 25 pmol each of primers ERIC1R (5’-ATG TAA GCT CCT 

GGG GAT TCA-3’) and ERIC2 (5’-AAG TAA GTG ACT GGG GTG AGC G-3’. The samples 

were amplified as follows: 95°C for 5 min; four-low stringency cycles of 94°C for 1 min, 26°C for 

1 min, and 72°C for 2 min; 40 cycles of 94°C for 30 s, 40°C for 30 s, and 72°C for 1 min; and 

finally, 72°C for 10 min. BioNumerics software (Applied Maths, Belgium)  was used for analysis of  

ERIC-PCR fingerprints. Cluster analysis using Dice algorithm was performed on ERIC-PCR 

profiles. The similarities in amplicon profiles were compared using a Dice coefficient at 1% 

tolerance and 0.5% optimization, and a dendrogram was constructed with the UPGMA clustering 

method with a cut-off of 80% similarity (115). 

 

2.11.Raman spectroscopy 

 Raman spectroscopy was performed at Toplab of University of Applied Science Leiden, Leiden, 

Netherlands and according to the manufacturer’s guidelines (River Diagnostics, Netherlands) and as 

described by Willemse-Erix et al(110). Briefly, all the phylogroup B2 and D isolates were grown on 

trypticase soy agar (TSA). Dilutions of colony suspensions were prepared and plated on a TSA 

plate that was incubated for 20 h at 35 °C. Biomass from TSA plates was collected with a 1-μl 

inoculation loop and suspended in 5 μl of demineralised water. After brief centrifugation to remove 

air bubbles, the wet pellet was transferred to a fused silica slide and allowed to dry. The slide was 

then placed in the measurement stage. All isolates were measured in triplicate. 
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2.11.1. Data analysis.  

Spectrum pretreatment and cluster analysis were performed using the SpectraCell RA software 

(River Diagnostics). Histogram plots and correlation matrices were created using MATLAB version 

7.1 (The MathWorks, USA).  

2.11.2. Similarity between spectra.  

In the BioNumerics software, version 6.1, (Applied Maths, Sint-Martens-Laten, Belgium), the 

similarity between two measured samples is expressed as the squared Pearson correlation 

coefficient (R2 value). 

2.11.3. Reproducibility of RA and discrimination between isolates.  

To be able to use RA for bacterial typing, the similarity between spectra of unrelated isolates should 

be lower than the similarity between spectra obtained from replicate cultures. The distribution of 

similarities can be visualized in a graph. The overlap between both curves indicates the 

discriminatory power of RA. The smaller the overlap, the better RA is able to discriminate isolates.  

2.11.4. Determination of the similarity threshold and cutoff.  
Two different similarity values were used to indicate relatedness between isolates. The similarity 

threshold (breakpoint at a lower R2 value) is chosen such that 99% of all replicate spectra have an 

R2 value above this threshold (i.e., 99% of the red curve is positioned above this value). Two 

isolates with an R2 value below the similarity threshold are considered different by RA and are 

assigned different RA types. This implies that for 1% of the replicates a misidentification as 

unrelated is allowed. The cutoff (breakpoint at a higher R2 value) is set such that 97% of all 

genetically unrelated isolates show R2 values below this threshold (i.e., 97% of the blue curve is 

positioned below the cutoff). Two isolates with an R2 value above the cutoff are considered 

indistinguishable by RA and are assigned the same RA type. This implies that for 3% of the 
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unrelated isolates a misidentification as indistinguishable is allowed. If an R2 value between two 

isolates is found in the area between the similarity threshold and the cutoff, these isolates are 

considered to be potentially related.  

2.11.5. Correlation matrix.  
To analyze spectral relationships between different isolates, a correlation matrix was created. This 

matrix displays the similarity of each pair of spectra using a color index. The diagonal indicates R2 

values of 1, since this represents the similarity of each isolate with itself. The values above the 

diagonal are the reverse graphic image of the values below this diagonal. In each matrix, red 

clusters indicate isolates that are indistinguishable based on the previously set cutoff. The gray areas 

indicate samples that are classified as unrelated based on the previously set similarity threshold. The 

samples that are potentially related are indicated by yellow to orange. Spectra were sorted based on 

similarity. Each horizontal line in the matrix represents all R2 values of an isolate with all other 

isolates in the matrix. Correlation coefficients were calculated between each group of R2 values. By 

sorting these correlation coefficients based on height, the isolates with high similarity are grouped 

together. 

