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Abstract

In the last few years, it has been observed a drastic surge of data traffic demand from

mobile personal devices (smartphones and tablets) over cellular networks [1]. Even

though a significant improvement in cellular bandwidth provisioning is expected with

LTE-Advanced systems, the overall situation is not expected to change significantly. In

fact, the diffusion of M2M and IoT devices is expected to increase at an exponential pace

(the share of M2M devices is predicted to increase 5x by 2018 [1]) while the capacity of

the cellular network is expected to increase linearly [1]. In order to meet such a high

demand and to increase the capacity of the channel, multiple offloading techniques are

currently under investigation, from modifications inside the cellular network architec-

ture, to integration of multiple wireless broadband infrastructures, to exploiting direct

communications between mobile devices. All these approaches can be diveded in two

main classes:

• To develop more sophisticated physical layer technologies (e.g. massive MIMO,

higher-order modulation schemes, cooperative multi-period transmission/recep-

tion)

• To offload part of the traffic from the cellular to another complementary network.

From this perspective the thesis contributes on both areas. On the one hand we discuss

our investigations about the performance of the LTE channel capacity through the de-

velopment of a unified modelling framework of the MAC-level downlink throughput of

a sigle LTE cell, which caters for wideband CQI feedback schemes, AMC and HARQ

protocols as defined in the LTE standard. Furthemore we also propose a solution, based

on reinforcement learning, to improve the LTE Adaptive Modulation and coding Scheme

(MCS).

On the other hand we have proposed and validated offloading mechanisms which are

minimally invasive for users’ mobile devices, as they use only minimally their resources.

Furthemore, as opposed to most of the literature, we consider the case where requests

for content are non-synchronised, i.e. users request content at random points in time.
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Chapter 1

Introduction

In the last few years, we have observed a drastic surge of data traffic demand from mobile

personal devices (smartphones and tablets) over cellular networks [1]. This has already

generated famous collapses of 3G networks in the recent past, (e.g. [2]), showing that

standard cellular technologies may not be enough to cope with this data demand. Even

though significant improvement in cellular bandwidth provisioning are expected through

LTE-Advanced systems, the overall situation is not expected to change significantly [3].

Besides personal mobile devices, the diffusion of M2M and IoT devices is expected to

increase at an exponential pace (the share of M2M devices is predicted to increase 5x by

2018 [1]), which is likely to generate a corresponding increase in the demand for mobile

traffic (11-fold increase by 2018 [1]). Considerable progress is constantly made at the

physical layer to increase raw bitrates, and clearly LTE and LTE-Advanced will help

in this direction, but this is neither sufficient nor cost-efficient to accomodate all the

increase in data service demand. This is because the trend of traffic demand is expo-

nentilally increasing [1], while the improvements at the physical layer are bounded by

the famous Shannon theorem and by the fact that the licensed spectrum is a limited

and scarse resource. As a result, it is expected that the amount of traffic generated

by 4G users may cause also the collapses of the new cellular technologies such as LTE

and LTE-Advanced. The operator will need to decide to either drastically reduce the

quality of service (QoS) for all the users, or block a significant fraction of the users to

provide acceptable QoS to a few. Both alternatives are largely sub-optimal and generate

user dissatisfaction. As mobile data traffic continues to rise, maintaining an adequate

quality of service is becoming more challenging. This is not just due to the sheer rise in

1



Chapter 1. Introduction 2

traffic, but also because today’s traffic is drastically different from the one a few years

ago. The type of data traffic has transitioned from basic data services (such as email

or SMS) to QoS-sensitive and bandwidth-hungry applications such as video. On the

network management side of the “capacity crunch” challenge, operators have a number

of choices to deal with the consequences of rising data traffic and, like Russian dolls,

there are yet more choices nested within each strategy. For example, they can choose

to expand network capacity through upgrades; but they must then select how to do

this – such as adding more cell sites, upgrading cell sites, rolling out Ethernet in the

backhaul and so on. Furthermore, these choices are also dependent on commercial, reg-

ulatory, operational, and customer-related factors such as the availability of the wireless

spectrum, how much money they have for upgrades, whether they can easily build or

share more towers. In simple terms, operators have three options: add, optimise, and

avoid. Resolving the “capacity gap” in order to maintain network quality is only one

facet of the problem. The real “killer” issue is commercial: revenues are not rising in

line with traffic. This creates what Telesperience terms “the revenue gap”. It adds to

the challenges because operators are facing rising costs without receiving compensating

revenue rises. This, in turn, constrains their ability to tackle the capacity crunch. To

resolve this challenge, operators need to find new revenue streams and optimise revenues

from existing services.

This problematic context has been the starting point of my PhD studies. In fact my

studies has been focused on possible solutions to alleviate the emerging overloadig prob-

lem of the LTE cellular network. In particular the contribution of this thesis is two-fold.

On the one hand I have investigated the performance of the LTE channel capacity. This

study has been necessary to understand the LTE standard technology and how the pro-

tocols layers interact with each other, but at the same time to characterise the limits of

the standard itself. Through this preliminary study I have developed a complete mathe-

matical model of the LTE channel throughput at the MAC and PHY layers, which take

into account all the main mechanism of the LTE standard such as the Channel Qual-

ity Indicator (CQI) feedack schemes, as well as the Adaptive Modulation and Coding

(AMC) schemes and Hybrid-ARQ (HARQ) protocols. Furthemore I have proposed a

new flexible AMC framework based on reinforcement learning, which has been able to

significantly increase the channel capacity. In particular I have exploited a Reinforce-

ment Learning algorithm in the selection of the best Modulation and Coding Scheme

(MCS) by taking into account the outcomes of the previous AMC decisions.
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On the other hand, I have focused my attention on the data traffic offloading of the LTE

network, over a complementary network, in particular over an opportunistic network. In

fact the data traffic offloading is considered one of the most promising approaches to cope

with the overloading problem of cellular networks [1]. In this part I have preliminary

analyzed the performance of several protocols for traffic offloading and then proposed

and evaluated new offloading protocols. In particular I have studied the efficiency in

the case when the requests from the users are not synchronised and thus the multicast

operation is not possible. Through the obtained results, I have shown the efficiency of

the offloading tecnique in reducing the network congestion by achieving a reduction of

the traffic carried by the cellular network up to 90%, without introducing any additional

delay of message loss for end users [4].

1.1 Thesis contributions in the area of LTE throughput

modelling and improvement

The Long Term Evolution (LTE) is an acronym that refers to a series of cellular stan-

dards developed by 3GPP to meet the requirements of 4G systems. In particular, LTE

has been designed to provide high data rates, low latency, and an improved spectral

efficiency compared to previous cellular systems. To achieve these goals LTE adopts ad-

vanced physical layer technologies, such as OFDMA and multi-antenna techniques, and

it supports new Radio Resource Management (RRM) functions for link adaptation. In

particular, to achieve high throughput performance, in addition to an advanced physical

layer design, LTE exploits a combination of sophisticated radio resource management

functionalities, such as Channel Quality Indicator (CQI) reporting, link rate adaptation

through Adaptive Modulation and Coding (AMC), and Hybrid Automatic Retransmis-

sion Request (HARQ) [5].

Adaptive Modulation and Coding (AMC) in LTE networks is commonly employed to

improve system throughput by ensuring more reliable transmissions. Most of existing

AMC methods select the modulation and coding scheme (MCS) using pre-computed

mappings between MCS indexes and channel quality indicator (CQI) feedbacks that are

periodically sent by the receivers. However, the effectiveness of this approach heavily

depends on the assumed channel model. In addition CQI feedback delays may cause

throughput losses. Regarding the HARQ protocol, LTE employs two types of HARQ
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schemes. In HARQ type-I, each encoded data frame is retransmitted until the frame

passes the CRC test or the maximum number of retransmissions is reached. Erroneous

frames are simply discarded. In contrast, in HARQ type-II, each transmission contains

incremental redundancy (IR) about the data frame. Thus, consecutive transmissions

can be combined at the receiver to improve error correction.

1.1.1 LTE Channel Modelling

As mantioned above, a contribution of this thesis is the development of an analytical tool

to accurately assess and optimise the user perceived throughput under realistic channel

assumptions. In particular the main contribution presented in this thesis is a unified

modelling framework of the MAC-level downlink throughput that is valid for homoge-

neous cells [6] and Rayleigh-distributed fading. Our model simultaneously caters for

CQI feedback schemes that use spectral efficiency to generate CQI, as well as AMC and

HARQ protocols. Furthermore, we include in the analysis an accurate link layer ab-

straction model that uses the Mean Mutual Information per coded Bit (MMIB) metric

to derive the physical error probability [7].

The contribution of this part of study was two-fold. On the one hand it represents an

innovation because, from literature, most studies have limited the analysis only to the

radio link throughput or consider single MAC functions in isolation [8]. On the other

hand this study contribute to the development of a tool which can help the cellular net-

work operators to estimate its network congestion, in order to decide when to start the

offloading process. In fact, the throughput estimates of our model are accurate, as vali-

dated using the ns-3 simulator extended with the LENA module for LTE. Furthermore,

our results confirm that the IR-HARQ mechanism is very effective in improving error

correction. However, the effectiveness of the IR-HARQ scheme depends on the appro-

priate selection of the modulation and coding scheme of the first transmission attempt.

A more detailed description of the model will be discussed in Chapter 4.

1.1.2 Reinforcement Learning in LTE-AMC scheme

Despite all the above mentioned innovations of LTE technology, some challenges have to

be addressed. For instance , with respect to the AMC mechanism, the SINR values of
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multiple subcarriers are aggregated and translated into a one-dimensional link quality

metric (LQM), since the same MCS must be assigned to all subcarriers assigned to each

UE. Once the LQM is found, AMC schemes typically exploit static mappings between

these link quality metrics and the BLER performance of each MCS to select the best

MCS (in terms of link throughput). In other words, for each MCS a range of LQM

values is associated via a look-up table, over which that MCS maximises link throughput.

Either link-level simulations or mathematical models can be used to generate such static

BLER curves under a specific channel model. Unfortunately, past research has shown

that it is difficult to derive accurate link performance predictors under realistic channel

assumptions [7, 9–11]. Furthermore, a simulation-based approach to derive the mapping

between LQM values and BLER performance is not scalable since it is not feasible to

exhaustively analyse all possible channel types or several possible sets of parameters [12].

The second main problem with table-based AMC solutions is that a delay of several

transmission time intervals (TTIs) may exist between the time when a CQI report

is generated and the time when that CQI feedback is used for channel adaptation.

This mismatch between the current channel state and its CQI representation, known as

CQI ageing, can negatively affect the efficiency of AMC decisions [13, 14]. In order to

address these iusses, in this thesis we have proposed a new AMC scheme that exploits

a reinforcement learning algorithm to adjust at run-time the MCS selection rules based

on the knowledge of the effect of previous AMC decisions.

The salient features of our proposed solution are: i) the low-dimensional space that

the learner has to explore, and ii) the use of direct link throughput measurements to

guide the decision process. As explained in Chapter 5 simulation results demonstrate the

robustness of our AMC scheme that is capable of discovering the best MCS even if the

CQI feedback provides a poor prediction of the channel performance.

1.2 Thesis contribution in the area of Mobile Data Offload-

ing

In a near future, finding new, alternative communication possibilities to help alleviate

overloaded infrastructures may become a need in operated networks handling mobile

data. Offloading part of the traffic from the cellular to another, complementary, net-

work, is currently considered one of the most promising approaches to cope with this



Chapter 1. Introduction 6

problem, with offloaded traffic being foreseen to account for at least 50% of the overall

traffic in the coming years [1].

Besides the obvious benefit of relieving the infrastructure network load, shifting data to

a complementary wireless technology leads to a number of other improvements, includ-

ing: the increase of the overall throughput, the reduction of content delivery time, the

extension of network coverage, the increase of network availability, and better energy

efficiency. These improvements hit both cellular operators and users; therefore, offload-

ing is often described in the literature as a win−win strategy [15]. Unfortunately, this

does not come for free, and a number of challenges need to be addressed, mainly related

to infrastructure coordination, mobility of users, service continuity, pricing, business

models, and lack of standards. Diverting traffc through fixed WiFi Access Points (AP),

represents a conventional solution to reduce traffic on cellular networks. End-users lo-

cated inside a hot-spot coverage area (typically much smaller than the one of a cellular

macrocell) might use it as a worthwhile alternative to the cellular network when they

need to exchange data. However, coverage is limited and mobility is in general con-

strained within the cell. Since the monetary cost of deploying an array of fixed APs

is far lower than deploying a single cellular base station, the major worldwide cellular

providers such have started integrating an increasing number of wireless APs in their

cellular networks to encourage data offloading [16].

Furthermore, the increasing popularity of smart mobile devices proposing several al-

ternative communication options makes it possible to deploy a device-to-device (D2D)

network that relies on direct communication between mobile users, without any need

for an infrastructure backbone. This innovative approach has intrinsic properties that

can be employed to offload traffic. Benefiting from shared interests among co-located

users, a cellular provider may decide to send popular content only to a small subset

of users via the cellular network, and let these users spread the information through

D2D communications and opportunistic contacts. In fact, typically content popularity

follows Zipf-like distributions, i.e., a small subset of content items is extremely popular

and is accessed by a very large number of users. In such scenarios, the same content

item will be requested by a significant fraction of the users, and the total request in

terms of bandwidth will peak.

Beyond the distinction between AP-based and D2D approaches, another aspect plays

a major role in the categorization. In particular the requirements of the applications

generating the traffic in terms of delivery guarantees. This translates into two additional
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categories: (i) non-delayed offoading and (ii) delayed offoading.

In non-delayed offoading, each packet presents a hard delivery delay constraint defined

by the application, which in general is independent of the network. No extra delay is

added to data reception in order to preserve QoS requirements (other than the delay due

to packet processing, physical transmission, and radio access). For instance, interactive

audio and video streams cannot sustain any additional delay in order to preserve their

real-time requirements. Non-delayed offoading in most cases may be difficult to imple-

ment if one considers that users are mobile and able to switch between various access

technologies. If operators want to allow users to be truly mobile and not only nomadic

inside the coverage area, they should focus on issues such as transparent handover and

interoperability between the alternative access technologies and the existing cellular in-

frastructure.

In delayed offoading, content reception may be intentionally deferred up to a certain

point in time, in order to reach more favorable delivery conditions. The following types

of traffic are included in this category: (i) traffic with loose QoS guarantees on a per-

content basis (meaning that individual packets can be delayed, but the entire content

must reach the user within a given deadline) and (ii) truly delay-tolerant traffic (pos-

sibly without any delay guarantees). If data transfer does not end by the expected

deadline, the cellular channel is employed as a fall-back means to complete the transfer,

guaranteeing a minimal QoS. Despite the loss of the real-time support due to the added

transmission delay, note that many mobile applications generate content intrinsically

delay-tolerant just think about smartphone-based applications that synchronize emails

or podcasts in background. Enabling an alternate distribution method for this content

during peaktimes (when the cellular network is overloaded or even in outage) becomes

an interesting extension and represents a fundamental challenge for offloading solutions.

1.2.1 Mobile Opportunisitc Traffic Offloading

Among the various forms of offloading that are currently investigated, in this thesis we

consider offloading through opportunistic networks. Opportunistic networks [17] exploit

physical proximity between mobile nodes to enable direct communication between them.

They typically exploit ad hoc enabling technologies like WiFi-direct or Bluetooth, and

support dissemination of messages through multi-hop space-time paths , i.e., multi-hop

paths that develop both over space - as in conventional ad hoc multi-hop networks -
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and over time - by exploiting contact opportunities between nodes that become avail-

able over time due to their mobility. The most common scenario where opportunistic

offloading is used is content dissemination to a set of interested users. In most cases,

it is assumed that the set of users interested in receiving a piece of content is known

when the content is generated (or, alternatively, the content is implicitly requested by

all interested users immediately when it is generated) and do not change over time.

In addition, content is “seeded” through the cellular network on a subset of interested

users, and then a dissemination process starts in the opportunistic network in order

to reach the rest of the users [18]. Typically, epidemic dissemination is assumed [19].

In addition, as mentioned above in other cases (e.g. [20, 21]) is considered that content

must be delivered to users within a given deadline. To meet this deadline, content can be

sent through the cellular network to additional seeds during the dissemination process,

and is finally sent to users that are still missing it when the deadline is about to expire

(“panic zone”). To know which users have received the content, a lightweight control

channel is implemented through the cellular network, whereby users send an ACK to

a central controller that tracks the status of the dissemination process, and determines

when to seed additional copies of the content, and when to directly deliver content to

the users in the panic zone.

With respect to this body of work, this thesis differs in two main aspects. On the one

hand, we release the assumption that users interested in a content request it simulta-

neously. In our scenarios content requests occur over time dynamically. On the other

hand, we do not assume epidemic dissemination of content, but consider that content is

exchanged in the opportunistic network only between users that have requested it, when

they encounter directly. Therefore, our scenario covers more general cases with respect

to strictly synchronised requests, and, in addition, provides a worst-case analysis of the

potential of offloading, as we use the least possible aggressive form of dissemination in

the opportunistic network.

As performance metrics we have used the offloading efficiency, defined as the fraction

of nodes receiving content through the opportunistic network. As show in Chapter 6,

we have characterised efficiency as a function of key parameters such as the number

of users, the deadline of content requests, the time after which users drop the content

after having received it, the popularity of the content. Also in this Chapter is possible

to see that, even with an unfavourable opportunistic dissemination scheme, we find that
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offloading can be very efficient, as it is possible to offload up to more than 90% of the

traffic.





Chapter 2

State of the Art

In this Chapter I present a brief discussion about the work related of my thesis. In par-

ticular, Section 2.1 discusses related works on the AMC scheme based on Reinforcement

Learning, and on the state of art of the LTE channel Modelling. Finally the Section 2.2

is dedicated to the related works on the opportunistic offloading.

2.1 LTE Related Works

With respect to the LTE Channel Modelling, several analytical and simulation models,

as well as experimental studies, have been proposed for characterising the throughput

performance of LTE systems. It is out of the scope of this section to provide an ex-

tensive overview of all these studies and we only focus on reviewing analytical models

that are most related to this work. Several works are reported in the literature that

focuses on analysing the bit error probability (BER) for OFDM systems under various

channel configurations and in the presence of channel estimation errors. For instance,

in [22] closed-form expressions for the BER performance of equalized OFDM signals in

Rayleigh fading are derived for various signal constellations. The analytical results of [22]

are extended in [23] to calculate the BER of an OFDM system in the presence of channel

estimation errors. In [24] the BER performance of uncoded OFDM systems are analysed

for Rayleigh and Rice frequency-selective fading channels in the presence of transmitter

nonlinearities. Significant research efforts have been also dedicated to generalise the

BER performance analysis to multiple-input multiple-output (MIMO) channels [25–27].

