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INTRODUCTION 

 

1.1 Pancreas anatomical and general features 

 
The pancreas is an abdominal, lobulated gland with distinct exocrine and endocrine 

components. The adult pancreas is a transversely oriented retroperitoneal organ extending 

from the “C” loop of the duodenum to the hilum of the spleen (Figure 1). On average, the 

pancreas measures 20 centimeters (cm) in length and weighs 90 grams (g) in men and 85 g 

in women [1]. Although the pancreas does not have well-defined anatomic subdivisions, 

the adjacent vasculature can be used to separate the pancreas into three parts: the head, 

neck, body, and tail. 

The pancreatic duct system is variable. The main pancreatic duct, also known as the duct of 

Wirsung, drains mainly into the duodenum at the papilla of Vater. Whereas, the accessory 

pancreatic duct, also known as the duct of Santorini, drains into the duodenum through a 

separate minor papilla (Fig. 2). In adults, the main pancreatic duct merges with the common 

bile duct proximal to the papilla of Vater, thus creating the ampulla of Vater, a channel for 

biliary and pancreatic drainage. Due to developmental variability, however, this ductal 

architecture can differ between individuals [2].  

The exocrine portion of the pancreas, which constitutes 80-85% of the pancreas in entirety, 

is made up of acinar cells. Acinar cells surround the series of ducts that convey the 

digestive enzymes they produce, to the duodenum. Acinar cells are pyramidally-shaped 

epithelial cells that are radially oriented around a central lumen. The basal portion of acinar 

cells is basophilic and contains abundant endoplasmic reticulum. Additionally, acinar cells 

contain a well-developed supra-nuclear Golgi complex that is part of an apically oriented 

secretory pathway that forms membrane-bound zymogen granules, which contain the 

digestive enzymes. Every day, the pancreas secretes 2 to 2.5 liters of bicarbonate-rich fluid 

containing digestive enzymes and pro-enzymes.  

The endocrine portion of the pancreas is composed of about 1 million highly vascularized 

cell clusters, known as the islets of Langerhans. These islet cell clusters are comprised of 

multiple, distinct cell types: α-cells, β-cells, δ-cells, ε-cells, and γ or PP-cells. Each cell 

type secretes distinct hormones: α-cells-glucagon, β-cells-insulin, δ-cells-somatostatin, ε-

cells-ghrelin, and γ or PP-cells-pancreatic polypeptide [3]. These cell types have a precise 
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organization. For example, β-cells are mainly located at the center of the islet, with all the 

other cell types comprising the perimeter of the islet (Fig 3) The β-cell’s role is the 

secretion of insulin in response to increased nutrient availability in blood circulation. For 

example, glucose has usually a physiological concentration of 5 mM, but in response to 

higher blood levels of glucose, fatty acids, and amino acids at a concentration of 7-10 

mM, it will stimulate a response from the β-cells [4]. Furthermore, insulin has many other 

functions: 1) promotes the synthesis of fatty acids and triglycerides in the liver and adipose 

tissue, 2) stimulates the synthesis of glycogen in the liver and skeletal muscle, 3) allows 

amino acid permeability, 4) promotes protein synthesis in most tissues, 5) inhibits the 

depletion of energy reserves in all tissues, and 6) suppresses hepatic gluconeogenesis. 



3 
 

 

 

Figure 1. Pancreas anatomy (http://imgarcade.com/1/pancreas-anatomy-uncinate) 
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Figure 2. Pancreatic ductal anatomy (Krames C, 1999)
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Figure 3. Islet of Langerhans (www.cram.com/flashcards/block-4-histology-3553915)
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1.2 Pancreas development and involved factors 

 
The pancreas develops from two distinct buds, dorsal and ventral, that arise from either 

side of the distal foregut endoderm. During early embryonic development, the ventral 

pancreatic primordia rotates and fuses with the dorsal at approximately the seventh week 

of gestation to form the single gland-pancreas [5]. The majority of the pancreas, (body, 

tail and superior and inferior head included), is derived from the dorsal primordium. 

Pancreas development is a complex process that involves differentiation of specialized 

cells, regionalization and morphogenesis [6-7]. In particular, pancreas organogenesis 

requires various sequential connections with the close mesodermal tissue as well as the 

inclusion of various important and stage-specific factors such as: Retinoic Acid (RA), 

Bone Morphogenetic Protein (BMP), Notch, and Fibroblast Growth Factor (FGF) [8]. 

In 2011, O’Rahilly and Müller classified human embryonic development into 23 different 

Carnegie Stages (CS). The remaining development is divided into individual stages by 

morphology. Human embryogenesis is staged by maturity and only by time extension, as 

days post-conception. Human embryogenesis differs from other model species such as 

mouse, for the embryogenesis classifications, in term of time measured (Table 1) [3]. 

At CS 12-13 in humans, many important transcription factors have emerged, such as Sox-

9, Hnf1-β, GATA-4 GATA-6, (Fig. 3) [10-11] and the duodenal homeobox factor 1 

(PDX1), which is detected at the pancreatic endoderm level [9] (Fig. 3) [10-11]. 

Moreover, there has been no expression of endocrine factor in human embryos at this 

time point, referred to as “primary transition”. Primary transition represents the early 

phase of pancreas development, and all of these aforementioned factors are necessary for 

human pancreatic growth.  

The “secondary transition” period starts from CS 15 to CS 19, and it is characterized by 

epithelial cell diffusion and acinar differentiation. Additionally, the pro-endocrine 

transcription factor, Neurogenin3 (pro-Neurog3), begins to be expressed along the 

primitive pancreatic ducts [12-13] and will determine the specific endocrine lineage. In 
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particular, early Neurog3
+
 (CS 20-21) will specify the human α-cells of the islets of 

Langerhans, while the late form of Neurog3+ will give rise to β-, δ- and PP-cells [12]. 

Neurog3 achieves high expression values by the end of the first trimester (fetal period), 

but then begins decreasing in the following semester [14-15]. At 10 wpc (weeks post-

conception), β-cells of the islets of Langerhans become vascularized and islet clusters are 

observable  [16].
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Table 1. Human embryonic development stages (Jennings RE et al, 2015) 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jennings%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=26395141
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Figure 4. Transcription factor network of human pancreas development (Jennings RE et 

al, 2015)

http://www.ncbi.nlm.nih.gov/pubmed/?term=Jennings%20RE%5BAuthor%5D&cauthor=true&cauthor_uid=26395141
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1.3 Diabetes disease and therapeutic applications 

 

Diabetes is a common disease. 29.1 million people or 9.3% of the U.S. population have 

diabetes (CDC, National Diabetes Statistics report, 2014). In the year 2000, 171 million 

adult cases were reported worldwide and this number is expected to reach 334 million 

patients globally [17]. It is associated with high rates of morbidity and mortality. Patients 

suffer with long-term complications, such as cardiovascular disorders (myocardial 

infarction and coronary artery disease), kidney disease, blindness, and damage to the 

nervous tissue. The disease originates from a selective destruction of pancreatic β cells, 

which leads to a persistent hyperglycemia [18]. Diabetes is a polygenic disease with 

genetic pre-conditions. Environmental factors, such as population density and climate, 

are also shown to contribute to the development of the disease. There are two types of 

diabetes: 1) Type I diabetes (TID) or insulin-dependent diabetes mellitus (IDDM), which 

is characterized by the destruction of insulin producing β cells, and 2) Type II diabetes, a 

metabolic disorder characterized by hyperglycemia due to insulin resistance. 

IDDM represents 10% of cases worldwide, and its incidence is 41/100,000 people/year in 

Europe, and 25/100,000 people/year in North America. IDDM usually occurs in children 

and young adults and is characterized by pancreatic β cell failure, necessitating life-long 

parenteral insulin replacement [19]. With 15,600 children and youth newly diagnosed 

annually (American Diabetes Association data, 2014), IDDM is the most commonly seen 

pediatric endocrine disorder and these values are still increasing. Currently, causes 

leading to the immune system activation are not fully understood. The pathogenesis of 

the disease is defined by T cell infiltration and chronic inflammation in the islets of 

Langerhans, with consequent β cell destruction and insulin insufficiency. The three major 

antigens, which interact with the immune system, are:  

GAD65 - protein expressed mainly in neuroendocrine cells. 60-80% of type I diabetics 

have turned to GAD65 autoantibodies. 

ICA512 - protein-tyrosine phosphatase trans-membrane family. It has a role in insulin 

secretion. 60-70% of people with diabetes have autoantibodies to ICA512. 
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Insulin -the antibodies are directed to the β chain and are greater in young individuals. 

Insulin-dependent diabetes mellitus diagnosis can be done by searching for these 

autoantibodies that appear months or years before the onset of disease. However, in 

certain cases, it has been proved that the B-lymphocytes presence is not necessary for the 

disease development. The selective islet destruction can be caused by both direct and 

indirect mechanisms. Indirect mechanisms may comprise: CD4+ binding the MHC-II on 

the dendritic cells, recognition of auto-antigens, and production of pro-inflammatory 

cytokines, such as IL-1, IL-6, IL-10, TNF-α and IFN-γ that can recognize and attack β 

cells. A direct mechanism involves CD8+ T-lymphocyte cells that bind the MHC-I of β 

cells by activating apoptotic pathways. It has been demonstrated that animal models have 

limitations in the ability to reproduce the same disease event sequence. 

Type II diabetes is the most common diabetic condition (90-95%) typically occurring in 

adults. Type II diabetes is characterized by hyperglycemia due to insulin resistance. 

Insulin resistance is linked to several factors: obesity, age, sedentary life style, genetic 

predisposition. It can be caused by altered insulin signaling, insulin receptor mutations, or 

glucose transporters. There is a possible relationship between the excess visceral adipose 

tissue and insulin resistance status. In fact, this tissue releases certain pro-inflammatory 

cytokines, such as TNF, that blocks the insulin receptor, and is implicated in the insulin 

pathogenesis resistance [20-22]. 

1.4 Therapeutic applications for IDDM and transplant 

Patients with IDDM require daily insulin injections. Unfortunately, this is not a long-term 

therapy, and it can generate serious side effects (severe hypoglycemic episodes). There 

are numerous recombinant insulin types, both human and porcine, however they are not 

currently intended for daily use because of the immune reactions they can generate. 

Currently, human insulin is biosynthetically produced by recombinant DNA technology. 