2.12. Data analysis 
BioNumerics software, version 6.1, (Applied Maths, Sint-Martens-Laten, Belgium) was used for 

analyzing the ERIC-PCR fingerprints. The similarities in amplicon profiles were compared using a 

Dice coefficient at 1% tolerance and 0.5% optimization, and a dendrogram was constructed with the 

UPGMA clustering method with a cut-off of 80% similarity (115). 

The similarity between pairs of spectra was calculated using the Ranked squared Pearson 

correlation coefficient (R2) and expressed as percentage. Then, cluster analysis of sets of spectra 

was performed to yield a dendrogram. 
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3.Results 
3.1. E.coli Isolates and antibiogram results  
E. coli were isolated from all of the chicken samples. However, multi-drug resistant (MDR) E. coli 

were isolated from 152 (84.4%) of the 180 chicken samples. MDR was defined when an isolate was 

resistant to at least three classes of antibiotics (Table 3.1). From 109 chicken meat samples more 

than one E. coli were isolated, these isolates were pylogeneticaly different, or they were different in 

antibiogram resistance pattern.  No MDR E. coli isolates were found in other types of food samples. 

Resistance to ceftazidime and ciprofloxacin was predominant, being found in 232 (97.8%) and 218 

(91.9%). All of the isolates showed sensitivity to  meropenem. All of the isolates were positive for 

ESBL production by double disk synergy test. Table 3.1 describes frequency of resistance to the 

antibacterial drugs tested according with phylogroups.  

 

 

Phylogenetic 

group 

Antibacterial drug* 

AMC 

nr. (%) 

CAZ 

nr. (%) 

CTX 

nr. (%) 

FEP 

nr. 

(%) 

FOX 

nr. 

(%) 

GEN 

nr. 

(%) 

CIP 

nr. 

(%) 

SXT 

nr. 

(%) 

TET 

nr. (%) 

A  21 (70.0) 26 (87.0) 26 (87.0)   3 

(10.0) 

0   

(0.0) 

4 

(13.3) 

23 

(76.7) 

21 

(70.0) 

27 (90.0) 

B1 87 (76.5) 110 (96.8) 110(96.8) 30 

(26.5) 

5   

(4.7) 

14 

(12.5) 

103 

(90.6) 

91 

(79.7) 

107(93.7) 

B2    7 (53.8)   13(100) 13 (100)  7 

(53.8) 

2 

(16.5) 

0  

(0.0) 

  13 

(100) 

  5 

(38.4) 

  13  

(100) 

D 45 (55.9) 68 (85.3) 68 (85.3)   19 

(23.5) 

19 

(23.5) 

10 

(11.8) 

75 

(94.1) 

75 

(94.1) 

71  (88.8) 

* tested by the disk diffusion method  

AMC, amoxicillin-clavulanic acid; CAZ, ceftazidime; CTX, cefotaxime; FEP, cefepime; FOX, cefoxitin; GEN, gentamicin;  

CIP. ciprofloxacin; SXT, sulfamethoxazole-trimethoprim; TET, tetraycline 
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3.2. Phylogenetic diversity of Isolates  
Triplex PCR to detect different phylogenetic groups showed that while among E. coli isolates from 

chicken meat sampless phylogenetic group B1 was the most prevalent (114 isolates, 48.1%) 

followed by groups D (80 isolates, 33.7%), A (30 isolates, 12.7%) and B2 (13 isolates, 5.5%); 

phylogenetic group B2 was the most prevalent phylogroup among clinical isolates (136 isolates, 

68.5%) followed by groups D (33 isolates, 16.8%), A (20 isolates, 10.6%) and B2 (9 isolates, 

4.6%), respectively (Figure 3.1). Figure 3.2 shows the Triplex PCR products on 2% agarose gel 

after one hour immigration. 