11
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Most related to our work are the studies that focus on analysing the capacity of LTE

systems with scheduling, rate adaptation and limited channel-state feedback. In [28] an

upper bound is derived for the achievable throughput in LTE systems using the so-called

“best-M” CQI reduction scheme and max-SNR user scheduling. Closed-form expressions

for the throughput achieved in LTE systems under different schedulers (proportional fair,

greedy, and round robin), multiple-antenna diversity modes and CQI feedback schemes

are derived in [29, 30]. Specifically, the model in [29] applies to LTE systems that use

EESM to generate CQI reports (an explanation of the EESM method is provided in

Section 4.2), while the model in [30] applies to LTE systems that generate CQI reports

by simply taking an arithmetic average of the SNRs of the subcarriers. A SNR quanti-

sation feedback scheme is also analysed in [31]. However, most of these works assume a

simplified model for the channel outage, which does not take into account HARQ proce-

dures as specified in the LTE standard. The performance of HARQ with rate adaption

for the LTE downlink is studied in [8], but only through simulations.

Regarding the AMC scheme in LTE, it is important to point out that other studies [32–

35] have proposed to use machine learning techniques to improve AMC in wireless sys-

tems. The main weakness of most of these solutions is to rely on machine learning

algorithms (e.g., pattern classification [33] or SVM [32, 34]) that require large sets of

training samples to build a model of the wireless channel dynamics. Similar to our

work, the AMC scheme proposed in [35] exploits Q-learning algorithms to avoid the use

of model-training phases. However, the MCS selection problem in [35] is defined over a

continuous state space (i.e., received SINR), and even after discretisation a large number

of states must be handled by the learning algorithm.

2.2 Opportunistic Offloading Related Works

Offloading can take several forms. In some cases, traffic is offloaded by using modifica-

tions inside the cellular architecture (e.g. LIPA/SIPTO [36] or small cells [37]), or other

wireless access infrastructures, primarily WiFi [38, 39]. In our work we have consider

offloading that exploits direct communications between mobile devices. Also in this

case there are several approaches. In the 3GPP area, the device-to-device (D2D) [40]

architectural modification to LTE has been defined, that devotes part of the cellular

resources to direct communication between devices under strict control of a common
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eNB. Instead, we focus on using opportunistic networks together with cellular networks,

as previously proposed, e.g. in [18, 20, 21, 41]. In this case, offloading exploits technolo-

gies (such as WiFi direct or Bluetooth) that do not interfere with cellular transmissions,

and therefore no coordination is required with the eNB. In addition, mobile devices

run self-organising networking algorithm to disseminate offloaded content without strict

control of the eNBs or any other central controller. The most common scenario where

opportunistic offloading is used is content dissemination to a set of interested users. In

most cases, it is assumed that the set of users interested in receiving a piece of con-

tent is known when the content is generated (or, alternatively, the content is implicitly

requested by all interested users immediately when it is generated) and do not change

over time. In addition, content is “seeded” through the cellular network on a subset

of interested users, and then a dissemination process starts in the opportunistic net-

work in order to reach the rest of the users [18]. Typically, epidemic dissemination is

assumed [19]. In addition, in other cases (e.g. [20, 21]) is assumed that content must

be delivered to users within a given deadline. To meet this deadline, content can be

sent through the cellular network to additional seeds during the dissemination process,

and is finally sent to users that are still missing it when the deadline is about to expire

(“panic zone”). To know which users have received the content, a lightweight control

channel is implemented through the cellular network, whereby users send an ACK to

a central controller that tracks the status of the dissemination process, and determines

when to seed additional copies of the content, and when to directly deliver content to

the users in the panic zone. With respect to this body of work, this work differs in two

main aspects. On the one hand, we release the assumption that users interested in a

content request it simultaneously. In our scenarios content requests occur over time dy-

namically. On the other hand, we do not assume epidemic dissemination of content, but

consider that content is exchanged in the opportunistic network only between users that

have requested it, when they encounter directly. Therefore, our scenario covers more

general cases with respect to strictly synchronised requests, and, in addition, provides a

worst-case analysis of the potential of offloading, as we use the least possible aggressive

form of dissemination in the opportunistic network. To the best of our knowledge, the

only other work where content requests are not synchronised is [42]. In this work is

assumed that users become interested in the content after a random amount of time

after its generation, and the goal of the proposed system is to maximise the probability

that the user have already the content by then. This is very different from our scheme,
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which works reactively, after users generate requests. Finally, offloading has been also

proposed specifically in vehicular environments. In this case offloading schemes often

assume the presence of RoadSide Units (RSU) [43] to support the dissemination process

(e.g., by pre-fetching popular contents), which we do not assume here, to obtain a solu-

tion requiring no additional infrastructure development. Last but not least, offloading

is proposed also for aggregating and uploading traffic generated by cars, e.g., in the

context of Floating Car Data (FCD) [44].



Chapter 3

3GPP LTE Standard

3.1 Introduction

The term “Long Term Evolution” (LTE) stands for the process to gerate a novel air

interface by the 3rd Generation Partnership Project (3GPP), and for the specified tech-

nology. LTE was initiated as a study item and its technical requirements were agreed

in June 2005 [45]. The target of LTE included reduced latency, higher userdata rates,

improved system capacity and coverage and reduced cost of operations. Lte was required

to become a stand-alone system with packet-switched networking. The study item was

reported the first time in the technical report [46], where it was decided that LTE is

based on a new air interface, different from the WCDMA/HSPA enhancements. The

salient characteristics of LTE are as follows:

• A flat architecture ture based on distributed servers, LTE base stations having

transport connections to the core network without intermediate RAN network

nodes (such as radio network controllers)

• Simplified and efficient radio protocols, where channel state information is available

at the radio protocol peers to optimize the access and to minimize the overhead.

• A physical layer design favouring frequency domain processing for efficiency, en-

abling high data rate transmissions e.g. by multiantenna transmission methods,

and alleviating interference conditions by intracell orthogonality.

15
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• Radio resource management enabling scalability of transmission bandwidth (BW),

and a high degree of multiuser diversity e.g. by time–frequency domain scheduling.

Efficient operation in power saving modes as a designed fundamental property of

the User Equipment (UE).

The evolution of the LTE system, its architecture, protocols and performance are de-

scribed widely e.g. in [47–50]. This chapter contains a brief overview of the overall

architecture of an LTE radio-access network and the associated core network. In par-

ticular a depth description about the Physical and MAC layer is given in order to make

you able to understand the mathematical model of the channel present in Capter 3.

3.2 System Architecture

In parallel to the work on the LTE radio-access technology in 3GPP, the overall system

architecture of both the Radio-Access Network (RAN) and the Core Network (CN) was

revisited, including the split of functionality between the two network parts. This work

was known as the System Architecture Evolution (SAE) and resulted in a flat RAN ar-

chitecture, as well as a new core network architecture referred to as the Evolved Packet

Core (EPC). Together, the LTE RAN and the EPC can be referred to as the Evolved

Packet System (EPS). The RAN is responsible for all radio-related functionality of the

overall network including, for example, scheduling, radio-resource handling, retransmis-

sion protocols, coding and various multiantenna schemes. The EPC is responsible for

functions not related to the radio interface but needed for providing a complete mobile-

broadband network. This includes, for example, authentication, charging functionality,

and setup of end-to-end connections.

3.2.1 Core Network

The EPC is a radical evolution from the GSM/GPRS core network used for GSM and

WCDMA/ HSPA. EPC supports access to the packet-switched domain only, with no

access to the circuitswitched domain. As show in Figure 3.1, it consists of several

different types of nodes, in particular:
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Figure 3.1: Core-network (EPC) architecture.

• The Mobility Management Entity (MME) is the control-plane node of the EPC.

Its responsibilities include connection/release of bearers to a terminal, handling of

IDLE to ACTIVE transitions, and handling of security keys. The functionality

operating between the EPC and the terminal is sometimes referred to as the Non-

Access Stratum (NAS), to separate it from the Access Stratum (AS) which handles

functionality operating between the terminal and the radio-access network.

• The Serving Gateway (S-GW) is the user-plane node connecting the EPC to the

LTE RAN. The S-GW acts as a mobility anchor when terminals move between

eNodeBs, as well as a mobility anchor for other 3GPP technologies (GSM/GPRS

and HSPA). Collection of information and statistics necessary for charging is also

handled by the S-GW.

• The Packet Data Network Gateway (PDN Gateway, P-GW) connects the EPC to

the internet. Allocation of the IP address for a specific terminal is handled by the

P-GW, as well as quality of service enforcement according to the policy controlled

by the PCRF (see below). The P-GW is also the mobility anchor for non-3GPP

radio-access technologies, such as CDMA2000, connected to the EPC.

In addition, the EPC also contains other types of nodes such as Policy and Charging

Rules Function (PCRF) responsible for quality-of-service (QoS) handling and charging,

and the Home Subscriber Service (HSS) node, a database containing subscriber infor-

mation. There are also some additional nodes present as regards network support of
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Figure 3.2: Radio-access-network interfaces.

Multimedia Broadcast Multicast Services (MBMS). It should be noted that the nodes

discussed above are logical nodes. In an actual physical implementation, several of them

may very well be combined. For example, the MME, P-GW, and S-GW could very well

be combined into a single physical node.

3.2.2 Radio-Access Network

The LTE radio-access network uses a flat architecture with a single type of node: the

eNodeB. The eNodeB is responsible for all radio-related functions in one or several

cells. It is important to note that an eNodeB is a logical node and not a physical

implementation. One common implementation of an eNodeB is a three-sector site, where

a base station is handling transmissions in three cells, although other implementations

can be found as well, such as one baseband processing unit to which a number of remote

radio heads are connected. As can be seen in Figure 3.2, the eNodeB is connected to

the EPC by means of the S1 interface, more specifically to the S-GW by means of the

S1 user-plane part, S1-u, and to the MME by means of the S1 control-plane part, S1-c.

One eNodeB can be connected to multiple MMEs/S-GWs for the purpose of load sharing

and redundancy. The X2 interface, connecting eNodeBs to each other, is mainly used

to support active-mode mobility. This interface may also be used for multi-cell Radio

Resource Management (RRM) functions such as Inter-Cell Interference Coordination
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Figure 3.3: Overall RAN protocol architecture.

(ICIC). It is also used to support lossless mobility between neighboring cells by means

of packet forwarding.

3.3 Radio Protocol Architecture

Figure 3.3 illustrates the RAN protocol architecture. The LTE radio-access network

provides one or more Radio Bearers to which IP packets are mapped according to their

Quality-of-Service requirements. The different protocol entities of the radio-access net-

work are summarized as follow:

• Packet Data Convergence Protocol (PDCP) performs IP header compression to

reduce the number of bits to transmit over the radio interface. The header-

compression mechanism is based on Robust Header Compression (ROHC), a stan-

dardized header-compression algorithm also used for several mobile-communication

technologies. PDCP is also responsible for ciphering and, for the control plane,

integrity protection of the transmitted data, as well as in-sequence delivery and

duplicate removal for handover. At the receiver side, the PDCP protocol performs

the corresponding deciphering and decompression operations. There is one PDCP

entity per radio bearer configured for a terminal.

• Radio-Link Control (RLC) is responsible for segmentation/concatenation, retrans-

mission handling, duplicate detection, and in-sequence delivery to higher layers.

The RLC provides services to the PDCP in the form of radio bearers. There is

one RLC entity per radio bearer configured for a terminal.
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Figure 3.4: LTE data flow.

• Medium-Access Control (MAC) handles multiplexing of logical channels, hybrid-

ARQ retransmissions, and uplink and downlink scheduling. The scheduling func-

tionality is located in the eNodeB for both uplink and downlink. The hybrid-ARQ

protocol part is present in both the transmitting and receiving ends of the MAC

protocol. The MAC provides services to the RLC in the form of logical channels.

• Physical Layer (PHY) handles coding/decoding, modulation/demodulation, multi-

antenna mapping, and other typical physical-layer functions. The physical layer

offers services to the MAC layer in the form of transport channels.

To summarize the flow of downlink data through all the protocol layers, an example

illustration for a case with three IP packets, two on one radio bearer and one on another

radio bearer, is given in Figure 3.4. The data flow in the case of uplink transmission is

similar. The PDCP performs (optional) IP-header compression, followed by ciphering.

A PDCP header is added, carrying information required for deciphering in the terminal.

The output from the PDCP is forwarded to the RLC. The RLC protocol performs

concatenation and/or segmentation of the PDCP SDUs and adds an RLC header. The

header is used for in-sequence delivery (per logical channel) in the terminal and for

identification of RLC PDUs in the case of retransmissions. The RLC PDUs are forwarded

to the MAC layer, which multiplexes a number of RLC PDUs and attaches a MAC

header to form a transport block. The transport-block size depends on the instantaneous

data rate selected by the linkadaptation mechanism. Thus, the link adaptation affects

both the MAC and RLC processing. Finally, the physical layer attaches a CRC to
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Figure 3.5: RLC Segmentation.

the transport block for error-detection purposes, performs coding and modulation, and

transmits the resulting signal, possibly using multiple transmit antennas.

3.3.1 Radio-Link Control

The RLC protocol is responsible for segmentation/concatenation of (header-compressed)

IP packets, also known as RLC SDUs, from the PDCP into suitably sized RLC PDUs.

It also handles retransmission of erroneously received PDUs, as well as removal of du-

plicated PDUs. Finally, the RLC ensures in-sequence delivery of SDUs to upper layers.

Depending on the type of service, the RLC can be configured in different modes to

perform some or all of these functions. Segmentation and concatenation, one of the

main RLC functions, is illustrated in Figure 3.5. Depending on the scheduler decision,

a certain amount of data is selected for transmission from the RLC SDU buffer and the

SDUs are segmented/concatenated to create the RLC PDU. Thus, for LTE the RLC

PDU size varies dynamically. For high data rates, a large PDU size results in a smaller

relative overhead, while for low data rates, a small PDU size is required as the payload

would otherwise be too large. Hence, as the LTE data rates may range from a few

kbit/s up to 3 Gbit/s, dynamic PDU sizes are motivated for LTE in contrast to earlier

mobile-communication technologies, which typically use a fixed PDU size. Since the

RLC, scheduler, and rate adaptation mechanisms are all located in the eNodeB, dy-

namic PDU sizes are easily supported for LTE. In each RLC PDU, a header is included,

containing, among other things, a sequence number used for in-sequence delivery and

by the retransmission mechanism. The RLC retransmission mechanism is also respon-

sible for providing error-free delivery of data to higher layers. To accomplish this, a

retransmission protocol operates between the RLC entities in the receiver and transmit-

ter. By monitoring the sequence numbers of the incoming PDUs, the receiving RLC

can identify missing PDUs. Status reports are then fed back to the transmitting RLC
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entity, requesting retransmission of missing PDUs. Based on the received status report,

the RLC entity at the transmitter can take the appropriate action and retransmit the

missing PDUs if needed. Although the RLC is capable of handling transmission errors

due to noise, unpredictable channel variations, etc., error-free delivery is in most cases

handled by the MAC-based hybrid-ARQ protocol.

3.3.2 Medium-Access Control

The MAC layer handles logical-channel multiplexing, hybrid-ARQ retransmissions, and

uplink and downlink scheduling. It is also responsible for multiplexing/demultiplexing

data across multiple component carriers when carrier aggregation is used.

3.3.3 Logical Channels and Transport Channels

The MAC provides services to the RLC in the form of logical channels. A logical channel

is defined by the type of information it carries and is generally classified as a control

channel, used for transmission of control and configuration information necessary for

operating an LTE system, or as a traffic channel, used for the user data. The set of

logical-channel types specified for LTE includes:

• The Broadcast Control Channel (BCCH), used for transmission of system infor-

mation from the network to all terminals in a cell. Prior to accessing the system,

a terminal needs to acquire the system information to find out how the system is

configured and, in general, how to behave properly within a cell.

• The Paging Control Channel (PCCH), used for paging of terminals whose location

on a cell level is not known to the network. The paging message therefore needs

to be transmitted in multiple cells.

• The Common Control Channel (CCCH), used for transmission of control infor-

mation in conjunction with random access.

• The Dedicated Control Channel (DCCH), used for transmission of control infor-

mation to/from a terminal. This channel is used for individual configuration of

terminals such as different handover messages.
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• The Multicast Control Channel (MCCH), used for transmission of control infor-

mation required for reception of the MTCH.

• The Dedicated Traffic Channel (DTCH), used for transmission of user data

to/from a terminal. This is the logical channel type used for transmission of

all uplink and non-MBSFN downlink user data.

• The Multicast Traffic Channel (MTCH).

From the physical layer, the MAC layer uses services in the form of transport channels.

A transport channel is defined by how and with what characteristics the information

is transmitted over the radio interface. Data on a transport channel is organized into

transport blocks. In each Transmission Time Interval (TTI), at most one transport

block of dynamic size is transmitted over the radio interface to/from a terminal in

the absence of spatial multiplexing. In the case of spatial multiplexing (MIMO), there

can be up to two transport blocks per TTI. Associated with each transport block is a

Transport Format (TF), specifying how the transport block is to be transmitted over

the radio interface. The transport format includes information about the transport-

block size, the modulation-and-coding scheme, and the antenna mapping. By varying

the transport format, the MAC layer can thus realize different data rates. Rate control

is therefore also known as transport-format selection. The following transport-channel

types are defined for LTE:

• The Broadcast Channel (BCH) has a fixed transport format, provided by the

specifications. It is used for transmission of parts of the BCCH system information,

more specifically the so-called Master Information Block (MIB).

• The Paging Channel (PCH) is used for transmission of paging information from

the PCCH logical channel. The PCH supports discontinuous reception (DRX) to

allow the terminal to save battery power by waking up to receive the PCH only at

predefined time instants.

• The Downlink Shared Channel (DL-SCH) is the main transport channel used

for transmission of downlink data in LTE. It supports key LTE features such

as dynamic rate adaptation and channeldependent scheduling in the time and

frequency domains, hybrid ARQ with soft combining, and spatial multiplexing. It
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Figure 3.6: Downlink channel mapping.

Figure 3.7: Uplink channel mapping.

also supports DRX to reduce terminal power consumption while still providing an

always-on experience. The DL-SCH is also used for transmission of the parts of

the BCCH system information not mapped to the BCH. There can be multiple

DL-SCHs in a cell, one per terminal scheduled in this TTI, and, in some subframes,

one DL-SCH carrying system information.

• The Multicast Channel (MCH).

• The Uplink Shared Channel (UL-SCH) is the uplink counterpart to the DL-SCH

that is, the uplink transport channel used for transmission of uplink data.