Different insulin types, related to the time action, are available to consumers: 1) fast 

acting (starts to act half an hour after subcutaneous administration with a peak after 3 

hours and then rapidly declines), 2) intermediate-acting (delayed with protamine or zinc) 
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starts to work after about 2 hours and reaches its maximum effect after 4-6 hours after 

subcutaneous injection and then decreases; 3) prolonged action (large crystals of insulin - 

zinc) whose effect is maintained for about 24 hours. 

Transplantation of the whole pancreas or the pancreatic islets seem to be the best option 

to treat patients with diabetes. However, even if 80% of patients achieve insulin 

independence following-surgery in their first year, the whole organ transplantation is 

associated with a high mortality rate. In fact, common complications include: vascular 

reconstruction as a complex limit, high thrombosis risk, and the ever-present 

immunosuppression effect. In 1966, first whole pancreas transplant was performed on an 

old woman by William Kelly and Richard Lillehei [23], but the insulin action of the new 

pancreas, persisted for 6 days in the patient. The following pancreas transplantations had 

so many complications, such as high mortality rate and absence of long-term outcomes. 

Because of these reasons, researchers’ and clinicians’ interests were focused on the 

transplantation of the endocrine portion of the pancreas. In 1999, James Shapiro 

performed the first pancreatic islet transplantation on seven patients with type I diabetes 

using an immunosuppressive regimen without glucocorticoids. A year after the 

transplant, these people were insulin-independent [24]. Islet transplantation has important 

advantages over the whole pancreas. Islet transplantation is a less invasive technique and 

only requires local anesthesia.  

 

1.5 The limitations of islet transplantation 

The pancreatic islet transplant procedure presents various limitations, in particular, the 

lack of donors. Every year, approximately 3,000 pancreases are available for transplant in 

the US, but about 35,000 patients are affected by IDDM every year.  

Furthermore, the islet isolation and purification methods are currently unsatisfactory and 

cause a high loss of endocrine tissue prior to transplantation. The islet infusion causes an 

increase of the portal pressure proportional to the islet mass infused. All these factors 

limit the total islet amount that can be implanted. Islet transplantation in the liver is 
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associated with inflammation, instant blood-mediated thrombosis, and ischemic liver 

tissue associated with increased liver enzymes. During the islet attachment stage, 

approximately 50-75% of the islets are lost; moreover the immune-suppressive 

requirement leads to a heightened risk of general infection and a toxic effect on 

pancreatic β-cells [25]. 

In addition to immune reactions, there are other factors contributing to the islet loss 

during the early post-transplant recovery stage such as a hypoxic state in the hepatic 

portal vein, as well as the balance between pro-apoptotic and anti-apoptotic mediators. 

Another influencing factor is the pancreatic islets size. Small diameter islets are between 

50 and 150 μm, while large diameter islets are between 150 and 300 μm. During islet 

isolation ex vivo, the capillary structure degenerates. Immediately after the transplant, 

islets can receive oxygen and nutrients only through the diffusion process; since 

revascularization starts after 7-10 days. Both in vitro and in vivo studies demonstrate an 

increased islet survival of the small sized islets compared to larger ones. Islet 

revascularization is a complex process that includes vessel wall digestion, protease 

action, migration, proliferation and differentiation of endothelial cells (ECs). After the 

vessel reconstitution, ECs produce platelet-derived growth factor (PDGF), which recruit 

the support cells, including mesenchymal stem cells (MSCs). MSCs contribute to the ECs 

migration by producing proteases, possibly up-regulating angiopoietin, VEGF synthesis 

by ECs, and providing immune-modulatory activity. 

In 2008, Johansson and co-workers showed that the combination of islets with MSCs 

increases the ECs ability of covering the islet surface. In particular, ECs release 

prolongations at the matrix and islet level, improving the revascularization [26]. 
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2. Stem cell features  

Recently, stem cells have caught researchers’ attention because of their promising cell 

features in regenerative medical therapies. The term stem cell was adopted at the end of 

the nineteenth century as a theoretical postulate to describe their self-regenerative 

capacity. Normal tissues, in which resident cells have a limited life time, need other cells 

in order to support the renewal of functional cell types for the organism’s lifespan. There 

are two main criteria classically defining stem cells: 1) self-renewal: capacity to go 

through numerous cycles of cell division while maintaining the undifferentiated state, 2) 

potency: ability to differentiate into specialized cell types. In vivo, stem cell proliferation 

is strictly regulated by feedback mechanisms and their excessive production may result in 

pathological conditions such as cancer [27]. 

In 1978, Schofield explained for the first time the concept of “niche”, a specialized 

microenvironment that helps maintaining stem cells features. [28]. According to the 

differentiation ability (Fig. 4), stem cells can be classified as: 

 Totipotent stem cells: can differentiate in any mature cell type. Example: zygote 

and the first blastomers; 

 Pluripotent stem cells: can differentiate into cell types derived from the three 

germ layers (but not form extra-embryonic tissues and adnexa). Example: the 

blastocyst inner mass cells or as many authors suggest, umbilical cord stem cells; 

 Multipotent stem cells, can give rise to multiple cell types and are present in the 

adult (hematopoietic stem cells, adult nervous system cells); 

 Unipotent stem cells, can give rise to only one type of specialized cell. 

 

 

In addition, stem cells can be classified in embryonic and somatic or adult stem cells, 

according to the origin of the tissue. 

 

https://en.wikipedia.org/wiki/Cell_cycle
https://en.wikipedia.org/wiki/Cell_division
https://en.wikipedia.org/wiki/Cellular_differentiation
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Fig. 5.  Stem cells differentiation ability: potency decreases from embryonic to adult 

periods of life (Pappa K., Anagnou N.P. Novel sources of fetal stem cells: where do they 

fit on the developmental continuum?. Regen Med 2009;4(3),423-433) 

 

 

2.1 Embryonic stem cells 

Embryonic stem cells (ESCs) are derived from a limited embryo cellular population at 

the blastocyst stage. Blastocysts are made up of 50-150 cells and contain three specific 

structures: 1) trophoblast (cell layer around blastocyst), 2) blastocoel (blastocyst cavity) 

and the inner cell mass (ICM) formed by 30 cells, defined as embryonic stem cells, 

located at the embryonic node. Generally ESCs are permanently diploid, immortal, able 

to maintain an undifferentiated state, and can propagate and differentiate into cellular 

types derived from three embryonic germ layers [29]. Therefore, ESCs were considered 

as an alternative cell source for several diseases treatments. However, ESCs have some 

limitations: embryo cells need to be removed within 14 days of fertilization, the embryo 

graft can induce teratomas, and there is risk of immune and other adverse reactions in the 

host recipient [30]. 

 

2.2 Adult stem cells 

Adult stem cells are responsible for the tissue structure functionality and supporting the 

cell repair process. Adult stem cells can be isolated from tissue samples, can self-renew, 

proliferate to elevated cell passage numbers, and do not induce teratoma formation. 

Recently, it has been shown that adult stem cells can even generate mature cells 

belonging to different lineages. For example, bone marrow hematopoietic stem cells can 
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give rise to muscle cells after transplant [31]; bone marrow cells can also repopulate the 

liver after transplantation or can be differentiated into cells that express neuronal markers 

[32-33]. This cell ability is known as plasticity and was also described in cases of cell 

fusion events [34]. 

 

 

2.3 Mesenchymal Stem Cells (MSCs)  

MSCs constitute various cell populations. They were first described at the bone marrow 

stromal level thirty-five years ago [35]. Later, Pittenger and colleagues demonstrated 

MSC isolation and multi-potency from human bone marrow [36]. BM-MSCs were 

considered the primary source to obtain stem cells due to their numerous well-

documented features. 

Despite their huge success, bone marrow cells have some disadvantages: 

 

1) Only a very small fraction (0.05-0.001%) of the entire bone marrow cell is made up of 

MSCs; 

2) Their collection requires a painful and invasive procedure. For this reason, scientists 

continue to search alternative mesenchymal cell sources [37].  

 

MSCs are star-shaped, mononuclear cells that are in direct contact with each other via 

cytoplasmic processes. MSCs are defined as immature cells with the ability to self-renew 

and differentiate into specialized cells belonging to different lineages. They have a 

fibroblastic-like morphology with only a few cytoplasm and mitochondria, and an less 

developed Golgi apparatus. Due to their high proliferative potential, MSCs can be rapidly 

expanded in vitro when growing in adhesive plastic dishes containing a classical culture 

medium. Also, they are able to differentiate into almost three mature cell types: 

osteocytes, chondrocytes and adipocytes. The stromal localization is a typical MSC 

feature: known sources of MSCs are represented by (but not limited to) adipose tissue, 

skeletal muscle, amniotic fluid and the umbilical cord matrix. 

In recent years, the umbilical cord (UC) has been considered a promising new source of 
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mesenchymal stem cells because they can be isolated in relatively high numbers when 

compared to bone marrow MSCs and can be easily cultured and even cryopreserved [38]. 

Many other properties make these cells a comparatively more efficacious therapeutic 

agent compared to bone marrow MSCs. For instance, UCs are usually discarded after 

birth and obtaining cells does not involve ethical restrictions. UC MSCs have low 

immunogenicity and can also modulate immune functions by producing several cytokines 

and growth factors. In addition, the lack of type II MHC and co-stimulatory molecules 

implies that these cells evade allogeneic immune responses [39]. Human UC cells share 

many of the surface phenotype markers with BM-MSCs (see below). Under suitable 

stimulation, UC MSCs can differentiate in vitro into adipocytes, osteoblasts, 

chondrocytes, hepatocytes, cardiac cells and neurons [40-41].  

 

 

2.4 Comparison between UC-MSCs and BM-MSCs 

Bone marrow mesenchymal stem cells (BM-MSCs) have been extensively studied for 

regenerative medicine applications. They have a fibroblastic-like morphology and can 

differentiate into adipocytes, osteoblasts, and chondrocytes. Although bone marrow 

represents the main stem cells source in the clinical setting, the cell number obtained after 

isolation is low and decreases with the donor age [42]. 

While there are several disadvantages in using BM-MSCs for experimental and 

therapeutic use, they still remain the 'gold standard' in regards to the mesenchymal stem 

cell concept when compared to other sources. 

MSCs derived from Wharton's jelly, the whitish jelly present inside the umbilical cord, 

(described below in the paragraph 3.1), are quite similar to BM-MSCs phenotypically, 

even if there are differences between these cell populations. 

For instance, BM-MSCs appear to be more directed in the osteogenic differentiation and 

can express genes as biglycan, vitronectin, or CD44. In contrast, UC-MSCs exclusively 

express high levels of genes related to angiogenesis, such as IL-8 and IL-1 receptor 

ligand. BM-MSCs are also positively associated with nestin and collagen type I and II by 

immunocytochemistry, while CD106 is only in the bone marrow. 