 

 

Figure 3.1.Distribution of different phylogenetic groups among isolates 
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Figure 3.2. Different phylogenetic groups of E. coli on agarose gel 

 

 

3.3. Anibiotic resistance determinants among isolates 
ESBLs and AmpC β-lactamases were detected by PCR in 233 (98.3%) and 29 (12.2%) of chicken 

meat isolates and 194 (97.5%) and 34 (17.2%) of clinical isolates, respectively. PMQR 

determinants were detected in 215 (90.7%) of chicken isolates and 183 (91.9%) of clinical isolates, 

respectively. Moreover, all isolates testing positive for the PMQR genes had also ESBLs. In 

particular, among chicken meat isolates, 143 isolates (60.3%) tested positive for SHV, 59 (29.9%) 

for TEM and 104 (43.9%) for both TEM and SHV and in clinical isolates 32 isolates (16.2%) tested 

positive for SHV, 164 (69.1%) for TEM and 26 (13.1%) for both TEM and SHV, respectively 

(Figure 3.3) . While none of the chicken meat isolates was positive for the OXA-1-like gene, in 

clinical isolates OXA-1-like positive strains were detected in 121 (60.9%) of isolates.  Moreover, 

among chicken isolates, 56 isolates (23.6%) were positive for CTX-M-1 group, 41 isolates (17.3%) 

for CTX-M-2 group and 25 isolates (10.6%) for CTX-M-9 group and among clinical isolates 154 

isolates (77.7%) were positive for CTX-M-1 group, 21 isolates (10.6%) for CTX-M-2 group and 23 

isolates (21.3%) for CTX-M-9 group , respectively. Twenty nine chicken meat isolates (11.2%) and 

34 clinical isolates (17.2%) carried AmpC genes which all proved to be CIT-like. Two isolates of D 

phylogroup were positive for SHV, TEM, CTX-M and plasmidic AmpC β-lactamases. Among the 
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PMQR determinants, only qnrA was detected in all fluoroquinolone resistant isolates. The 

differential distribution of the ESBL, AmpC and PMQR genes under study according with the 

phylogroup is showed in Figure 3.4.  

 

 

Figure 3.3.Distribution of antibiotic resistance determinants among isolates 
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Figure 3.4.Distribution of antibiotic resistance determinants among isolates according with the phylogroup 

 

 

 

 

 

Figure 3.5. Different ESBLs determinats among E. coli isolates on agarose gel 
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Figure 3.6. PQMR of qnrA type among E. coli isolates on agarose gel 

 

3.4. ExPEC among E. coli isolates 
Based on the molecular definition of ExPEC, in chicken isolates 58 isolates out of 92 belonging to 

phylogroups B2 and D were attributed with the status of ExPEC (all the B2 isolates and 45 out of 

80 [56.2%] D isolates). Among clinical isolates 156 isolates out of 166 belonging to phylogroups 

B2 and D were attributed with the status of ExPEC (130 out of 136 B2 isolates [95.6%]  and 27 out 

of 33 [81.8%] D isolates). The most prevalent virulence factors among both clinical and chicken 

meat samples were kpsMT II and iutA (figure 3.7).  
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Figure 3.7. Distribution of virulence factors among isolates 

 

 

 

 

Figure 3.8. Quadroplex PCR results for detection of papA, focG, kpsMII, sfaS on agarose gel 

 

 



44 
 

 

 

 

 

Figure 3.9. Quadroplex PCR results for detection of papC, afa, iutA, hylD on agarose gel 

 

3.5. Prevalence of ST131 E. coli  

A total 149 E. coli isolates belonging to phylogroup B2 (136 clinical and 13 chicken meat isolates) 

were tested by PCR of specific single nucleotide polymorphism for mdh and gyrB. Figure 3.10 

shows the agarose gel electrophoresis of PCR-amplified products of mdh and gyrB respectively.  

Overall, 134 E. coli isolates (9 chicken meat isolates and 125 clinical) gave positive results in PCR 

of specific single nucleotide polymorphism for mdh and gyrB and they were identified as ST131.  