Part of the MAC functionality is multiplexing of different logical channels and mapping

of the logical channels to the appropriate transport channels. The supported mappings

between logical-channel types and transport-channel types are given in Figure 3.6 for

the downlink and Figure 3.7 for the uplink.
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Figure 3.8: Transport-format selection in downlink and uplink.

3.4 Scheduling

The purpose of the scheduler is to determine to/from which terminal(s) to transmit

data and on which set of resource blocks. The scheduler is a key element and to a

large degree determines the overall behavior of the system. The basic operation is so-

called dynamic scheduling, where the eNodeB in each 1 ms TTI transmits scheduling

information to the selected set of terminals, controlling the uplink and downlink trans-

mission activity. The scheduling decisions are transmitted on the PDCCHs. To reduce

the control signaling overhead, there is also the possibility of semi-persistent schedul-

ing. Semipersistent scheduling is only supported on the primary component carriers,

motivated by the fact that the main usage is for small payloads not requiring multiple

component carriers. The downlink scheduler is responsible for dynamically controlling

the terminal(s) to transmit to and, for each of these terminals, the set of resource blocks

upon which the terminal’s DL-SCH (or DL-SCHs in the case of carrier aggregation) is

transmitted. Transport-format selection (selection of transport-bock size, modulation-

and-coding scheme, resource-block allocation, and antenna mapping) for each component

carrier and logical channel multiplexing for downlink transmissions are controlled by the

eNodeB, as illustrated in the left part of Figure 3.8. The uplink scheduler serves a sim-

ilar purpose, namely to dynamically control which terminals are to transmit on their

UL-SCH (or UL-SCHs in the case of carrier aggregation) and on which uplink resources.

The uplink scheduler is in complete control of the transport format the terminal will

use, whereas the logical-channel multiplexing is controlled by the terminal according to
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a set of rules. Thus, uplink scheduling is per terminal and not per radio bearer. This

is illustrated in the right part of Figure 3.8, where the scheduler controls the transport

format and the terminal controls the logical-channel multiplexing.

3.4.1 Downlink Scheduling

The task of the downlink scheduler is to dynamically determine the terminal(s) to trans-

mit to and, for each of these terminals, the set of resource blocks upon which the ter-

minal’s DL-SCH should be transmitted. In most cases, a single terminal cannot use the

full capacity of the cell, for example due to lack of data. Also, as the channel properties

may vary in the frequency domain, it is useful to be able to transmit to different termi-

nals on different parts of the spectrum. Therefore, multiple terminals can be scheduled

in parallel in a subframe, in which case there is one DL-SCH per scheduled terminal

and component carrier, each dynamically mapped to a (unique) set of frequency re-

sources. The scheduler is in control of the instantaneous data rate used, and the RLC

segmentation and MAC multiplexing will therefore be affected by the scheduling deci-

sion. Although formally part of the MAC layer but to some extent better viewed as a

separate entity, the scheduler is thus controlling most of the functions in the eNodeB

associated with downlink data transmission:

• RLC. Segmentation/concatenation of RLC SDUs is directly related to the instan-

taneous data rate. For low data rates, it may only be possible to deliver a part of

an RLC SDU in a TTI, in which case segmentation is needed. Similarly, for high

data rates, multiple RLC SDUs may need to be concatenated to form a sufficiently

large transport block.

• MAC. Multiplexing of logical channels depends on the priorities between different

streams. For example, radio resource control signaling, such as handover com-

mands, typically has a higher priority than streaming data, which in turn has

higher priority than a background file transfer. Thus, depending on the data rate

and the amount of traffic of different priorities, the multiplexing of different logical

channels is affected. Hybrid-ARQ retransmissions also need to be accounted for.

• L1. Coding, modulation and, if applicable, the number of transmission layers and

the associated precoding matrix are obviously affected by the scheduling decision.
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The choices of these parameters are mainly determined by the radio conditions

and the selected data rate – that is, the transport block size.

The scheduling decision is communicated to each of the scheduled terminals through the

downlink L1/L2 control signaling using one PDCCH per downlink assignment. Each

terminal monitors a set of PDCCHs for downlink scheduling assignments. A scheduling

assignment is transmitted in the same subframe as the data. If a valid assignment

matching the identity of the terminal is found, then the terminal receives and processes

the transmitted signal as indicated in the assignment. Once the transport block is

successfully decoded, the terminal will demultiplex the received data into the appropriate

logical channels. The scheduling strategy is implementation specific and not part of the

3GPP specifications. However, the overall goal of most schedulers is to take advantage

of the channel variations between terminals and preferably to schedule transmissions to

a terminal when the channel conditions are advantageous. Most scheduling strategies

therefore need information about:

• channel conditions at the terminal;

• buffer status and priorities of the different data flows;

• the interference situation in neighboring cells (if some form of interference coordi-

nation is implemented).

Information about the channel conditions at the terminal can be obtained in several

ways. In principle, the eNodeB can use any information available, but typically the

channel-state reports from the terminal are used. However, additional sources of channel

knowledge, for example exploiting channel reciprocity to estimate the downlink quality

from uplink channel estimates in the case of TDD, can also be exploited by a particular

scheduler implementation.

3.4.2 Uplink Scheduling

The basic function of the uplink scheduler is similar to its downlink counterpart, namely

to dynamically determine, for each 1 ms interval, which terminals are to transmit and

on which uplink resources. As discussed before, the LTE uplink is primarily based
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on maintaining orthogonality between different uplink transmissions and the shared re-

source controlled by the eNodeB scheduler is time–frequency resource units. In addition

to assigning the time–frequency resources to the terminal, the eNodeB scheduler is also

responsible for controlling the transport format the terminal will use for each of the

uplink component carriers. As the scheduler knows the transport format the terminal

will use when it is transmitting, there is no need for outband control signaling from

the terminal to the eNodeB. This is beneficial from a coverage perspective, taking into

account that the cost per bit of transmitting outband control information can be signif-

icantly higher than the cost of data transmission, as the control signaling needs to be

received with higher reliability. It also allows the scheduler to tightly control the uplink

activity to maximize the resource usage compared to schemes where the terminal au-

tonomously selects the data rate, as autonomous schemes typically require some margin

in the scheduling decisions. A consequence of the scheduler being responsible for selec-

tion of the transport format is that accurate and detailed knowledge about the terminal

situation with respect to buffer status and power availability is more accentuated in LTE

compared to systems where the terminal autonomously controls the transmission param-

eters. The basis for uplink scheduling is scheduling grants, containing the scheduling

decision and providing the terminal information about the resources and the associated

transport format to use for transmission of the UL-SCH on one component carrier. Only

if the terminal has a valid grant is it allowed to transmit on the corresponding UL-SCH;

autonomous transmissions are not possible without a corresponding grant. Dynamic

grants are valid for one subframe – that is, for each subframe in which the terminal is to

transmit on the UL-SCH, the scheduler issues a new grant. Uplink component carriers

are scheduled independently; if the terminal is to transmit simultaneously on multiple

component carriers, multiple scheduling grants are needed. The terminal monitors a set

of PDCCHs for uplink scheduling grants. Upon detection of a valid uplink grant, the

terminal will transmit its UL-SCH according to the information in the grant. Obviously,

the grant cannot relate to the same subframe it was received in as the uplink subframe

has already started when the terminal has decoded the grant. The terminal also needs

some time to prepare the data to transmit. Therefore, a grant received in subframe n

affects the uplink transmission in a later subframe. Similarly to the downlink case, the

uplink scheduler can exploit information about channel conditions, buffer status, and

priorities of the different data flows, and, if some form of interference coordination is
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employed, the interference situation in neighboring cells. Channel-dependent scheduling,

which typically is used for the downlink, can be used for the uplink as well.

3.4.3 Channel-State Reporting

As mentioned several times, the possibility for downlink channel-dependent scheduling

– that is, selecting the downlink transmission configuration and related parameters de-

pending on the instantaneous downlink channel conditions – is a key feature of LTE. An

important part of the support for downlink channel-dependent scheduling is channel-

state reports provided by terminals to the network, reports on which the latter can base

its scheduling decisions. The channel-state reports consist of one or several pieces of

information:

• Rank indication (RI), providing a recommendation on the transmission rank to use

or, expressed differently, the number of layers that should preferably be used for

downlink transmission to the terminal. RI only needs to be reported by terminals

that are configured to be in one of the spatial multiplexing transmission modes.

There is at most one RI reported, valid across the full bandwidth- that is, the

RI is frequency non-selective. Frequency-dependent transmission rank would be

impossible to utilize since all layers are transmitted on the same set of resource

blocks in LTE.

• Precoder matrix indication (PMI), indicating which of the precoder matrices should

preferably be used for the downlink transmission. The reported precoder matrix

is determined assuming the number of layers indicated by the RI. The precoder

recommendation may be frequency selective, implying that the terminal may rec-

ommend different precoders for different parts of the downlink spectrum. Further-

more, the network can restrict the set of matrices from which the terminal should

select the recommended precoder, so-called codebook subset restriction, to avoid

reporting precoders that are not useful in the antenna setup used.

• Channel-quality indication (CQI), representing the highest modulation-and-coding

scheme that, if used, would mean PDSCCH transmissions (using the recommended

RI and PMI) were received with a block-error rate of at most 10%. The reason to

use CQI as a feedback quantity instead of, for example, the signal-to-noise ratio,
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is to account for different receiver implementation in the terminal. Also, basing

the feedback reports on CQI instead of signal-to-noise ratio also simplifies the

testing of terminals; a terminal delivering data with more than 10% block-error

probability when using the modulation-and-coding scheme indicated by the CQI

would fail the test. As will be discussed further below, multiple CQI reports, each

representing the channel quality in a certain part of the downlink spectrum, can

be part of a channel-state report.

Together, a combination of the RI, PMI, and CQI forms a channel-state report.

3.5 HYBRID ARQ WITH SOFT COMBINING

The hybrid-ARQ functionality spans both the physical layer and the MAC layer; gener-

ation of different redundancy versions at the transmitter as well as the soft combining

at the receiver are handled by the physical layer, while the hybrid-ARQ protocol is part

of the MAC layer. In the presence of carrier aggregation, there is, as already stated, one

independent hybrid-ARQ entity per component carrier and terminal. Unless otherwise

noted, the description below holds for one component carrier – that is, the description

is on a per-component carrier basis. The basis for the LTE hybrid-ARQ mechanism is

a structure with multiple stop-and-wait protocols, each operating on a single transport

block. In a stop-and-wait protocol, the transmitter stops and waits for an acknowledge-

ment after each transmitted transport block. This is a simple scheme; the only feedback

required is a single bit indicating positive or negative acknowledgement of the transport

block. However, since the transmitter stops after each transmission, the throughput

is also low. LTE, as illustated in Figure 3.9 , therefore applies multiple stop-and-wait

processes operating in parallel such that, while waiting for acknowledgement from one

process, the transmitter can transmit data to another hybrid-ARQ process. Upon receiv-

ing a transport block for a certain hybrid-ARQ process, the receiver makes an attempt

to decode the transport block and informs the transmitter about the outcome through

a hybrid-ARQ acknowledgement, indicating whether the transport block was correctly

decoded or not. The time from reception of data until transmission of the hybrid-ARQ

acknowledgement is fixed, hence the transmitter knows from the timing relation which

hybrid-ARQ process a received acknowledgement relates to. This is beneficial from an
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Figure 3.9: Multiple parallel hybrid-ARQ processes forming one hybrid-ARQ entity.

overhead perspective as there is no need to signal the process number along with the

acknowledgement. An important part of the hybrid-ARQ mechanism is the use of soft

combining, which implies that the receiver combines the received signal from multiple

transmission attempts.

3.6 Physical Layer Organizzation

OFDM is the basic transmission scheme for both the downlink and uplink transmission

directions in LTE although, for the uplink. The LTE OFDM subcarrier spacing equals

15 kHz for both downlink and uplink. The selection of the subcarrier spacing in an

OFDM-based system needs to carefully balance overhead from the cyclic prefix against

sensitivity to Doppler spread/shift and other types of frequency errors and inaccuracies.

The choice of 15 kHz for the LTE subcarrier spacing was found to offer a good balance

between these two constraints. Assuming an FFT-based transmitter/receiver implemen-

tation, 15 kHz subcarrier spacing corresponds to a sampling rate fs = 15000 ∗NFFT ,

where NFFT is the FFT size. It is important to understand though that the LTE

specifications do not in any way mandate the use of FFT-based transmitter/ receiver

implementations and even less so a particular FFT size or sampling rate. Nevertheless,

FFT-based implementations of OFDM are common practice and an FFT size of 2048,

with a corresponding sampling rate of 30.72 MHz, is suitable for the wider LTE carrier

bandwidths, such as bandwidths of the order of 15 MHz and above. However, for smaller

carrier bandwidths, a smaller FFT size and a correspondingly lower sampling rate can

very well be used. The sampling rate above illustrates another factor influencing the

choice of the LTE subcarrier spacing, namely a desire to simplify implementation of
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dual-mode LTE/HSPA terminals. Assuming a power-of-two FFT size and a subcarrier

spacing of 15 kHz, the sampling rate ∆f ∗ NFFT will be a multiple or sub-multiple

of the HSPA chip rate of 3.84 Mchip/s. In the time domain, LTE transmissions are

organized into (radio) frames of length 10 ms, each of which is divided into ten equally

sized subframes of length 1 ms, as illustrated in Figure 3.10. Each subframe consists of

two equally sized slots of length Tslot = 0.5 ms, with each slot consisting of a number of

OFDM symbols including cyclic prefix. On a higher level, each frame is identified by a

System Frame Number (SFN). The SFN is used to control different transmission cycles

that may have a period longer than one frame, such as paging sleep-mode cycles and

periods for channel-status reporting. The SFN period equals 1024, thus the SFN repeats

itself after 1024 frames or roughly 10 seconds. LTE defines two cyclic-prefix lengths, the

normal cyclic prefix and an extended cyclic prefix, corresponding to seven and six OFDM

symbols per slot respectively. In particular a longer cyclic prefix, although less efficient

from a cyclic-prefix-overhead point of view, may be beneficial in specific environments

with extensive delay spread, for example in very large cells. It is important to have

in mind, though, that a longer cyclic prefix is not necessarily beneficial in the case of

large cells, even if the delay spread is very extensive in such cases. If, in large cells, link

performance is limited by noise rather than by signal corruption due to residual time

dispersion not covered by the cyclic prefix, the additional robustness to radio-channel

time dispersion, due to the use of a longer cyclic prefix, may not justify the correspond-

ing additional energy overhead of a longer cyclic prefix. The overall Time organizzation

is illustrated in Figure 3.10. A resource element, consisting of one subcarrier during one

OFDM symbol, is the smallest physical resource in LTE. Furthermore, as illustrated in

Figure 3.11, resource elements are grouped into resource blocks, where each resource

block consists of 12 consecutive subcarriers in the frequency domain and one 0.5 ms

slot in the time domain. Each resource block thus consists of 7 ∗ 12 = 84 resource el-

ements in the case of a normal cyclic prefix and 6 ∗ 12 = 72 resource elements in the

case of an extended cyclic prefix. Although resource blocks are defined over one slot, the

basic time-domain unit for dynamic scheduling in LTE is one subframe, consisting of

two consecutive slots. The minimum scheduling unit, consisting of two time-consecutive

resource blocks within one subframe (one resource block per slot), can be referred to as

a resource-block pair. The LTE physical-layer specification allows for a carrier to consist

of any number of resource blocks in the frequency domain, ranging from a minimum of

six resource blocks up to a maximum of 110 resource blocks. This corresponds to an
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Figure 3.10: LTE time-domain structure.

Figure 3.11: The LTE physical time–frequency resource.

overall transmission bandwidth ranging from roughly 1 MHz up to in the order of 20

MHz with very fine granularity and thus allows for a very high degree of LTE bandwidth

flexibility, at least from a physical-layer-specification point of view. The resource-block

definition above applies to both the downlink and uplink transmission directions. How-

ever, there is a minor difference between the downlink and uplink in terms of where the

carrier center frequency is located in relation to the subcarriers.





Chapter 4

Analysis of MAC-level

Throughput in LTE Systems

4.1 Introduction

As mentioned in Chapter 3 3GPP-LTE is the emerging standard for future 4G cellular

systems. To achieve high throughput performance, in addition to an advanced physical

layer design, LTE exploits a combination of sophisticated radio resource management

functionalities, such as Channel Quality Indicator (CQI) reporting, link rate adaptation

through Adaptive Modulation and Coding (AMC), and Hybrid Automatic Retransmis-

sion Request (HARQ) [5]. Specifically, a base station (eNB) can simultaneously serve

multiple users on orthogonal subcarriers that are grouped into frequency resource blocks

(RBs). Then, each user (UE) periodically measures channel state information that is

fed back to the eNB in terms of CQI reports. Typically, only aggregate CQI values are

reported to reduce channel feedback information. CQI measurements are used by eNBs

for scheduling and link rate adaptation on the downlink [51]. For instance, the modula-

tion and coding scheme (MCS) is typically selected in order to maximise the data rate to

the scheduled UE subject to a constraint on the error probability. Errors at the physical

layer are also mitigated by exploiting automatic retransmission protocols with channel

coding (HARQ). More precisely, HARQ procedures use the classical stop-and-wait algo-

rithm, in which the eNB decides to perform a retransmission based on the exchange of

ACK/NACK messages with the UE. Then, UEs try to decode the packet by combining

35
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the retransmitted copies. Since user, cell and radio link throughputs are among the most

important performance indicators that the operators adopt to assess the QoS in an LTE

system [52], an extensive literature exists that investigates LTE throughput performance

based on analytical models [28, 29, 31], simulation tools [51] or field tests [53, 54]. How-

ever, it is evident that a complex interplay exists among the various mechanisms that

operate at the MAC layer to improve communication reliability and to increase data

rates. This makes accurate LTE throughput analysis notably difficult. Thus, most stud-

ies limit the analysis only to the radio link throughput or consider single MAC functions

in isolation [8]. Furthermore, simplified error models are typically considered that only

allow deriving upper bounds for the LTE throughput [28]. This Chapter illustrates a

unified modelling framework of the MAC-level downlink throughput [55] that is valid

for homogeneous cells [6] and Rayleigh-distributed fading. This model simultaneously

caters for CQI feedback schemes that use spectral efficiency to generate CQI, as well as

AMC and HARQ protocols. Furthermore, we include in the analysis an accurate link

layer abstraction model that uses the Mean Mutual Information per coded Bit (MMIB)

metric to derive the physical error probability [7]. The throughput estimates of our

model are accurate, as validated using the ns-3 simulator extended with the LENA

module for LTE1. Furthermore, the results confirm that the IR-HARQ mechanism is

very effective in improving error correction. However, the effectiveness of the IR-HARQ

scheme depends on the appropriate selection of the modulation and coding scheme of

the first transmission attempt.