Recent studies have shown that UC-MSCs produce chemokines as well as cytokines that 
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can induce hematopoietic stem cell proliferation. They also show higher levels of HLA-I 

expression than BM-MSC’s. After the endothelial induction, stem cells express typical 

endothelial markers, such as von Willebrand factor and the VE-cadherin [43].  

 

 

2.5 Other sources of stem cell 

2.5.1 Placenta derived stem cells (PDSCs) 

The placenta is an extra-embryonic tissue that represents a valuable source of stem cells 

with numerous applications. PDSCs are a type of stromal mesenchymal cell which 

belong to the chorion and trophoblast cells both of which have variable plasticity. MSCs 

derived from placenta appear to be more efficient than BM-MSC in terms of support and 

cell maintenance [46]. 

PDSCs have immune-modulatory properties. They have also Nanog and Oct3-4 inducible 

expression. This justifies the typical wide range of differentiation capacity, which 

includes neuronal and adipogenic differentiation as well as heart valve generation when 

stem cells are implanted into biodegradable scaffolds. Recently experimental data have 

shown that PDSCs have the ability to maintain the endothelial differentiation and that the 

placenta is an independent stem cell site for regeneration before fetal colonization [44]. 

 

2.5.2 Umbilical Cord Blood (UCB) 

 

During the last twenty years, umbilical cord blood (UCB), has been exploited as a rich 

stem cell source of haemopoietic progenitors. It has shown that approximately 1% of 

UCB cells expresses CD34 antigen, the major cell marker for hematopoietic stem cells. 

Even if present in very low numbers, UCB-MSCs are the second largest cord blood stem 

cell population. In addition to the typical MSC markers (CD105, CD44 and CD73), 

UCB-MSCs also expresses Oct-4, which is essential for tissue-specific gene inhibition 

and self-renewal maintenance, as well as Nanog. 

Interestingly, various studies on hematopoietic cells have demonstrated neuronal protein 

expression. In fact, these hematopoietic cells can differentiate into neurons and glial-like 
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cells [46]. They also possess a less marked differentiation potential towards the 

adipogenic line and more orientated to the osteogenic type, when compared with BM-

MSCs [44]. 

 

 

2.5.3 Amniotic Fluid (AF) 

 

Recent studies have evaluated stem cell potential of cells isolated from amniotic fluid 

(AF). AF cells are heterogeneous, originating from the three germ lines. 

AF stem cells seem to express mesodermal and endodermal markers at high levels in the 

early gestation stages, while ectodermal markers have been found in the late gestational 

period. AF cells are positive for CD29, CD90, CD166, CD73, CD105, CD49 and CD44 

antigen (HCAM-1). Recent studies have proven that AF cells possess multi-potential 

stem-like characteristics including expression of: Oct-4, SSEA-4, and Nanong [44].
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3. The features of Human Umbilical Cord (UC) 

Human umbilical cord (UC) is a vascular connection between mother and fetus; it protects 

the blood vessels that provide oxygenated blood to the fetus while also acting as a transport 

system for waste removal [45-46]. Umbilical cord weight is around 40 g post-partum and it 

stretches approximately 30 - 65 cm with a diameter of 1.5 cm (Fig. 6). The umbilical cord 

is mainly constituted by a specialized tissue named extra-embryonic mesoderm, which 

originates from the epiblast proliferation during second week of development, giving rise 

to a connecting stalk, which lacks vascularization. The proper UC originates during the 

fourth week of development, with the embryo folding that gives the external layer of 

amniotic epithelium. This cubic epithelial cell layer, properly named the umbilical cord 

epithelium (UCE), delimits the organ stroma, which contains three vessels at maturity (two 

arteries and one vein). Mizoguchi et al. demonstrated that the epithelium cells express not 

only mucous epithelium keratins, as found in the amniotic epithelium, but also stratified 

epithelium keratins and cornified cell envelope (CCE) associated proteins [47]. 

The umbilical vein brings oxygenated blood and nutrients from the placenta to the fetus, 

while the umbilical arteries carry blood flowing from the fetus to placenta. These three 

vessels are embedded in a matrix, made by a specialized connective tissue called 

Wharton's jelly (WJ). Wharton’s jelly is a mature mucous tissue, made up by fibroblastic-

like cells and myofibroblasts (according to the classical view) embedded in a complex 

extracellular matrix enriched in proteoglycans. WJ acts as scaffolding material for the three 

umbilical vessels, impeding vascular constrictions during pregnancy. Capillaries and 

lymphatic vessels, as well as nervous branching, are not present in the umbilical cord (Fig 

7). 

 

 

 

 

 



21 
 

 
Fig. 6 Macroscopic view of human umbilical cord at term 

(Semenov OV, Breymann C. Mesenchymal Stem Cells Derived from Wharton’s Jelly 

and their Potential for Cardio-Vascular Tissue Engineering. Open Tissue Eng Regen 

Med J, 2011, 4:64-71) 

 

 

 

Fig. 7 Umbilical cord H&E section  

 

 

 

 

 

 

 

 

 

 



22 
 

 

 

 

 

3.1 Wharton’s jelly: structure and function 

 

Wharton’s jelly is made up of a glycosaminoglycan (GAGs) rich substance that contains 

hyaluronic acid (HA) and proteoglycans, with some collagen fibers (mainly collagen type I 

and III). The role of Wharton’s jelly is to prevent the umbilical vessels that provide a two-

way blood flow between the maternal and fetal circulation, from compressing by torsion 

and/or bending [48].  

Myofibroblast and fibroblast-like cells are the two cell types existing in WJ.  

Myofibroblast have muscle-specific cytoskeletal filaments. They are positive for vimentin 

[49], a typical fibroblastic marker, and desmin [50], a muscle cell marker. The fibroblast-

like cells have similar features to fibroblasts and they produce collagen and other 

extracellular matrix components. The extracellular matrix, including WJ, the subamniotic 

stroma and the adventia vessels, figure 7, demonstrated immunoreactivity also for collagen 

type IV, heparin sulphate proteoglycan and lamin [50]. The distributions of the different 

collagen types over the UC, has been suggested to be responsible for the mechanical 

properties of the UC [51]. Extracellular matrix components can be considered as growth 

factors storage and support stromal cells [52]. ECM proteins showed an increasing number 

of growth factors such as IGFs (insulin-like growth factors), FGFs (fibroblast growth 

factors) and TGF-β (transforming growth factor- beta). These growth factors, in turn, 

control cell proliferation, differentiation and ECM remodeling.  

Several studies have shown that Wharton’s jelly cells (WJCs) support ex-vivo 

hematopoietic expansion [53] and in vivo engraftment of hematopoietic stem cells [54]. 

Raio demonstrated that WJC are a source of hyaluronic acid, which is another element of 

the hemapoietic stem cell niche [55].  Furthermore, WJC secrete cytokines similar to bone 

marrow-MSCs and are able to synthesize granulocyte-macrophage colony stimulating 

factor (GM-CSF) and granulocyte colony stimulating factor (G-CSF).  

WJCs are slower to differentiate towards adipocytes than BM-MSC, but WJCs have a 

shorter cell doubling time and can be isolated with 100% success from typical specimens 
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[56]. The multiplicity of similarities with BM-MSCs, led to consider WJCs as part of the 

growing MSC family. 

 

3.2 Wharton’s jelly as mesenchymal stem cells: markers expression 

  

Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) are multipotent stem cells 

that have many advantages as a potential source of MSCs, since the tissue is readily 

available, cells are easy to grow in culture, can be cryopreserved, and have great expansion 

capacity in vitro. Over the years, our research group has gained reasonable experience both 

in isolation and the primary cell culture of WJ-MSCs [57]. Moreover, WJ-MSCs have 

faster and better ex vivo expansion abilities than BM-MSCs due to their lasting telomerase 

expression and activity. Several studies have shown that WJ-MSCs express GATA-4, 

GATA-5, and GATA-6 transcription factors that are involved in different development 

pathways of the mesoderm and endoderm – derived organs [57]. Previously, only GATA-4 

expression had been reported in BM-MSCs [58].  

La Rocca et al demonstrated that WJ-MSCs express connexin-43 [57], a molecule typically 

present in embryonic and myocardial cells that is responsible for intercellular gap junction 

formations. Matsuyama and Kawara established that Connexin-43 expression increases in 

a stage-related trend along the myocardial differentiation pathway and that it is linked to 

proliferation arrest as well as mature phenotype acquisition. 

WJ-MSCs are able to regenerate, a key mesenchymal cell feature, while maintaining their 

replicative potential with their undifferentiated state. In fact, it is known that Nanog and 

Oct3/4A expression in MSC are some of the factors responsible for maintaining long-term 

self-renewal status. 

WJ-MSCs, isolated with no enzymatic methods, express various cytokeratin types (CK), 

such as CK-8, CK-18, and CK-19 [59], while CK-7 is not detected [60]. 

Immunocytochemistry analyses have highlighted that WJ-MSCs lack expression of CD14, 

CD31, CD33, CD34, and CD45 [61]. Moreover, both BM- derived and WJ-MSCs do not 

express HLA-DR [62-63]. WJ-MSCs express: CD73, CD90, CD105, HLA class I [64] 

CD10, CD13, CD29, CD44, CD49e, CD166 and CD117 a receptor for the stem cell factor  

[65-67]. 
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WJ-MSCs are also positive for nestin [57], an intermediate filament of the neuro-

ectodermal lineage as a neurofilament precursor, which is also present in the pancreatic 

progenitors of β cells [68]. Furthermore, the glial fibrillar acidic protein (GFAP) and 

neuron-specific enolase (NSE), have been described in the literature [69-70].  

Umbilical cord derived cells can also differentiate toward cells specific of endoderm-

derived tissues: hepatocyte nuclear factor 4α (HNF-4α) expression by WJ-MSCs suggests 

a possible role in hepatocytes and pancreatic endocrine cell differentiation [57]. 

 

 

3.3 UC and Wharton’s jelly mesenchymal stem cell (WJ-MSC) differentiation 

ability 

 

WJ-MSCs are multipotent cells, able to generate different mature cytotypes. There are 

numerous studies that demonstrate WJ-MSCs differentiate toward connective tissue 

phenotypes (osteoblasts, chondrocytes and adipocytes). This would open new frontiers in 

regenerative medicine. These three differentiation cell lineages have been considered part 

of the minimal MSC criteria stated in 2006 [71]. 