Hence, total of 91.9% (125/136) and 69.2% (9/13) of the clinical and chicken meat isolates of        

E. coli population were identified as ST131, respectively.  
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Figure 3.10.  The agarose gel electrophoresis of PCR-amplified products of mdh and gyrB. Lane 1 , 2 E. coli MVST131 

and JJ1886 as positive controls, lane 19 E. coli Puti 1 as negative control 

 

 

 

3.6. Prevalence of subclone H30 among ST131 E. coli  

A total 134 E. coli isolates belonging to phylogroup B2 (125 clinical and 9 chicken meat ST131     

E. coli isolates) were tested by PCR of specific single nucleotide polymorphism for H30 subclone. 

Figure 3.11 shows the agarose gel electrophoresis of PCR-amplified products of fimH30. 

SNP-PCR for H30 subclone showed that an overall of 118 ST131 E. coli isolates (113 and 5 clinical 

and chicken meat ST131 E. coli isolates) were positive for H30. 

Hence, total of 90.4% (113/125) and 55.6% (5/9) of the clinical and chicken meat isolates of    E. 

coli population were identified as H30 subclone of  E. coli ST131 clone, respectively.  
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 Figure 3.11.  The agarose gel electrophoresis of PCR-amplified products of 

 

 

 

3.7. Molecular typing of E. coli isolates 

3.7.1. ERIC-PCR typing of isolates 

BioNumerics software, version 6.1, (Applied Maths, Sint-Martens-Laten, Belgium) was used for 

analyzing the ERIC-PCR fingerprints. The similarities in amplicon profiles were compared using a 

Dice coefficient at 1% tolerance and 0.5% optimization, and a dendrogram was constructed with the 

UPGMA clustering method with a cut-off of 80% similarity. 

Three sets of analysis were performed :  

1. ERIC PCR analysis of all ExPEC isolates from chicken meat samples showed the isolates 

are very heterogeneous. Among all ExPEC isolates belong to B2 and D phylogroups , only 

12 isolates belong to phylogroup D  grouped in six clusters of two isolates in each cluster 

with the similarity more than 80% (figure 3.13).   
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Figure 3.13. ERIC PCR analysis of ExPEC isolates from chicken meat samples 
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2. ERIC PCR analysis of all ExPEC isolates from chicken meat and clinical samples showed that 

only 71 out of 210 isolates grouped in 29 clusters and the remaining 139 isolates create unique 

ERIC patterns. The largest cluster is cluster number 7 which consist of five isolates (four isolates 

belong to group B2 and one D isolate). Each of the clusters number 2, 4 and 10 consist of 4 isolates 

and each of the clusters 1 and 11 consist of 3 isolates. The remaining 23clusters consist of 2 isolates 

each (figure 3.14). 
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Figure 3.13. ERIC PCR analysis of all ExPEC isolates from chicken meat and clinical samples 
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Figure 3.14. ERIC PCR analysis of all B2 ExPEC isolates from chicken meats and clinical samples 
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3.7.2. Raman typing of isolates 

All ExPEC isolates from chicken meats and clinical samples were typed with SpectraCell Raman 

Spectroscopy (RA). Using the Ranked squared Pearson correlation coefficient (R2) with cut-off 

95%, Raman typing of 50 ExPEC from chicken meat confirmed a high rate of heterogeneity among 

isolates with 37 unique profiles and only 7 clusters. Expect cluster 5 which includes two isolates 

from B2 phylogroup , the other 6 clusters include only isolates from D phylogroup (Figure 3.15). 

Moreover Raman typing of 214 ExPEC from chicken meat and clinical samples also confirmed a 

high rate of heterogeneity among isolates with 130 unique profiles and only 28 clusters consist of 

84 isolates tottaly.  
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Figure 3.15. SpectraCell Raman typing analysis of ExPEC isolates from chicken meat samples 
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Figure 3.16. SpectraCell Raman typing analysis all ExPEC isolates from chicken meat and clinical samples 
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4.Discussion 
Antimicrobial resistance is an issue of great concern because of the serious limitation and even the 

risk for loss of effective antimicrobial treatment of infections. There are undeniable evidences that 

foods from many different animal sources and in all stages of processing contain resistant bacteria 

and their resistance genes (116). It has been as well documented that they can be transferred to 

humans (55, 83, 116). Food-producing animals, indeed,  play a critical role in this transmission 

chain. According with literature, antimicrobial-resistant E. coli strains carried by healthy animals 

seem to link directly with human infection cases (117). In particular, colonization of the intestinal 

tract with resistant E. coli from chickens has been shown in human volunteers and resistance to the 

same drugs has been also described in programs undertaken in different countries to monitor 

bacterial resistance (118). Moreover, studies about bloodstream infections caused by E. coli in 

Europe suggest that poultry might be an important source of antibiotic-resistant isolates (119). 