4.2 LTE MAC Protocol Specification

Now a briefly describe relevant details of the LTE MAC for downlink transmissions,

with special attention to frame structure, CQI feedback mechanisms and HARQ pro-

tocols. We also introduce the system model and notation, and we discuss the main

assumptions that underlay our analysis. More details can be found in Chapter 3. In

the downlink, LTE uses the Orthogonal Frequency Division Multiple Access (OFDMA)

scheme. Specifically, in the frequency domain the system bandwidth, W , is divided into

several orthogonal subcarriers. Each subcarrier has a bandwidth of 15 kHz. In the time

domain, the duration of one LTE radio frame is 10 ms. One frame is divided into ten

1http://networks.cttc.es/mobile-networks/software-tools/lena/
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transmission time intervals (TTIs) of 1 ms each. Furthermore, each TTI consists of two

0.5 ms slots. Each slot contains either six or seven OFDM symbols, depending on the

Cyclic Prefix (CP) length. A set of twelve consecutive subcarriers over the duration of

one slot is called a physical Resource Block (RB). Hereafter, we denote with q the total

number of RBs available over the system bandwidth. Since the RB bandwidth is only

180 kHz, it is reasonable to assume that the channel response is frequency-flat across

all the twelve subcarriers of the RB2. Then, let us denote with γi,k the SNR of the ith

RB of the kth UE. Clearly, the statistics of the SNR depend on the channel model and

the multi-antenna diversity mode of operation. As commonly adopted in other LTE

models, e.g. [29], in this study we assume that the fading from the eNB to the UEs is

Rayleigh distributed. This implies that the SNR of each RB is an exponential random

variable (RV) [56]. Furthermore, we also assume an homogeneous cell model [6], i.e. the

SNR is independent for different users and RBs. This also means that the SNRs of all

RBs are uncorrelated in frequency and space, and γi,k can be regarded as independent

and identically distributed (i.i.d.) RV. Popular methods (e.g., EESM and MIESM) that

are typically used in LTE to compute CQI values rely on the concept of effective SNR.

Basically, the UEs map the SNRs of multiple subcarriers/RBs into a single value by ap-

plying complex non-linear transformations. Then, the effective SINR is used to estimate

the BLER experienced by a user and to determine the appropriate MCS, i.e. the MCS

that allows the UE to decode the transport block with an error rate probability not

exceeding 10%. However, the statistics of the effective SNR generated by EESM and

MIESM techniques are not known in closed-form. Thus, they must be approximated or

computed numerically, which makes performance analysis difficult [29, 57]. An alterna-

tive approach proposed in [58] to implement AMC capabilities is based on the spectral

efficiency. Specifically, let us denote the with ηi,k the spectral efficiency of the ith RB

of the kth UE. Then, it holds that [59]

ηi,k=log2

(
1 +

γi,k
Γ

)
, (4.1)

where Γ = − ln(5β)/1.5 and β is BLER upper bound. Now a static mapping can be

determined between the spectral efficiency and the CQI index, as well as between the

CQI index and the MCS value [58]. More formally, let us denote with Ci,k the CQI

index for the ith RB of the kth UE. Typically the value of CQI can range between 1

2This assumption will hold for highly dispersive channels with a long delay spread.
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Figure 4.1: Transport block segmentation.

and L. Then, Ci,k = j (j = 0, . . . , L) if Sj ≤ ηi,k ≤ Sj+1, with S0 = 0 and SL+1 = ∞.

In other words the CQI value is a quantised version of the spectral efficiency3. Closely

related to the MCS selection is also the transport block (TB) size determination. More

precisely, let nk the number of RBs allocated to the kth UE during a frame. Then, the

number B of bits that can be delivered in those RBs, which is called transport block, is

a function of the MCS index4. Furthermore, if B > Z (with Z = 6144 bits in 3GPP-

LTE) the transport block is segmented into a number C of code blocks (CBs) that are

independently encoded. Note that the CB size highly impacts the actual BLER perfor-

mance for a given MCS [7]. Figure 4.1 exemplifies the transport block segmentation.

Regarding the HARQ protocol, LTE employs two types of HARQ schemes. In HARQ

type-I, each encoded data frame is retransmitted until the frame passes the CRC test

or the maximum number of retransmissions is reached. Erroneous frames are simply

discarded. In contrast, in HARQ type-II, each transmission contains incremental re-

dundancy (IR) about the data frame. Thus, consecutive transmissions can be combined

at the receiver to improve error correction. Although our model is valid for all HARQ

types, in the following we only consider HARQ type-II that is the most widely used in

LTE. Note that in LTE systems retransmissions typically use the same MCS index as the

initial transmission. It is also important to point out that the transmission of HARQ

feedbacks (i.e. ACK/NACK messages) is not instantaneous but each received packet

experiences a processing delay. According to the LTE standard, the processing delay at

the receiver is about 3 ms. Thus, assuming the same delay to process data transmissions

3Note that in the 3GPP-LTE standard, L = 16 and the Sj thresholds are specified in Table 7.2.3-1
of [60]. Furthermore, in the 3GPP-LTE standard the available MCS indexes are 32 but a 4-bit CQI
allows selecting only 15 MCS (for CQI=0 no transmission will be scheduled). Thus, in practical LTE
systems only a subset of available MCS is typically used.

4See Table 7.1.7.2.1-1 of [60] for the static mapping between TB size, MCS and number of RBs
allocated to the UE.
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Figure 4.2: HARQ processes and timing in FDD-LTE DL.

and ACK/NACK messages, the HARQ round trip time, say τARQ, is 7 TTIs, as shown

in Figure 4.2. For this reason, an eNB must support up to 8 parallel HARQ processes

for each UE to enable uninterrupted communications. In this way, an eNB can continue

to transmit new TBs while the UEs are decoding already received TBs.

4.3 MAC-level Throughput Analysis

In this section we develop the mathematical model of the MAC-level downlink through-

put for a single LTE cell with n randomly deployed UEs. Without loss of generality

we assume asymptotic traffic conditions, i.e., infinite traffic is waiting for each user at

the transmission buffer of the eNB. As discussed in Section 4.2, the packet scheduler at

the eNB is responsible for both allocating RBs to UEs every TTI, and controlling up to

8 HARQ processes per UE. Intuitively, the maximum number of HARQ processes that

can be concurrently activated by the scheduler during an HARQ period is bounded by

the number of times the same UE is scheduled during a τarq time interval. For the sake

of simplicity, in this study we consider a Round Robin (RR) scheduler, which works

by dividing the total amount of available radio resources in a fair manner among the

UEs. More precisely, a RR scheduler allocates to each UE a set of consecutive resource

blocks, called resource block groups (RBGs), whose size P depends on the system band-

width [60]. Consequently the number b of RBs assigned to each UE is simply given

by

b=max
{
P,
⌊ q
n

⌋}
. (4.2)

Without loss of generality we consider a non-adaptive HARQ strategy, in which the

scheduler maintains the same RBG and MCS configuration of the original TB when



Chapter 4. Analysis of MAC-level Throughput in LTE Systems 40

1 

2 

3 

4 

5 

6 

7 

8 

1 

2 

3 

4 

5 

6 

7 

8 

1 

2 

3 

4 

5 

6 

7 

8 

1 

2 

3 

4 

5 

6 

7 

8 

1 

2 

3 

4 

5 

6 

7 

8 

1 

2 

3 

4 

5 

6 

7 

8 

q RBs 

(1+τ
ARQ
)TTIs 

RBG = 2 RBs 

Figure 4.3: RR operations with q = 12, P = 2 and n = 8.

scheduling the retransmissions. To illustrate the dependency between the number of

times a UE is scheduled during an HARQ period, the RBG size and the total number

of UEs in Figure 4.3 we exemplify the scheduling decisions that are cyclically performed

by the RR scheduler during an HARQ period with q = 12, P = 2 and n = 8. As shown

in the figure, each UE is scheduled six times during an HARQ period. In general, the

average number of times each UE is scheduled in (1 + τARQ) TTIs is simply given by

nRR =

⌊
q(1 + τARQ)

n · b

⌋
. (4.3)

It must be noted that not all the transmission opportunities allocated by the eNB to

an UE result into a successful transmission due to signal attenuation, shadowing and

fading. In the following we denote with Pe(m, k, r) the TB error probability at the

r retransmission for the kth UE when m is the adopted MCS, with Ps(m, k, r) the

probability that the kth UE correctly decodes a TB after r retransmissions when m is

the adopted MCS, and with Pd(m, k) the probability that the kth UE discards a packet

when m is the adopted MCS because it has reached the maximum number of failed

retransmissions. In Section 4.3.2 we provide closed-form expressions for Ps(m, k, r),

Pe(m, k, r) and Pd(m, k). Finally, to perform the throughput analysis we observe the

system at the end of each successful transmission, because all the processes that define

the occupancy pattern of the channel (i.e., HARQ processing delays and retransmissions)

regenerate with respect to the sequence of time instants corresponding to the completion

of a successful transmission. Then, it follows that the MAC-level throughput for the kth
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UE is

ρk=nRR
E[TB|Succ]k
E[TARQ]k

, (4.4)

where E[TB|Succ]k is the average number of information bits that are delivered with a

successful transmission of the kth UE, and E[TARQ]k is the average time needed by an

HARQ process to complete a successful transmission of the kth UE. In equation (4.4),

the multiplying factor nRR is used to take into account that nRR independent HARQ

processes run in parallel. The following theorem provides closed-form expressions for

E[TB]k and E[TARQ]k. where E[TB|Succ]k is the average number of information bits

that are delivered with a successful transmission of the kth UE, and E[TARQ]k is the

average time needed by an HARQ process to complete a successful transmission of the

kth UE. In equation (4.4), the multiplying factor nRR is used to take into account that

nRR independent HARQ processes run in parallel. The following theorem provides

closed-form expressions for E[TB]k and E[TARQ]k.

Theorem 1. By assuming an homogenous cell with Rayleigh-distributed fading, and a

RR scheduling policy

E[TB|Succ]k=

L∑
j=0

TBS(m(j), b) [1− Pd(m, k)] gk[j] , (4.5a)

E[TARQ]k =
L∑
j=0

[
rmax∑
r=0

(r + 1)(1 + τARQ)Ps(m, k, r)

]
gk[j] , (4.5b)

where TBS(m(j), b) is a function that computes the number of data bits transmitted

in b RBs using the MCS m(j)5, and gk[j] is the PMF of the CQI value reported by the

kth UE.

Proof. See Appendix.

4.3.1 CQI feedback scheme and AMC strategy

The objective of this section is twofold. First, we develop the analytical tools to charac-

terise the wideband CQI feedback scheme of LTE. Second, we analyse the performance

of a link rate adaptation technique based on wideband CQI reports. Let us assume that

n UEs are randomly distributed in the cell, and let dk be the distance of the kth UE

5For the sake of notation brevity, we indicate with m(j) the MCS that the eNB uses when the CQI
value reported by a UE is equal to j.
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from the eNB. As discussed in Section ?? we also assume that γi,k ∼ Exp(λk), where the

rate parameter λk of the exponential distribution depends on the UE position. Under

this assumption the statistics of the spectral efficiency for each RB can be expressed in

a closed-form as given by the following Theorem.

Theorem 2. If γi,k ∼ Exp(λk) then the cumulative distribution function (CDF) of the

spectral efficiency ηi,k in equation (4.1) is computed as:

Fη(x; i, k)=


1− e−λkΓ(2x−1) if x ≥ 0

0 if x < 0.

. (4.6)

Proof. See Appendix.

LTE specifies different types of CQI reporting: wideband and subband. Specifically,

the wideband CQI represents the SNR observed by the UE over the whole channel

bandwidth, while the subband CQI represents the SNR observed by the UE over a

collection of adjacent RBs. Note that a vector of CQI values should be transmitted

to the eNB when using the latter feedback scheme. Thus, the subband-level feedback

scheme ensures a finer reporting granularity but it also generates a higher overhead. In

this study, we focus on the wideband feedback scheme and we assume that the CQI

reported by the kth UE, say Ĉk is the arithmetic mean of the CQI values computed over

all RBs6. Then, we use the spectral efficiency to generate the CQI values from the SNR

measures of all RBs. The statistics of the wideband CQI are mathematically derived

below.

Claim 1. The probability mass function (PMF) of the CQI value for the ith RB assigned

to the kth UE is given by

gi,k[j] = Fη(Sj+1; i, k)− Fη(Sj ; i, k) . (4.7)

Proof. See Appendix.

Claim 2. In an homogenous cell the PMF of the wideband CQI value reported by the

kth UE is given by

gk[j] =

q(j+1)−1∑
l=qj

g
(q)
k [l] , (4.8)

6Note that an alternative solution would be to report the worst CQI value over all (or a subset of)
RBs as in [28].
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where g
(q)
k [l] is the q-fold convolution of gi,k[j].

Proof. See Appendix.

As described in Section 4.2 a static mapping is typically established between the CQI

value received at the eNB and the MCS for the downlink transmissions. Thus, gk[j] also

characterizes the distribution of the MCS index m(j) that is used by the eNB for the

downlink transmission to the kth UE when the reported wideband CQI is j.

4.3.2 Physical layer error model

We now conclude the analysis by introducing the physical layer error model. In this study

we adopt the general approach initially proposed in [61] to accurately approximate the

BLER curves of OFDMA-based wireless systems, and later specialised for the LTE case

in [62]. Specifically, we assume that the mutual information per coded bit (MIB) of

MCS m, as defined in [61], can be accurately approximated by a combination of Bessel

functions of the SNR γ as follows

Im(γ) ≈
H∑
h=1

αhJ(ψh
√
γ) , (4.9)

where H, αh and ψh parameters are empirically calibrated as a function of the MCS

index. Subsequently, the mean MIB (MMIB) value for each UE is computed by averaging

the corresponding mutual information of all RBs allocated to that UE. Specifically, let

Ω(k) be the set of RBs that are allocated to the kth UE by the scheduler. Then, the

MMIB value over the vector of SNR values for each RB assigned to the kth UE when m

is the adopted MCS is simply given by

Îm,k=
1

ω(k)

∑
i∈Ω(k)

Im(γi,k) , (4.10)

where ω(k) is the cardinality of the Ω(k) set. The non-linear nature of (4.9) makes an

exact analysis difficult. Thus, previous studies limit the computational complexity of

deriving MMIB values in multi-user scenarios by considering a quantised version of the

Im(γ) function (4.9) in order to discretise the MIB metric [62]. More precisely, let us
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define a set Vm = {µm[0], µm[1], . . . , µm[vm]} for each MCS m such that

µm[v]=Im(Qm,v) , (4.11)

where (Qm,v+1 − Qm,v) = δγ is the quantisation step size, and Qm,0 is the minimum

usable SNR for MCS m. Now, let us denote with Hi,m,k the discrete MIB value for

the ith RB scheduled to the kth UE when m is the adopted MCS. Similarly to the

approach adopted for CQI mapping, we assume that Hi,m,k = µm[v] (v = 0, . . . , V ) if

Qm,v ≤ γi,k ≤ Qm,v+1. In other words the discrete MIB value is associated to a range

of SNRs. It is straightforward to derive the statistics of the discretised MIB metric as

follows.

Claim 3. In an homogenous cell with Rayleigh-distributed fading, the PMF of Hi,m,k is

given by

hi,m,k[v]=Fγ(Q(v+1),m; i, k)− Fγ(Qv,m; i, k) , (4.12)

where hi,m,k[v] = Pr{Hi,m,k=µm[v]}.

Proof. See Appendix.

Similarly, we introduce a discrete MMIB metric, say Ĥm,k, computed over the set of

RBs allocated to the kth UE when m is the adopted MCS. In particular, Ĥm,k can be

obtained as the mean of the Hi,m,k values over the set Ω(k). Thus, the statistics of the

discretised MMIB value are derived using the same technique of Claim 2.

Claim 4. In an homogenous cell the PMF of Ĥm,k is given by

hm,k[v] ≈
∑
l∈Φv

h
(ω(k))
i,m,k [l] . (4.13)

where h
(ω(k))
i,m,k [l] is the ω(k)-fold convolution of hi,m,k[l]. The definition of the Φv set is

quite involved and is given in the proof.

Proof. See Appendix.

Once the MMIB value is given, a direct MMIB to BLER mapping can be used to obtain

the code block error rate, without necessarily defining an effective SINR. Following the
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approach proposed in [61], the empirical BLER curve for MCS m can be approximated

with a Gaussian cumulative model as follows

CBLERm(y, e)=
1

2

[
1− erf

(
y − be
ce

)]
, (4.14)

where y is the MMIB value, while be and ce are parameters used to fit the Gaussian

distribution to the empirical BLER curve7. These parameters depend on the Effective

Code Rate (ECR), i.e. the ratio between the number of downlink information bits

(including CRC bits) and the number of coded bits. Intuitively, the ECR value is a

result of the selected TB size, MCS, and Ω(k). Then, the overall error probability for

a transport block transmitted as a combination of C code blocks, each one associated

with a MMIB and ECR value, can be computed as

TBLERm(y, e)=1−
C∏
i=1

(1− CBLERm(yi, ei)) . (4.15)

However equation (4.15) does not take into account the impact of an IR-HARQ mech-

anism that combines retransmissions to improve error correction. To generalise equa-

tion (4.15) for a system with incremental redundancy we adopt the same approach as

in [63]. In particular, we introduce an equivalent MMIB metric as the average of the

mutual informations per HARQ block received on the total number of retransmissions.

More precisely, let us assume that the original transport block has been retransmitted

r times. Then, let (Î
(0)
m,k, Î

(1)
m,k, . . . , Î

(r)
m,k) be the vector of MMIB values for each of these

transmissions. The equivalent MMIB for the rth retransmission can be computed as

follows

Îm,k,r=
1

r + 1

r∑
i=0

Î
(i)
m,k , (4.16)

Then, the PMF of the equivalent MMIB value for the rth retransmission is h
(r)
m,k[v] =

Pr{Îm,k,r=µm[v]}. This PMF can be obtained using the same technique as in Claim 4

and it is not reported here for the sake of brevity. Similarly, we compute the effective

ECR after r retransmissions, say e(r), by dividing the number of information bit of the

original transmission with the sum of the number of coded bits of each retransmissions.