The standard protocol to obtain MSC osteogenic differentiation can be confirmed by 

specific histological stains for extracellular calcium (Alizarin Red S and Von Kossa) [57 – 

72]. Moreover, differentiated cells should express specific proteins such as osteonectin, 

osteocalcin, periostin and runx2 [73].  

After adipogenic differentiation, mature adipocytes are confirmed by a specific histological 

stain such as Oil Red O [74]. In addition, the mature cells should express specific proteins 

such as adiponectin, leptin and peroxisome proliferator – activated receptor gamma 

(PPAR-γ). 

Regarding the chondrogenic lineage, differentiated MSCs are confirmed by Alcian blue or 

Safranin O-Fast Green stains [75]. The chondrocyte phenotype can be confirmed by the 

expression of collagen type II, cartilage oligomeric matrix protein (COMP) and aggrecan 

[76].  

Neurogenic differentiation. WJC cultured in medium supplemented with basic fibroblast 

growth factor (bFGF), butylatedhydroxyanisole, dimethylsulfoxide (DMSO), and low 
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serum percentages, have been successfully induced to differentiate into glial cells and 

neurons by Mitchell group [70]. Their group described the neural markers expression (NSE 

and GFAP) by undifferentiated cells, while the differentiated neurons and glia cells over-

expressed these molecules and showed catecholaminergic neuron markers. Yan and 

colleagues were able to differentiate UC-MSCs into neuronal lineage and then transplant 

them in a rhesus monkey model as a potential therapeutic application for Parkinson’s 

disease [77]. 

Myocardiocyte differentiation. Myocardial repair via heterologous stem cells is an amazing 

area of stem cells research. Recent experiments suggest that WJ-derived cells can play a 

role in myocardial regeneration. The first case of myocardial cells derived by WJCs was 

reported by Wang et al in 2004, who described that WJCs started to express typical 

myocardial markers (cardiac troponin I, connexin-43 and desmin) and exhibited 

myocardiocyte morphology at 3 weeks post treatment with 5-azacytidine [78]. Later, Wu et 

al, demonstrated a new myocardial differentiation protocol with WJ-MSC, where 5-

azacytidine use (24 hours) was followed by 4 weeks of culture in medium supplemented 

with b-FGF and platelet-derived growth factor (PDGF). Wu showed that the myocardial-

differentiated cells, after being applied in an acute myocardial infarction animal model, had 

been incorporated into the vasculature and occasionally were positive for cardiac troponin 

T (cTnT) [79]. Other works have claimed that MSCs may act as supportive populations 

through inflammation suppression in an acute myocardial infarct model, as well as 

paracrine effects on the repairing myocardium [80 – 81]. 

Hepatogenic differentiation. In the literature, there are various data supporting the concept 

of WJ-MScs differentiation towards hepatocytes. In vitro protocols are based mainly on the 

administration to cultured cells of factors such as hepatocyte growth factor (HGF), 

fibroblast growth factors (FGFs) for the first inductive phase, and oncostatin M (OSM), 

involved in the final differentiation phase. Furthermore, insulin-transferrin-sodium selenite 

(ITS), dexamethasone and epidermal growth factor (EGF) have been used. These factors 

should be applied in a monolayer culture, in 3D scaffolds [82], or in a co-culture system 

with fetal or adult hepatocytes [83]. Most experiments have been performed using low 

(1%) serum culture media, PAS, and indocyanine green stains, which have been tested to 

confirm the hepatocytes metabolic activity and vitality [84 – 85]. Numerous researchers 
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have demonstrated that UC-MSCs can be successfully differentiated in an in vitro model as 

well as an in vivo model.  
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4. MSCs and immune system interactions: immunological properties  

 

In recent years, it is known that the MSCs have an ability to interact with the adaptive and 

innate immune system by cell contact and soluble factors secretion [43]. An immune 

function of MSCs is to inhibit T-cell proliferation and dendritic cell (DC) differentiation 

[44]. MSCs are able to do this because they have low expression of co-stimulatory 

molecules and the absence of HLA-II molecules [43-57]. Recent studies have shown that 

soluble factor secretion is a consequence of MSCs and T-lymphocytes cross talk, and not a 

constitutive process [86].  

HLA molecules have been involved in both NK cell self-tolerance induction as well as 

maternal immune system tolerance toward the embryo [87-88]. Several publications 

pointed out that the existence of HLA non-classical type I in the mesenchymal stem cells. 

Specifically HLA-G and its soluble form, HLA-G5 [44- 89]. 

Di Nicola and colleagues suggested that transforming growth factor beta (TGF-β) and 

hepatocyte growth factor (HGF) are two possible mediators for T-cell suppression in a 

mixed lymphocytes reaction [43].  

Ren and colleagues have observed that the adhesion molecules ICAM-1 (inflammatory 

cytokine-induced intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion 

molecule-1) are critical for MSCs immunosuppression on T-cells, and are inducible by 

IFN-γ, IL-1 and TNF-α presence [90]. MSCs express indoleaminedeoxygenase (IDO) and 

nitric oxide (NO), molecules which are involved in the immune response in differen 

models [91]. 

 

4.1 MSCs and inflammatory targeting  

 

After systemic infusion, MSCs are able to migrate to the tissue injury site and start to 

accumulate there [92]. Migrating resident phagocytes find MSCs around the damaged 

tissue area. MSC treatments have positive effects on neurological disorders due to their 

anti-inflammatory and oxidative stress stem cell properties.  

Kemper and et al. described the superoxide dismutase 3 (SOD3) secretion by MSCs as a 

neuro-protective agent, decreasing the inflammation and tissue damage [93]. 
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Other in vivo experiments have confirmed MSCs power to reduce inflammation in 

obstructive apnea [54], renal failure [55], liver fibrosis [56], asthma [57] and acute 

myocarditis [58]. 

In addition, UCB stem cells have normalized blood glucose level in NOD diabetic mice 

and reduced insulitis [59]. Another key question remains, however, as to how 

inflammatory cytokines play a part in the MSC regulation potential and the related in vivo 

interaction pathways. 

Evidence from in vivo model suggests that MSCs are able to attenuate inflammation, by 

secreting certain mediators in acute and chronic inflammatory diseases. 
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5. Aims 

 

The aim of this project was to investigate the potential of WJ-MSCs to be used in cell 

therapy of TID as a co-transplanted, supportive population for the engraftment of 

pancreatic islets.  

 

To pursue this objective, he project has been divided into two main tasks:  

1) In vitro generated data: WJ-MSCs have been isolated from umbilical cord, cultured 

according to the standard methods described in the literature and developed in our 

laboratory [57]. Then we characterized WJ cells lines through different analyses 

(immunocytochemistry, immunohistochemistry, flow cytometry, western blot, RT-PCR) in 

order to define the immune-modulatory and / or anti-inflammatory molecules expression 

profile. In addition, we tested the expression of further molecules belonging to several 

mature lineages. We also investigated different neuronal markers (NSE, Nestin, GFAP, 

NF68 and GDNF). Some of them, as GDNF, have been specifically linked to the nervous 

regulation of the exocrine and endocrine pancreas development. These experiments have 

been carried out on naive cells, in order to deeply characterize their features prior to 

transplantation. 

2) In vivo generated data: We have developed a TID in vivo model to test the anti-

inflammatory effect of WJ-MSCs, namely the streptozotocin (STZ)-induced diabetes in a 

mouse (anti-inflammatory syngeneic study) model. STZ evokes an inflammatory effect on 

beta cells therefore inducing hyperglycemia. WJ-MSCs were administered to animals 

receiving sub-optimal (marginal mass) doses of islets, in order to stress test the capacity of 

WJ-MSCs to improve the viability of the islets and their engraftment, leading to diabetes 

reversal. 
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MATERIAL AND METHODS 

 

6.1 Wharton’s Jelly Mesenchymal Stem Cells Isolation 

Isolation protocol was adopted from our previously published data [57]. All umbilical 

cords were obtained after the mother’s agreement according to tenets of the Declaration of 

Helsinki and local ethical regulation. After normal vaginal or caesarean delivery, following 

full-term birth, umbilical cords were stored aseptically in cold saline and cellular isolation 

was started within six hours post-partum. Cords were washed in warm HBSS (Gibco), and 

then were cut in small pieces about 1.5 cm long, sectioned longitudinally so that to expose 

the Wharton's Jelly under amniotic membrane. Different incisions, without vessels 

removal, were made within the matrix with a sterile scalpel to increase the area exposed to 

the contact with medium composed of low glucose DMEM (Sigma), supplemented with 

10% FBS (fetal bovine serum, Hyclone), 1x NEAA (non-essential amino acids, Sigma), 1x 

antibiotics-antimycotics (GIBCO), and 2mM L-glutamine (Sigma). For this isolation 

protocol we did not use enzymatic processes to dissociate cells from the embedding 

matrix, leaving cells free to attach to the culture vessel based on their migratory ability. 

Cord pieces were left for 15 days with medium changed every two days. Therefore, the 

slow degradation of the matrix allowed secretion of growth factors and signalling 

molecules from the cord, maintaining stem cell potency and providing a positive 

stimulation to the cultured cells. 

After 15 days of culture, cells widely adhered to the plastic surface, cord fragments were 

removed, and routine culture was performed. 

 

 

6.2 Cell culturing and passaging 

After reaching confluence, cells were removed from the flasks with Tryple Select 

(Invitrogen) and were cultured for up to 15 passages (corresponding to about 60 population 

doublings). For immunocytochemistry analysis, cells were plated in 8-well chamber slides 



31 
 

(BD Bioscience) and were used after reaching 90% confluence. For RNA extraction, cells 

were cultured either in 6-well tissue culture plates or in 25cm
2
 tissue culture flasks 

(Corning). 

 

6.3 Immunocytochemistry analysis 

Immunocytochemistry detects the expression of specific antigens recognized by a primary 

antibody, which is then bound by a secondary antibody. 

Cells were washed with PBS and then fixed and dehydrated with methanol for 20 minutes 

at -20C°. After rinse with PBS, cells were treated for 3 minutes with Triton X-100 0.1% in 

PBS 1X. The removal of Triton-X involved two washes with PBS followed by the addition 

of 0.3% hydrogen peroxide to inactivate endogenous peroxidases. After 20 minutes in a 

blocking solution (complete medium with 10% of serum in PBS 1X, in a ratio of 1:10), 

cells were incubated with specific primary antibodies for 1.5 hours at room temperature. 

