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Abstract

The aim of this note is to survey the factorizations of the Fibonacci infinite word

that make use of the Fibonacci words and other related words, and to show that all these

factorizations can be easily derived in sequence starting from elementary properties of

the Fibonacci numbers.

1 Preliminaries

The well-known sequence of Fibonacci numbers (sequence A000045 in the On-Line En-

cyclopedia of Integer Sequences) is defined by F1 = 1, F2 = 1 and for every n > 2,
Fn = Fn−1 + Fn−2. The first few values of the sequence Fn are reported in Table 1 for
reference.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Fn 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 2584 4181 6765

Table 1: The first few values of the sequence of Fibonacci numbers.

A basic property of Fibonacci numbers (that can be easily proved by induction) is that
1 plus the sum of the first n Fibonacci numbers is equal to the (n+2)-th Fibonacci number:

1 +
n∑

i=1

Fi = Fn+2. (1)
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We recall here a famous result, usually attributed to Zeckendorf [13], but published earlier
by Lekkerkerker [8] and which, in fact, is a special case of an older and more general result
due to Ostrowski [10]. It permits us to use Fibonacci numbers as a basis for representing
integers:

Theorem 1. Every positive integer can be expressed uniquely as the sum of one or more

distinct non-consecutive Fibonacci numbers Fn, n > 1.

For example, 17 = 13+3+1 = F7+F4+F2, and there is no other way to write 17 as the
sum of non-consecutive Fibonacci numbers (assuming the convention that F1 is not used in
the representation). Thus, one can represent natural numbers as strings of 0-1 bits, where
the i-th bit (from the right) encodes the presence/absence of the (i+1)-th Fibonacci number
in the representation given by Theorem 1. So for example the number 17 is represented by
100101. We call this representation of natural numbers the Zeckendorf representation.

The first few natural numbers and their Zeckendorf representations are displayed in Table
2, where we padded to the left with 0s in order to have strings of the same length. Note
that with 6 bits one can represent the first 21 natural numbers. In fact, for every n > 0,
there are exactly Fn integers whose leftmost 1 in the Zeckendorf representation is in position
n (starting from the right). From (1), we derive that one needs n bits to represent the first
Fn+2 natural numbers.

The strings of length n forming the Zeckendorf representations of the first Fn+2 natural
numbers are precisely all the 0-1 strings of length n not containing two consecutive 1s. These
strings are in lexicographic order if the natural numbers are in increasing order from 0 to
Fn+2 − 1.

Zeck. decimal Zeck. decimal Zeck. decimal

000000 0 010000 8 100100 16
000001 1 010001 9 100101 17
000010 2 010010 10 101000 18
000100 3 010100 11 101001 19
000101 4 010101 12 101010 20
001000 5 100000 13
001001 6 100001 14
001010 7 100010 15

Table 2: The Zeckendorf representations of the first few natural numbers coded with 6 bits.

Let us define f(n), for every n ≥ 0, as the rightmost digit of the Zeckendorf representation
of n. For every n > 1 we define the n-th Fibonacci word as the string

fn = f(0)f(1) · · · f(Fn − 1)
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of length |fn| = Fn. By convention, we set f1 = 1. The first few Fibonacci words are shown
in Table 3.

f1 = 1

f2 = 0

f3 = 01

f4 = 010

f5 = 01001

f6 = 01001010

f7 = 0100101001001

f8 = 010010100100101001010

f9 = 0100101001001010010100100101001001

Table 3: The first few Fibonacci words.

We also define the Fibonacci infinite word f as the limit of fn as n goes to infinity. That
is, f is the infinite word whose n-th letter is the “parity” of the Zeckendorf representation
of n:

f = f(0)f(1)f(2)f(3) · · · = 0100101001001010010 · · ·
In the Zeckendorf representation of an integer, when the n-th digit from the right is a 1,

the (n− 1)-th digit from the right is a 0. Hence, the rightmost n− 2 digits of the Zeckendorf
representations of the natural numbers from Fn+1 to Fn+2 − 1 are the same rightmost n− 2
digits of the Zeckendorf representations of the first Fn natural numbers. For example, the
2 rightmost digits of the Zeckendorf representations of 5, 6 and 7 are, respectively, 00, 01,
10, as well as the 2 rightmost digits of the Zeckendorf representations of the 0, 1 and 2. We
deduce that for every n > 2, one has

fn = fn−1fn−2. (2)

For more details on Fibonacci words the reader can see, for instance, [1].
Recall that a factorization of an infinite word w is a sequence (xn)n≥1 of finite words

such that w can be expressed as the concatenation of the elements of the sequence, i.e.,
w =

∏
n≥1

xn.
In general, exhibiting a factorization (xn)n≥1 of an infinite word w can be useful to better

understand the combinatorics of w, provided the sequence (xn)n≥1 has non-trivial combina-
torial properties—for example, all the words in the sequence are palindromes, squares, or
prefixes of w.