Finally, by applying the law of total probability the average TB error probability at the

7Empirical BLER curves can be obtained through field measurements or detailed link-level simula-
tions.
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r retransmission for the kth UE when m is the adopted MCS can be computed as

Pe(m, k, r)=

vm∑
v=0

TBLERm(µm[v], e(r)) · h(r)
m,k[v] . (4.17)

Finally to evaluate Ps(m, k, r) we can observe that the rth retransmission of the kth

UE, when m is the adopted MCS, is a success only if the previous (r−1) transmissions

were TBs received erroneously and the rth transmission is correctly decoded. Hence, it

immediately follows that

Ps(m, k, r) =

[
r−1∏
i=0

Pe(m, k, i)

]
× [1− Pe(m, k, r)] . (4.18)

We conclude this section by noting that the probability Pd(m, k) that the kth UE discards

a packet when m is the adopted MCS because it has reached the maximum number of

failed retransmissions is simply given by:

Pd(m, k) =

rmax∏
i=0

Pe(m, k, i) . (4.19)

Finally, it is straightforward to observe that the average probability of discarding a

packet for the kth UE is computed as

Pd(k) =
L∑
j=0

Pd(m(j), k)gk[j] . (4.20)

4.4 Model Performance Evaluation

In this section we assess the accuracy of the throughput analysis in two different sce-

narios. In the first one, we assume that the mapping function that is used to convert

spectral efficiency into CQI feedbacks, and then into MCS indexes is sufficiently ac-

curate. As better explained in the following, in this condition error probabilities are

typically small and retransmissions may have a negligible impact on the MAC layer

throughput with respect to other protocol overheads. In the second scenario we assume

that a fixed CQI is fed back to the eNB by each UE. Thus, the eNB necessarily selects

a fixed MCS independently of the current channel conditions. This clearly represents a

worst-case scenario, which is useful to assess the robustness of our modelling framework

even when the reported CQI provides a very poor prediction of channel performance.
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Furthermore, it is also useful to better highlight the ability of the HARQ scheme to

improve the overall system throughput without relying on per-subcarrier information.

4.4.1 Simulation setup

All the following experiments have been carried out using the ns3 packet-level simula-

tor, which includes a detailed implementation of the LTE radio protocol stack. The

main simulation parameters are summarised in Table 4.1. Specifically, we consider an

Urban Macro scenario, in which path loss and shadowing are modelled according to

the COST231-Hata model [64], which is widely accepted in the 3GPP community. The

fading is Rayleigh distributed. To limit the computation complexity of the simulator

pre-calculated fading traces are included in the LTE model. Given the downlink sys-

tem bandwidth (see Table 4.1) a RBG comprises two RBs [60], i.e., P = 2. Regarding

the network topology, we considered a single cell with a varying number of static UEs,

chosen in the range [1, 50]. Note that, in our settings a maximum number of 96 (i.e.,

8bq/P c) unique UEs can be scheduled within an HARQ period. Indeed, if n > 96 the

RR period is longer than the HARQ period. All results presented in the following graphs

are averaged over multiple simulation runs with different fading traces and topology lay-

outs. Confidence intervals are generally very tight and they are not shown in the figures

if below 1%. Each simulation run lasts 300 seconds.

Table 4.1: Simulation parameters

Parameter Value

Carrier frequency (GHz) 2.14
DL bandwidth (MHz) 5
q 25
eNB TX Power (dBm) 43
CQI processing time (TTI) 2
CQI transmission delay (TTI) 4
Antenna scheme SISO
PDCCH & PCFICH (control ch.) 3 OFDM symbols
PDSCH (data ch.) 11 OFDM symbols
n [10, 50]
rmax 3

In this section we validate the accuracy of our modelling approach by evaluating the

throughput of an individual UE under varying channel conditions and congestion levels.

Specifically, we assume that n UEs are randomly deployed in a cell and they are static.
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Figure 4.4: Adaptive CQI : Comparison of analytical and simulation results for the
MAC-level throughput of a tagged UE versus its distance from the eNB and the total

number of UEs in the cell.

Then, an additional tagged UE is deployed at a known distance d from the center of the

cell. Figure 4.4 shows a comparison between the model predictions and the simulation

results for the MAC-level downlink throughput of the tagged UE versus its distance from

the eNB and for different n values. As a first important consideration, Figure 4.4 proves

that our analysis provides a very accurate approximation of the MAC-level throughput

independently of the fading intensity. Furthermore, the results confirm that increasing

the total number of UEs in the cell has the effect of reducing in a proportional manner

the throughput of the tagged UE. This is due to the fact that RR is a channel-unaware

scheduler that performs fair sharing of time resources among UEs. Finally, it is also

important to point out that the IR-HARQ mechanism is very effective in improving

error correction. As discussed in Section 4.2 the modulation and coding scheme are

selected in such a way that the error probability is well below 10%. As a matter of

fact, our results (not shown here) indicate that the actual error probability for the first

transmission attempt is below 5% up to a distance of 1000 meters, and the probability

to perform more than one retransmission is negligible.
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4.4.2 Results with fixed CQI

In this second set of simulations we consider the same network scenario as in Section ??.

However, independently of the UE position the CQI feedback is assumed constant. Fig-

ure 4.5 shows a comparison between the model predictions and the simulation results

for the MAC-level downlink throughput of the tagged UE versus its distance from the

eNB when n = 12. Note that twelve is the maximum number of UEs such that nRR = 8.

In other words, with n = 12 all the UEs are scheduled during one TTI and 8 HARQ

process needs to be managed simultaneously. As expected a high value for the reported

CQI results into the use of a very efficient MCS, which provides a high data rate at

the cost of high vulnerability to channel fading. Consequently, the tagged UE obtains

a high throughput when close to the eNB, but the throughput performance rapidly de-

grades as it gets farther from the eNB. On the contrary a low reported CQI provides a

much more stable throughput performance due to the robustness of the selected MCS.

However, in this case we must compromise between robustness and efficiency. To quan-

tify this trade-off in Figure 4.6 we show the probability to discard a packet as given

by formula (4.20) in the same network configurations of Figure 4.5. Interestingly, we

can observe that there is a critical distance after which the Pd(k) probability rapidly

increases up to the value of one. Hence, after this critical distance even the IR-HARQ

scheme becomes incapable of controlling the error probability. Furthermore, results in

Figure 4.6(b) indicate that our model underestimates the actual Pd(k) for less reliable

MCSs, while results in Figure 4.6(a) indicate that our model overestimates the actual

Pd for robust MCS.

4.5 Summary

In this Chapter we have developed an analytical framework to estimate the MAC-level

downlink throughput in a LTE system, which carefully models practical mechanisms of

the MAC layer of the LTE technology. As a matter of fact, LTE systems achieve high

communication reliability by adopting a combination of link adaptation and error cor-

rection schemes. This study is a first attempt to tackle the complexity of modelling the

interplay between these mechanisms and to obtain a realistic evaluation of the through-

put performance at the MAC level. Our results confirm that the IR-HARQ mechanism is
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ability of discarding a packet for a tagged UE versus its distance from the eNB for

different CQI values and n = 12.

very effective in improving error correction. However, the effectiveness of the IR-HARQ

scheme depends on the appropriate selection of the modulation and coding scheme of

the first transmission attempt. Although there is still the need for detailed system-level

simulations, we believe that the proposed analytical approach will be useful to an LTE

system designer for dimensioning the LTE system and configuring the optimal set of

radio MAC parameters.



Chapter 5

Robust Adaptive Modulation and

Coding (AMC) Selection

5.1 Introduction

Adaptive Modulation and Coding (AMC) in LTE networks is commonly employed to

improve system throughput by ensuring more reliable transmissions. In particular, adap-

tive modulation and coding (AMC) has been proposed for LTE, as well as many other

wireless communication systems, to increase channel throughput [65]. In general, AMC

techniques try to optimally select the channel coding and modulation scheme (MCS),

while fulfilling a certain Block Error Rate (BLER) constraint1 by taking into account

the current channel conditions and the receiver’s characteristics (e.g., antenna configu-

ration). For LTE downlink transmissions, traditional AMC schemes rely on the channel

quality indicator (CQI) feedbacks that are periodically reported by the user terminals

(UEs) to their base stations (eNBs) [66]. How CQI values should be computed by the

UE using channel state information (e.g., SINR measurements) is implementation de-

pendent. In practical implementations the UEs directly selects the MCS value that, if

used by the eNB under the measured channel conditions, would achieve the maximum

possible throughput by guaranteeing that the BLER is below 10%. This value is then

mapped onto a CQI value and fed back to the eNB (that translates it back into the

1The BLER for a certain user is defined as the ratio between the number of erroneous resource blocks
and the total number of resource blocks received by that user. In the LTE standard it is mandated that
the selected MCS ensures an average BLER under the measured channel conditions lower than 10% [66].

51
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corresponding MCS value) [11, 67]. Therefore, the key focus of AMC algorithms is to

define how UEs can compute MCS values that satisfy the BLER requirements. Several

technical challenges have to be addressed to design efficient AMC solutions for LTE

systems. In particular, in practical LTE systems, the SINR values of multiple subcar-

riers are aggregated and translated into a one-dimensional link quality metric (LQM),

since the same MCS must be assigned to all subcarriers assigned to each UE. Popu-

lar methods that are used in LTE to obtain a single effective SINR from a vector of

physical-layer measurements related to subcarriers are the exponential effective SINR

mapping (EESM) [68] or the mean mutual information per coded bit (MMIB) [69]. Once

the LQM is found, AMC schemes typically exploit static mappings between these link

quality metrics and the BLER performance of each MCS to select the best MCS (in

terms of link throughput). In other words, for each MCS a range of LQM values is

associated via a look-up table, over which that MCS maximises link throughput. Ei-

ther link-level simulations or mathematical models can be used to generate such static

BLER curves under a specific channel model. Unfortunately, past research has shown

that it is difficult to derive accurate link performance predictors under realistic channel

assumptions [7, 9–11]. Furthermore, a simulation-based approach to derive the mapping

between LQM values and BLER performance is not scalable since it is not feasible to ex-

haustively analyse all possible channel types or several possible sets of parameters [12].

The second main problem with table-based AMC solutions is that a delay of several

transmission time intervals (TTIs) may exist between the time when a CQI report is

generated and the time when that CQI feedback is used for channel adaptation. This is

due to processing times but also to the need of increasing reporting frequency to reduce

signalling overheads. This mismatch between the current channel state and its CQI

representation, known as CQI ageing, can negatively affect the efficiency of AMC deci-

sions [13, 14]. To deal with the above issues, in this Chapter we illustate a new flexible

AMC framework, called RL-AMC [70], that autonomously and at run-time decides upon

the best MCS (in terms of maximum link-layer throughput) based on the knowledge of

the outcomes of previous AMC decisions. To this end we exploit reinforcement learning

techniques to allow each eNodeB to update its MCS selection rules taking into account

past observations of achieved link-layer throughputs. Specifically, the purpose of the

decision-making agent in our AMC scheme is to discover which is the correction factor

that should be applied to CQI feedbacks in order to guide the transmitters in select-

ing more efficient MCSs. An important feature of our proposed scheme is the use of a
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low-dimensional state space, which ensures a robust and efficient learning even under

time-varying channel conditions and mobility. Through simulations in ns3 we show that

our AMC method can improve the LTE system throughput compared to other schemes

that use static mappings between SINR and MCS both under pedestrian and vehicular

network scenarios. Furthermore, our AMC is capable of discovering the best MCS even

if the CQI feedback provides a poor prediction of the channel performance.

5.2 AMC in LTE

For the sake of illustrative purposes, in Figure 5.1 we show a functional architecture

for a practical AMC scheme for LTE systems. At the receiver’s side, a first module is

responsible for processing the channel state information (e.g., per-subcarrier received

SINR values) to obtain a BLER estimation under the assumption of a specific channel

model. Specifically, the receiver maps the channel measurements into a single link quality

metric. Then, an offline look-up table is used to map this LQM to a BLER estimate

for each MCS. These BLER curves are used to find the highest-rate MCS index that

can satisfy a 10% BLER target. Finally, the selected MCS index is sent in the form

of a CQI feedback to the transmitter. Based on such CQI feedback the transmitter

performs resource scheduling and MCS selection. Most of existing research on AMC

schemes for LTE is focused on the problem of CQI calculation given a link quality

metric. As mentioned in Section 5.1 a popular and sufficiently accurate method for

LQM calculation is EESM. For instance, the authors in [8] study the MCS performance

under an AWGN channel. Accurate packet error prediction for link adaptation via a

Gaussian approximation of coding and decoding performance is proposed in [71]. A novel

LQM metric for link adaptation based on raw bit-error-rate, effective SINR and mutual

information is investigated in [72]. In [67] the authors proposed MCS selection based

on packet-level effective SINR estimates rather than block-level SINR values, and they

describe different averaging schemes to map BLER onto packet error rates. On the other

hand, the authors in [11, 29] develops statistical models of the EESM under different

channel models and use those models to analyse the throughput of EESM-based AMC

for various CQI feedback schemes. A second group paper studies channel predictors to

deal with the CQI ageing. The authors in [13] derive closed-form expressions for the

average throughput of an adaptive OFDMA system under the assumption of imperfect
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Figure 5.1: AMC functional architecture.

CQI knowledge. The performance of different CQI predictors, such as Kalman filtering

or linear prediction with stochastic approximation, are evaluated in [14] and [73].

5.3 Background on Reinforcement Learning (RL)

Reinforcement Learning (RL) is a popular machine learning technique, which allows

an agent to automatically determine the optimal behaviour to achieve a specific goal

based on the positive or negative feedbacks it receives from the environment in which

it operates after taking an action from a known set of admissible actions [74]. Typi-

cally, reinforcement learning problems are instances of the more general class of Markov

Decision Processes (MDPs), which are formally defined through:

• a finite set S={s1, s2,. . ., sn} of the n possible states in which the environment can be;

• a finite set A(t) = {a1(t), a2(t),. . ., am(t)} of the m admissible actions that the agent

may perform at time t;

• a transition matrix P over the space S. The element P (s, a, s′) of the matrix provides

the probability of making a transition to state s′∈S when taking action a∈A in state

s∈S;

• a reward function R that maps a state-action pair to a scalar value r, which represents

the immediate payoff of taking action a∈A in state s∈S.
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The goal of a MDP is to find a policy π for the decision agent, i.e., a function that

specifies the action that the agent should choose when in state s ∈ S to maximise its

expected long-term reward. More formally, if an agent follows a policy π starting from

a certain state s at time t the policy value over an infinite time horizon, also called the

value-state function, is simply given by

V π(s) =

∞∑
k=0

γkrt+k , (5.1)

where γ ∈ [0, 1] is a discount factor that weights future rewards. Then an optimal policy

π∗ is, by definition, the one that maximise the value-state function. As a consequence,

the policy that ensures the maximum possible expected reward, say V ∗(s), could be

obtained by solving an optimisation problem V ∗(s) = maxπ V
π(s). If the transition

matrix is known such optimisation problem can be expressed using a system of nonlinear

equations by using techniques such as dynamic programming [74]. However, in most

practical conditions it is hard, if not even impossible, to acquire such complete knowledge

of the environment behaviour. In this case there are model-free learning methods that

continuously update the probabilities to perform an action in a certain state by exploiting

the observed rewards. Such methods adopt an alternative characterisation of policy

goodness based on the state-action value function, or Q-function. Formally, the function

Qπ(s, a) computes the expected reward of taking an action a in a starting state s and then

following the policy π hereafter. Owing to the Bellman’s optimality principle, it holds

that a greedy policy (i.e., a policy that at each state selects the action with the largest

Q-value) is the optimal policy. In other words, it holds that V ∗(s) = maxa∈AQ
∗(s, a)

with Q∗(s, a) = maxπ Q(s, a). In this scheme we use a model-free solving technique for

reinforcement learning problems known as Q-learning [75], which constructs the optimal

policy by iteratively selecting the action with the highest value in each state. The core

of this algorithm is an iterative value update rule that each time the agent selects an

action and observes a reward makes a correction of the old Q-value for that state based

on the new information. This updating rule is given by:

Q(s, a) = Q(s, a) + α

[
r(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
, (5.2)

where α ∈ [0, 1] is the learning rate. Basically, the α parameter determines the weight

of the newly acquired information over state-action value information. In our AMC
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framework we hev used α= 0.5. The advantage of Q-learning is that it is guaranteed

to converge to the optimal policy. On the negative side, the convergence speed may

be slow if the state space is large due to the exploration vs. exploitation dilemma [74].

Basically, when in state s the learning agent should exploit its accumulated knowledge

of the best policy to obtain high rewards, but it must also explore actions that it has not

selected before to find out a better strategy. To deal with this issue, various exploration

strategies have been proposed in the literature, ranging from simple greedy methods

to more sophisticated stochastic techniques, which assign a probabilistic value for each

action a in state s according to the current estimation of Q(s, a). In Section 5.4 we

discuss more in detail such exploration strategies.

5.4 An RL-based AMC Scheme (RL-AMC)

In order to apply the Q-learning approach to the MCS selection problem it is necessary

to define: i) the state space of the problem, ii) the feedbacks that the decision agent

receives from the LTE network, and iii) the admissible actions for the agent with the

action selection strategy. In our RL-based AMC framework, the problem state consists

of CQI feedbacks and their evolution trends. The reward is the instantaneous link

throughput obtained by a user after each transmission. Finally, an action is the selection

of a correction factor to be applied to each CQI feedback to identify the best MCS under

the current channel conditions. In the following, we describe in details the operations

of our proposed AMC algorithm. First of all, it is important to clarify that the AMC

decision agent interacts with the environment (i.e., the LTE network) at discrete time

instants, called epochs. At each epoch the agent receives some representation of the

LTE channel state and on that basis selects an action. In the subsequent epoch the

agent receives a reward, and finds itself in a new state. In our AMC framework we

assume that an epoch is the time when the UE receives a segment of data, either new

or retransmitted. Without loss of generality we also assume that the decision agent is

provided with a mapping rule that establishes a relationship between SINR values and

MCS indexes. Note that our solution is not restricted to any specific BLER models

but an initial MCS value is only needed to bootstrap the learning process and to reduce

the size of the state space. Thus, it is not necessary that this mapping is accurate nor

adjusted to the unique characteristics of each communication channel. In Section 6.3 we
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will investigate the robustness of our AMC scheme to inaccurate CQI representation of

channel performance. Intuitively, a straightforward approach to define the state of the

MCS selection problem would be to use the SINR values of received segments of data2

as state variables, as in [35]. However, the SINR is a continuos variable and it should

be discretised to be compatible with a discrete MDP formulation. The main drawback

is that a fine discretisation leads to a large-dimensional state space, which increases

convergence and exploration times. To avoid this problem, we directly use CQI-based

metrics for the state representation. Specifically, we adopt a two-dimensional space

S = {s1, s2} to characterise the LTE communication channel. The first state variable

represents the CQI value (called CQIm) that the UE should select using the internal look-

up table that associates BLER and MCS and received SINR. The second state variable

represents the ∆CQIm value, which is defined as the difference between the last two

consecutive CQIm estimates. In other words, ∆CQIm provides a rough indication of the

trend in channel quality evolution. For instance, ∆CQIm < 0 implies that the channel

quality is temporarily degrading. Since the objective of the MCS selection procedure

should be to maximise the link throughput it is a natural choice to define the reward

function as the instantaneous link-layer throughput achieved when taking action a (i.e.,

applying a correction factor to current CQI value taken from the mapping function)

when in state s (i.e., given the pair {CQImt ,∆CQImt }). More precisely, we assume that

the reward value of an erroneous downlink transmission is null. On the other hand, the

reward for a successful downlink transmission is given by

R(st1 , at1) =
TB

#TTIs in [t1, t2]
, (5.3)

where TB is the MAC transport block size (i.e., the number of useful bits that could be

carried in a certain number of RBs with a certain MCS), while the denominator is the

time between the time t1 when that segment of data was first scheduled and the time t2

when it was successfully received3. The core of the Q-learning algorithm is represented by

the set A of admissible actions. In our learning model we assume that an action consists

of applying a correction factor to the CQI value that is initially estimated by means of

2We recall that LTE physical layer relies on the concept of resource blocks. A segment of data or
transport block is basically a group of resource blocks with a common MCS that are allocated to a user.
Typically, a packet coming from the upper layers of the protocol stack will be transmitted using multiple
segments of data.