After another wash with PBS, cells were incubated with species-specific secondary 

antibodies for 10 minutes. Subsequently, streptavidin- peroxidase (Dako-Cytomation) was 

added, followed by 3.3’-diaminobenzidine (DAB chromogenic substrate solution, Dako). 

Finally, Hematoxylin (Dako) was used to counter stain the cell nuclei.  

The antibodies used in the present study, with indications of the working conditions used, 

are listed in table n.2 
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Antigen Host Manufacturer Dilution  

HLA-DR Mouse monoclonal Santa Cruz 1:50 

B7-1 Mouse monoclonal Santa Cruz 1:50 

B7-2 Mouse monoclonal Santa Cruz 1:200 

HLA-ABC Mouse monoclonal Santa Cruz 1:50 

Vimentin Mouse monoclonal Santa Cruz 1:100 

v-Wf Mouse monoclonal   Santa Cruz 1:50 

Desmin Mouse monoclonal Santa Cruz 1:100 

α-SMA Mouse monoclonal Santa Cruz 1:100 

Cx43 Rabbit polyclonal Santa Cruz 1:100 

Ck8 Mouse monoclonal Sigma 1:200 

Ck18 Mouse monoclonal Sigma 1:800 

Ck mix(8-18-19) Mouse monoclonal Sigma 1:50 

Ck19 Mouse monoclonal Millipore 1:100 

C-kit Rabbit monoclonal Epitomics 1:50 

 
Table 2:List of antibodies used in the present study 
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6.4 Total RNA extraction 

 

Total RNA extraction from Wharton’s jelly cells was performed using RNAspin mini 

RNA isolation Kit (GE Healthcare). 

The cells were lysed by adding 350μl of Buffer and 3.5 μl of β-mercaptoethanol, and were 

mixed vigorously. The obtained lysate was filtered through RNAspin Mini Column and 

was centrifuged for 1 minute to 10000 rpm. After centrifugation, the mini filter was 

discarded and the filtrate was transferred to a new 1.5 ml tube where we added 350μl of 

70% ethanol. After mixing, the lysate was pipetted 2-3 times and was transferred to a 

RNAspin Mini Column, placed in a 2ml tube and centrifuged at 8500 rpm for 30 seconds. 

After centrifugation, the column was placed in a new tube, where 350 μl of MDB 

(Membrane Desalting Buffer) was added, and centrifugation was performed for 1 minute at 

10000 rpm to dry the membrane. Each sample was incubated for 15 minutes with 95 μl of 

a mixture containing DNase to avoid a possible DNA contamination. The following 

washes were carried out with specific buffers supplied with the kit and then the column 

was transferred into a 1.5 ml tube (nuclease-free). The RNA was eluted from the filter in 

100 μl of RNase-free H2O (by centrifugation at 10000 rpm for 1 minute). The RNA extract 

was stored at -20 ° C until use. The concentration of RNA extracted was determined by 

spectrophotometer with a wavelength of 260 nm. Only samples with A260/A280 ratio over 

1-6 were considered usable for the following analyses. 

 

6.5 RT-PCR (Reverse Transcription Polymerase Chain Reaction) 

 

Qualitative RT-PCR was performed using Phusion High-Fidelity RT-PCR kit 

(Finnzymes). RT-PCR consists of two phases: retro-transcription where RNA is converted 

into complementary DNA  (cDNA) and amplification of cDNA. 

After treatment with DNase, 2μg of RNA were processed:. The reaction comprised a 

reverse transcription step of 50 minutes at 42 C° and an inactivation phase of 5 minutes at 

92 C°. 

Next, 2 μl of cDNA were added to 10pM of specific primers, which was then followed by 

4 μl of 5x PhusionBuffer, 0,4μl 10mM dNTP, 0,6μl DMSO, 0,2 μl of Phusion DNA 

Polymerase and then water added until a final volume of 20 μl. The amplification reaction 
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was performed according to five steps. The initial denaturation of 30 seconds at 98C°, 

followed by another denaturation step of 10 second at 98 C°, the annealing phases at 30 

seconds each at specific-primers temperatures, the extension step of 30 seconds at 72C°, 

and the final extension for 10 minutes at 72 C°. 

 

 

6.6 Agarose gel electrophoresis 

 

After amplification of cDNA sequences through specific primers, the amplified DNA were 

loaded in 2% agarose gel and were run in a Borax-EDTA 1x buffer. Sybr Safe DNA Gel 

Stain (Invitrogen) was used to stain DNA. All samples were loaded with Loading Buffer 

10X (TBE 1X, bromophenol blue, glycerol and SDS 10%). Following gel staining, the 

DNA was evaluated by the Safe Imager 
TM

 2.0 Blue-Light Trans illuminator. The size of 

the DNA bands was estimated by a parallel run of molecular weight markers. 

 

 

6.7 Flow cytometry 

 

Flow cytometry (FACS) was used to characterize cells at 2
nd

, 5
th

, 10
th

 and 15
th

 passage. 

Hundred thousand cells were used for antibody staining. The fluorescein isothiocyanate 

(FITC) – conjugated, phycoerythrin (PE) – conjugated, or allophycocyanin (APC) – 

conjugated antibodies and isotype control are summarized in Table 3. Isotype control 

antibodies were used as negative control for the measurement of the no specific binding of 

the specific antibodies. Forward and side scatter gates were set to include all viable cells. 

Routinely, debris and doublets were excluded from the cell population data by the 

application of forward and side scatter selection. The two co-expression markers was 

analysed by the gating of the population that was positive for the first marker and the 

subsequent analysis of the second marker percentages. FC data were acquired with a BD 

FACS Aria II instrument, a cell sorter with two laser and seven colours and were analysed 

with three softwares: FACS Diva 6.1.2, Cell Quest (BD Biosciences) and ModFit LT 

(Verity Software House).
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Antigen Clone Conjugated Dilution Manufacturer 

Albumin 188835 Un-conjugated 01:20 R&D Systems 

CD31 WM59 FITC undiluted Becton Dickinson 

CD34 581 FITC undiluted Becton Dickinson 

CD44 

G44-26 

(known as 

C26) APC undiluted Becton Dickinson 

CD45 2D1 PerCP undiluted Becton Dickinson 

CD73 AD2 APC 01:11 

Miltenyi Biotec GmbH, Bergisch 

Gladbach, DE 

CD105 SN6 FITC undiluted Abcam, Cambridge, MA 

CD117 YB5.B8 PE undiluted Becton Dickinson 

CD276 FM276 APC 01:11 Miltenyi Biotec GmbH 

CK18 C-04 FITC 01:20 Abcam, Cambridge, MA 

CK19 RCK108 PE 01:20 

Santa Cruz Biotechnology, Santa 

Cruz, CA 

HLA ABC W6/32 FITC 1:300 Abcam Cambridge, MA 

HLA DR 

L243 (G46-

6) PerCP undiluted Becton Dickinson 

HLA-G 87G PerCP undiluted eBioscience Inc., San Diego, CA 

HLA-E 

3D12HLA-

E APC undiluted eBioscience 

 

Table 3: List of antibodies used in the present study 
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6.8 Protein extraction and Western blot analysis 

Western blotting was performed on whole cell lysates to detect protein expression. Cells 

were lysed using a modified RIPA buffer, 150mMNaCl, 25mMTris (pH 7.4), 1mM EDTA, 

1 mM EGTA, 2 mM Na3VO4, 10 mMNaF, 1% NP40, 10% glycerol, aprotinin (10 mg/ml) 

and leupeptin (10 mg/ml) for 15 minutes. Lysates was centrifuged for other 15 minutes, the 

supernatant were collected and quantified by a BCA protein assay (Pierce, Rockford, IL). 

Equal amounts of proteins were separated by SDS-PAGE and transferred to nitrocellulose 

membrane, which was blocked using 5% non-fat dry milk in Tris-Buffered saline with 

Tween 20. The membrane was incubated overnight at 4°C with the primary antibodies, 

listed in table 2, and other ones. After incubation, the membrane was washed 3 times with 

T-PBS and then rinsed and incubated for 1 h at room temperature in appropriate anti-mouse 

or anti-rabbit IRDye 680-800 secondary antibodies. The membrane was rinsed, developed 

with Odyssey Imaging Systems Li-Cor and specific protein bands were detected with 

Image Studio Software Version 4.0.21 Li-Cor. GAPDH served as loading control. 

6.9 Osteogenic differentiation 

Differentiation of cells was performed using protocols in the literature with minor 

modifications [100]. Briefly, the cells were cultured in osteogenic mediumfor three weeks 

(DMEM, 10% FCS, supplemented with dexamethasone 0.1μM, 50μM ascorbate-2-

phosphate, 10 mM β-glycerophosphate, Antibiotic / Antifungal, L-glutamine 2mM). The 

formation of cell clusters resembling intramembranous ossification was monitored by 

phase-contrast microscopy along culturing. WJ-MSCs cultured in standard growth medium 

(not supplemented) for 3 weeks, were included as controls. At the end of the differentiation 

period, the cells were subjected to the Alizarin Red stain, which stains specifically the 

deposits of extracellular calcium [57]. 
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6.10 Adipogenic differentiation 

Differentiation of cells was performed by culturing WJ-MSCs at different passages in the 

adipogenic differentiation medium (DMEM, 10% FCS, 0.5 mM isobutyl-methylxanthine, 1 

micron dexamethasone, insulin 10μM, 200μM indomethacin, Antibiotic / Antifungal, 2mM 

L-Glutamine) for 3 weeks. Controls included WJ-MSCs cultured in standard growth 

medium for 3 weeks to monitor the spontaneous formation of lipid vacuoles. At the end of 

the period of differentiation, the differentiated cells and control cells were subjected to 

staining with Oil-Red O, which stains the lipid deposits vacuoles neutral, as reported 

previously [57]. 