Another point of view consists in defining a factorization by some general rule that can be
applied to any infinite word. The sequence (xn)n≥1 is therefore determined by the particular
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instance of the infinite word w (as is the case, for example, in the Lempel-Ziv factorization
or in the Lyndon factorization, that we will see below). In this case, the word w can have
particular properties that make it a limit example for that particular factorization.

In next sections, we will show a number of factorizations of the Fibonacci infinite word
that make use of the Fibonacci finite words and other related words. These factorizations
have been introduced over the time in different papers, and we think it can be useful to collect
them all together for reference. We also add some (at least to the best of our knowledge)
novel factorizations. Moreover, we present these factorizations in an order that allows us
to provide a short and elementary proof for each of them, despite the original proofs being
sometimes more involved or more technical.

2 Fibonacci words and co-Fibonacci words

The first factorization of the Fibonacci infinite word we exhibit is the following.

Proposition 2. The Fibonacci infinite word can be obtained by concatenating 0 and the

Fibonacci words:

f = 0
∏

n≥1

fn (3)

= 0 · 1 · 0 · 01 · 010 · 01001 · 01001010 · · ·

Proof. Since for every i ≥ 1, |fi| = Fi, it is sufficient to prove that, for every n ≥ 1, fn
occurs in f starting at position 1 +

∑n−1

i=1
Fi = Fn+1. From (2), we have fn+2 = fn+1fn, so

that fn has an occurrence in f starting at position |fn+1| = Fn+1.

Let us consider the sequence pn of the palindromic prefixes of f , also called central words.
The first few values of the sequence pn are displayed in Table 4, where ε denotes the empty
word, i.e., the word of length 0.

p3 = ε

p4 = 0

p5 = 010

p6 = 010010

p7 = 01001010010

p8 = 0100101001001010010

p9 = 01001010010010100101001001010010

Table 4: The first few central words.
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As it is well-known, for every n ≥ 3, pn is obtained from fn by removing the last two
letters. More precisely, we have for every n ≥ 1,

f2n+1 = p2n+101, f2n+2 = p2n+210. (4)

The fundamental property of the central words is the following:

Lemma 3. For every n ≥ 2 one has

p2n+1 = p2n−101p2n = p2n10p2n+1, p2n+2 = p2n10p2n+1 = p2n+101p2n.

Proof. Follows immediately from (2) and (4).

Remark 4. It is easy to see from (2) that for every n ≥ 4, one has fn = fn−2fn−3fn−2. We
have therefore from (3):

f = 01001
∏

n≥2

fnfn−1fn (5)

= 01001 · (0 · 1 · 0)(01 · 0 · 01)(010 · 01 · 010)(01001 · 010 · 01001) · · ·

Analogously, since 1 = f3, we can write

f = 0100
∏

n≥2

fn−1fnfn−1 (6)

= 0100 · (1 · 0 · 1)(0 · 01 · 0)(01 · 010 · 01)(010 · 01001 · 010) · · ·

We now introduce a class of words that we call the co-Fibonacci words. Although this
class has appeared previously in the literature [2], to the best of our knowledge no one has
yet given a name to them.

The co-Fibonacci words f ′
n are defined by complementing the last two letters in the

Fibonacci words fn, that is, f
′
n = pnyx, where x and y are the letters such that fn = pnxy.

Equivalently, co-Fibonacci words can be defined by f ′
n = fn−2fn−1 for every n ≥ 3. The first

few co-Fibonacci words are displayed in Table 5.
The following lemma is a direct consequence of Lemma 3.

Lemma 5. For every n ≥ 2 one has

f ′
2n+1 = f2nf

′
2n−1, f2n+2 = f2nf

′
2n+1.