3A segment of data that is discarded after a maximum number of retransmissions has also a null
reward.
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the internal look-up table. As discussed above, the mapping relationship between SINR

values and MCS may be inaccurate and the correction factor allows the agent to identify

the best modulation and coding scheme (in the sense of maximising the link throughput)

for the given channel conditions. For instance, it may happen that the SINR-to-MCS

mapping is too conservative for the current channel conditions and an MCS with an

higher data rate can be used without violating the target BLER requirement. In this

case the correction factor should be positive. Furthermore, a correction factor is also

needed to compensate eventual errors due to CQI feedback delay. More formally, we

assume that an action taken by the AMC decision agent at time t is one possible choice

of an integer number in the set (−k, . . . ,−2,−1, 0, 1, 2, . . . k), that we denote as at in

the following. This index is added to the original CQIm value to compute the CQI to

be sent to the eNB, denoted as CQIf . The line of reasoning for this adjustment is as

follows. Let us assume that the agent state at time t is {CQImt ,∆CQIt}. We argue that

if ∆CQIt < 0 we should prefer conservative MCS selections (and thus use values of at

lower than 0) because the channel trend is negative, while if ∆CQIt ≥ 0 we can try to

use MCSs offering higher data rates (and thus positive values for at). Recalling that the

CQI is an integer between 0 and 15 [66], this can be expressed by writing that the CQI

feedback, say CQIft , that should be sent to the eNB by the UE to guide the selection of

the MCS index for downlink transmissions at next epoch t+1 should be

CQIft = max [0,min [CQImt + at, 15]] , (5.4)

where a ∈ [0, 1, 2, . . . k] if ∆CQIt ≥ 0 and a ∈ [−k, . . . ,−2,−1, 0] otherwise. Thus, the

set of admissible actions is different whether the channel-quality trend is negative or

non-negative. Before proceeding it is useful to point out that the choice of the k value

determines how aggressively we want to explore the problem state space. In general,

the selection of the k value could take into account the CQI difference statistics, i.e.,

to what extent a current CQI may be different from the reported CQI after a feedback

delay [10]. In Section 5.5.3 we will discuss this aspect more in detail. A very important

learning procedure is the action selection rule, i.e., the policy used to decide which

specific action to select in the set of admissible actions. As discussed in Section 5.3 there

is a tradeoff between exploitation (i.e., to select the action with the highest Q-value for

the current channel state) and exploration (i.e., to select an action randomly). The

simplest approach (called ε-greedy [74]) would be to use a fixed probability ε to decide
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whether to exploit or explore. A more flexible policy (called softmax action-selection

rule [74]) is to assign a probability to each action, basing on the current Q-value for that

action. The most common softmax function used in reinforcement learning to convert

Q-values into action probabilities π(s, a) is the following [74]:

π(s, a) =
eQ(s,a)/τ∑

a′∈Ωt
eQ(s,a′)/τ

, (5.5)

where Ωt is the set of admissible actions at time t. Note that for high τ values the

actions tend to be all (nearly) equiprobable. On the other hand, if τ → 0 the softmax

policy becomes the same as a merely greedy action selection. In our experiments we

have chosen τ=0.5.

5.5 Performance Evaluation

In this section, we assess the performance of our proposed RL-AMC scheme in two dif-

ferent scenarios. In the first one a fixed CQI is fed back to the eNB by each UE. Without

the use of reinforcement learning AMC necessarily selects a fixed MCS independently of

the current channel conditions. Then, we demonstrate that our RL-based AMC is able

to converge towards the best MCS even if the initial CQI estimate are totally wrong. In

the second scenario we compare RL-AMC against the solution described in [76], which

exploits spectral efficiency estimates to select MCS. Specifically, the spectral efficiency

of user i is approximated by log2(1 + γi/Γ), where γi is the effective SINR of user i and

Γ is a scaling factor. Then, the mapping defined in the LTE standard [77] is used to

convert spectral efficiency into MCS indexes and, then, into CQI feedbacks. In this case,

we show that our reinforcement learning algorithm is able to improve the accuracy of

the CQI mapping at run time.

5.5.1 Simulation setup

All the following experiments have been carried out using the ns3 packet-level simu-

lator, which includes a detailed implementation of the LTE radio protocol stack. As

propagation environment, we assume an Urban Macro scenario, where path loss and

shadowing are modelled according to the COST231-Hata model [64], which is widely
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Table 5.1: Simulation parameters.

Parameter Value

Carrier frequency 2GHz

Bandwidth for downlink 5 MHz

eNB power transmission 43 dBm

Subcarrier for RB 12

SubFrame length 1 ms

Subcarrier spacing 15 KHz

Symbols for TTI 14

PDCCH & PCFICH (control ch.) 3 symbols

PDSCH (data ch.) 11 symbols

CQI reporting periodic wide-
band

CQI processing time 2 TTIs

CQI transmission delay 4 TTIs

accepted in the 3GPP community. The fast fading model is implemented using the

Jakes model for Rayleigh fading [78]. To limit the computation complexity of the simu-

lator pre-calculated fading traces are included in the LTE model that are based on the

standard multipath delay profiles defined in [79]. In the following tests we have used

the Extended Typical Urban fading propagation model with pedestrian (3 km/h) and

vehicular (30 km/h) users’ speeds. The main LTE physical parameters are summarised

in Table 5.1. Regarding the network topology, the considered scenario is composed by

a single cell and a number of users, chosen in the range [10, 100], which move accord-

ing a Random Waypoint Model (RWM) [80] within the cell, if not otherwise stated. A

downlink flow, modelled with an infinite buffer source, is assumed to be active for each

UE. Finally, the eNode B adopts the resource allocation type 0, thus only allocating

resource block groups (RBGs) to scheduled UEs. Given the downlink system bandwidth

(see Table 5.1) a RBG comprises two RBs [66]. RBGs are assigned to UEs following a

Round Robin (RR) scheduler that divides equally the available RBGs to active flows.

Then, all the RBs in the allocated RBGs used the MCS index that is signalled in the

last received CQI feedback. Furthermore, the implemented version of RR algorithm is

not adaptive, which implies that it maintains the same RBGs and MCS index when

allocating retransmission attempts. All results presented in the following graphs are av-

eraged over five simulation runs with different network topologies. Confidence intervals

are very tight and are not shown in the figures. Each simulation run lasts 150 seconds.

5.5.2 Results for fixed CQI

In this first set of simulations we assume that ten UEs are randomly deployed in the cell

and they are static. Then an additional tagged user is moving with pedestrian speed
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Figure 5.2: Average throughput as a function of the distance of the tagged user from
the eNB in a pedestrian scenario.

from the center of the cell to its boundaries. However, independently of the UE position

the CQI feedback is constant. Then, Figure 5.3 shows a comparison of the throughput

achieved by the tagged user with and without reinforcement learning. This is obviously

a limiting case which is analysed to assess the robustness of our RL-AMC scheme even

when CQI provides a very poor prediction of channel performance. As expected with

fixed MCS the user throughput is constant when the MCS is over provisioned, while

it rapidly goes to zero after a critical distance. On the contrary, our RL-AMC is able

to discover the correction factor that should be applied to the initial CQI to force the

selection of a more efficient MCS. In addition, the performance of RL-AMC are almost

independent of the initial CQI value. Note that in this case RL-AMC must explore the

full range of CQI values and we set k in (5.4) equal to 15.

5.5.3 Results with adaptive CQI

In the following experiments we assume that each UE implements the SINR to CQI

mapping described in [76]. First of all we consider the same network scenario as in Fig-

ure 5.2, i.e., ten static UEs randomly deployed and one tagged UE moving at pedestrian

speed. Then, Figure 5.3 shows a comparison of the throughput achieved by the tagged

user with both SE-AMC and RL-AMC schemes at different distances of the tagged UE
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Figure 5.3: Average throughput as a function of the distance of the tagged user from
the eNB in a pedestrian scenario.

from the eNB. We can observe that the MCS selection in SE-AMC is too conservative

and this results in a throughput loss. On the contrary, RL-AMC method is able to

discover the MCS configuration that can ensure a more efficient use of the available

channel resources. This is more evident at intermediate distances from the eNB when

short-term fading may lead to use more frequently low-rate MCSs. As shown in the fig-

ure, the throughput improvement varies between 20% and 55% in the range of distances

between 200 meters and 800 meters. In the second set of simulations we consider a more

dynamic environment in which there is an increasing number of UEs in the cell, and all

the UEs are moving according to RWM with speed 30 km/h and pause time equal to

5 seconds. Figure 5.4 shows a comparison of the aggregate cell throughput with both

SE-AMC and RL-AMC schemes as a function of the network congestion (i.e., number

of UEs). The results clearly indicate that the throughput improvement provided by

RL-AMC is almost independent of the number of UEs and it is about 10%. We can also

observe the the cell capacity initially increases when going from 10 to 20 UEs. This is

due to two main reasons. First, RR is able to allocate RBs in a more efficient way when

the number of UEs is higher. Second, the higher the number of UEs and the higher

the probability that one of the UEs is close to the eNB and it can use high data-rate

MCSs. To investigate more in depth the behaviour of the considered AMC schemes, in

Figure 5.5 we show the probability mass function of the number of retransmissions that
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Figure 5.4: Average cell throughput as a function of the number of UEs in an urban
vehicular scenario.

are needed to successfully transmit a segment of data in a cell with 50 UEs moving as

described above. We remind that the same MCS is used for both the first transmission

attempt and the eventual subsequent retransmissions. We can observe that with RL-

AMC the probability to successfully transmit a segment of data at the first transmission

attempt is slightly lower than with SE-AMC. However, the probability of successfully

transmiting a segment of data after one or two retransmissions is higher with RL-AMC

than with SE-AMC. This confirms our previous observation that the initial MCS selec-

tion of SE-MAC is more conservative. On the contrary, RL-AMC is able to also explore

MCS with higher data rates when the channel conditions are more favourable and this is

beneficial for the throughput performance. Note that this is achieved without violating

the BLER requirements imposed by the LTE standard.

5.6 Summary

In this Chapter,we have presented a new AMC method for LTE networks that is based

on reinforcement learning techniques, We have discussed how inaccurate feedbacks on

channel qualities and the complexity of modelling link performance under realistic chan-

nel models may easily lead to inaccurate MCS selections. By exploiting reinforcement
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Figure 5.5: Probability mass function of the number of retransmissions in an urban
vehicular scenario with 50 UEs.

learning, we can significantly reduce the impact of channel prediction errors on the per-

formance of link adaptation. As side effect has been show as this scheme can improve

the system bandwidth in terms of downlink throughput.



Chapter 6

Offloading through Opportunistic

Networks in LTE environment

6.1 Introduction

Offloading is gaining momentum as a technique to overcome the cellular capacity crunch

due to the surge of mobile data traffic demand. Multiple offloading techniques are cur-

rently under investigation, from modifications inside the cellular network architecture, to

integration of multiple wireless broadband infrastructures, to exploiting direct communi-

cations between mobile devices. In this Chapter we focus on the latter type of offloading,

and specifically on offloading through opportunistic networks. As opposed to most of the

literature looking at this type of offloading, we have considered the case where requests

for content are non-synchronised, i.e. users request content at random points in time.

We support this scenario through a very simple offloading scheme, whereby no epidemic

dissemination occurs in the opportunistic network. Thus our scheme is minimally inva-

sive for users’ mobile devices, as it uses only minimally their resources. Then, we provide

an analysis on the efficiency of our offloading mechanism (in terms of percentage of of-

floaded traffic) in representative vehicular settings, where content needs to be delivered

to (subsets of the) users in specific geographical areas. Depending on various parameters,

we show that a simple and resource-savvy offloading scheme can nevertheless offload a

very large fraction of the traffic (up to more than 90%, and always more than 20%).

We also highlight configurations where such a technique is less effective, and therefore a

65
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more aggressive use of mobile nodes resources would be needed. We focus our attention

both in vehicular scenarios and indoor scenarios. We deliberately use a very simple

offloading scheme, described in Section 6.2, whereby resources provided by mobile nodes

are minimally used. Nodes interested in a content store it for a limited amount of time

after receiving it. New requests from other users are satisfied either when the request-

ing user encounters another user storing a copy of the content, or through the cellular

network upon expiration of the delivery deadline. As opposed to most of the literature

looking at offloading through opportunistic networks, in our scheme we do not use any

epidemic dissemination mechanism. On the one hand, this allows us to test a minimally

invasive offloading scheme from the mobile users’ perspective. As additional resources

spent by mobile devices are sometimes considered a possible roadblock for offloading,

our results show the offloading efficiency when this additional burden is extremely low.

On the other hand, this simple scheme allows us to stress the efficiency of offloading in

a particularly unfavourable configuration, thus providing a worst-case analysis, all other

conditions being equal. As regards the vehicular case, we focus on two complementary

scenarios. In the first one, users move in a given physical area, and all request a piece

of content, though at different points in time. This scenario is representative of users

moving inside a limited area, and accessing very popular content, though not particu-

larly time critical (i.e., content that does not generate a surge of requests immediately

when it is generated). In the second scenario, users enter and exit (after a short amount

of time) a given geographical area, and request content after a random amount of time

after they entered the area. This complementary scenario is thus representative of users

traversing a geographical area, as opposed to roaming there. Finally, in this scenario

we also consider the case where content is requested only with a certain probability,

i.e., when content has different levels of popularity. We have also analyzed two case of

indoor scenario. In both scenario users move inside a buildings, thus their mobility is

constrained by the buildings layout. This type of layout, even if more siple, is rappre-

sentative of a museum use case in which visitors can download additional multimedia as

they get close to the different artworks in each room or roam through the halls of the

museum. However each room contains contents that are not present in other rooms. For

this reason a content item can be disseminated only in the room where it is relevant.

then , when a user changes room, the content items that are stores in its lo0cal cache

are not disseminated anymore. We have analyzed several configuration of this scenario

in terms of content’s popularity and requesting rate. In particular we have started from
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the basic case when in each room the contents have the same popularity. Then we have

done a more realistic investigation by diving the contents in three class o popularity. In

particular, a coording to a zipf distribution [81], we have introduced contents with high

popularity, intermediate popularity and low popularity. Finally we have observed the

behaviour of the opportunistic network when the requesting rate increase. We analyse

the offloading efficiency in these scenarios, defined as the fraction of nodes receiving con-

tent through the opportunistic network. We characterise efficiency as a function of key

parameters such as the number of users, the deadline of content requests, the time after

which users drop the content after having received it, the popularity of the content. As

we show in Section 6.3, even with an unfavourable opportunistic dissemination scheme,

we find that offloading can be very efficient, as it is possible to offload up to more than

90% of the traffic. In other configurations, we find that the considered offloading scheme

is less efficient, resulting in an offloading of only about 20%. In such cases, however,

there is ample room for improvement, by further leveraging opportunistic networking

resources, e.g., through more aggressive content replication schemes

6.2 Offloading Mechanisms

As anticipated in Section 6.1 we deliberately consider a simple scheme that uses very

little resources of mobile nodes to support the offloading process. In general, we support

scenarios where content is requested by users at random points in time. Similarly to [20],

we assume the existence of a Central Dissemination Manager (CDM), that can commu-

nicate with all nodes through the cellular network and keeps track of the dissemination

process. Without loss of generality1, in the following we focus on the dissemination of a

single piece of content to the set of interested users. The offloading mechanism is defined

by the actions taken by requesting nodes and by the CDM, as described by Algorithms 1

and 2, respectively.

Let us focus first on the actions taken by requesting nodes (Algorithm 1). When a

request is generated at a node, the node sends it to the CDM via the cellular network

(line 3). The node is guaranteed to receive the content within a given content timeout.

During the timeout, the node tries to get the content from encountered nodes (lines

1Strictly, this is the case when congestion on the opportunistic network is low, and therefore the
effect of multiple contents offloaded at the same time can be neglected. This is typically assumed in the
literature on offloading through opportunistic networks.
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5-12). If the timeout expires, it receives it directly from the CDM (lines 13-16). Upon

receiving the content, the node sends an ACK to the CDM (line 9 and, implicitly, line

14). In addition, it keeps the content for a sharing timeout, during which it can share the

content with other encountered nodes (lines 18-20). After the expiration of the sharing

timeout the content is deleted from the local cache. Note that requests and ACKs are

supposed to be much shorter than the content size, and thus do not significantly load

the cellular network.

Algorithm 1 Actions taken by requesting nodes

. Run by a tagged node k
1: Upon request for content C
2: content received = false
3: Send content request to CDM
4: if C not received immediately from CDM then

. try with opportunistic contacts
5: while content timeout is not over do
6: request C to encountered nodes
7: if content received then
8: content received = true
9: Send ACK to CDM

10: break
11: end if
12: end while
13: if content received == false then
14: Receive C from CDM
15: content received = true
16: end if
17: end if
18: while sharing timeout is not over do

. available for opportunistic sharing
19: Send C to encountered nodes upon request
20: end while
21: Cancel content C

Let us now focus on the actions taken by the CDM (Algorithm 2). Thanks to requests

and ACKs, the CDM is always aware of the status of content availability in the network.

Upon receiving a request, it checks whether some other node is already storing a copy

of the content or not. In the latter case (lines 4-6) there is no chance that the user

can get the content opportunistically through another node, and the CDM sends the

content directly through the cellular network. In the former case (lines 7-21), it waits

to receive an ACK during the content timeout (lines 8-15), indicating that the node has

received the content. If this does not happen, it sends the content directly to the node



Chapter 6. Offloading through Opportunistic Networks in LTE environment 69

(lines 16-20). Finally, upon expiration of the sharing timeout for a given node the CDM

updates the view on the number of nodes with the content (lines 22-23)2.