6.11 Chondrogenic differentiation 

Differentiation of cells was performed by seeding WJ-MSCs into alginate beads, using 

slight modifications of previously published protocols [101 - 102]. Briefly, WJ-MSCs were 

resuspended in sodium alginate (Sigma-Aldrich) (4 x 10
6
cells/ml at a final concentration of 

1,2% sodium alginate in sterile physiologic solution). Beads were formed by slowly 

dispensing droplets of the alginate cell suspension from a 22-gauge needle syringe into a 

100 mM CaCl2 solution. After washes with 0.15 M NaCl, the beads were rinsed with 

DMEM. Then, beads were cultured either in standard growth medium (controls) or 

chondrogenic medium, prepared using published protocols with slight modifications 

(DMEM supplemented with 1% FBS, 6.25 g/ml insulin, 10 ng/ml TGF1, 50nM ascorbate-

2-phosphate, 1% antibiotic / antimycotic, 1x NEAA). Beads were maintained in culture for 

three weeks, with medium changes every second day. For fixation and paraffin embedding, 

beads were processed as previously described [98, 99]. The beads were fixed in 4% 

paraformaldehyde, 0.1 M cacodylate buffer, pH 7.4, with 10 mM CaCl2for 4 hours at 20°C 

and then washed over-night at 4°C in 0.1 M cacodylate buffer (pH 7.4) containing 50 mM 

BaCl2. The beads were standard dehydrated through alcohols and xylene and embedded in 

paraffin. Sections (6 μm) were processed for histology (Alcian Blue and nuclear fast red 

staining) and IHC. 
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6. 12 Animals  

C57/BL10 male mice (9-12 weeks old) were used as pancreatic islet donors and recipients 

(syngeneic islet transplant model). Animals were purchased from Harlan, housed in a 

standard animal facility and provided ad libitum with rodent chow and tap water. All 

animals were cared for according to the international guidelines on Animal Care. The study 

protocol was approved by the Institutional Animal Care and Use Committee (IACUC) and 

performed under standard regulatory guidelines for research involving animals. 

 

6.13 Diabetes Induction  

Diabetes was induced 4-5 days prior to ITX by a single streptozotocin injection (intra 

peritoneal (IP), 220 mg/Kg; Sigma) into the recipient animals. Animals with a blood 

glucose level (BGL) of > 300 mg/dl for three consecutive days became transplant 

candidates. 

 

6.14 Islet Isolation  

Donor animals were anesthetized by isoflurane and the pancreas was harvested and stored 

in cold Hank's solution (Gibco), until digestion. In brief, a midline abdominal incision was 

performed. After clamping of the duodenal ampulla, the pancreatic duct was cannulated 

and collagenase solution (0.8 mg/ml; Sigma) was injected. Following adequate distention, 

the pancreas was harvested and stored on ice. Pancreases were digested and islets were 

purified using Ficoll (Cellgro-Corning) density gradients (1.108, 1.096, and 1.037). After 

purification, islets were separated by size in three different groups using stainless steel 

mesh (Bellco Glass, Inc Tissue Sieve) filtrations by gravity (150 μm and 300 μm pore size, 

respectively). Following filtration, islet size was confirmed through observation at light 

microscopy. Aliquots from each islet size batch were harvested and stained with dithizone 

(Sigma) for sizing and counting. Isolated islets were transplanted as 600 (full mass) and 
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200 IEq (marginal mass). In each islet-sized group, the number of islets transplanted was 

adjusted to match the same islet mass. From each isolation, islet functionality was 

confirmed in vivo by diabetes reversal in control animals receiving 600 IEq.  

 

 

6. 15 Blood Glucose level (BGL) and Intra-peritoneal glucose tolerance test (IPGTT): 

engraftment and functionality assessment 

 

Animals were monitored daily for BGL and body weight changes for the first 2 weeks and 

then twice weekly thereafter. Blood glucose concentrations were determined using a blood 

glucose meter and strips (Accu-Chek; Roche Diagnostics) after tail vein puncture. 

Transplanted islets were considered to be engrafted when a BGL of <150 mg/dl was 

attained and maintained. Recipients that experienced reversal of diabetes (i.e., normal 

BGL) within 7 days post-transplantation, were considered successful. 

In animals that had reversed diabetes, islet functionality was assessed by IP glucose 

tolerance test (IPGTT). IPGTT was performed at long-term (day 90) follow-up. Briefly, 

animals were fasted, and following the detection of baseline BGL, 2 mg/kg body weight of 

50% dextrose (Hospira, Inc., Lake Forest, IL, USA) in 0.5 ml was injected IP. BGL was 

then measured at 15, 30, 45, 90, and 120 min after injection. 

In all animals that reversed diabetes within 7 days and concluded the study, the graft-

bearing kidney was removed to perform a histological examination. Animals were 

humanely sacrificed, and the pancreas was harvested for histological analysis. 
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RESULTS 

 

7.1 Morphological features of Wharton’s jelly Mesenchymal stem cells (WJ-MSCs) 

 

Isolation of WJ-MSCs from the umbilical cord matrix has been performed using 

standardised methods developed in our laboratory: leaving cord fragments in culture 

medium allowed cells to exit and attach to the culture vessel according to their 

mesenchymal migratory capacity, without any enzymatic treatment. WJ-MSCs have grown 

robustly on culture surfaces and have been easily expanded in vitro under standard 

conditions (Fig.8 D - F). According to our original hypothesis, the slow matrix degradation 

allows growth factors and signalling molecules to exit from cord and maintain the stem 

cell potency. 

Standard histochemical staining (H&E) was performed on paired tissue sections of 

paraffin-embedded umbilical cords. As visible in figure 8 (panels A – C), the specimens 

showed the expected substructures such as umbilical epithelium, vessels, and the 

intervascular stroma known as Wharton’s jelly. 



41 
 

 
 

Fig.8 Demonstration of umbilical cord and WJC morphology:  

Umbilical cord appears lined by a continuous amniotic epithelium, with vessels embedded 

in a GAG-rich mucous tissue (A); B shows a more detailed view of the perivascular area; 

C detailed view of the sub-amniotic area of the stroma. Cells obtained from the same cord 
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specimen are depicted in panels D (passage 1), E (passage 6), F (passage 8), showing the 

expected fibroblastic-like morphology. Magnification: (A, 5x), (B, D, E, F, 10x), (C, 20x). 

 



  

7.2 Phenotypical characterization of Wharton’s jelly Mesenchymal stem cells (WJ-

MSCs) for the expression of classical MSC markers and standard differentiation. 

 

To confirm that the isolated cells adhered to the classical definition of mesenchymal stem 

cells, multiple analyses were made in accordance with the minimal criteria stated by the 

ISSCR. Flow cytometry (figure 9) showed that WJ-MSCs were amply positive to classical 

MSCs markers (such as CD29, CD44, CD73, CD90, CD105), while lacking CD34 and 

CD45, therefore adhering to the expected pattern of markers expression of MSCs. Standard 

differentiation experiments (figure 10) demonstrated the ability of these cells to 

differentiate towards the osteogenic, adipogenic and chondrogenic lineages according to 

tissue specific stainings.  
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Figure 9: Flow cytometry analysis of standard MSC markers expression in WJ-MSCs. 

Cells were positive for the expected markers of MSC populations, namely CD29, CD44, 

CD73, CD90 and CD105, while being almost negative for the hematopoietic markers 

CD34 and CD45. 
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Figure 10: Demonstration of the tri-lineage differentiation by WJ-MSCs. Cells were 

subjected to differentiation as reported in methods and stained with specific histological 

stains. Osteogenic-differentiated cells showed large extracellular calcium deposits as 
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confirmed by Alizarin Red (B), with respect to undifferentiated ones (A). Adipogenic 

differentiation was confirmed by Oil Red O positive stain (D) with respect to 

undifferentiated cells (C). Chondrogenic differentiation of alginate hydrogel-embedded 

cells was confirmed by Alcian Blue (F) which resulted negative in controls (E). 

Magnification: 20x (A-D), 10x (E, F). 
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7.3 Phenotypical characterization of Wharton’s jelly Mesenchymal stem cells (WJ-

MSCs): further markers. 

 

In order to provide a more detailed characterization of WJ-MSCs, we wanted to investigate 

their expression in parallel between the umbilical cord tissue and cultured cells. As shown 

in figure 11 (A, B), the α-smooth muscle actin (α-SMA) is strongly expressed at the 

vascular tunica media and Wharton's jelly cells level. Vimentin (C, D) and desmin (E, F) 

are other two intermediate filaments expressed in WJ and UE zones. Vimentin is a typical 

intermediate filament of mesenchymal lineage cells. Desmin expression plays an important 

role since it is usually associated with the muscle cell phenotype. In fact, figure 11 F shows 

that the vessel wall is amply positive to desmin, but interestingly we demonstrated its 

expression also in Wharton’s jelly (Figure 11 E, F) as well as umbilical epithelium. The 

von Willebrand factor (vWF), typically restricted to mature endothelial cells, was detected 

only in vascular endothelium as expected (Figure 11 G, H). The results of IHC have been 

confirmed subsequently in the cell culture by immunocytochemistry (ICC) for the α-SMA, 

vimentin, desmin and vWF, as shown in Figure 12 (A, B, C, D). This datum is of central 

importance for the characterization of the phenotypical features of WJCs. In fact, even if 

their environment changed with the ex-vivo culture, the expression of multiple molecules 

remained unaltered. This will be of further importance for the maintenance of features 

leading to the immune privilege of such cells. 

Moreover we have evaluated the cytokeratin (CK) expression, intermediate filaments at the 

human body epithelia level. Previous literature data have described the cytokeratin family 

presence in the umbilical cord blood [103]. We demonstrated that particular cytokeratins, 

as CK-8, CK-18 and CK-19, are expressed in the umbilical epithelium and Wharton's jelly 

(figure 13 A, B). Our group showed that WJ-MSCs expressed c-Kit antigen, the stem cell 

factor receptor, differently from BM-MSCs. c-Kit is localized at the perivascular region by 

IHC analysis, and less expressed in WJ (Figure 13 C, D). 

Connexin-43 (Cx-43) is another interesting molecule, belonging to the stem population, 

and expressed mostly in the embryonic stem cells, and also in the mesenchymal stem cells. 

From a cell therapy perspective, Cx-43, together with others, may help engraftment in the 

host pancreatic parenchyma, by allowing the establishment of physical interactions 
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between cells. It has also been demonstrated that Cx-36 and Cx-43 have opposite effects 

on beta cell mass and insulin production levels. Moreover, in vivo Cx-43 positive cells 

localize at the periphery of islets and mark also alpha cells. The IHC analysis has allowed 

us to highlight that Cx-43 is widely expressed at the UE and Wharton's jelly level (Figure 

13 E, F). ICC method has been used to evaluate the expression of the same molecules 

(cytokeratins, c-Kit, and Cx-43) in the cell culture. As visible in Figure 14 (A, B and C), 

WJ-MSCs showed expression of CK-8, CK-18 and CK-19, thus confirming the IHC data. 