Proposition 6. The Fibonacci word can be obtained by concatenating 0 and the odd co-

Fibonacci words:

f = 0
∏

n≥1

f ′
2n+1 (7)

= 0 · 10 · 01010 · 0100101001010 · · ·
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f ′
3 = 10

f ′
4 = 001

f ′
5 = 01010

f ′
6 = 01001001

f ′
7 = 0100101001010

f ′
8 = 010010100100101001010

Table 5: The first few co-Fibonacci words.

Proof. Follows directly from (3) replacing f2n−1f2n with f ′
2n+1.

Analogously, we have the following:

Proposition 7. The Fibonacci word can be obtained by concatenating 01 and the even co-

Fibonacci words:

f = 01
∏

n≥1

f ′
2n+2 (8)

= 01 · 001 · 01001001 · 010010100100101001010 · · ·

Proof. Follows directly from (3) replacing f2nf2n+1 with f ′
2n+2.

3 Singular words

Let us define the left rotation of a non-empty word w = w1w2 · · ·wn, wi letters, as the
word wλ = wnw1 · · ·wn−1. Analogously, the right rotation of w is defined as the word
wρ = w2 · · ·wnw1.

The singular words f̂n are defined by complementing the first letter in the left rotations
of the Fibonacci words fn. The first few singular words are displayed in Table 6. Note that
for every n ≥ 1, one has f̂2n+1 = 0p2n+10 and f̂2n+2 = 1p2n+21 .

The singular words are palindromic factors of f but do not appear as prefixes of f (by the
way, f also contains other palindromic factors besides the central words pn and the singular
words f̂n, e.g., 1001 or 01010, see [6] for more details). Their name comes from the fact
that among the Fn + 1 factors of f of length Fn, there are Fn of them that can be obtained
one from each other by iteratively applying left (or equivalently right) rotation and one, the
singular word, whose left (or equivalently right) rotation is not a factor of f .

Wen and Wen [12] proved that the Fibonacci infinite word can be obtained by concate-
nating the singular words:
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f̂1 = 0

f̂2 = 1

f̂3 = 00

f̂4 = 101

f̂5 = 00100

f̂6 = 10100101

Table 6: The first few singular words.

Proposition 8. The Fibonacci infinite word is the concatenation of the singular words:

f =
∏

n≥1

f̂n (9)

= 0 · 1 · 00 · 101 · 00100 · 10100101 · · ·
Proof. Indeed, (9) follows directly from (3) and the definition of singular words, observing
that the Fibonacci words end by letter 0 and 1 alternatingly.

The factorization (9) is in fact the Lempel-Ziv factorization of f . The Lempel-Ziv factor-
ization is a factorization widely used in computer science for compressing strings [14]. The
Lempel-Ziv factorization of a word w is w = w1w2 · · · where w1 is the first letter of w and
for every i ≥ 2, wi is the shortest prefix of wiwi+1 · · · that occurs only once in the word
w1w2 · · ·wi. Roughly speaking, at each step one searches for the shortest factor that did not
appear before.

Remark 9. It is easy to see, using for example (2), (4) and the definition of singular words,
that for every n ≥ 4, f̂n = f̂n−2f̂n−3f̂n−2. Therefore, from (9), we have

f = 0100
∏

n≥2

f̂nf̂n−1f̂n (10)

= 0100 · (1 · 0 · 1)(00 · 1 · 00)(101 · 00 · 101)(00100 · 101 · 00100) · · ·
Since 0 = f̂1, we hence obtain

f = 010
∏

n≥2

f̂n−1f̂nf̂n−1 (11)

= 010 · (0 · 1 · 0)(1 · 00 · 1)(00 · 101 · 00)(101 · 00100 · 101) · · ·
The factorization (11) is a sort of dual with Lucas numbers of the factorization in singular

words (9). Indeed, the sequence of factor lengths in (9) is the sequence of Fibonacci numbers,
while if in (11) one decomposes the first term as 01 · 0, then the sequence of factor lengths
is the sequence of Lucas numbers A000032: 2,1,3,4,7,11, etc.
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Figure 1: The lower Christoffel word c7 = 0010010100101 (left) and the upper Christoffel
word c̃7 = 1010010100100 (right) are the best grid approximations, respectively from above
and from below, of the Euclidean segment joining the points (0, 0) and (8, 5) = (F6, F5).