Algorithm 2 Actions taken by CDM

. Run by the CDM for content C
Init #nodes with C = 0

1: Upon request from node k
2: k served = false
3: if #nodes with C == 0 then
4: Send C to k
5: #nodes with C++
6: Set sharing timeout for node k
7: else
8: while content timeout is not over do
9: if ACK received by k then

10: #nodes with C++
11: k served = true
12: Set sharing timeout for node k
13: break
14: end if
15: end while
16: if k served = false then
17: Send C to k
18: #nodes with C++
19: Set sharing timeout for node k
20: end if
21: end if

22: Upon sharing timeout for node k over
23: #nodes with C = #nodes with C-1

With respect to offloading mechanisms proposed for opportunistic networks (e.g., [18,

20]) our algorithms present several differences. First, there is no proactive seeding of

the network. This is because requests arrive at the CDM dynamically, and there is no

knowledge of which nodes will generate a request, and when. Therefore, we adopted a

reactive policy, i.e. we wait for requests without doing any proactive seeding. Second,

we want to use minimally mobile node resources in the opportunistic network. This is

to make the offloading mechanism less intrusive as possible, as the additional mobile

devices’ resource usage brought about by offloading is often considered a possible severe

2Note that the CDM implementation could be further simplified by allowing the nodes that select
a content to send a message over the cellular network to inform the CDM. In this way, the CDM does
not need to maintain separate timers for each of the nodes that have received the content. It is also
reasonable to assume that such confirmation message would be a negligile overhead for the cellular
network.
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drawback. Therefore, we do not use epidemic dissemination in the opportunistic net-

work. For the same reasons, we assume that users drop content some time after receiving

it. Still, our algorithms guarantee bounded delay, and impose similar overhead on the

CDM as in previous proposals [20]. Clearly, Algorithms 1 and 2 can be easily modified

to exploit additional resources of mobile devices (e.g., using more aggressive forms of

dissemination or doing initial proactive seeding), if needed.

6.3 System Performance

6.3.1 Scenarios and performance indices

We test the performance of the proposed offloading schemes in many different scenarios.

In particular we have analyzed two different vehicular scenarios, hereafter denoted as

Scenario V1 and Scenario V2, and two different Indoor scenarios, hereafter denoted as

Scenario I1 and Scenario I2.

In V1 we capture cases where a group of vehicles move inside a geographical area covered

by a cell, and roam always inside that cell. Vehicles move on a stretch of road crossing

the cell, and come back when arriving at the boundary. The resulting traffic is therefore

bidirectional. Nodes move with a speed randomly selected (with uniform distribution)

in an interval [vmin, vmax], and can exchange content directly while being within a maxi-

mum transmission range TRX from each other. We consider N nodes in the simulations,

wich can all request a set of content items (there are M content items in total). Re-

quests are generated from the beginning of the simulation sequentially, according to a

Poisson process with rate λ (i.e. two requests are spaced by an exponentially distributed

time interval). Simulations lasts until all nodes have requested the content, and their

sharing timeouts are all expired. In other words, we start from a condition where no

nodes have any copy of the content, and we analyse the behaviour of the system until

no copy of the content is available after all nodes have received it. While assuming ve-

hicles go back and forth on a given road segment is a simplification, the scenario is still

representative of movement patterns confined in a geographical area served by a cellular

network, where a given content is very popular and thus requested by all users (though

at different points in time). More in general, the scenario is representative of movement
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patterns whereby vehicles roam in such a geographical area, can move in opposite di-

rections and can communicate with each other when being close enough, irrespective

whether such movements occur on the same street or on different, nearby streets. In V2

we capture cases where nodes are not necessarily staying in the same area, but there is

a constant flux of vehicles entering and exiting the area. Again, we assume that vehicles

move on a road and we focus on a road segment covered by a cell (we select speeds as

in V1). Traffic is again bidirectional, and we keep the number of nodes constant, and

assume that a new vehicle enters the area when another one has left. When entering the

area, vehicles become interested in the content with a given probability p. If they are

interested, they generate a request after a time interval uniformly distributed between

the time when they enter and the time when they reach the centre of the cell. Taking

the same terminology of [20], we define a panic zone as the area of the cell ∆ meters

before the boundary. The content timeout is set so that the CDM sends the content

directly when vehicles enter the panic zone. Finally, vehicles keep the content while

being inside the cell. At the beginning of simulations, nodes are distributed randomly

(with a uniform distribution) in the cell, are interested in content with probability p,

and generate a request at a point in time uniformly distributed between the simulation

start time and when they are midway towards the border of the cell. Simulations stop

after 100 requests have been generated (50 in the case of low popularity content, without

noticeable loss of statistical significance of the results), and the corresponding users have

been all served. With this scenario we explore different cases with respect to V1. After

an initial transient phase, we are able to show a steady-state behaviour of offloading, in

cases where vehicles enter and exit an area with a given flux and density. In other words,

we can show how much offloading is efficient in making a given content “survive” in a

geographical area, by only exploiting replicas available on vehicles of interested users

passing through that area. This is an application of the basic floating content idea [82]

to the case of vehicular networking environment in presence of offloading. In addition,

only a fraction of the nodes can be interested into the content, i.e. the content can have

different levels of popularity. In Scenario I1 we consider an indoor environment in wich

the mobility of users is constrained by the building layout (rooms, corridors, stairs etc.).

This scenario is used to exemplify a museum use case in wich visitors can download

additional multimedia content as they roam through the halls of the museum and get

close to the different artworks in each room. The visitors can get this content not only

through the cellular network but also by nearby visitors that have that content item in
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the local caches of the portable devices (e.g., smartphones) using an opportunistic of-

floading technique. The main target of these simulation is to validate the effectiveness of

the proposed offloading system also for constrained mobility patterns indoor conditions.

In this set of simulations, we consider a grid layout that consists of four squared rooms

with a side length of 20 meters. Then the users moves between rooms and within each

room using a Constrained Randiom Waypoint Mobility (CRWM) model. Specifically, in

a CRWM a user picks a random destination inside the room with a probability Pstay, or

a destination point in one of the other rooms with probability (1−Pstay). Then the user

proceeds to this desination point following a straight-line trajectory with constant speed

v, and pauses for an exponetially distributed time interval with mean Tpause. We assume

that there is a global set of M content items, but each content item is assigned to a room

with an equal probability. Users request content items according to a Poisson process

with rate λ. It is important to point out that the users can request only content items

that are relevant for the room they are visiting. Thus, there is not content dissemination

between rooms. Simulation lasts until all nodes have requestd all the content items and

their sharing timeouts are all expired. In other words, this means that all the nodes

have visited all the rooms. The Scenario I2 has the same enviroments settings of the

Scenario I1. The substantial difference between those scenarios consists on how the set

of the content items are distributed in each room. In this scenario we have considered

a set of M content items equally suddivided into 3 different class of content popularity.

In particular we have considered a class within High popularity contents (CH), a class

within Intermediate popularity contents (CI) and finally a class within Low popularity

contents (CL). Each class is represented by its interest probability, i.e. PCi , which means

that a user results interested in a generic content of class Ci with probability PCi and

in others kind of contents with probability 1− PCi . The contents popularity are chosen

in order to follows a Zipf-like distribution Zipf(x;M) [81]. The distribution is given by

PCi = c/i1−x for each i, where c = 1∑
1/i1−x is a normalizzation constant, and respect

the following constraints: 
∑
PCi = 1;

PCL
< PCI

< PCH

(6.1)

Setting x = 0 corresponds to a pure Zipf distribution, which is highly skewed. On

the other hand, setting x = 1 corresponds to a uniform distribution with no skew. In

our tests we have used a pure Zipf distribution. Previous work have dimostrated that
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some contents request follows a Zipf-like distribution [83]. However, in other works the

Zipf distribution was used for modelling some content requests. For example in [84]

the Zipf distribution is used to perform a theoretical analysis of the cost of distributing

multimedia files over content distribution networks. After the classification, the global

set of content items has been uniformly distributed among each room. This make us

able to create a generic case in wich each room not necerssary has contents of each class,

but are possible the cases in which one room has contents of only two class or even only

one kind of contents. Due this aspect we performed at least 5 simulation runs for each

set of parameters. Also in this case simulation lasts until all nodes have requestd all the

content items and their sharing timeouts are all expired.

We ran simulations, using the NS3 with the LENA module for LTE3, for various sets

of parameters, as indicated in Table 6.1 and Table 6.2. Specifically, we varied the

number of nodes in all Scenarios, the request rate in V1, the content timeout and the

sharing timeout in Senarios V1, I1 and I2, and the contents popularity in Scenarios V2,

I1 and I2. We performed at least 5 simulation runs for each set of parameters, using

the independent replication method [85]. The main performance figure we consider is

the offloading efficiency, defined as the fraction of content messages that reach the users

through opportunisitc communications. For this index we computed the confidence

intervals (with 95% confidence level) over the replications. To get a more precise idea

on the dynamics of the offloading process over time, we also computed, on each 5s time

window, the average (across simulation replicas) number of copies of content stored on

mobile nodes, and the average number of new content deliveries through the cellular and

the opportunistic network, respectively.

Table 6.1: Simulation parameters Scenarios V1,V2

Scenario V1 Scenario V2

speed (Km/h) [80,120] [80,120]
cell diameter (Km) 4 1
N (nodes) 20, 40 20, 40
TRX (m) 200 50
p 1 0.5, 0.75, 1
λ (req/s) 1, 0.5, 0.2 –
content timeout (s) 60, 90, 120 –
sharing timeout (s) 5,10,20,30,60,120 –
∆ (m) – 50

3http://networks.cttc.es/mobile-networks/software-tools/lena/
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Table 6.2: Simulation parameters Scenarios I1,I2

Scenario I1 Scenario I2

speed (Km/h) 6 6
cell diameter (Km) – –
N (nodes) 20 20
TRX (m) 28 28
p 1 1
λ (req/s) – –
content timeout (s) 10, 20,30 10, 20,30
sharing timeout (s) 20, 30, 60 20, 30, 60
∆ (m) – –

6.3.2 Analysis of scenario V1

The analisys of this scenario was divided in two steps. In the first step we have in-

vestigated the performance of the offloading system when only one content item was

requested by all the nodes. In the second step we have extended the analysis by ob-

serving the behaviour of the offloading mechanism in the case when all the nodes do a

request from a set of M content items.

We start by analysing the system performance in V1 in the case of only one content

item. To this end, Figure 6.1 shows the offloading efficiency obtained in a wide set of

different network configurations, in which we vary the node density, the content request

rate, as well as the content timeouts and the sharing timeouts. Several general obser-

vations can be drawn from the shown results. First, the offloading efficiency increases

with the node density. The main reason is that the higher the node density, the higher

the contact rate between the mobile devices. Thus, there are more opportunities for

opportunistic dissemination between interested users. As far as the impact of the re-

quest rate (λ) we observe two regimes. When the sharing timeout is low, higher request

rates result in higher offloading. This is intuitive, because higher request rates results

in requests being more concentrated in time. When nodes share the content only for

very short amounts of time (see for example the case of 5s), concentrating the requests

in time increases the probability of encountering other nodes sharing the content. Less

intuitive is the behaviour for large sharing timeouts, where higher request rates results

in lower offloading efficiency. The reason of this will be more clear when analysing the

evolution of dissemination over time (Figure 6.3). Intuitively, when requests are more

concentrated in time, content timeouts for nodes that do not get the content via the

opportunistic network are also more concentrated. As we will discuss later, when a
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timeout expires and content is delivered via the cellular network, this kicks off a fast

increase in the dissemination of content via the opportunistic network in the region of

the node whose content timeout has expired. When expirations are less concentrated in

time (i.e., when request rates are lower), the opportunistic diffusion process has more

time to spread content, and therefore the offloading efficiency increases A second in-
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Figure 6.1: V1: offloading efficiency for varying request rates, content timeouts and
the sharing timeouts.

teresting observation is related to the impact of the sharing timeout on the offloading

efficiency. Our results indicate that if the content is sufficiently persistent in the network

(e.g., sharing timeout≥ content timeout) then the impact of the sharing timeout on

the offloading efficiency is negligible. On the other hand, if the content is volatile, i.e.,

it is cached in the local memory of interested users only for few seconds, then the num-

ber of copies of that content in the environment may be too small to allow an efficient

opportunistic dissemination. For instance, with 20 mobile devices and a content request

rate of 0.2 req/s the offloading efficiency can be as low as 20% (this degradation of the

offloading efficiency is less remarkable in denser networks). Interestingly, if the content
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Figure 6.2: V1: temporal evolution of the number of content copies and served content
requests in different network scenarios.

request rate is high (i.e., λ = 1 req/s) then even a sharing timeout = 5s can still provide

an offloading efficiency up to 60% in a cell with 20 mobile devices. A last observation is

related to the effect of the content timeout. As shown in Figure 6.1(c) and Figure 6.1(d)

an increase in the content timeout results into an increase of the offloading efficiency.

This is more noticeable for large sharing timeouts, i.e. when content stays available

on nodes for opportunistic dissemination longer. This is basically a joint effect of the

fact that (i) content is available longer in the opportunistic networks (longer sharing

timeouts) and (ii) interested nodes wait longer for requesting it via the cellular network

(longer content timeouts). To get a deeper understanding of the offloading dynamics,

plots in Figure 6.3 show the temporal evolution of (i) the total number of mobile devices

that have received the content via the cellular and the opportunistic network, respec-

tively, and (ii) the number of copies of the content available in the network (i.e., the

number of nodes that are storing and sharing a copy of the content at that time). Note

that plots are typically shown until just after the time when the last requesting node has
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received the content. The system evolution after that time is not particularly interest-

ing: nodes progressively drop the content when their sharing timeouts expire. We show

plots for extreme values of the considered parameters. Specifically, in Figures 6.3(a)

and 6.3(b) we focus on two extreme values of the sharing timeout parameter, for the

case of 40 nodes and 1 req/s (content timeout is always 60s). As expected, the main

difference is the number of copies of the content available in the network, which is much

higher in Figure 6.3(b), resulting in a higher offloading efficiency. It is very interesting

to observe the behaviour of the system after 60s, i.e. when the content timeouts for

the first nodes generating requests expire. For larger sharing timeouts (larger than the

content timeout), before that time, only 1 node (the first one requesting the content)

can receive the content via the cellular network, as it is clear from Figure 6.3(b). This

is due to the behaviour of the CDM explained in Section 6.2, that sends immediately a

content to the first requesting node (as no other node stores the content yet), and then

waits the content timeouts (i.e. 60s) for the next requests before taking any action. In

other words, it is impossible to have more than one delivery via the cellular network

in the first 60s, due to the CDM algorithm. When the sharing timeout is short, more

copies of the content can be sent via the cellular network also before the first content

timeout expires. This happens whenever a new request is generated and all nodes that

have previously received the content have already dropped it (due to expiration of the

sharing timeout). In both cases, after 60s from the start of the simulation, content

timeouts start expiring, and new copies of the content are sent via the cellular network.

This generates a burst of dissemination in the opportunistic network, that is noticed

by the steep increase of the curve related to opportunistic deliveries around that time.

Note, in particular, that after 60s in both cases the rate of increase of the delivery via

the opportunistic network is higher than the rate of increase of cellular deliveries. This

means that each delivery via the cellular network is significantly amplified by deliveries

in the opportunistic network. Figures 6.3(c) and 6.3(d) show the evolution over time

in the least favourable conditions for offloading, i.e. for low request rates (λ = 0.2)

and very short sharing timeout (5s). Curves confirm the behaviour described before. In

particular at low densities (N = 20) the sharing timeout is not long enough to sustain

significant dissemination over the opportunistic network. The situation improves for

denser networks (N = 40), but still the sharing timeout makes nodes drop content too

fast with respect to the rate of arriving requests (anyway, the offloading efficiency is still

between 20% and 40% even in these cases).
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Figure 6.3: V1: temporal evolution of the number of content copies and served content
requests in different network scenarios.

After this preliminary study, as mentioned above, we have evaluated the performance of

the offloading mechanism in the case when a set of M available contents is present in the

network. In Figure 6.4 we can see how the offloading efficiency vary by incrementing the

number of the available content items. The main effect that is possible to capture, is that

the offloading efficiency decrease while the number of content items increase. This result

is enough easy to understand. In fact, when the number of the content items increas,

the probability that a generic encountered node has a desidered content is his local

cache became smaller. Due to this lower probability, the offloading efficiency decrease.

However this scenario maintains some characterisitcs of the scenario where a single piece

of content is present, such as the dipendence of the system from the content timeout

and the sharing timeout. Both these effects can be observed in Figure 6.5. In fact, for a

fixed content timeout value, we have observed an increment of the offloading efficiency

by increasing the sharing timeout, because as previously explained, the persistence of

a content in the network depends from this parameter. On the other side, an increment
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of the content timeout corresponds also to an increment of the offloading efficiency,

because interested nodes wait longer for requesting the content via the cellular network.

Finally, in order to do a complete comparison with the single content scenario, also
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Figure 6.4: Scenario V1: offloading efficiency for varying number of content items
and the sharing timeouts.

in this case we have performed a temporal analysis of the offloading system. Without

loss of generality, in this case Figure 6.6 shows the temporal evolutionof the average

number of content items that each node has received via the cellular network, the average

number of content items that each node has received via the opportunistic network and

the average number of content items that persists in the network. In particular we

have reported to limit case of sharing timeout. In the case of long sharing timeout

(Figure 6.6(b)), the first node that requests some content, receive it through the cellular

network. Then, nothing happen until th first content timeout elapsed, i.e. around 120s.

After that point in time, a few content timeout expired, and content items are served

via the cellular network (the corresponding curves increase). As the previous case, this

boost the opportunistic dissemination process, wich results in a marked increase of the
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number of nodes receiving content items via the opportunisitc network. On the other

hand, for short sharing timeouts (Figure 6.6(a)) nodes receive content through the

cellular network more uniformly over time. This is because content items stay available

in the opportunistic network for short amounts of time. Even during the first 120s, while

content timeouts have not expired the CDM knows that some content requestes can only

be satisfied via the cellular network, because no nodes are storing those items anymore.

All this behaviour has been consistently observed also for the other se of parameters.
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Figure 6.5: Scenario V1: offloading efficiency for varying number of content items,
content timeouts and the sharing timeouts.