WJ cells have been found to both express c-Kit and connexin 43 (Figure 14 D and E) 

molecules also in vitro. 
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Fig.11: Representative panels of immunohistochemical detection of various markers in 

umbilical cord specimens: α-SMA (A and B), Vimentin (C and D), Desmin (E and F), 

vWF (G and H). Magnification: A and G 10x, B-F, H, 20x. 
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Fig.12: Representative panels of immunocytochemical detection of various markers in 

umbilical cord specimens: α-SMA (A), Vimentin (B), Desmin (C), vWF (D). 

Magnification: 20x. 
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Fig.13: Representative panels of immunohistochemical detection of various markers in 

umbilical cord specimens: Ck-mix (A and B), C-kit (C and D), Cx-43 (E and F).       

Magnification:  (A, D, E, 20x), (B, F, 40x) and C 10x. 
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Fig.14: Representative panels of immunocytochemical detection of various markers in 

umbilical cord specimens for Ck-8 (A), Ck-18 (B), Ck-19(C), C-kit (D), Cx43 (E). 

Magnification: 20x. 
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7.4 Immuno-modulatory and immune-related molecules expression in WJ-MSCs by 

immunohistochemistry, immunocytochemistry and flow cytometry. 

 

Because of their hypo-immunogenicity and immune-modulatory features, mesenchymal 

stem cells have been identified as an alternative treatment for diabetes. MSCs lack co-

stimulatory molecules expression and are able to modulate the immune response by 

releasing cytokines and growth factors. MSCs immunomodulatory features involve the 

suppression of T cell proliferation and the inhibition of natural killer (NK) and B-cell 

proliferation [104-106]. 

Therefore an important goal is to understand the pathways regulating the interactions 

between the mesenchymal stem cells and recipients' immune system, to better detail the 

mechanisms to prevent the acute post-rejection, either after organ transplant or after cell 

therapy. The major histocompatibility complex (MHC), class I and II, are between the 

main molecules involved in the immune response. By IHC, we have demonstrated that 

class I MHC (HLA-ABC) is widely expressed at the umbilical epithelium level as well as 

WJ cells (Figure 15, A) in the cord tissue. In contrast, no positivity has been found for the 

HLA-DR, a typical type II MHC molecule (Figure 15 C). 

Much attention has been recently given to non-classical MHC class I complexes, and 

effectors of the immunologic tolerance, modulating lymphocyte and NK cells proliferation. 

Previously, our lab has underlined the HLA-G expression in the WJ-MSCs [57]. Now our 

interest has been focused on the HLA-E molecule. For the first time we have showed 

HLA-E expression at protein level, (Figure 15 E) in both umbilical epithelium and WJ 

cells. Immunocytochemistry confirmed these data, with WJ-MSCs in culture being amply 

positive for HLA-ABC, negative for HLA-DR, and, as demonstrated for the first time here, 

positive for HLA-E at the protein level (Fig. 15 B, D, F). 

Flow cytometry confirmed the data of ICC experiments, as visible figure 16: WJ-MSCs 

were amply positive for class I MHC (HLA-ABC), negative for the expression of class II 

MHC (HLA-DR) and positive for the expression of non-classical class I MHC (HLA-E).
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Fig.15 Representative panels of immunohistochemical / immunocytochemical detection of 

immune-related molecules in umbilical cord specimens and paired cultured cells.  Both UC 

tissue and WJCs were positive for HLA-ABC (A, B) and HLA-E (E, F), while lacking 

detectable expression of HLA-DR (C, D). Magnification: 40x (A); 20x (B-F). 
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Figure 16: Flow cytometry analysis of the levels of expression of immune-related and 

immunomodulatory molecules in WJ-MSCs. As expected and confirming the results of 

ICC analyses, cells were amply positive for class I HLAs (HLA-ABC), negative for class 

II (HLA-DR), and showed the expression of both HLA-E and CD276 (B7-H3). 
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B7 co-stimulators are a growing family of molecules, which are implicated in the 

regulation of the immune response by interacting with specific receptors expressed by 

lymphocytes. The classical B7 co-stimulators are B7-1 (CD-80) and B7-2 (CD-86). As 

show in figure 16, the two co-stimulatory molecules are undetectable in the cord tissues. In 

vitro data (not shown) confirmed the lack of these molecules also in cultured WJ-MSCs. 

Further members of the B7 families have been discovered in recent years, and for some of 

these, an inhibitory role has been proposed. B7-H3 is one of these molecules, whose 

expression has been demonstrated in WJ-MSCs, at the RNA level unlike B7-H1 and B7-

H4. WJ-MSCs were positive for B7-H3 in both cord tissue (Figure 18 A) and cultured cells 

(Figure 18 B). We evaluated further immune-modulatory molecules such as indoleamine 

2,3 dioxigenase (IDO), an enzyme implicated in the tryptophan amino acid metabolism, 

that is necessary for the lymphocyte proliferation. IDO was positively expressed in both 

umbilical cord and cultured cells, Fig. 19 (A and B). In addition, the early pregnancy factor 

(EPF) was also detected in the cord tissue and cultured cells (Fig.19 C and D). EPF 

belongs to the chaperonin family, and is required for the viability and survival of embryo, 

due to its immunosuppression and growth-promoting features. This is the first report 

describing EPF expression in WJ-MSCs and cord tissue. 
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Fig.17: Representative panels of immunohistochemical /immunocytochemical detection of 

immune-related molecules in umbilical cord specimens Immunohistochemistry for B7-1 

(A and B), B7-2 (C and D). Magnification: (A and C 10x), (B and D 20x). 
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Fig.18: Representative panel of immunohistochemical / immunocytochemical detection of 

B7-H3 in umbilical cord specimens and paired cultured cells.  Both UC tissue (A) and 

WJCs (B) were positive for B7-H3. Magnification 40x and 20x.
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Fig.19: Representative panels of immunohistochemical / immunocytochemical detection 

of immune-related molecules in umbilical cord specimens and paired cultured cells.  Both 

UC tissue (A,C) and WJCs (B.D) were positive for IDO (A, B) and EPF (C and D). 

Magnification 20x and 10x. 
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7.5 Immuno-modulatory molecules expression of Wharton’s jelly Mesenchymal stem 

cells (WJ-MSCs) by western blot analyses 

 

We analyzed some of the previously assessed markers by western blot, in order to confirm 

the data on proteins expression. Total proteins extracted from different WJ-MSCs at 3rd, 

6th, and 11th culture passages were loaded on polyacrylamide gels under non-reducing 

conditions, in order to preserve eventual supra-molecular complexes, which are not 

influenced by SDS presence. Figure 20 A shows that HLA-E is markedly present in all the 

passages considered, therefore confirming the results obtained with previous experiments. 

Interestingly, apart the canonical 40 kDa band which refers to the expected MW of the un-

glycosylated protein chain, a 50 kDa band (due to the glycosylation of the molecule) and a 

higher molecular weight complex (around 100 kDa) were also detectable. Figure 20 B 

shows that B7-H3 is represented by a smaller band around 55 kDa, which may refer to the 

unglycosylated form, and a main band around 100 kDa, which refers to the mature, 

glycosylated form found on cell membrane.  

Another molecule, which has been associated to the immuno-modulatory phenotype of 

MSCs is Galectin-1. WB analyses (Figure 20 C) showed that the molecule is expressed in 

its mature form (15 kDa band) in all the passages analyzed. At earlier passages a higher 

MW band (about 30 kDa) is also observable. 

LIF (Leukemia inhibitory factor) has been also linked to the immunosuppressive properties 

of MSCs. WB analyses (figure 20 D) showed that the 22 kDa precursor band is expressed 

in all the cell passages, while at passage 3 is also observable a 40 kDa band (the mature 

glycosylated form) and a higher molecular weight band (around 160 kDa). 

Overall these data confirm the expression of crucial immuno-modulatory molecules in WJ-

MSCs and open new scenarios on the definition of the molecular partners in higher 

molecular weight complexes, even considering that the receptor for B7-H3 is still 

unknown. 
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Figure 20: Panel of Western Blotting analyses for the expression of immunomodulatory 

molecules in WJ-MSCs. A: HLA-E; B: B7-H3; C: Galectin-1; D: LIF. 
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7.6 Neuronal markers expression of Wharton’s jelly Mesenchymal stem cells (WJ-

MSCs) by ICC  

 

Another interesting datum, which can emerge from the analysis of the phenotype of 

undifferentiated WJ-MSCs, is their ability to express molecules belonging to several 

mature lineages, such as the neuro-ectodermal one. Due to the importance of neural cells 

and molecules in the early differentiation process of pancreas tissues, both exocrine and 

endocrine, and the possible establishment of a cross-talk between infused stem cells and 

islets populations via diffusible factors, we aimed to determine if our undifferentiated 

populations, to be used in subsequent cell transplantation experiments, would be able to 

express such molecules. 

Figure 21 shows the results of immunocytochemical analyses on cultured WJ-MSCs: cells 

were positive for the expression of Nestin (figure 21 B), which is an intermediate filament 

expressed in neuronal precursors but found also in pancreatic stem cells. This is normally 

replaced by the mature intermediate filaments along the standard differentiation of the 

neural lineages, so is not surprising to find a very low number of NF68-expressing cells 

(figure 21 D) scattered between the mainly nestin-positive ones. WJ-MSCs do express also 

other markers of the neural lineage, as shown for NSE, neuron-specific enolase, (figure 21 

A) and GFAP (glial fibrillar acidic protein, 21 C), which shows the classical filamentous 

cytoplasmatic staining.  

These data show that WJ-MSc are able to express several molecules specifically associated 

with neuro-ectodermal differentiation pathways. On these premises, we wanted to 

determine whether the GDNF (glial derived neurotrophic factor) expression could be 

detected in these cells. In fact, GDNF represent a secreted molecule associated with the 

differentiation of islet cells in pancreas, as observed in cat development [107]. Further 

studies of overexpression of GDNF in pancreatic glia showed that the factor was 

associated with an increased beta cell mass and improved glucose tolerance [108]. 