Johnson et al. (25, 36), after comparing genetic profiles of fluoroquinolone-resistant E. coli strains 

from human blood and fecal samples and from slaughtered chickens, determined that human 

isolates were virtually identical to resistant isolates from geographically linked chickens. Drug-

susceptible human E. coli strains, however, were genetically distinct from poultry strains, 

suggesting that the fluoroquinolone-resistant E. coli strains in humans were more likely imported 

from poultry than derived from susceptible human E. coli (3, 29).  

In this study, MDR E. coli were recovered from about 84.4% of poultry meat samples on sale in 

Palermo, Italy. These results are in line with other findings from European and non-European 

countries in accordance to EFSA Panel on Biological Hazards (BIOHAZ) (120). In three similar 

studies in Portugal, Spain and Netherlands, MDR E. coli strains were isolated in 60%, 90% and 

94% of chicken carcasses at the retail level, respectively(43, 87, 121). However, results from 

different studies are generally difficult to compare because of different settings and isolation and 

testing methods.  
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In our study, ESBLs and/or AmpC β-lactamases were carried by about 95% of isolates which is a 

higher figure compared with data from other European countries. Indeed, in three similar studies in 

Germany, Spain and Netherlands, ESBLs were found in 88.6%, 79.7% and 79.8%, respectively, 

(13, 88, 102). Finally, Mevius et al. (103) reported a prevalence of  ESBL positive E.coli isolates 

from poultry as high as 86% . 

The most predominant ESBL gene families found in our E. coli isolates were blaSHV, blaTEM, and 

blaCTX-M-1 group, which is again comparable with previous reports from European countries. TEM, 

SHV and CTX-M-1 group are reported as the most prevalent β-lactam resistance determinants in 

the food animal reservoir (13, 84, 93, 98, 102). AmpC β-lactamases are less frequently reported 

among E. coli isolates and the family CMY-2 is the most geographically spread. In our study 

plasmid mediated AmpC producing E. coli were detected in about 10% of isolates which is 

comparable with the findings of other studies in Europe (86). However, among our E. coli isolates 

plasmidic AmpC was belonging to the CIT-like type. The absence of AmpC genes in some 

phenotype-positive isolates might indicate a different mechanism of resistance, such as 

overexpression of chromosomal AmpC, usually resulting from mutations in the promoter/attenuator 

region (122).  

The prevalence of plasmid-mediated quinolone resistance was very high among our isolates which 

highlights a serious clinical and public health issue of concern. qnrA was the only PMQR 

determinant detected in all ciprofloxacin resistant isolates accounting for a prevalence of about 

90%, substantially higher than any other previous report. For instance, in two studies from Czech 

Republic and Portugal, PMQR genes were detected only in 4% and 5.5% of strains, respectively 

(32, 83, 123). This finding might be related to the reportedly extensive use of fluoroquinolones in 

the poultry industry in the southern European countries, including Italy (124). Transmission of qnr-

positive E. coli isolates to humans through the food chain has been previously hypothesized (125). 