6.3.3 Analysis of scenario V2

Figure 6.7 shows the offloading efficiency in V2 for the two considered densities of nodes

and the different content popularities (p). Results basically confirm previous observa-

tions. This is nevertheless important, as V2 is more representative of a “steady state”

behaviour of the offloading system, as nodes constantly enter and exit the cell at a
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Figure 6.6: V1: Temporal Evolution for short and long sharing timeout and
content timeout=120 s.

given rate, and continuously generate requests (with a given probability). Again, denser

networks (N = 40) achieve higher offloading efficiency. The effect of the popularity

parameter is similar to that of the request rate in V1: the higher the popularity, the

higher the number of nodes sharing content, the higher the offloading efficiency. It is

interesting to note, however, that, due to the mobility of the nodes, they stay within

the cell only for about 30s in total, and, on average, stay in the cell for about 22s after

having generated a request. This is the “useful time window” during which they can

receive content via opportunistic dissemination. Even though this time window is rather

short, offloading is very efficient, even at quite low popularities (p = 0.2). Finally, Fig-
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Figure 6.7: V2: offloading efficiency for different content popularities.

ures 6.8(a) and 6.8(b) show the evolution over time for N = 40 nodes at the extreme

popularity values. Besides confirming the general behaviour observed also in V1, it is

interesting to note that at high popularity the opportunistic dissemination alone is suf-

ficient to keep enough copies of the content in the cell so that requesting nodes can find

at least one before exiting. This is shown by the fact that the curve of delivery via the
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cellular network flattens out after an initial “seeding” interval. Instead, in case of less

popular contents, there are cases where nodes do not encounter other nodes sharing a

copy of the content before getting out of the cell, and therefore the CDM needs to serve

them through the cellular network. Fluctuations in the number of copies stored in the

network are mainly due to statistical fluctuations in the contacts and requests events.

In addition, the curves drop towards the end of the simulation when only few requests

need to be satisfied and no new requests are generated (remember that simulations stop

when a maximum number of requests is reached).
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Figure 6.8: V2: temporal evolution of the number of content copies and served content
requests in a network with N = 40 users.

6.3.4 Analysis of scenario I1

After the illustaration of the vehicular scenarios, now we illustrate the system perfor-

mance related to the indoor sceranios. We start from scenario I1, which differs from the

scenario I2 for the popularity of the content. In particular, in this case, there are different
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contents per each room, but all the content in each room have the same popularity. To

this end Figure 6.9(a) shows the offloading efficiency for different content timeouts. It is

interesting to observe how the offloading efficiency, is not affected by the content timeout.

This is a side effect of the environment configurations. In fact all users in a room can di-

rectly communicate with each other. In this condition, the opportunistic dissemination

is tipically fast in distributing the content item to the interested users, and the capacity

of the opportunistic communications is mainly limited by the channel contention. Thus,

increasing the content timeouts does not improve the offloading efficiency because local

copies of the content items are rapidly disseminated to interested users. In this scenario

we have also analyzed the offloading efficiency when the content items that a user can

requests increas. By observing Figure 6.9(b) is possible to observe that, as in Scenario

V1, the more content items there are, the lower is the the offloading efficiency. This can

be explained by observing that a user can randomly request any of the content items

that are assigned to the room where he/she is. Thus, the more the content items and

the lower the probability that two users request the same content (although not at the

same time). Clearly, the opportunistic offloading technique is effective only when there

are multiple requestes of the same content. It is also worth pointing out that a content

item can be disseminated only in the room where it is relevant. In fact, when a user

changes room, the content items that are stored in his/her local cache are not dissemi-

nated anbymore, because in the new room there are not users interested in that content.

thus, the cached content items are simply deleted as the sharing timeouts elapsed.

Finally, in Figure 6.10 we show the temporal evolution of content diffusion for short
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and long sharing timeout and different number of content items. From this Figures, is

important to note that for short sharing timeouts the content items stay available in

the opportunistic network for short amount of time. Thus, the combined effect of short

sharing and content timeouts caused content timeouts to frequently elapse before the

opportunistic diffusion is able to distribute the cached content item to other interested

users. On the other hand, when the sharing timeout increases there are more copies

of the content item in the opportunistic network and this boost the dissemination pro-

cess. Specifically, as show in Figure 6.10(b) the number of nodes receiving content items

via the opportunistic network rapidly increases at the beginning of the simulation and

more nodes are served by the opportunistic network than by cellular network. However,

when nodes start changing rooms (after 180 seconds, on average), the effivciency of the

dissemination process decreases and more content items are sent through LTE.
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6.3.5 Analysis of scenario I2

As mentioned in Section 6.3.1, this scenario has the same environments configurations

of the Scenario I1. The substantial difference is rappressented by the suddivision of

the content items in three class of popularity. As initial step we have evaluated the

global offloading efficiency, thus we have evaluated the fraction of content messages

that have reached the users through the opportunistic communication, without taking

into account the classification of the contents. From this, we have observed the same

characterisitcs shown in Figure 6.9(a), thus the independecy from the content timeouts.

This was an expected result because, due to the enviromnet configurations, also in this

case the opportunistic dissemination is tipically fast in distributing the content item

to the interested users. After this preliminary evaluation, then we have evaluated the

offloading efficiency for each class of popularity. From this analysis, as first result, we

observed that the independece from content timeout persist also in each type of traffic

(Figure 6.11(a)). Another observation that we can do about this analysis, is about the

percentage of offloaded traffic for each type of content. By evaluating the efficiency class

by class, as illustrated in Figure 6.11(b), we can observe that to an high popularity

content correspond an high offloading efficiency. This result is of simple comprension,

because higher is the popularity higher will be the requests for a content of this class,

thus an higher disponibility of this kind of content which result in an high support of

the offloading reception than the content with a decrescent popularity. This results was

been consistently observed also for the other sets of parameter. However this results was

obtained in the case when a generic user do a single request.

However, all the results until now exposed, are referred to the case when the generic

node do a single request. In order to complete the analysis of the offloading mechanism,

we tried to stress the opportunistic network, by incrementing the requesting rate from

1 req/sec. up to M req/sec. In order to increment the requesting rate, intuitively

an increment of the content items per room was necessary. As first step we observed

the offloading efficiency by fixing the requesting rate and incrementing the number of

content items. In this case the results have basically confirmed previous obervation.

In fact in figure 6.12(a), by fixing the requesting rate, is possible to seen that the

offloading efficiency decreae while the number of content items increase. On the other

hand, in Figure 6.12(b), is possible to see the opposite case. In fact, by fixing the
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number of content items, to an higher requesting rate corresponds an higher offloading

efficiency.this is simple to understand, because ifall the nodes requests more contents at

the same time. the probability to receive these contents through the cellular network

increase. Even if we have illustrated the case of the global offloading, all these features

was consistently observed for each class of content.
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6.4 Summary

In this chapter we have studied the performance of offloading through opportunistic

networks, in cases where content request are generated dynamically, and are not all
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synchronised at the moment when content becomes available. This general scenario is

still to be satisfactorily addressed in the literature, and represents a large number of

more specific scenarios. Interestingly, in such cases no support from cellular multicast

mechanisms can be used, therefore offloading is even more critical. We have defined

offloading mechanisms that guarantee bounded delays in content delivery, but, differently

from existing literature, use as little as possible resources of mobile users’ devices. This

is also a critical point, as additional consumption of mobile devices’ resources (storage,

battery, etc.) is a drawback of offloading with opportunistic networks, that could limit

its practical applicability. By considering minimal use of mobile devices’ resources, we

show that offloading can still be able to drastically reduce the traffic over the cellular

network, also in a configuration that is unfavourable for its efficiency. Specifically, we

tested the performance of our offloading schemes in vehicular environments, considering

different densities of nodes, different popularity of content, and different parameters

of the offloading protocols. Our results show that offloading can be very efficient also

when using very limited resources of mobile devices, achieving offloading ratios up to

more than 90%. Moreover, our results also highlight configurations of the protocols and

parameters of the investigated scenarios where offloading is less efficient, and therefore

would benefit from more aggressive policies, using additional resources of mobile devices.

Then we have also tested the offloading schemes in indoor environments. Through these

scenarios was possible to seen new feature, as the independence of the percentage of

offloaded traffic from the content timeouts or the system behaviour when contents with

different popularity are present in the same scenario. In fact we have illustrated that

efficiency linearly increase with the popularity of the contents. Another pointed out

feature, was related to the dipendence from the number of contemporany requestes that

the generc user do and the number of content items. In this case has been observed

that, by fixing the Requesting rate to an higher number of content items corresponds a

lower offloading wfficiency. On the other side for a fixed number of content items, to an

higher requesting rate correspond an higher offfloading efficiency. It is worth noticing,

however, that offloading efficiency never drops below 20% in the considered cases, even

though they may be quite challenging for the considered offloading mechanisms.





Chapter 7

Conclusions

During my PhD studies, I have dealt with several aspects of optimisation of the per-

formance of 4G networks. In particular, my studies were organized in order to follow

two main branches , i.e., analisys and evaluation of the user’s perceived throughput in

the LTE network and design and evaluation of opportunistic traffic offloading protocols.

With respect to the evaluation of the performance in terms of perceived throughput by

the generic user in LTE network, through the analysis of a wide set of possible scenar-

ios, we have been able to point out the limits of the network service, more precisely at

MAC/PHY level. At this point, I have proposed a modification of the algorithm for the

Adapative Modulation and Coding scheme used at PHY level [70]. This scheme, based

on Reinforcement Learning, is able to improve the system performance, in particular to

increse the throughput received by the users and the the global throughput into the cell

up to 22%.

Furthemore, this analysis step contributes to the development of an analytical model

to estimate the user perceived throughput [55]. The main feature of this mathematical

model is the cross-layer approach. In other words this model takes into account both the

Physical layer behaviour, such as Block Error Rate and link rate adaptation, and the

MAC operations such as Hybrid-ARQ and user scheduling. Through this modellization

process we have been able to understand the dependence between the PHY and MAC

layer mechanisms and how these intaractions impact on the throughput perceived at the

Application level.

With respect to the other branch of study, I focused my attention on how the usage

of Device-to-Device techniques can improve the performance of the LTE networks. In

89



Chapter 7. Conclusions 90

particular the main activity has been the development of offloading protocols when the

requests from a group of user, of a particular contents, are not synchronized and then it

is impossible to use a multicast communications to reduce the network congestion. The

main performance index considered was the offloading efficiency, defined as the frac-

tion of content messages that reach the users through opportunisitc communications.

During this study both the pedestrian and vehicular scenarios were analyzed through a

wide set of possible cases obtained by varyng the main system parameters such as the

content timeuot, the sharing timeout, the requesting rate (λ), the content popularity

(p) and the set of available contents in the network (M).

I used a very simple offloading scheme, whereby no epidemic dissemination occurs in

the opportunistic network. Thus this scheme is minimally invasive for users’ mobile

devices, as it uses only minimally their resources. Through the results obtained from

the simulation of all these scenarios, it has been possible to prove the efficiency of the

offloading tecnique in reducing the network congestion, by achieving offloading ratios up

to more than 90% [4].



Appendix A

Proofs of Chapter 4

A.1 Proof of Theorem 2

By definition, the CDF of the spectral efficiency in equation (4.1) is computed as

Fη(x; i, k)=Pr{ηi,k ≤ x} (A.1)

=Pr
{

log2

(
1 +

γi,k
Γ

)
≤ x

}
=Pr

{
1 +

γi,k
Γ
≤ 2x

}
=Pr {γi,k ≤ Γ(2x − 1)} .

Given that γi,k ∼ Exp(λk) it follows that

Fη(x; i, k)=

∫ Γ(2x−1)

0
λke
−λkydy . (A.2)

Solving the integral in (A.2) provides the formula in (4.6).
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A.2 Proof of Claim 1

Following the procedure described in [58] to derive the CQI index from the corresponding

spectral efficiency we can write that

gi,k[j]=Pr{Ci,k=j} (A.3)

=Pr{Sj ≤ ηi,k ≤ Sj+1}

=Pr{ηi,k ≤ Sj+1} − Pr{ηi,k ≤ Sj} .

By substituting (4.6) in (A.3) we obtain (4.7), and this concludes the proof.

A.3 Proof of Claim 2

The wideband CQI for the kth UE is defined as follows

Ĉk=

⌊
1

q

q∑
i=1

Ck

⌋
. (A.4)

Let us denote with Zk the sum of the CQI values for each RB, i.e. Zk=
∑q

i=1Ci,k. Note

that Zk is a discrete random variable and Zk ∈ [0, qL] since Ci,k ∈ [0, L]. Let zk[j] be

the PMF of Zk. it is a well-known results that the pdf of the sum of i.i.d. RVs is the

convolution of the pdf of the constituent RVs. Thus, it follows that zk[j] = g
(q)
k [j], i.e.

the q-fold convolution of gi,k[j]. Now we can write that

gk[j]=Pr{Ĉk=j} (A.5)

=Pr

{⌊
1

q
Zk

⌋
= j

}
=Pr{qj ≤ Zk < q(j + 1)− 1}

=

q(j+1)−1∑
l=qj

Pr{Zk= l} .

By substituting g
(q)
k [l] in (A.5) we obtain (4.8), and this concludes the proof.
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A.4 Proof of Claim 3

By definition Hi,m,k = µm[v] is Qm,v ≤ γi,k ≤ Qm,v+1. The probability hi,m,k[v] that

Hi,m,k is equal to µm[v] is thus

hi,m,k[v]=Pr{Qm,v ≤ γi,k ≤ Qm,v+1} (A.6)

=

∫ Q(v+1),m

Qv,m

fγ(x; i, k)dx .

Solving the integral in (A.6) provides the formula in (4.12).

A.5 Proof of Claim 4

Let us denote with Zm,k =
∑

i∈Ω(k)Hi,m,k. Thus, Zm,k is a discrete random variable

which takes on any value equal to the sum of all possible ω(k)-combinations of the V

elements in the set Vm. Then, it holds that

Ĥm,k =
Zm,k
ω(k)

. (A.7)

However, the analysis is complicated by the fact that the MMIB-to-BLER mapping

is defined only over the discrete set Vm. Thus, approximations are needed to map

Zm,k/ω(k) onto one of the µm[v] values. First of all, we observe that the PMF of Zm,k

is the convolution of the PMFs of the individual constituents because Hi,m,k RVs are

independent. Now, let us define with Φv the set of all attainable values for Zm,k that are

between ω(k)µm[v] and ω(k)µm[v + 1]. Then, we approximate the probability hm,k[v]

that Hi,m,k is equal to µm[v] as

hm,k[v] = Pr{Ĥm,k = µm} (A.8)

≈ Pr{µm[v] ≤
Zm,k
ω(k)

≤ µm[v + 1]}

=
∑
l∈Φv

h
(ωk)
i,m,k[l] .

In other words, in formula (A.8) the discrete MMIB value is associated to a range of

values for the variable Zm,k.
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A.6 Proof of Theorem 1

By exploiting the law of total probability we can write that

E[TB|Succ]k=

L∑
j=0

E[TB|Succ,MCS=m(j)] (A.9)

Pr{Succ|MCS=m(j)}Pr{Ĉk=j}

=

L∑
j=0

TBS(m(j), b) [1− Pd(m, k)] gk[j] ,

where Ĉk is the CQI value reported by the kth UE. Similarly, by considering the HARQ

protocol behaviours

E[TARQ]k = (A.10)

=
L∑
j=0

E[TARQ|MCS=m(j)}]kPr{Ĉk=j}

=
L∑
j=0

[
rmax∑
r=0

E[TARQ|MCS=m(j), nrtx = r}]k

Pr{nrtx = r|MCS=m(j), }
]
Pr{Ĉk=j} .

By considering the HARQ timing as illustrated in Figure 4.2 it immediately follows that

E[TARQ|MCS=m(j), nrtx = r}]k = (1 + r)(1 + τARQ) . (A.11)

Finally, by substituting (A.11) in (A.10) we obtain (4.5b).
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[82] J. Ott, E. Hyytiä, P. Lassila, J. Kangasharju, and S. Santra, “Floating content for

probabilistic information sharing,” Pervasive and Mobile Computing, vol. 7, no. 6,

pp. 671 – 689, 2011.

[83] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and zipf-like

distributions: Evidence and implications,” in INFOCOM’99. Eighteenth Annual

Joint Conference of the IEEE Computer and Communications Societies. Proceed-

ings. IEEE, vol. 1. IEEE, 1999, pp. 126–134.

[84] M. Yang and Z. Fei, “A model for replica placement in content distribution networks

for multimedia applications,” in Communications, 2003. ICC ’03. IEEE Interna-

tional Conference on, vol. 1, May 2003, pp. 557–561 vol.1.

[85] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis. McGraw-Hill,

2000.


	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis contributions in the area of LTE throughput modelling and improvement
	1.1.1 LTE Channel Modelling
	1.1.2 Reinforcement Learning in LTE-AMC scheme

	1.2 Thesis contribution in the area of Mobile Data Offloading
	1.2.1 Mobile Opportunisitc Traffic Offloading


	2 State of the Art
	2.1 LTE Related Works
	2.2 Opportunistic Offloading Related Works

	3 3GPP LTE Standard
	3.1 Introduction
	3.2 System Architecture
	3.2.1 Core Network
	3.2.2 Radio-Access Network

	3.3 Radio Protocol Architecture
	3.3.1 Radio-Link Control
	3.3.2 Medium-Access Control
	3.3.3 Logical Channels and Transport Channels

	3.4 Scheduling
	3.4.1 Downlink Scheduling
	3.4.2 Uplink Scheduling
	3.4.3 Channel-State Reporting

	3.5 HYBRID ARQ WITH SOFT COMBINING
	3.6 Physical Layer Organizzation

	4 Analysis of MAC-level Throughput in LTE Systems
	4.1 Introduction
	4.2 LTE MAC Protocol Specification
	4.3 MAC-level Throughput Analysis
	4.3.1 CQI feedback scheme and AMC strategy
	4.3.2 Physical layer error model

	4.4 Model Performance Evaluation
	4.4.1 Simulation setup
	4.4.2 Results with fixed CQI

	4.5 Summary

	5 Robust Adaptive Modulation and Coding (AMC) Selection
	5.1 Introduction
	5.2 AMC in LTE
	5.3 Background on Reinforcement Learning (RL)
	5.4 An RL-based AMC Scheme (RL-AMC)
	5.5 Performance Evaluation
	5.5.1 Simulation setup
	5.5.2 Results for fixed CQI
	5.5.3 Results with adaptive CQI

	5.6 Summary

	6 Offloading through Opportunistic Networks in LTE environment
	6.1 Introduction
	6.2 Offloading Mechanisms
	6.3 System Performance
	6.3.1 Scenarios and performance indices
	6.3.2 Analysis of scenario V1.51
	6.3.3 Analysis of scenario V1.52
	6.3.4 Analysis of scenario I1.51
	6.3.5 Analysis of scenario I1.52

	6.4 Summary

	7 Conclusions
	A Proofs of Chapter 4
	A.1 Proof of Theorem 2
	A.2 Proof of Claim 1
	A.3 Proof of Claim 2
	A.4 Proof of Claim 3
	A.5 Proof of Claim 4
	A.6 Proof of Theorem 1

	Bibliography