Figure 22 shows the results of a western blotting analysis of GDNF expression in WJ-

MSCs as well as in cerebral cortex (used as a positive control) or pancreases of mice either 

diabetic or normoglycemic. As shown, GDNF was expressed in all samples as a mature 

form with a band of 15 kDa. The glycosylated form, with a reported molecular weight of 
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25kDa [109] was detected only in mouse tissues. The most abundant bands referred to the 

higher supra-molecular complexes that GDNF forms with heparin, which range from 33 to 

45 kDa. These data constitute the first observation of GDNF expression in Wharton's jelly 

cells, and due to its importance in pancreas development and beta cell proliferation and 

glucose tolerance, this factor may constitute an important player in the subsequent 

experiments aiming to evaluate the contribution of WJ-MSCs in islets transplantation. 
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Figure 21: Representative panels of immunocytochemical detection of neural markers in 

WJ-MSCs. Cells were amply positive for the expression of NSE (A), Nestin (B) and GFAP 

(C). Scattered cells were also positive for the expression of the mature intermediate 

filament NF68 (D). Magnification: 10x. 
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Figure 22: Western blotting analysis of GDNF expression in mouse tissues. GDNF was 

detectable as the mature form, which weighs 16kDa in all the considered specimens, the 

free glycosylated isoform was detected in mouse tissues but not in WJ-MScs. In all 

samples, the predominant forms were the numerous supra-molecular complexes with 

heparin, which range in MW between 33 to 45 kDa. GAPDH was used as control for 

protein expression. 



67 
 

 

7.7 Pilot study for the feasibility of co-transplantation of WJ-MSCs and pancreatic 

islets. 

 

As detailed in methods, mice of the two experimental groups were rendered diabetic with 

STZ injection. After three days, the mice were transplanted with a marginal mass (200 IEq) 

of pancreatic islets and 3x10
6
 WJ-MSCs. Mice were then monitored for the subsequent 

three months for the blood glucose levels and body weight. As expected, the negative 

control mouse, which received only the 200 IEq transplantation, failed to revert diabetes, 

and died within three weeks from transplantation. Of the three mice that received WJ-

MSCs together with 200 IEq islets, two reverted diabetes since two weeks after 

transplantation. Body weight, which is another important parameter to be monitored for 

diabetic animals, due to their tendency to progressive lose weight, also confirmed this 

tendency, with the control mouse losing weight progressively until death, and the mice 

receiving the WJ-MSCs co-transplantation gaining weight after transplant and remaining 

to normal levels until the end of the experiment. 
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Figure 23: Graph depicting the blood glucose levels (BGL) of the animals during the co-

transplantation experimental period. 
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Figure 24: Graph depicting the body weight of the mice of the two experimental groups.  

 

 

7.8 IPGTT results 

 

To confirm the diabetes reversion of the two mice which were normoglycemic after three 

months, we tested the intra-peritoneal glucose tolerance test (IPGTT). Dextrose injection 

caused a peak in BGL after around 30 minutes, and then decreased slowly for the 

subsequent 1,5 hours. The day after, the values were fully normalized. There are 

contrasting data in literature [110] regarding the interpretation of the BGL after IPGTT, 

since fasting (which was the case of these animals) prior to the injection may have 

secondary effects, which may result in misinterpretation of the test results. The complete 

restoration of normal BGL attained since the day after the test confirms that the animals 

were completely normoglycemic. 
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Figure 25: Graph depicting the results of IPGT test for the two mice of the experimental 

group performed after three months. The two mice reacted differently to the stimulation, 

with only one showing the characteristic peak around 30 minutes after injection. Both mice 

showed fully normal BGL values since the day after the test. 
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7.9 Islets engraftment under kidney capsule (H&E and Insulin staining) 

 

After four months, animals were sacrificed and the mouse pancreas and kidney were 

harvested and embedded in paraffin. As shown in figure 26, we investigated the presence 

of functional islets under the kidney capsule: H&E staining (panels A, B) confirmed 

formally the success of the transplant (in accordance to the observed diabetes reversal), and 

the islet structure preservation. Furthermore, insulin staining (figure 26 C, D) was tested in 

immunohistochemistry, and the largest part of the islets consisted of a preserved inner 

mass of insulin-positive cells, therefore testifying the successful engraftment of islets and 

their revascularization and resistance to the ischemic stresses suffered during the 

isolation/transplant procedure. Since normally the marginal mass transplantation fails to 

revert diabetes, it is manifest that the presence of the co-transplanted cells favored islets 

survival and engraftment and ultimately diabetes reversal. 
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Figure 26: Localization of islets transplanted under the kidney capsule of mice receiving 

co-transplantation of WJ-MSCs. A, B: Hematoxylin/Eosin staining of islets detectable 

under the capsule of the transplanted kidneys. The islets show standard morphology. C, D: 

panels of immunohistochemical detection of insulin-positive cells under the kidney 

capsule: the islets were functional in that most cells belonged to the beta cells mass and 

were positive to insulin expression. Magnification 10x and 20x. 
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DISCUSSION 

 

Diabetes constitutes one of the major global health problems worldwide. Despite the 

advances in medical therapy, transplantation (either orthotopic or islet) remains a viable 

option. Stem cells have been proposed either as direct replacement of differentiated beta 

cells, or as supporting cells to stimulate the organ self-repair. The immunological milieu in 

which type I diabetes develop, constitutes a major challenge for any cell type to be infused 

in patients. Perinatal stem cells have recently emerged as promising populations, which 

may be reliably sourced from tissues discarded at birth. These cells, apart being able to 

differentiate in several mature types, have hypoimmunogenicity and immune modulation 

features that render them promising for transplantation in immunocompetent hosts without 

concurrent immune suppression. In particular, WJ-MSCs have been highlighted as cells 

which retain most of the immunomodulatory features of the perinatal tissues, which are 

fundamental for embryo and fetus survival. 

This project stemmed from the need of a stem cells population, which may be successfully 

used in treating type I diabetes. We chose to explore a different mechanism of action, with 

respect to the classical repopulation-type approach, with WJ-MSCs to be used in co-

transplantation with pancreatic islets, therefore maximizing their contribution in terms of 

anti-inflammatory and immunomodulatory molecules which may help islets engraftment 

and revascularization after transplantation. 

The first objective of this project was to obtain a better characterization of the basic 

biology features of WJ-MSCs, which were first demonstrated to possess the standard 

expected features in terms of classical markers expression as well as the expected 

differentiation abilities. However, these are only part of the data that have been generated 

during the project: in fact, we pursued a detailed characterization of the WJ-MSCs 

phenotype, not only in the cultured cells, but in their in organ counterpart, by analyzing the 

expression of the same molecules also in the umbilical cord tissue. This allowed for 

example to detect markers belonging to the ectodermal, endodermal and mesodermal-

derived tissues in these cells, which were present also in the cells in vivo. Such a study, 

which has been limitedly attempted in the past, strongly suggested that the cells maintain, 
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even in the culture conditions, the same phenotype which they feature in the umbilical cord 

and warrants their properties in vivo. More importantly, since our aim was to use these 

cells as support populations in islets co-transplantation, we wanted to characterize in detail 

the expression of immune modulatory/anti-inflammatory molecules both in cultured cells 

and in the umbilical cord. Surprisingly, lot of molecules which are thought to be expressed 

at the feto-maternal interface, such as HLA-E and B7-H3, are actually present in UC tissue 

cells, which uncovers possibly new roles for these cells in the processes related to 

pregnancy and fetus development. More importantly, we characterized some new 

molecules expressed by the isolated cells, again in a conserved fashion with respect to the 

in organ situation, which may justify part of the properties these cells have in vivo when 

transplanted in immunocompetent hosts. Of particular importance are the data on B7-H3, 

which is a molecule associated physiologically to the inhibition of the T cell response, but 

which receptor is still unknown.  

Another objective of this project was to analyze the expression of other molecules, which 

may warrant a better engraftment of the islets in host tissues, when expressed by a co-

transplanted cell type. Interesting data came from the Cx-43 immunolocalization, since this 

molecule, expressed at high levels by WJ-MSCs, is also known to be expressed by cell 

types residing at the periphery of the islet (for example, but not limited to, alpha cells). 

Therefore, the possibility to physically establish relations with the islet populations via the 

formation of gap junctions, constitutes an intriguing possibility which may be explored in 

further experiments stemming from this research. Another feature of the WJ-MSCs is the 

expression of various molecules of the neuro-ectodermal lineage. We characterized in this 

project the expression of markers such as NSE and GFAP, but also nestin positivity and 

the appearance of rare NF68-positive cells tend to confirm that WJ-MSCs may have the 

possibility to differentiate towards neural lineages. However, the most important finding, 

to this regard, was the characterization of GDNF expression in WJ-MSCs. This factor has 

been implied with many processes related to beta cells, from the developmental patterning 

of islets populations, to the effect of its overexpression in pancreatic glia on beta cells 

numbers and glucose tolerance improvement. The discovery that WJ-MSCs express this 

secreted molecule may pose a new basis on the way in which these cells may favor islets 

engraftment and survival in the host. Further research is necessary and en route to better 
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detail the role of GDNF in pancreas, but the data showed for the first time in this project 

constitute a solid basis to proceed further. 

Finally, the last aim of this research project was the demonstration of the efficacy of WJ-

MSCs in co-transplantation experiments with pancreatic islets in mice rendered diabetic by 

STZ. We explored the worst scenario, in which a sub-optimal marginal mass dose of 200 

IEq (not effective alone to revert diabetes as shown by controls) was coupled to 3x10
6
 un-

differentiated WJ-MSCs. The islets and cells were transplanted under the kidney capsule of 

recipient mice and the animals were monitored for the subsequent months. Two out of 

three mice arrived at the end of the experiment with normal BGL and body weight 

parameters, therefore providing a formal proof of the efficacy of a limited number of stem 

cells in warranting the survival of islets in numbers sufficient to revert diabetes. IPGT test 

showed that also a massive dextrose injection, which resulted in a peak of BGL between 

30 and 60 minutes from injection, was then metabolized by the animals, which returned to 

normal levels since the day after. Histological examination of the transplanted kidney 

showed the presence of functional insulin-positive islets, which conserved a normal 

morphology, therefore highlighting the role of WJ-MSCs in preserving their functions and 

favoring their engraftment in an immune-competent host. 

Overall, the data coming from this research project confirmed the usefulness of WJ-MSCs 

even besides an eventual differentiation towards insulin-producing cells. These cells, may 

help islet engraftment in several ways, hampering inflammation, silencing immune 

responses, ameliorating vascularization and providing trophic factors to the islet cells, 

which may even resemble those processes which take place when the pancreatic cell 

populations organize themselves with other populations from different lineages and tissues 

(endothelia, neurons, glia) to form the multi-tissue pancreatic organ. 

The researches performed during the Doctoral Course and written in this thesis may open 

new paths for WJ-MSCs to be used in the therapy of type I diabetes and certainly open 

new questions on the many ways in which support to local populations by these cells may 

culminate in the promotion of self-repair. 
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