4 Christoffel words

The lower Christoffel words are defined by cn = 0pn1, for every n ≥ 3. The lower Christoffel
words are the Lyndon factors of f , i.e., they are lexicographically smaller than any of their
proper suffixes (with respect to the order induced by 0 < 1).

c3 = 01

c4 = 001

c5 = 00101

c6 = 00100101

c7 = 0010010100101

c8 = 001001010010010100101

Table 7: The first few lower Christoffel words.

If in the Euclidean plane one interprets each 0 by a horizontal unitary step and each 1
with a vertical unitary step, the lower Christoffel word cn is the best grid approximation
from below of the segment joining the point (0, 0) to the point (Fn−1, Fn−2) (see Figure 1).

Analogously, the upper Christoffel words are defined by c̃n = 1pn0, for every n ≥ 3.
Therefore, the upper Christoffel words are the reversals of the lower Christoffel words (we
use the notation w̃ for the reversal, a.k.a. mirror image, of the word w). The upper Christoffel
words are the anti-Lyndon factors of f , i.e., they are lexicographically greater than any of
their proper suffixes (with respect to the order induced by 0 < 1). Moreover, c̃n is the
best grid approximation from above of the segment joining the point (0, 0) to the point
(Fn−1, Fn−2).
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Remark 10. For every n ≥ 3, cn = fλ
n if n is even, cn = f̃λ

n if n is odd. Therefore, c̃n = f̃λ
n if

n is even, c̃n = fλ
n if n is odd.

c̃3 = 10

c̃4 = 100

c̃5 = 10100

c̃6 = 10100100

c̃7 = 1010010100100

c̃8 = 101001010010010100100

Table 8: The first few upper Christoffel words.

Lemma 11. For every n ≥ 2 one has

c2n+1 = c2nc2n−1, c2n+2 = c2nc2n+1,

and therefore

c̃2n+1 = c̃2n−1c̃2n, c̃2n+2 = c̃2n+1c̃2n.

Proof. The first part follows from Lemma 5 by applying the right rotation to each side of
the equalities. The second part follows from the first by applying the reversal.

The following result states that every Christoffel word is the product of two singular
words.

Lemma 12. For every n ≥ 1 one has

• c2n+1 = f̂2n−1f̂2n

• c2n+2 = f̂2n+1f̂2n

and therefore

• c̃2n+1 = f̂2nf̂2n−1

• c̃2n+2 = f̂2nf̂2n+1

Proof. Follows directly from Lemma 3 and the definitions of Christoffel and singular words.

Melançon [9] proved that the Fibonacci word is the concatenation of the odd lower
Christoffel words:
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Proposition 13. The Fibonacci word is the concatenation of the odd lower Christoffel words:

f =
∏

n≥1

c2n+1 (12)

= 01 · 00101 · 0010010100101 · · ·

Proof. Follows directly from (9) and Lemma 12.

Actually, Melançon proved that (12) is precisely the Lyndon factorization of f . Recall
that the Lyndon factorization of a word w is w = ℓ1ℓ2 · · · , where each ℓi is a Lyndon word and
is lexicographically greater than or equal to ℓi+1. The uniqueness of such a factorization for
finite words is a well-known theorem of Chen, Fox and Lyndon [4]. Siromoney et al. extended
this factorization to infinite words [11].

Symmetrically, we have the following:

Proposition 14. The Fibonacci word is the concatenation of 0 and the even upper Christoffel

words:

f = 0
∏

n≥2

c̃2n (13)

= 0 · 100 · 10100100 · 101001010010010100100 · · ·

Proof. Follows directly from (9) and Lemma 12.

In fact, it is easy to see that (13) is the Lyndon factorization of f if one takes the order
induced by 1 < 0.

We now present two other factorizations based on Christoffel words. To the best of our
knowledge, these factorizations did not appear before in literature.

Proposition 15. The Fibonacci word is the concatenation of 010 and the lower Christoffel

words where each odd lower Christoffel word is squared:

f = 010
∏

n≥1

c22n+1c2n+2 (14)

= 010 · (01 · 01 · 001)(00101 · 00101 · 00100101) · · ·

Proof. Follows directly from (6) and Lemma 12. Indeed, by Lemma 12, we have

c2n+1c2n+1c2n+2 = f̂2n−1f̂2n · f̂2n−1f̂2n · f̂2n+1f̂2n = (f̂2n−1f̂2nf̂2n−1)(f̂2nf̂2n+1f̂2n).