According to increased demand for poultry meat and poultry products and the growing poultry 

industry around the world, the importance of poultry meat safety is a critical public health issue. 
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The ExPEC isolated from retail poultry meats have been associated with potential infections in 

humans in Europe, North America and Australia(4, 55). The prevalence and epidemiology of FQ 

resistant and/or ESBL producing E. coli ST131 are changing rapidly. However, only a few studies 

have investigated the presence of E. coli ST131 in animal foods and the current study is one of the 

first studies to investigate the presence of ExPEC ST131 subclone H30 in retail chickens meat.  The 

prevalence of FQ resistant and/or ESBL-producing ExPEC ST131 from chicken meat in this study 

was higher than any other studies. Vincent et al. reported a single non-ESBL-producing ST131 

isolate from 417 retail chicken samples analyzed(59). None of the 141 ESBL/AmpC-producing E. 

coli isolates from raw chickens imported into the United Kingdom from South America were 

identified as ST131(53). Similarly, Egea et al. did not detect the ST131 clone among ESBL-

producing E. coli isolates from 33 raw retail meat samples(89). In contrast, E. coli ST131 was 

isolated from seven retail chicken meat samples from the 100 analyzed in Spain (prevalence, 7%). 

Three of these isolates both were resistant to FQ and produced CTX-M-9; one produced CTX-M-9, 

and one was resistant to FQ(10). In current study nine (3.8%) isolates of  E. coli  ST131 were found 

among 237 E. coli isolates which all of them were FQ resistant and ESBL producers. However, 

until now there is no report of finding  ExPEC ST131, subclone H30 from retail chicken meat. This 

finding may be attributed to several factors, such as the initial colonization status of broilers before 

processing and the degree of fecal contamination of carcasses during the slaughter operation at the 

processing facility. This contamination is possible particularly if the persistence/growth of these    

E. coli isolates is favored by specific food processing steps, such as scalding, evisceration, washing 

and deboning(44, 88). It has been suggested that clinical E. coli isolates from sick chickens carry 

similar sets of virulence genes as those identified in ExPEC isolates from humans and animals(17, 

56). Moreover, (7, 12, 38, 48), so it is possible that entry of diseased birds into the poultry slaughter 

plant might contribute to the contamination of retail meats.  
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Although next generation sequencing (NGS) can probably provide the necessary resolution for the 

typing of E. coli, and it is often referred to as a fast and cost-effective method, in a routine setting 

Raman spectroscopy is cheaper, faster, and easier to perform (126). It does not require the 

complicated sample preparation steps that are needed for NGS nor does it require special 

DNA/bioinformatics skills and facilities. The data analysis of Raman spectroscopy can be 

performed in minutes for Raman vs hours for NGS, and data analysis of Raman spectra is 

performed in a semiautomated almost real-time fashion while NGS usually requires manual input 

from someone with a bioinformatics background and may take days to complete. The running costs 

of Raman are significantly less as they are limited to a simple sample carrier vs NGS that requires 

costly DNA isolation and sequencing kits. 
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5.Conclusion  

To conclude, this study demonstrated that ST131 is widespread among E. coli clinical isolates in 

our area and the dissemination of ST131-H30 isolates has been observed in our community. 

Moreover, it was found that ST131, especially the H30 subclone are present in poultry meat and 

they are closely related to antimicrobial resistant strains. Importantly, the antimicrobial resistance 

rates of several antibiotics commonly used for UTI have been increased dramatically and the choice 

of empirical therapy has been limited in our locality. The findings highlight the importance of 

clonal expansion in dissemination of antimicrobial resistance among urinary pathogens. In 

summary, our results show that in Sicily a large proportion of retail chicken meat samples carry 

cephalosporin and ciprofloxacin resistant E. coli and especially Extraintestinal pathogenic E. coli. A 

high prevalence of  ESBL and PMQR determinants was also found in these isolates, which raises a 

serious public health concern. A prudent use of antimicrobial agents is urgent in veterinary as well 

as in human medicine to minimize the selection and spread of antibiotic resistant strains and their 

resistance genetic determinants. 

While NGS is a promising technique, currently it is still a relatively slow and costly method, 

especially when single isolates that are suspected to belong to an outbreak have to be typed, 

whereas Raman spectroscopy provides cheap real-time typing of isolates. It can be concluded that 

Raman spectroscopy is able to cluster isolates that are suspected to be related based on 

epidemiological data and their antibiotic profiles. Without typing data and only based on available 

epidemiological data and antibiograms the isolates would have been grouped into four clusters, but 

typing information proved to be very useful for the analysis of these potential outbreaks as several 

patients could be excluded from the outbreaks. However, these data need further confirmation 

before the method can be adapted for routine typing. 
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