Analogously, we have the following:
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Proposition 16. The Fibonacci word is the concatenation of 0100 and the upper Christoffel

words where each even upper Christoffel word is squared:

f = 0100
∏

n≥1

c̃2n+1c̃2n+2

2
(15)

= 0100 · (10 · 100 · 100)(10100 · 10100100 · 10100100) · · ·

Proof. Follows directly from (5) and Lemma 12. Indeed, by Lemma 12, we have

c̃2n+1c̃2n+2c̃2n+2 = f̂2nf̂2n−1 · f̂2nf̂2n+1 · f̂2nf̂2n+1 = (f̂2nf̂2n−1f̂2n)(f̂2n+1f̂2nf̂2n+1).

5 Reversals of Fibonacci words

One of the most known factorizations of the Fibonacci infinite word, and perhaps the most
surprising, is the following.

Proposition 17. The Fibonacci word can be obtained also by concatenating the reversals of

the Fibonacci words:

f =
∏

n≥2

f̃n (16)

= 0 · 10 · 010 · 10010 · 01010010 · · ·

Proof. It follows from the definitions that taking the right rotation of f̃n and complementing
the last letter produces the n-th singular word f̂n. Therefore, (16) follows directly from (9)
observing that the reversals of the Fibonacci words start with 0 and 1 alternatingly.

The factorization (16) is basically the Crochemore factorization of f—the only difference
is that the Crochemore factorization starts with 0, 1, 0 and then coincides with the one
above (see [3]). Recall that the Crochemore factorization of w is w = c1c2 · · · where c1 is
the first letter of w and for every i > 1, ci is either a fresh letter or the longest prefix of
cici+1 · · · occurring twice in f1f2 · · · fi. For example, the Crochemore factorization of the
word w = 0101001 is 0 · 1 · 010 · 01, since 010 occurs twice in 01010.

In 1995, de Luca [5] considered the following factorization:

Proposition 18. The Fibonacci word can be obtained by concatenating the reversals of the

even Fibonacci words.

f =
∏

n≥2

f̃2n (17)

= 010 · 01010010 · 010100101001001010010 · · ·
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Proof. Applying the reversal to (2), we have that f̃n = f̃n−2f̃n−1, for every n > 2. So (17)

follows directly from (16) by replacing f̃2n−2f̃2n−1 with f̃2n.

In [5] de Luca proved that the factorization (17) has the following minimal property with
respect to the lexicographical order: any non-trivial permutation of a finite number of the
factors will produce an infinite word that is lexicographically greater than f .

Concatenating the reversals of the odd Fibonacci words instead of even ones still produces
the Fibonacci word, if one prepends a 0:

Proposition 19. The Fibonacci word can be obtained by concatenating 0 and the reversals

of the odd Fibonacci words:

f = 0
∏

n≥2

f̃2n+1 (18)

= 0 · 10010 · 1001001010010 · · ·

Proof. Follows directly from (16) by replacing f̃2n−1f̃2n with f̃2n+1.

Recently [7], studying the so-called open and closed words, the following factorization
has been proved:

Proposition 20. The Fibonacci word can be obtained by concatenating 01 and the squares

of the reversals of the Fibonacci words:

f = 01
∏

n≥2

(f̃n)
2 (19)

= 01 · (0 · 0)(10 · 10)(010 · 010)(10010 · 10010) · · ·

Proof. Recalling that for every n ≥ 3, one has f̃n = f̃n−2f̃n−1, we have, from (16), that

f = f̃2f̃3f̃4 · · · = 0 · f̃1f̃2f̃2f̃3 · · · = 01 · (f̃2f̃2)(f̃3f̃3) · · · = 01
∏

n≥2
(f̃n)

2.

6 Generalization to standard Sturmian words

The Fibonacci word is the most prominent example of a standard Sturmian word. Let α
be an irrational number such that 0 < α < 1, and let [0; d1 + 1, d2, d3, . . .] be the continued

fraction expansion of α. The sequence of words defined by s1 = 1, s2 = 0 and sn = s
dn−2

n−1 sn−2

for n ≥ 3, converges to the infinite word wα, called the standard Sturmian word of slope α.
The sequence of words sn is called the standard sequence of wα. The Fibonacci word is the
standard Sturmian word of slope α = (3−

√
5)/2 and its standard sequence is the sequence

of Fibonacci finite words, since one has di = 1 for every i ≥ 1.
Most of the factorizations we described in this note can be generalized to any standard

Sturmian word. However, the proofs become more technical and less easy to present.
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